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MOTIVATION

Crack kinking methods are needed for propagation
path modeling

Ki=Kiaka, Kn=Kneka

Kink angle model

Kink angle model
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PREVIOUS RESULTS: ELASTIC DISLOCATION METHOD
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PREVIOUS RESULTS: MELLIN TRANSFORM
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A Brief Note is a short paper that presents a specific solution of technical interest in mechanics but
which does not necessarily contain new general methods or results. A Brief Note should not exceed
1500 words or equivalent (a typical one-column figure or table is equivalent to 250 words; a one line
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SUMMARY OF COMPLEX VARIABLE ELASTICITY METHODS

* Observe that stresses derived from Airy stress function naturally satisfy equilibrium

0111+ 0122 =0, 0121 +0222=0

011 — ¢5,223 022 = ¢5,113 Jg12 = —¢5,12

« Combine this with isotropic elasticity and strain compatibility to show that Airy is bi-harmonic

V2V24 =

* We can use complex analysis to express a general solution to the bi-harmonic equation in terms
of two analytic functions, from which we can derive displacement and stress

20 (uy + iuy) = KQ(2) — 20V (2) — P(2)
Opz + Oyy = 2 [Q’(z) + Q’(z)]

Opg — Oyy + 2004y = —2 [zQ”(z) - @’(z)}



COMPLEX STRESS FUNCTIONS FOR WILLIAMS EXPANSION

oo + iorg = ¢ (2) + W + 2¢"(2) + %T/)’(Z)

¢'(z) = C2
Y'(z) = D2

Ogg + 10,9 = [C(l +A) + Ce™ 200 1 De%g] 2
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CONFORMAL MAP KINKED CRACK FROM UNIT DISK
INTERIOR
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STRESS FUNCTION FOR TRACTION BVP ON MAPPED DISK

 Traction or displacement BVPs on regions of the complex plane can be represented as a Hilbert
problem

 Hilbert problems have known solutions in terms of an integral along the region boundary

Too +i0rg = ¢'(2) + ¢/ (2) + 29" (2) + %T/),(z)

Oge + ’iO‘gﬂ = B z:"fg) o
PN L =, $9© (g - 7 o ¢/ c / \A B D x
9(¢) (1 + CW) +0+ 5 (FQ - 71/0) + 0 1 /E t ’
9(¢) = ¢'()/ (<) ¢ = ge'n b 5 = reif




STRESS FUNCTION FOR TRACTION BVP ON MAPPED DISK

+ Use analytic continuation to express stresses inside unit {-disk in terms of a single stress function

« Traction or displacement BVPs on regions of the complex plane can be represented as a Hilbert
problem

* Hilbert problems have known solutions in terms of an integral along the region boundary
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CALCULATING KINK-TIP STRESS INTENSITY FACTORS

1

* Multiply stresses by r, /2, this counteracts K-field singularity

- Take the limit of the resulting quantity as r, —» 0%, approaching along the kink direction

k=kr —ikr
- hm (066 + i0re) ( e T _ lk)1/2
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NUMERICAL INTEGRATION OF INTEGRAL ALONG I

* Noting power-law nature of integrand at end points, integral is approximated using Gauss-Jacobi
quadrature

f w(zx) f(x) dmmegf(:r:;), w(z) = (1—z)*(1+z)”
1 =1

a1 (v; o, A) = s _(Y)_ ,Y()i’i; )

CD _CB pEtpoH ; ~ 22—-3
/ q(7; @) dy ~ ( 5 ) P2y “wy (1 —y) ™7
I =1

where vy = ((p — (B)/2 -1 + ((p + (B)/2 and w; and xz; are the
weights and zeros of the n-order Jacobi polynomial, JPP-PB,
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RESULTS: 4 = —1/2 (K-FIELD TRANSFORMATION)
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RESULTS: A = 0 (T-FIELD TRANSFORMATION)
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RESULTS: A = 1/2 AND 1 = 1
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RESULTS: PRESSURIZED CRACK TRANSFORMATION
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CONCLUSIONS

» Crack tip stress intensity transformations are presented in analytic form

* Transformation of Williams expansion terms beyond T-stress are presented for the first time

* Transformation of pressurized crack and kink is presented for the first time

QUESTIONS?

sjgrutz@sandia.gov
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