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Executive Summary

Specimens of AISI 304L VAR steel are punctured with AISI 4340 steel probes in a series of
drop-table experiments. The times when the probe contacts the specimen and when it breaks
through are indicated by the acceleration of the drop-table carriage. The change in the total
energy of the carriage between these times is the energy mitigated by each specimen.
Precision intervals bounding the energy mitigation provided by the specimens are derived by
classical statistical inference. The lower bounds are reasonable because a sufficient number
of replications are performed. The adequacy of making predictions about future observations
from the population of all possible specimens of identical manufacture based on the normal,
log-normal, Weibull, or gamma distribution are evaluated by standard techniques. The
normal distribution is considered to fit the mitigated energy data, and the lower bounds in
the table below are calculated with it. As an alternative to the statistics, a safety factor of 1.5
may be applied to the sample mean, resulting in a threshold mitigated energy of 21.7 ft-Ib.

Table 1: Statistics of Energy Mitigated by 0.063-Inch-Thick Specimens of
AISI 304L VAR Steel Punctured by 0.25-Inch-Diameter Flat-End Probe

Statistic Mitigated Energy
Mean 32.5 ft-lb
Standard Deviation 1.8 ft-Ib
Median, 50% 31.7 ft-Ib
Lower Bound, 1% 25.9 ft-Ib
Lower Bound, 1E-3 24.0 ft-Ib
Lower Bound, 1E-6 19.8 ft-Ib
Lower Bound, 1E-9 16.7 ft-Ib

Exceptional Service in the National Interest
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Introduction

Robert Waymel performed a series of experiments on a drop table to measure the energy
mitigated by American Iron and Steel Institute (AISI) type 304L vacuum arc remelted
(VAR) steel as a projectile passed through it (Ref. 1). Specimens were machined from bar
stock that was sliced with the wire in an electrical discharge machine (EDM). The natural
surface finish left by the EDM was preserved to give the specimens a texture representative
of actual components. Cracks nucleate at flaws in the material, and a normal quantity of
flaws produces characteristic performance. Polished specimens would likely have mitigated
more energy but would have been unrealistic for comparison to cast or machined housings,
covers, and containers. The interior features of the specimens were produced by milling
operations, as many actual components are.

The disc specimen shown in Figure 1 has a pocket where the thickness is reduced to 1.60
mm (0.063 in) so that a projectile can easily penetrate. The thick rim constrains the thin
portion, giving it a fixed boundary condition around the circular perimeter. The reaction
forces at the boundary pull downward and radially inward on the rim and tend to curl it such
that the outer edges lift off of the fixture. The rim is designed to minimize this deformation.
The probes are straight cylinders turned from AISI 4340 steel bars and hardened to 42—48
Rockwell C hardness (HRC). Figure 2 gives the dimensions in inches.
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Figure 1: AISI 304L VAR Disc Specimen with Thickness of 0.063 Inch
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Figure 2: Cylindrical Probe with Diameter of 0.250 Inch and Flat End

The drop table has a 1370 N (308 Ib) carriage that guides the probe along a straight path
intersecting the specimen. The specimens are held in fixtures that constrain them against
being pushed by the probe and resist lateral motion after a little clearance is removed. The
specimens are free to lift off of the fixture and deform. Two laser interferometers measure
the position of the carriage, and an accelerometer on the carriage measures the resistance to
the falling mass. When the carriage is released from a planned height, the acceleration drops
from 1 G to between 0.40 G and 0.70 G; friction in the guide rods prevents free-fall, and
they are lubricated regularly to minimize it. Data collection begins as the probe approaches
the specimen. Upon contact, an elastic wave travels through the probe to the carriage and
registers an increase in the acceleration (resistance to gravity). The acceleration rises to
about 8 G as the steel work hardens and drops off quickly after it reaches the ultimate stress
and the specimen fractures. The peak acceleration indicates the maximum force required to
puncture the specimen, after which the probe passes through a hole in the fixture, and the
carriage settles onto felt programming rings. The data of interest are collected before the
carriage contacts the rings.

As the probe punctured each specimen, it formed a circular plug. Many of the plugs adhered
to the end of the probe. Following each test, the specimen clamped onto the probe and was
lifted when the carriage raised to the reset position. A few broken specimens appear in the
figures below.
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Figure 3: Probe, Specimen 1, and Ejected Plug After Test 7
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(a) Specimen 3 After Test 8, Plug Fused to Probe (b) Specimen 7 After Test 14, Plug Ejected

(c) Specimen 11 After Test 18, Top Surface (d) Specimen 23 After Test 30, Bottom Surface

Figure 4: Probes Impaled In Specimens After Tests

The sample size is large enough to apply classical statistical inference techniques and obtain
positive energy values at the customary 95% confidence. The Student’s t distribution fits
small samples from normally distributed populations. As the number of specimens in a
sample approaches 30, the two-tailed Student’s t distribution converges to the normal
distribution within 5%. Given the available stock material and testing budget, a sample size
of 24 was selected, for which the Student’s t distribution only applies a slight penalty. All of
the specimens were machined to the same specifications from the same stock material, and
all were tested in the same fixtures and at approximately the same impact velocity. The
specimens in the sample are considered independent but identically distributed.
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Data Processing Method

The times when the probe contacts the specimen and penetrates it are determined from the
acceleration data. A threshold acceleration (at) of 0.4 G is selected for all of the tests. Impact
is considered to occur at the last time (tj) when the acceleration is less than the threshold
prior to the peak acceleration (ap), and the puncture is considered complete at the last time
(to)) when the acceleration is greater than the threshold after the peak. Figure 5 illustrates
these accelerations and times. The figures in Appendix A show the acceleration data for
each test with the thresholds for impact and complete puncture.
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Figure 5: Representative Acceleration Curve with Impact and Puncture Times Identified

Although the threshold acceleration is constant, other processing parameters differ between
tests. Table 2 lists these optimized parameters. Although consistency in the processing
parameters has been preferred, these values are customized to the data and cannot be the
same for every test.
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Table 2: Data Processing Parameters

Acceleration Puncture Time Reference

Free-Fall, | Peak, |Offset, |Period, | Position, p

Test | Specimen |ar (G) 2 (G) | Atop (MS) | Atep (MS) | (mm) | (in)
7 1 0.455| 8.12 0.60 2.20] -7.55|-0.297
10 2 0.396| 8.03 0.10 2.30] -7.62|-0.300
8 3 0.484| 8.06 0.30 2.20] -7.61|-0.299
11 4 0.466| 7.98 0.40 2.10] -8.02|-0.316
12 5 0.433| 8.15 0.20 2.20| -7.66-0.302
13 6 0.452| 8.01 0.70 2.50] -8.59|-0.338
14 7 0.571| 8.17 0.25 2.10] -8.02|-0.316
15 8 0.536| 7.76 0.10 2.10| -7.55|-0.297
16 9 0.539| 7.99 0.40 2.00] -8.17|-0.322
17 10 0.446| 7.89 0.25 2.20| -7.77|-0.306
18 11 0.458| 7.89 0.50 2.00] -8.35|-0.329
19 12 0.444| 8.02 0.40 2.00] -8.05|-0.317
20 13 0.487| 7.99 0.40 2.00] -8.14|-0.320
21 14 0.508| 8.09 0.10 2.20| -7.62|-0.300
22 15 0.511| 7.83 0.10 2.10| -7.54-0.297
23 16 0.510| 7.99 0.30 2.10] -8.01|-0.315
24 17 0.510| 8.15 0.40 2.40| -7.21|-0.284
25 18 0.542| 8.29 0.25 2.20| -8.10|-0.319
26 19 0.539| 8.13 0.10 2.40| -7.581-0.299
27 20 0.588| 8.21 0.15 2.20| -7.63|-0.300
28 21 0.665| 8.07 0.10 2.30] -7.58|-0.299
29 22 0.695| 7.91 0.40 2.00] -8.26|-0.325
30 23 0.438| 8.29 0.10 2.30| -7.84|-0.309
31 24 0.438| 8.10 0.80 2.20] -9.40|-0.370
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The position data from the two laser interferometers (pL on the left and pr on the right) are
averaged and shifted with Equation 1. The reference position (pr) is selected such that the
position is zero when the puncture process is complete (tp). The reference position also
makes the potential energy (Er, Eq. 2) positive when the probe contacts the specimen and
zero when it breaks through. The mass (m) of the carriage with the attached mounting
fixtures, accelerometer, and probe is 139.7 kg (9.57 slug). The free-fall acceleration of the
carriage (ar) is calibrated to correspond to a free-fall condition prior to the time of impact,

accounting for friction in the guide rods, and is explained subsequently.

