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2 ‘Frontal Polymerization (FP)

Rapid generation of polymeric materials that utilizes the intrinsic energy from heat of produced from an
exothermic polymerization reaction

Reduces energy requirements Reduces time to cure Inexpensive equipment
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4 ‘Frontal Ring-Opening Metathesis Polymerization

Citations from the FP Literature
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s 1 Frontal Polymerization Systems
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|Fronta| Polymerization using encapsulated catalysts

—— Microparticle Components Pot life > 1 year Frontal Polymerization
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7 1Frontal Polymerization Systems
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: | UV Triggered Frontal Polymerization

Demonstrated extensively via free-radical and cationic FP

Demonstrated UV initiated Grubbs activation for FP Visible Light Activated FP

Standard Conditions
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Can we achieve phototriggered FP with encapsulants to enable a longer pot life as well as
high reactivity.

Polymerization
Front

Katherine, S. J. et al ACS Macro Lett.

2020, 9,11, 1563-1568.
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IPhotoactivation of encapsulant for Frontal Polymerization

o N =

Encapsulant readily depolymerizes via light

Encapsulant releases catalyst at elevated temperature

Rapid release of catalyst during frontal polymerization

Encapsulant insoluble in DCPD monomer solution

No reactivity between encapsulant and catalyst

Electronics on MBTT/cPPA Films Trigger with Ultraviolet Light ;ri:;i;:"r::i:ﬁ Substrate
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o | Particle Formation using Spray Drying

Manuscript Submitted

- Spray drying does not require emulsification * Morphology and size distribution difficult to control
« Allows for versatility in particle formulation * Requires optimization of parameters
. Continuous particle formation enables scalability Flow rate, drying temperature, solvent, concentration

* No separation required
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I Particle Formation using Spray Drying

« Spray drying does not require emulsification
« Allows for versatility in particle formulation
« Continuous particle formation enables scalability

* No separation required

Particle Formulations
» 12 phr Hoveyda Grubbs 2" Gen. Cat
« 88 phr Cyclic polyphthalaldehyde
* 0-10 phr MBTT

Manuscript Submitted I
* Morphology and size distribution difficult to control
* Requires optimization of parameters

« High Encapsulation Efficiency
* Yield ranges from 50 - 80 %
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12 I Characterizing photoinitiated ROMP of DCPD

Photoinduction time (PIT) defined as time to reach 10 Pa storage modulus
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s | Photoinitiated ROMP of DCPD @!

Particles formulation tuned to control rate of photoinitiation |
Successful Photoactivation Inefficient photoactivation . .
Particle loading decreases PIT
No background polymerization Requires 30x more MBTT
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2 I Temperature Significantly Reduces Photoinduction Time

10°

5 . . . .
10 Acid Formation and Diffusion |
10 F cCl,
E NN 365 nm
=10° Light
) P ——» Hcl
) Cl,C~ N
10
OCHj
10'
10° A
0 2 4 6 8 10
Time (min)
8
| = cPPA Depolymerization Rate

Photoinduction Time (min)
N £ ()]
[ ]
[ ]
[ |
o
(@]
(@) o
@)
(@]
lz
+
=]
20U
> I
@]

25 30 35 40 45 50 I
Temperature (°C)
5 phr MBTT | 8mg/ml (mg particles/ mL DCPD)| 27 mW/cm?



CHs /—\ ch oH « Particle formation successful for various catalysts
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16 I Photoactive Microparticle Stability in DCPD

Particles were stored in monomer solutions at room temperature in the absence of light over the course of one month

Decreasing photoinitiation times until the fourth week
« Background depolymerization of encapsulant
* Increased homogeneity and aggregate breakdown

After four weeks, localized gelation occurs due to released HG2
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17 ‘ Photoinitiated Frontal Polymerization

=r \ 7= * Photoinitiation requires higher UV intensity |
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19 I Vat polymerization using photoactivate microparticles

Photomask Resulting Materials
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‘ Summary

Frontal Polymerization of DCPD — Microparticle components—

« Spray drying provides versatility in particles

a . Photoacid Generator
[ ' i (MBTT)
» Particles stable in DCPD monomer solutions n+m m _,[Rj\llf;ﬁvst ol
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23 | Sample thickness variation

Sample thickness
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22 1 Thermogravimetric Analysis
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