PPy

2

Ep =ma¢p

T

1)
)

The average carriage position is differentiated to obtain the carriage velocity (v, Eg. 3). For
each time in the data set, the velocity value (v;) is given by Equation 4, where j is the index
of the data points. The majority of the velocity values are computed with the second-order
central finite difference formula; the first and last velocity values are evaluated with first-
order finite difference formulas based on the available data points. The kinetic energy of the

carriage and probe is defined by Equation 5 and the total energy by Equation 6.
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©)

(4)

(5)
(6)

The free-fall acceleration of the carriage is optimized such that a linear fit to the total energy
during a certain period of time prior to the probe contacting the specimen has zero slope.
Table 2 gives the optimal values. This calibrates the data to a true free-fall condition prior to
the time of impact. It correctly accounts for friction in the carriage guide rods and the
increase in potential energy as the carriage falls through the specimen. The time period
spans 10 ms (Atg,i) and ends 0.3 ms (Ato,i) before the impact time (ti); during this period,
several complete cycles of oscillation are observed in the total energy. The average of the
total energy in this period is taken as the total energy before impact (Er,i). The total energy
after complete puncture (Etp) is the average value in a period of time beginning about 0.3
ms (Ato,p) after the puncture time (tp) and lasting about 2 ms (Ate,p). Table 2 has the actual
values of the time offset and period for each test. The total energy mitigated by the specimen

IS
Em = Eri — Egp

(")

Figure 6 illustrates the time periods over which the total energy is averaged and the
difference between the averages. The figures in Appendix B plot the total energy as a
function of time and bracket the time periods that are averaged before impact and after

complete puncture.
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Figure 6: Representative Total Energy Curve and Time Periods for Averaging

The carriage velocity before impact (vi) is found by averaging the velocity values over a
time period of 0.5 ms (Aty,i) that ends 0.3 ms (Ato,;) before impact (ti). The velocity after
complete puncture (vp) is the average value over a time period of 0.5 ms (Aty,p) that starts
approximately 0.3 ms (Atop) after the penetration is complete (t,). The time period and offset
from the impact time are constant, but the offset from the puncture time is unique to each
test (Table 2). Figure 7 illustrates the time periods over which the velocity is averaged.
Appendix C has plots of the velocity data for each test and the time periods in which it is

averaged.
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Figure 7: Representative Velocity Curve and Time Periods for Averaging
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The distance traveled by the probe during the puncture process is the difference in the
positions at the impact and puncture times (ti, tp). The results of the distance, velocity, and
energy calculations are provided in Tables 3 and 4. The maximum deviation between the
measured thickness in Table 3 (the average of several measurements) and the nominal
thickness is 2.3%.

Table 3: Measurements and Results of Puncture Experiments on AlISI 304L VAR Bar

Thickness Distance Traveled | Impact Velocity, v; | Puncture Velocity, v,
Test | Specimen | (mm) | (in) (mm) (in) (m/s) (fps) (m/s) (fps)

7 1| 1.636| 0.0644 9.90 0.390 2.19 7.17 2.06 6.77
10 2| 1.572| 0.0619 9.79 0.386 2.04 6.68 1.89 6.20

8 3| 1.609| 0.0634 9.86 0.388 2.10 6.88 1.97 6.46
11 4| 1.621| 0.0638 10.08 0.397 2.02 6.62 1.87 6.14
12 5| 1.617| 0.0637 9.83 0.387 1.99 6.53 1.84 6.05
13 6| 1.599| 0.0630 10.68 0.421 2.02 6.61 1.88 6.16
14 7| 1.634| 0.0644 10.16 0.400 2.21 7.25 2.08 6.84
15 8| 1.613| 0.0635 9.75 0.384 2.17 7.13 2.06 6.74
16 9| 1.632| 0.0643 10.30 0.405 2.15 7.04 2.01 6.61
17 10| 1.601| 0.0631 9.84 0.387 2.11 6.92 1.98 6.48
18 11| 1.617| 0.0637 10.49 0.413 2.15 7.07 2.02 6.63
19 12| 1.618| 0.0637 10.12 0.398 2.10 6.89 1.97 6.48
20 13| 1.629| 0.0642 10.28 0.405 2.14 7.01 2.00 6.55
21 14| 1.604| 0.0632 9.81 0.386 2.16 7.09 2.04 6.68
22 15| 1.613| 0.0635 9.66 0.380 2.13 6.98 2.01 6.58
23 16| 1.622| 0.0639 10.31 0.406 2.23 7.30 2.10 6.89
24 17| 1.626| 0.0640 9.46 0.372 2.17 7.10 2.04 6.70
25 18| 1.632| 0.0643 10.24 0.403 2.21 7.26 2.08 6.82
26 19| 1.617| 0.0637 9.76 0.384 2.23 7.33 2.12 6.95
27 20| 1.628| 0.0641 9.91 0.390 2.24 7.35 2.12 6.94
28 21| 1.637| 0.0645 9.82 0.386 2.27 7.43 2.14 7.03
29 22| 1.619| 0.0638 10.46 0.412 2.29 7.51 2.18 7.14
30 23| 1.619| 0.0638 10.18 0.401 2.33 7.64 2.22 7.29
31 24| 1.612| 0.0635 11.77 0.463 2.40 7.88 2.29 7.50
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Table 4: Total Energy in Puncture Experiments on AISI 304L VAR Bar
Total Energy Mitigated
Before Impact, Er; | After Puncture, Er, | Energy, Em

Test | Specimen | (J) (ft-lb) | Q) (ft-lb) | Q) | (ft-Ib)
7 1 341.3 251.7 298.8 220.4| 425| 314
10 2 295.5 218.0 250.6 184.8| 449| 33.1
8 3 313.8 231.5 272.1 200.7| 41.7| 30.7
11 4 291.7 215.2 246.3 181.7| 45.4| 335
12 5 283.1 208.8 237.8 1754| 453| 334
13 6 291.0 214.6 247.2 182.3| 43.8| 323
14 7 350.0 258.1 303.9 2242) 46.1| 34.0
15 8 337.3 248.7 295.6 218.0| 41.7| 30.7
16 9 330.4 243.7 283.7 209.2| 46.7| 344
17 10 317.3 234.0 273.5 201.8| 43.7| 32.3
18 11 330.8 244.0 284.9 210.2| 458| 33.8
19 12 314.9 232.3 272.5 201.0| 424| 31.3
20 13 326.5 240.8 279.6 206.2| 46.9| 34.6
21 14 333.0 245.6 290.9 2145] 42.1| 31.0
22 15 323.2 238.4 282.6 208.4| 40.6| 30.0
23 16 353.9 261.0 308.7 227.7] 452 33.3
24 17 334.2 246.5 292.3 215.6] 41.9| 309
25 18 349.9 258.1 302.3 223.0| 476| 35.1
26 19 356.3 262.8 315.0 232.3] 41.3| 305
27 20 360.4 265.8 314.1 231.7| 46.3| 34.2
28 21 368.8 272.0 322.8 238.1| 46.0| 33.9
29 22 376.8 277.9 331.2 2443| 456| 33.6
30 23 384.4 283.5 346.5 255.5| 38.0| 28.0
31 24 412.0 303.9 366.7 2705] 453| 334

Statistical Methods
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The method for defining precision intervals on a data set is well known and available in
many sources (e.g. Ref. 2-4); however, the equations are presented for the convenience of
readers. The complete set of equations also facilitates explaining the methods.

Normal Probability Distribution

The goal is to use the information from the experiments to predict future observations of
similar specimens under the same conditions. The entire population of specimens is assumed
to be normally distributed with mean p and standard deviation . These parameters are
unknown but may be bounded by statistics of the sample that was tested. Each test result
(the energy mitigated by a specific specimen, Ewm) is X;, for i = 1...n, where n is the sample
size (24). The normal probability density function (PDF) is (Ref. 2, p. 117, Eq. 4.8; Ref. 3,
p. 204; Ref. 4, p. 118, Eq. 3.3.27; Ref. 5)

f(x) =

1

1

e} 2ne(%

)2

oV2n

e

—n2
(3

(8)
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The probability (p) that a single measurement is less than a lower bound (b.) is found by
solving the normal cumulative distribution function (CDF; Ref. 3, p. 207; Ref. 4, p. 119, Eq.
3.3.29-30; Ref. 5):

P Von

The maximum likelihood estimates (MLE) for the parameters of the normal distribution are
(Ref. 4, p. 299)

b
! f e_%(%) dx (9)

(10)

(11)

6

The mean value of a data set x;, for i = 1...n, is (Ref. 2, p. 121, Eq. 4.14a; Ref. 4, p. 264, Eq.

8.2.1)
1
X=f=->'x (12)

The number of degrees of freedom (DoF) of the data relative to the mean is (Ref. 2, p. 121):
v=n-—1 (13)

The standard deviation of the set is the square root of the variance between the data and the
mean, which is normalized by the DoF (Ref. 2, p. 121, Eq. 4.14b; Ref. 4, p. 266, Eq. 8.2.7):

(14)

S, =6 [—=

P

The parameters of interest (u, o) are location-scale parameters; therefore, % and g are
pivotal quantities suitable for deriving confidence intervals about the parameters of the
entire population (u, c) based on the sample statistics (X, s,) (Ref. 4, p. 364). The confidence
level (c) is the probability that confidence intervals developed from the statistics of a
replicate sample will contain the true mean and standard deviation. The confidence level is
also termed the frequentist coverage and has a customary value of 95%. Given a sample
from a past test, the probability that the confidence intervals include the true parameters is
either 0 or 1 but is unknown; therefore, the confidence level denotes the confidence in
bounding the parameters of the distribution but not the probability of bounding a future test
result. The significance level is (Ref. 2, p. 127; Ref. 4, p. 391)

s=1-c (15)

For an infinite sample size equal to the entire population, the normal distribution defines the
confidence interval about the true mean. The Student’s t distribution accounts for additional
uncertainty due to the finite number of specimens and converges to the normal distribution
as the degrees of freedom increase. For 24 samples (23 DoF) and 95% confidence, the
difference between the two-tailed bounds is 5.5%. The difference is less than 2% for 63
samples (62 DoF) and 1% for 124 samples (123 DoF) with 95% confidence.
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Figure 8: Convergence of Student’s t and Normal Probability Density Functions
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Figure 9: Convergence of Student’s t and Normal Cumulative Distribution Functions

The Student’s t PDF can be written (Ref. 4, p. 274, Eq. 8.4.2; Ref. 6)

r() r(3) ( +x2>‘3

f(x) = = -
r(g)J,w(Hxvi) TR
' ) = 1 S 1+X2>_§
- w1 we(In\l v
by ()" TRE

(16)

(17)

The gamma function in Equation 16 is (Ref. 3, p. 222; Ref. 4, p. 111, Eq. 3.3.4; Ref. 7)
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o0

I'(y) = fu“/_le_“du (18)
0
and the beta function in Equation 17 is (Ref. 3, pp. 226-227, Eq. 6.3; Ref. 3, p. 285; Ref. 6)

r(B,) T (B,)
r(, +85,)

The CDF is the integral of the PDF from negative infinity to the non-dimensional limit
parameter t and may be written in terms of gamma functions by placing Equation 16 in the
integral or in terms of beta functions by substituting u = # into Equation 17. Functions are

available in many commercial software packages to solve these equations; the reason to
include them here is to show what calculations are performed by those functions and explain
the choice of the probability values based on the limits of integration. In Equations 16 and
17, the specific value that the probability equates to is computed from the significance such
that the integral of the PDF over the interval {—t, t} equals the confidence; this requires that
half of the significance be located in each tail of the distribution.

n t _n
p=1-- G f<1+xv—2>2dx (20)

CTE

1
B(p,.B,) = [ (1 - whldu = (19)
0

—00

v
o (fotz*'vu%_l(l - u)_%du
S 2f1u%_l(l—u)_%du =
p= 1-— 5 =V 0 v | (21)
fotz‘“vui_l(l —u) 2du
. — 20
L 2 @' -w2du

One of Equations 20 or 21 is solved for the parameter t. The confidence interval about the
true mean is (Ref. 2, p. 124, Eq. 4.17; Ref. 4, p. 365, Eq. 11.3.5)
_ tsx< <__I_tsX -
=X - S S X _— =

By = Nella' (22)
The chi-square distribution defines the confidence interval about the true variance. It is a
specific gamma distribution (Ref. 4, p. 111, Eq. 3.3.8, and p. 268) with the PDF (Ref. 4, p.
597, Table B.2; Ref. 7)

A%
x27!

ks

The CDF (Ref. 4, p. 112, Eq. 3.3.10, and p. 268; Ref. 7) may be expressed in two forms by
substituting x = 2u and the gamma function (Eq. 18) into the PDF.

f(x) = (23)

X2
1 Vo X
p=—fx2 e2dx=oo\,— (24)
V2'r (3)4 [ w2 e
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The lower and upper bounds for the true variance are obtained by solving the CDF at
different probabilities such that the total probability of being between the bounds equals the
confidence, or half of the significance is in each tail of the distribution (Ref. 4, p. 365).

3 Lov

X 2 lemu
p =1 _22@%(\/_) x%_le_idx=% (25)
2)0 0 u e u
1 i v x f% W leidy
Py = % = \/?T(V—).f x2 e 2dx = m (26)
7)0 0 u e u
The confidence interval about the true variance is (Ref. 2, p. 127, Eq. 4.27; Ref. 4, p. 365,
Eqg. 11.3.6)
vs,2(<62<vs,2( @
N
The bounds on the true standard deviation are
oL =5 | (28)
XL
oy =5y | 29)
Xu

The precision interval bounds future observations b; with probability p and confidence c.
by <b, < by (30)

The lower bound (bL) is obtained by solving the normal CDF (Eq. 9) with the lower bound
for the true mean (., Eq. 22) and the upper bound for the true standard deviation (cu, Eq.
29); Equation 31 encapsulates this combination of inputs to the CDF. The upper bound (bu)
is calculated by solving the normal CDF with the upper bounds for both parameters (uwu, Eq.
22; ou, EQ. 29) and the complement of the probability; Equation 32 expresses this relation.

: } 3 4 (31)
= e Su X
P ovar -
1 b l(X—H )2
U
| —p= f 2 o0) ax (32)
P ovar -

Log-Normal Probability Distribution

Up to this point, the mitigated energy has been assumed to fit a normal distribution, but it
physically cannot be negative, and the normal distribution does admit negative input values.
Therefore, the log-normal distribution is also considered for establishing bounds on future
observations. The PDF (Ref. 4, p. 199, Eq. 6.3.3; Ref. 8) is
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The data set x;, for i = 1...n, is transformed with
y; = In(x;) (34)

The natural logarithm function ensures that the input x; does not take on negative values
when the log-normal distribution is solved for specific probabilities. Equations 35 and 36 are
evaluated to find the sample mean (y) and standard deviation (sy); these are simply
Equations 12 and 14 with y; substituted for xi. The precision interval about a future
observation may be computed by the same method as for the normal distribution but with
the substitution of Equation 34; then the reverse substitution (antilogarithm function) must
be applied to the bounds of the interval.

_ 1N

y= HZ Yi (35)

i=1

1 n
- 209 (30

Equations 37 and 38 (Ref. 4, p. 597, Table B.2) map the sample statistics through the
logarithmic transformation and express them in terms of the measured random variable (x).
The random variable y is normally distributed and x is lognormally distributed. The results
of Equations 37 and 38 differ from those of Equations 12 and 14 by 0.009% and 2%,
respectively.

_ (y%y) (37)

. = J Cres) (o - 1) (38)

Equations 22 and 29 are evaluated to place bounds on the true mean (., p) and standard
deviation (oL, ou) of the transformed random variable (y), which is normally distributed.
Then the log-normal CDF (Ref. 4, p. 119, Eq. 3.3.29-30, and p. 199, Eqg. 6.3.5; Ref. 8) is
solved for the bounds on the mitigated energy (bv, bu), given the probability (p).

In(by)

X “L
) ax (39)
P= cUm
ln(bU)
(o) (40)
1—p= dx
P= sum

The bounds (Eq. 22, 28, and 29) on the parameters of the log-normal distribution are
denoted Ly, Huy, oLy, and ouy. These are transformed back to the original units with
Equations 41 through 44, which are derived from Equations 37 and 38.
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Weibull Probability Distribution

The Weibull distribution does not assume negative values when it is solved for specific
probabilities, so it is also a good option for predicting precision intervals on the mitigated
energy. The PDF is (Ref. 3, p. 225; Ref. 4, p. 116, Eq. 3.3.20; Ref. 9)

_O T ) 2 2 e ()
f(X) _E(E> e B —EX le B (45)

where a is the shape parameter and j is the scale parameter. The mean and standard
deviation are (Ref. 4, p. 117)

uw=[3r(1+£> (46)

2 Ny’ 47
6y = P r(1+—)—[r(1+—)] (47)
o o
The MLE of the parameters (o, B) for a data set x; are @, which is the solution of (Ref. 4, p.
591, Eq. 16.4.4, 16.4.5)

~ n
X In(x; 1 1
# ——= _Z In(x;) (48)
i=1Xj ¢ n&
i=1
and N x

=52

There is not a closed-form solution of Equation 48 (Ref. 4, p. 591), so the values of & and f
are found by non-linear optimization. The 95% confidence bounds on the parameters are
returned by the same software tools, but the details of the optimization and bounding

methods are too lengthy to present here. Selecting the lower bound on each MLE (d , BL)

minimizes the lower bounds on the mitigated energy (br), which are found by solving the
CDF (Ref. 3, p. 224, Eq. 6.2; Ref. 4, p. 116, Eq. 3.3.22) at specific probability values (p).

p=1- e_(éfm (50)

The closed-form solution of Equation 50 is
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Gamma Probability Distribution

The gamma distribution does not take on negative values when it is solved for specific
probabilities, so it is another good option for predicting the energy mitigated by future
specimens. The PDF is (Ref. 3, p. 222; Ref. 4, p. 111, Eq. 3.3.8; Ref. 10)

X o—1 _X X
(B) el el (52)
(e  B'I'(w)
where a is the shape parameter and J3 is the scale parameter. The mean and standard
deviation are (Ref. 3, p. 360, Table 7.2; Ref. 4, pp. 113-114)
k, = op (53)
Oy = Vap (54)

There is not a closed-form solution for the MLE of the parameters, so the values are found
by multi-variate non-linear optimization. The 95% confidence bounds on the parameters are
returned by the same software tools, but no details of the optimization or bounding methods
are presented here.

The lower bounds on the parameter values (d , BL) minimize the lower bounds on the

mitigated energy (b.), which are found by solving the CDF (Ref. 4, p. 112, Eq. 3.3.10) at
specific probability values (p).

f(x) =

bL .
P j xi=le BL gx (55)

~

BLaL 1—‘(aL) —0

Results of Statistical Inference and Safety Factor Method

The sample size is known, and the population is considered to be infinite. Four probability
distributions are hypothesized to fit the data set for the purpose of predicting the energy
mitigated by future specimens from the population. The parameters of each distribution are
either calculated with explicit equations or optimized by numerical methods. The MLE of
the parameters for all of the probability distributions are bounded at the same confidence
and significance levels, so half of the significance (Eq. 26) and the one-tail probability (Eq.
20, 21, 25) are also the same. The parameters in Table 5 are common to all the distributions.

Table 5: General Parameters for Bounding the MLE of Probability Distributions

Parameter Value
Sample Size, n 24
Degrees of Freedom, v 23

Confidence Level, C 0.950
Significance Level, s 0.050
Half Significance 0.025
One Tail Probability 0.975
Student’s t Parameter 2.069




-19 - 7 April 2025
Summary statistics for the energy mitigated by the specimens are presented in Tables 6 and
7. The differences between the normal and log-normal distributions are almost negligible
with the appropriate number of significant digits in the results. The means and standard
deviations of the Weibull and gamma distributions are computed with either the MLE or the
lower bounds of both parameters: the statistics based on the MLE show that the optimized
parameters are correct because they agree closely with the sample statistics, and the statistics
based on the lower bounds relate to the precision intervals. The shape parameter of the
Weibull distribution is moderately large because the sample standard deviation is small
relative to the sample mean; the resulting shape concentrates most of the probability from
Equation 45 far from the origin. The Weibull scale parameter is comparable to the upper
bounds on the mean values of the normal and log-normal distributions. The gamma
distribution has a very large shape parameter, considering that it is an exponent in Equation
52, and a relatively small scale parameter (less than 1 ft-1b). This combination of optimal
parameter values could produce numerical instability in evaluating Equation 55.

Table 6: Mitigated Energy Statistics for the Normal and Log-Normal Distributions

Normal Log-Normal
Statistic Distribution Distribution
Sample Mean 4400 325ft-Ib| 44.0J| 32.5ft-Ib
Sample Standard Deviation 242 )| 1.784 ft-Ib| 2.47 J| 1.822 ft-lb
Lower Bound on Mean 43.0J| 31.7ft-Ib| 43.0J| 31.7ft-Ib
Upper Bound on Mean 45.1)| 33.2ft-Ib| 45.2J| 33.3ft-Ib
Lower Bound on Standard Deviation | 1.880 J| 1.387 ft-Ib| 1.874 J | 1.382 ft-Ib
Upper Bound on Standard Deviation | 3.39J| 2.50 ft-lb| 3.56J| 2.62 ft-Ib

Table 7: Mitigated Energy Statistics for the Weibull and Gamma Distributions

Weibull
Statistic Distribution Gamma Distribution
MLE of Shape Parameter, o 23.7 23.7 337 337
MLE of Scale Parameter, 451J)| 33.3ft-Ib| 130.7E-3J| 96.4E-3 ft-Ib
Mean Based on MLE 441)| 325ft-Ib 4401 32.5 ft-lb
Standard Deviation Based on 2.32J]1.710 ft-lb 24017 1.770 ft-Ib
MLE
Lower Bound on a 17.09 17.09 191.3 191.3
Upper Bound on a 32.8 32.8 593 593
Lower Bound on 3 443J| 32.7 ft-Ib| 74.2E-3J)| 54.8E-3fi-Ib
Upper Bound on f 4597 33.9ft-lb|] 230E-3J| 169.8E-3 ft-Ib
Mean Based on Lower Bounds | 42.9J| 31.7 ft-lb 14.201] 10.48 ft-Ib
Standard Deviation Based on 3.10J| 2.28 ft-Ib 1.027J| 757E-3 ft-lb
Lower Bounds

The lower bounds of the precision intervals for the mitigated energy are listed in Table 8 at
several probability values of interest, including those that define screening thresholds in
Reference 11, page 2 (1E-6, 1E-9). The normal distribution yields positive lower bounds for
the mitigated energy at the screening probabilities, although they are extremely small, and
the other hypothetical distributions always produce positive energy values. The lower
bounds for the normal and log-normal distributions are based on the lower bound for the
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mean and the upper bound for the standard deviation. The lower bounds for the Weibull and
gamma distributions are based on the lower bounds for both the shape and scale parameters.
Predicting a lower bound for the energy mitigated by future test specimens depends on the
assumptions that the sample data come from the selected probability distribution and that the
parameters of the distribution are known when, in fact, they are only estimated. The
adequacy of each distribution for making these predictions is considered subsequently.

Table 8: Lower Bounds for Energy Mitigated by Disc Specimens of AISI 304L VAR Bar
Normal Log-Normal | Weibull Gamma
Probability of Lower |Distribution | Distribution | Distribution Distribution
Future Observation [ (J) | (ft-Ib) | (J) | (ft-Ib) | (J) (ft-b) 1 (J) (ft-1b)
50% | 500E-3| 43.0| 31.7| 429| 31.7] 43.4| 32.0| 14.2| 105
10% | 100E-3] 38.7| 285]38.8| 28.6| 38.8| 28.6| 129 9.5
5% | 50E-3| 37.4| 276|377 27.8| 37.2| 275| 126 9.3
1% | 10E-3] 35.1| 25.9| 358| 26.4| 33.8| 25.0] 119 8.8
0.1%| 1E-3|32.5| 24.0|33.7| 24.8| 29.6| 21.8] 11.2 8.3
0.0001%| 1E-6]26.9| 19.8]129.5| 21.8| 19.7| 146 9.8 7.3
0.0000001% | 1E-9] 22.7| 16.7| 26.8| 19.8] 13.2 9.7 8.9 6.6

With n specimens (24), the Student’s t parameter (2.069) is close enough to the inverse
standard normal cumulative distribution function (1.960) at the customary 95% confidence
that the relative difference is small—5.5%. The effect of the finite sample size on the lower
bounds is not severe (-23% at 1E-9) but it could be diminished by testing more specimens.

An alternative to classical statistical inference is to divide the sample mean by a safety factor
of 1.5 (Ref. 12, p. 7).

X
1.5 (56)
The result, 29.4 J (21.7 ft-1b), happens to be above the lower bounds predicted by the
normal, Weibull, and gamma distributions at a probability of 1E-6 and below the prediction
of the lognormal distribution at the same probability, but this is a consequence of the
variance in the sample. The safety factor does not correlate to any probability or confidence
level; it expresses engineering judgement regarding the reliability of specimens made to the
same material specifications, dimensional tolerances, and surface finishes.

bL=

Adequacy of Probability Distributions for Predicting Future Observations

The data are arranged into a histogram (Fig. 10) for evaluating the adequacy of the
hypothetical probability distributions as predictors for future outcomes. The shaded area of
the histogram equals the integrals of the PDF curves that are overlaid on it. The bins of the
histogram are coarse with an interval of 2.71 J (2.00 ft-1b). The normal, log-normal, and
gamma distributions are remarkably similar when plotted with the MLE of the parameters.
The shape of the Weibull distribution based on the MLE of the parameters is distinct but
compatible with the data set. The large left tail causes it to predict lower energy thresholds at
small probabilities of not bounding future observations.
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Figure 10: Histogram of Experimental Results and Probability Distributions

The data set (x;) is sorted in ascending order. The measurement quantile (ri) is the number of
specimens with an equal or lesser result. The theoretical quantile (g;) is defined by Equations
57 through 60 for the standard normal, log-normal, Weibull, and gamma distributions,
respectively. The measurement and theoretical quantiles are co-plotted in Figures 11 and 12,
which show similar trends. A line is fitted to each quantile plot by minimizing the sum of
the squares of the residuals between the measurement and theoretical quantiles,

?zl(ri — qi)z. Equations 61 through 63 define the lines that are overlaid on the quantile
plots to make the variance visible. The proximity of the points to the line indicates how well
the probability distribution fits the data. Equation 64 calculates the coefficient of
determination, which is 0.920 for the normal, Weibull, and gamma distributions and 0.905
for the log-normal distribution.

X — X
q = (57)
SX
Y, — y
q =~ (58)
y
Xj — l’LW
q = ou (59)
Xi = Hy (60)
q, =
Og
Li = q + alqi (61)
4 = P %Z?:l(qiri) — i qiz i1t 62)
(U 2
(Z?=1qi) _nz?ﬂqiz
a, = =1 q; D=1 Ti — n2?=1(qiri) (63)

(Zt,q)" —n¥, @
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Figure 11: Quantile Plots of Normal and Log-Normal Probability Distributions
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Figure 12: Quantile Plots of Weibull and Gamma Probability Distributions

Another method for investigating the possibility that a probability distribution fits a data set
is the Anderson-Darling test (Ref. 13-23). The probability (p) of each data point occurring if
the data were from the normal or log-normal distribution is computed with the CDF based
on the sample mean and standard deviation. Equation 65 applies to the normal distribution
(compare Eqg. 9) and Equation 66 to the log-normal distribution (compare Eq. 33 and 34).
The probability (p) of the data coming from the Weibull or gamma distribution is computed
with the CDF based on the MLE of the parameters. Equation 67 applies to the Weibull
distribution (compare Eg. 50) and Equation 68 to the gamma distribution (compare Eq. 55).



-23- 7 April 2025

1 _lu—x
p(x;) = Sxm_ e 2( Sx ) du (65)
{ 7 ey
) =— 2\ sy 66
p(v; N (66)
o = 1= 1) 7
p(x) = f w1 (68)
@

The Anderson-Darling statistic is given by Equation 69 for the normal distribution (Ref. 14,
p. 9-82; Ref. 15; Ref. 16, p. 731; Ref. 18, p. 2, Eq. 1; Ref. 19; Ref. 21; Ref. 22; Ref. 23, p.
24, Eq. 4), or Equation 70 for the log-normal distribution. References 15, 18, and 19 also
apply Equation 69 to the Weibull distribution, but Reference 14 (p. 9-91) specifies Equation
71 for the Weibull distribution and uncensored data. Reference 18 (p. 4, Eq. 2) combines
Equations 67 and 69 to obtain the simplified form of Equation 72. Reference 19 applies
Equation 69 to the gamma distribution.

1 n
AY=—n— ;Zl(zi — 1) (InfpG)] + In[1 = p(x, 4] (69)
1 n
A= —-n— HZ(Zi -1) (ln[p(yi)] +1In[1 - P(yn—i+1)]) (70)
1 n
A= =26+ eGP - EZ@ ~ 1) In[p(x)] - 2p(x)) (71)

B

The Anderson-Darling statistics from Equations 69 and 70 are adjusted because the sample
statistics serve as estimates for the parameters of the distributions in Equations 65 through
68. The adjusted statistic for both the normal and log-normal distributions is either Equation
73 (Ref. 16, page 732, Table 1A, case 3) or Equation 74 (Ref. 19; Ref. 21; Ref. 23, p. 24,
Eqg. 5), depending on the source of the critical values it is compared to. The adjusted statistic
for the Weibull distribution is evaluated with Equation 75 (Ref. 18, p. 4, Eq. 2; Ref. 19, Fig.

2), and the adjusted statistic for the gamma distribution is given by Equation 76 (Ref. 19,
Fig. 2, 4 = 2).

i=1

A2 = —n— ii(ﬁ — D In|l- [(E)W _ lxn—i+1r (72)

AD=A2(1+i—§) (73)

3 9
AD=A2(1 +—n+—> (74)



-24 - 7 April 2025

1
AD=A2(1+—) 75
h (73)

1,1 3
_ a2y Ll 76
AD = A +n(5+1oa) (76)

The probability (p) that it would be incorrect to reject a normal or log-normal distribution as
a fit for the data is Equation 77 (Ref. 19, 21), which is a piece-wise-defined function of the
adjusted statistic in Equation 74. For the Weibull distribution, the probability is given by
Equation 78 (Ref. 18, p. 4).

2
I ] — ¢~13436+101.14 AD-223.73AD*>  AD) < (0.2

1 — 6—8.318+42.796 AD-59.938 AD? 02 < AD <0.34

p= 0.9177—4.279 AD—1.38 AD? (77)
e01771=4.27 : 034 < AD < 0.6
Lel.2937—5.709 AD+0.0186 AD? AD > 06
1
(78)

P o 0.1+124 In(AD)+4.48 AD

A probability of at least 5% is recommended to infer that the selected distribution fits the
data and has the correct parameters (Ref. 18, p. 4; Ref. 21). This inference is considered
valid if neither the distribution nor the parameters are refuted, so it is termed the null
hypothesis (Ho; Ref. 18, p. 2; Ref. 21). The alternative hypothesis (H1) is that the either the
distribution or the parameters are incorrect (Ref. 18, p. 2; Ref. 21).

The more general test criterion is to compare either the Anderson-Darling statistic to an
adjusted critical value (Ref. 14; 18, p. 2) or the adjusted Anderson-Darling statistic to a
critical value (Ref. 15; 16; 18, p. 4). Reference 19 adjusts both the statistic and the critical
value. The customary significance level (s) is 5%, and the most frequently quoted critical
value for a normal or log-normal distribution at this significance is 0.752 (Ref. 14, p. 9-82;
Ref. 15; Ref. 18, p. 2). References 16 (p. 732, Table 1A, case 3) and 17 (p. 367, Table 4,
case 3) also provide values for ADc, which are quoted in Table 9; these apply to normal and
log-normal distributions. Reference 17 states on page 368 that it corrects the values
published in Reference 16 but follows the same method for the Anderson-Darling test.

Table 9: Critical Values of Adjusted Anderson-Darling Statistic for Normal and Log-Normal
Distributions

Significance, |Critical Adjusted Statistic, AD.
S (Ref. 16) (Ref. 17)

1.0% 1.092 1.029

2.5% 0.918 0.870

5.0% 0.787 0.751

10.0% 0.656 0.632

15.0% 0.576 0.560

The critical values of the adjusted Anderson-Darling statistic for the Weibull and gamma
distributions are obtained from Reference 20 and listed in Table 10.
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Table 10: Critical Values of Adjusted Anderson-Darling Statistic for Weibull and Gamma
Distributions

Significance, |Critical Adjusted Statistic, AD.
S Weibull Gamma

0.5% 1.159

1.0% 1.038 1.035

2.5% 0.877 0.873

5.0% 0.757 0.752

10.0% 0.637 0.631

25.0% 0.474 0.470

References 14 (p. 9-82) and 18 (p. 2) adjust the critical value of the Anderson-Darling
statistic for a normal or log-normal distribution in a manner analogous to Equation 74:
AD,

3.0 (79)
1+E+m

Al

Reference 14 compares the result of Equation 71 directly to the critical value defined by
Equation 80 (p. 9-91, Eq. 9.5.4.7.3, uncensored) to determine if the Weibull distribution is
adequate (A% < A2).

A2 =0.3951 + 41.86E-6 n (80)

With a significance of s (5%) and n specimens (24), the adjusted critical value from
References 14 and 18 is 0.726. If the Anderson-Darling statistic does not exceed this value
(A2 < A%) the null hypothesis is not rejected at the selected significance level and the
proposed distribution might fit the data (Ref. 14, 18, 22). If Equation 79 with n equal to 24
specimens is applied to the values from Reference 17 in Table 9, Table 11 results.

Table 11: Adjusted Critical VValues of Anderson-Darling Statistic

Significance, Adjusted Critical
s Statistic, A2
1.0% 0.994
2.5% 0.840
5.0% 0.725
10.0% 0.611
15.0% 0.541

Reference 19 calculates the critical value of the adjusted statistic (ADc) with Equation 81.
The parameters a, b, and d are tabulated in Reference 20 and Table 12. The results of
Equation 81 with n equal to 24 specimens are also included in Table 12.

b d
ADcza(l————2> (81)
n n
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Table 12: Parameters and Critical Values of Adjusted Anderson-Darling Statistic

Significance, | Parameter Critical Adjusted

S a b d Statistic, AD¢ (n = 24)
0.5%] 1.1578| 1.063| 1.34 1.104
1.0%] 1.0348| 1.013| 0.93 0.989
2.5%] 0.8728| 0.881| 0.94 0.839
5.0% 0.7514 | 0.795| 0.89 0.725
10.0% ] 0.6305| 0.750| 0.80 0.610
20.0%| 0.5091| 0.756| 0.39 0.493

The values of parameter a are similar to the values of AD. from Reference 17 in Table 9,

and the values of AD. in Table 12 are similar to the values of A2 in Table 11 at the same
significance levels. Equations 79 and 81 appear to have a similar effect over a range of
significance levels, but the adjustment is already accomplished with Equation 74 in the
method of Reference 19. The possibility that the distribution fits the data is not rejected if
the adjusted statistic is less than or equal to the critical value (AD < AD; Ref. 15, 16, 19).
Consequently, the method of Reference 19 is more stringent than the method of References
14 and 18.

The Anderson-Darling test can only disprove that a particular probability distribution fits a
data set with a specified significance. The test is designed such that a false rejection will
only occur with probability less than the significance level; otherwise, it may be reasonable
to assert that the distribution fits. The nature of the test biases it in favor of admitting (not
rejecting) the hypothesis that the distribution fits the data, but it is never conclusive. Tables
9 through 12 demonstrate that low significance corresponds to a lenient test criterion and
high significance corresponds to a strict criterion.

In contrast to the precision interval, where the confidence in the result is negatively
correlated to the significance by Equation 15, the complement of the significance is not the
confidence in the conclusion of the Anderson-Darling test. With a precision interval, the
significance level is the probability that a future observation is unbounded. In a fit quality
test, it is the probability of error if the null hypothesis is rejected, but no conclusion can be
made about the likelihood that the distribution fits the data.

Clearly, there are many ways to approach the Anderson-Darling test and adjust the criterion
for uncertainty in the parameters of the proposed probability distribution. Table 13
summarizes four methods for applying the test to normal and log-normal distributions. The
general rows apply to all four methods. When the inference is to admit the fit (methods 1
and 2 for the normal distribution), the null hypothesis is not rejected at the selected
significance. An inference that the null hypothesis should be rejected at the specified
significance (methods 3 and 4 for the normal distribution and all methods for the log-normal
distribution) means that the distribution is less likely to fit the data because there would be
less probability of error in rejecting the fit than the stated significance.
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Table 13: Results of Anderson-Darling Tests for the Normal and Log-Normal Distributions

Internal Normal Log-Normal
Method |External References |Reference |Parameter | Distribution | Distribution
General |14-16, 18, 19, 21-23 Eq. 69 A? 0.701 0.747
14-22 p. 24 S 5.0% 5.0%
1 19, 21, 23 Eq. 74 AD 0.726 0.773
19,21 Eq. 77 p 5.8% 4.5%
19 Inference Admit Reject
2 14,18 Eq. 79 A2 0.726 0.726
14,18 Inference Admit Reject
3 16 Eq. 73 AD 0.787 0.839
17 Table 9 AD. 0.751 0.751
15, 16 Inference Reject Reject
4 19, 21, 23 Eq. 74 AD 0.726 0.773
19, 20 Eg. 81 AD. 0.725 0.725
15, 19 Inference Reject Reject

The first two methods support the hypothesis that the experimental data are normally
distributed and reject the hypothesis that they are log-normally distributed. The third and
fourth methods reject the null hypothesis for both probability distributions. Although the
margin is small, engineering judgement suggests that the normal distribution is suitable for
calculating the precision intervals in Table 8. The second method is preferred because it is
simple and published in an industry standard (Ref. 14).

Three methods of applying the Anderson-Darling test to a Weibull distribution are
summarized in Table 14, and all three admit the possibility that it fits the data set. The
method from Reference 19 that applies to the gamma distribution is also included, but it
rejects the null hypothesis, so this is not a good probability distribution for establishing

precision intervals.

Table 14: Results of Anderson-Darling Tests for the Weibull and Gamma Distributions

External Internal Weibull Gamma
Method | References References |Parameter | Distribution | Distribution
General |14, 15, 18,19 p. 24 S 5.0% 5.0%
1 15, 18, 19 Eq. 69 A? 0.560
18, 19 Eq. 75 AD 0.583
18 Eq. 78 p 13.7%
18 Inference Admit
2 14 Eq. 71 A2 0.316
14 Eqg. 80 A2 0.396
14 Inference Admit
3 15, 18, 19 Eq. 69 A? 0.560 0.756
18,19 Eq. 75, 76 AD 0.583 0.765
20 Table 10 AD. 0.757 0.752
15, 19 Inference Admit Reject
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The Shapiro-Wilk test (Ref. 23-26) is another option for evaluating the possibility that the
normal and log-normal distributions fit the data set. The Shapiro-Wilk statistic is calculated
with Equation 82 or 83 for the normal or log-normal distribution, respectively (Ref. 23, p.
25, EqQ. 8; Ref. 25). It depends on the sample size (n), the number of data points below the
median (d), and the coefficients in Tables 15 through 20 (Ref. 26). The number of points
below the median is half of the sample size truncated to an integer. For a sample size of 24,
there are 12 points below the median, and the 12 coefficients are obtained from Table 17.

Coefficient

W =

Sample Size
3 4

[ZL, & (Xpoiv1 — Xi)]2

I —%)?

(2, ai(yn—i+l ~ yi)]2

2?=l(yi - 3_’)2

Table 15: Shapiro-Wilk Coefficients for Sample Sizes from 3 to 10

10

(82)

(83)

ai

0.7071| 0.6872

0.6646

0.6431

0.6233

0.6052

0.5888

0.5739

az

0.1677

0.2413

0.2806

0.3031

0.3164

0.3244

0.3291

as

0.0875

0.1401

0.1743

0.1976

0.2141

a4

0.0561

0.0947

0.1224

ds

0.0399

Table 16: Shapiro-Wilk Coefficients for Sample Sizes from 11 to 18

Coefficient

Sample Size
11 12

13

14

15

16

17

18

di

0.5601 | 0.5475

0.5359

0.5251

0.5150

0.5056

0.4968

0.4886

az

0.3315]| 0.3325

0.3325

0.3318

0.3306

0.3290

0.3273

0.3253

as

0.2260| 0.2347

0.2412

0.2460

0.2495

0.2521

0.2540

0.2553

ds

0.1429 | 0.1586

0.1707

0.1802

0.1878

0.1939

0.1988

0.2027

ds

0.0695| 0.0922

0.1099

0.1240

0.1353

0.1447

0.1524

0.1587

de

0.0303

0.0539

0.0727

0.0880

0.1005

0.1109

0.1197

ay

0.0240

0.0433

0.0593

0.0725

0.0837

ds

0.0196

0.0359

0.0496

dg

0.0163
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Table 17: Shapiro-Wilk Coefficients for Sample Sizes from 19 to 26
Sample Size

Coefficient

19

20

21

22

23

24

25

26

7 April 2025

a1

0.4808

0.4734

0.4643

0.4590

0.4542

0.4493

0.4450

0.4407

dz

0.3232

0.3211

0.3185

0.3156

0.3126

0.3098

0.3069

0.3043

ds

0.2561

0.2565

0.2578

0.2571

0.2563

0.2554

0.2543

0.2533

s

0.2059

0.2085

0.2119

0.2131

0.2139

0.2145

0.2148

0.2151

ds

0.1641

0.1686

0.1736

0.1764

0.1787

0.1807

0.1822

0.1836

as

0.1271

0.1334

0.1399

0.1443

0.1480

0.1512

0.1539

0.1563

arz

0.0932

0.1013

0.1092

0.1150

0.1201

0.1245

0.1283

0.1316

dg

0.0612

0.0711

0.0804

0.0878

0.0941

0.0997

0.1046

0.1089

dg

0.0303

0.0422

0.0530

0.0618

0.0696

0.0764

0.0823

0.0876

aio

0.0140

0.0263

0.0368

0.0459

0.0539

0.0610

0.0672

a1

0.0122

0.0228

0.0321

0.0403

0.0476

aie

0.0107

0.0200

0.0284

ai3

0.0094

Table 18: Shapiro-Wilk Coefficients for Sample Sizes from 27 to 34
Sample Size

Coefficient

27

28

29

30

31

32

33

34

ai

0.4366

0.4328

0.4291

0.4254

0.4220

0.4188

0.4156

0.4127

dz

0.3018

0.2992

0.2968

0.2944

0.2921

0.2898

0.2876

0.2854

as

0.2522

0.2510

0.2499

0.2487

0.2475

0.2463

0.2451

0.2439

a4

0.2152

0.2151

0.2150

0.2148

0.2145

0.2141

0.2137

0.2132

ds

0.1848

0.1857

0.1864

0.1870

0.1874

0.1878

0.1880

0.1882

de

0.1584

0.1601

0.1616

0.1630

0.1641

0.1651

0.1660

0.1667

az

0.1346

0.1372

0.1395

0.1415

0.1433

0.1449

0.1463

0.1475

ds

0.1128

0.1162

0.1192

0.1219

0.1243

0.1265

0.1284

0.1301

dg

0.0923

0.0965

0.1002

0.1036

0.1066

0.1093

0.1118

0.1140

dio

0.0728

0.0778

0.0822

0.0862

0.0899

0.0931

0.0961

0.0988

a1

0.0540

0.0598

0.0650

0.0697

0.0739

0.0777

0.0812

0.0844

a1z

0.0358

0.0424

0.0483

0.0537

0.0585

0.0629

0.0669

0.0706

di3

0.0178

0.0253

0.0320

0.0381

0.0435

0.0485

0.0530

0.0572

aiq

0.0084

0.0159

0.0227

0.0289

0.0344

0.0395

0.0441

dis

0.0076

0.0144

0.0206

0.0262

0.0314

die

0.0068

0.0131

0.0187

aiz

0.0062
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Table 19: Shapiro-Wilk Coefficients for Sample Sizes from 35 to 42
Sample Size

Coefficient

35

36

37

38

39

40

41

42

7 April 2025

a1

0.4096

0.4068

0.4040

0.4015

0.3989

0.3964

0.3940

0.3917

dz

0.2834

0.2813

0.2794

0.2774

0.2755

0.2737

0.2719

0.2701

ds

0.2427

0.2415

0.2403

0.2391

0.2380

0.2368

0.2357

0.2345

s

0.2127

0.2121

0.2116

0.2110

0.2104

0.2098

0.2091

0.2085

ds

0.1883

0.1883

0.1883

0.1881

0.1880

0.1878

0.1876

0.1874

as

0.1673

0.1678

0.1683

0.1686

0.1689

0.1691

0.1693

0.1694

arz

0.1487

0.1496

0.1505

0.1513

0.1520

0.1526

0.1531

0.1535

dg

0.1317

0.1331

0.1344

0.1356

0.1366

0.1376

0.1384

0.1392

dg

0.1160

0.1179

0.1196

0.1211

0.1225

0.1237

0.1249

0.1259

aio

0.1013

0.1036

0.1056

0.1075

0.1092

0.1108

0.1123

0.1136

a1

0.0873

0.0900

0.0924

0.0947

0.0967

0.0986

0.1004

0.1020

aie

0.0739

0.0770

0.0798

0.0824

0.0848

0.0870

0.0891

0.0909

ai3

0.0610

0.0645

0.0677

0.0706

0.0733

0.0759

0.0782

0.0804

a4

0.0484

0.0523

0.0559

0.0592

0.0622

0.0651

0.0677

0.0701

ais

0.0361

0.0404

0.0444

0.0481

0.0515

0.0546

0.0575

0.0602

die

0.0239

0.0287

0.0331

0.0372

0.0409

0.0444

0.0476

0.0506

ai7

0.0119

0.0172

0.0220

0.0264

0.0305

0.0343

0.0379

0.0411

dis

0.0057

0.0110

0.0158

0.0203

0.0244

0.0283

0.0318

dig

0.0053

0.0101

0.0146

0.0188

0.0227

a2o

0.0049

0.0094

0.0136

az1

0.0045
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Table 20: Shapiro-Wilk Coefficients for Sample Sizes from 43 to 50

Coefficient

Sample Size
43

44

45

46

47

48

49

50

7 April 2025

a1

0.3894

0.3872

0.3850

0.3830

0.3808

0.3789

0.3770

0.3751

dz

0.2684

0.2667

0.2651

0.2635

0.2620

0.2604

0.2589

0.2574

ds

0.2334

0.2323

0.2313

0.2302

0.2291

0.2281

0.2271

0.2260

s

0.2078

0.2072

0.2065

0.2058

0.2052

0.2045

0.2038

0.2032

ds

0.1871

0.1868

0.1865

0.1862

0.1859

0.1855

0.1851

0.1847

as

0.1695

0.1695

0.1695

0.1695

0.1695

0.1693

0.1692

0.1691

arz

0.1539

0.1542

0.1545

0.1548

0.1550

0.1551

0.1553

0.1554

dg

0.1398

0.1405

0.1410

0.1415

0.1420

0.1423

0.1427

0.1430

dg

0.1269

0.1278

0.1286

0.1293

0.1300

0.1306

0.1312

0.1317

aio

0.1149

0.1160

0.1170

0.1180

0.1189

0.1197

0.1205

0.1212

a1

0.1035

0.1049

0.1062

0.1073

0.1085

0.1095

0.1105

0.1113

aie

0.0927

0.0943

0.0959

0.0972

0.0986

0.0998

0.1010

0.1020

ai3

0.0824

0.0842

0.0860

0.0876

0.0892

0.0906

0.0919

0.0932

a4

0.0724

0.0745

0.0765

0.0783

0.0801

0.0817

0.0832

0.0846

ais

0.0628

0.0651

0.0673

0.0694

0.0713

0.0731

0.0748

0.0764

die

0.0534

0.0560

0.0584

0.0607

0.0628

0.0648

0.0667

0.0685

ai7

0.0442

0.0471

0.0497

0.0522

0.0546

0.0568

0.0588

0.0608

dis

0.0352

0.0383

0.0412

0.0439

0.0465

0.0489

0.0511

0.0532

dig

0.0263

0.0296

0.0328

0.0357

0.0385

0.0411

0.0436

0.0459

a2o

0.0175

0.0211

0.0245

0.0277

0.0307

0.0335

0.0361

0.0386

az1

0.0087

0.0126

0.0163

0.0197

0.0229

0.0259

0.0288

0.0314

a2

0.0042

0.0081

0.0118

0.0153

0.0185

0.0215

0.0244

az3

0.0039

0.0076

0.0111

0.0143

0.0174

dza

0.0037

0.0071

0.0104

azs

0.0035

The Shapiro-Wilk statistic is tabulated in Reference 26 with respect to the sample size (n)
and the probability (p) of erroneously rejecting the null hypothesis (Ho). The statistic may be
interpolated between the values in Table 21 on the row corresponding to the sample size to
obtain the probability from the table heading, as recommended by Reference 25. Letting j be
the index of the last column that is less than or equal to the statistic, limited so as to prevent
extrapolating beyond the provided values, Equation 84 performs the interpolation.

Sample

Size

1%

Table 21: Shapiro-Wilk Statistic

2%

5%

Probability or Significance Level

10%

50%

90%

95%

98%

99%

0.753

0.756

0.767

0.789

0.959

0.998

0.999

1.000

1.000

0.687

0.707

0.748

0.792

0.935

0.987

0.992

0.996

0.997

0.686

0.715

0.762

0.806

0.927

0.979

0.986

0.991

0.993

0.713

0.743

0.788

0.826

0.927

0.974

0.981

0.986

0.989

0.730

0.760

0.803

0.838

0.928

0.972

0.979

0.985

0.988

0.749

0.778

0.818

0.851

0.932

0.972

0.978

0.984

0.987

[{eRNooNENENe ) RN& NI N IV)

0.764

0.791

0.829

0.859

0.935

0.972

0.978

0.984

0.986

10

0.781

0.806

0.842

0.869

0.938

0.972

0.978

0.983

0.986
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Size

Table 21: Shapiro-Wilk Statistic, Continued
Probability or Significance Level

1%

2%

5%
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10%

50%

90%

95%

98%

99%

11

0.792

0.817

0.850

0.876

0.940

0.973

0.979

0.984

0.986

12

0.805

0.828

0.859

0.883

0.943

0.973

0.979

0.984

0.986

13

0.814

0.837

0.866

0.889

0.945

0.974

0.979

0.984

0.986

14

0.825

0.846

0.874

0.895

0.947

0.975

0.980

0.984

0.986

15

0.835

0.855

0.881

0.901

0.950

0.975

0.980

0.984

0.987

16

0.844

0.863

0.887

0.906

0.952

0.976

0.981

0.985

0.987

17

0.851

0.869

0.892

0.910

0.954

0.977

0.981

0.985

0.987

18

0.858

0.874

0.897

0.914

0.956

0.978

0.982

0.986

0.988

19

0.863

0.879

0.901

0.917

0.957

0.978

0.982

0.986

0.988

20

0.868

0.884

0.905

0.920

0.959

0.979

0.983

0.986

0.988

21

0.873

0.888

0.908

0.923

0.960

0.980

0.983

0.987

0.989

22

0.878

0.892

0.911

0.926

0.961

0.980

0.984

0.987

0.989

23

0.881

0.895

0.914

0.928

0.962

0.981

0.984

0.987

0.989

24

0.884

0.898

0.916

0.930

0.963

0.981

0.984

0.987

0.989

25

0.888

0.901

0.918

0.931

0.964

0.981

0.985

0.988

0.989

26

0.891

0.904

0.920

0.933

0.965

0.982

0.985

0.988

0.989

27

0.894

0.906

0.923

0.935

0.965

0.982

0.985

0.988

0.990

28

0.896

0.908

0.924

0.936

0.966

0.982

0.985

0.988

0.990

29

0.898

0.910

0.926

0.937

0.966

0.982

0.985

0.988

0.990

30

0.900

0.912

0.927

0.939

0.967

0.983

0.985

0.988

0.990

31

0.902

0.914

0.929

0.940

0.967

0.983

0.986

0.988

0.990

32

0.904

0.915

0.930

0.941

0.968

0.983

0.986

0.988

0.990

33

0.906

0.917

0.931

0.942

0.968

0.983

0.986

0.989

0.990

34

0.908

0.919

0.933

0.943

0.969

0.983

0.986

0.989

0.990

35

0.910

0.920

0.934

0.944

0.969

0.984

0.986

0.989

0.990

36

0.912

0.922

0.935

0.945

0.970

0.984

0.986

0.989

0.990

37

0.914

0.924

0.936

0.946

0.970

0.984

0.987

0.989

0.990

38

0.916

0.925

0.938

0.947

0.971

0.984

0.987

0.989

0.990

39

0.917

0.927

0.939

0.948

0.971

0.984

0.987

0.989

0.991

40

0.919

0.928

0.940

0.949

0.972

0.985

0.987

0.989

0.991

41

0.920

0.929

0.941

0.950

0.972

0.985

0.987

0.989

0.991

42

0.922

0.930

0.942

0.951

0.972

0.985

0.987

0.989

0.991

43

0.923

0.932

0.943

0.951

0.973

0.985

0.987

0.990

0.991

44

0.924

0.933

0.944

0.952

0.973

0.985

0.987

0.990

0.991

45

0.926

0.934

0.945

0.953

0.973

0.985

0.988

0.990

0.991

46

0.927

0.935

0.945

0.953

0.974

0.985

0.988

0.990

0.991

47

0.928

0.936

0.946

0.954

0.974

0.985

0.988

0.990

0.991

48

0.929

0.937

0.947

0.954

0.974

0.985

0.988

0.990

0.991

49

0.929

0.938

0.947

0.955

0.974

0.985

0.988

0.990

0.991

50

0.930

0.939

0.947

0.955

0.974

0.985

0.988

0.990

0.991

p=p;+ (b,

—-Pp

)

W — W,

W

i+1— W

J

7 April 2025

(84)
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Alternately, the desired significance level (s) may be selected from the values in the heading
of Table 21 to obtain the critical value of the Shapiro-Wilk statistic (Wc) from the same
column and the appropriate row for the sample size (n). The criterion for the probability is to
admit the possibility that a normal or log-normal distribution fits the data if p > s. The
distribution is also considered a possible fit if W > W_. These two methods are equivalent
because the same statistic is evaluated with respect to the same tabular values. Table 22
summarizes the results of the Shapiro-Wilk tests for the normal and log-normal
distributions. The Shapiro-Wilk test is more lenient than the Anderson-Darling test for this
data set because it admits both distributions with sufficient margin. Reference 22 states that
the Anderson-Darling test is more sensitive to variance between the data and the tails of the
distribution, whereas the Shapiro-Wilk test is more sensitive to outliers. References 16 and
23 consider the Shapiro-Wilk test to be slightly more accurate than the Anderson-Darling
test for admitting normal distributions and rejecting others. All of these sources concur that
the two tests are comparable (Ref. 16, 22, 23).

Table 22: Results of Shapiro-Wilk Tests for the Normal and Log-Normal Distributions

External Internal Normal Log-Normal

Method | References |References |Parameter | Distribution | Distribution
General p. 11 n 24 24
25 p. 28 d 12 12
25, 26 Eg. 82, 83; w 0.930 0.921

Table 17
25 p. 24 S 5.0% 5.0%
1 25, 26 Table 21 p 9.8% 6.6%
25 Inference Admit Admit
2 26 Table 21 W, 0.916 0.916
Inference Admit Admit
Conclusion

Experiments were performed to measure the energy mitigated by specimens of AISI 304L
VAR bar as a cylindrical bar of AISI 4340 steel punctured them. The 24 specimens were cut
from the same stock material with the same processes and nominal dimensions. The initial
and boundary conditions were kept as similar as possible for all of the tests. These data are
amenable to classical statistical inference because there are enough specimens to achieve
low variance and positive lower bounds for precision intervals with 95% confidence. The
median mitigated energy is within 3% of the sample mean. Given the large sample size (24)
and low ratio of the standard deviation to the mean (5.5%), this data set appears adequate for
setting precision intervals with bounding probabilities as low as 1% (10E-3) but not lower.

The data are assumed to be normally distributed, though the Weibull distribution might also
fit. The parameters of both distributions are conservatively bounded at 95% confidence and
used to calculate the lower bounds on the energy mitigated by the AISI 304L steel disc
specimens for a range of probabilities (Table 23). Probabilities of one per thousand, million,
and billion are included for reference; however, these lower bounds are considered uncertain
because they would change significantly if more independent but identically distributed
specimens were tested. The probabilities that define the screening thresholds in Reference
11, page 2, are extremely small, but the normal and Weibull distributions yield positive
lower bounds for the precision intervals on mitigated energy.
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Table 23: Lower Bounds for Mitigated Energy Based on Normal and Weibull Distributions

Probability of Lower |Normal Distribution | Weibull Distribution
Bounding Probability | Future Observation | (J) (ft-1b) J) (ft-1b)
Median 50% | 500E-3 43.0 31.7 43.4 32.0
One in One Hundred 1%| 10E-3 35.1 25.9 33.8 25.0
One in One Thousand 0.1%| 1E-3 325 24.0 29.6 21.8
One in One Million 0.0001% | 1E-6 26.9 19.8 19.7 14.6
One in One Billion 0.0000001% | 1E-9 22.7 16.7 13.2 9.7

Anderson-Darling and Shapiro-Wilk tests are performed to evaluate the assumption that a
normal distribution fits the data. The methods of comparing a probability value to a
significance level (Ref. 19, 21, 25) and comparing a statistic to an adjusted critical value
(Ref. 14, 18) support the possibility of using the normal distribution to predict future
observations similar to the experimental measurements. The methods of comparing an
adjusted statistic to a critical value in References 15, 16, and 19 refute this hypothesis. The
log-normal, Weibull, and gamma distributions are also considered for bounding future
observations because they only predict positive lower bounds for the energy values. The
Shapiro-Wilk test supports using both the normal and log-normal distributions, and the
Anderson-Darling test admits the Weibull distribution as a possible fit, although the PDF
differs visibly from the other proposed distributions (Fig. 10). However, the hypotheses that
the log-normal and gamma distributions fit this data set are rejected by all of the Anderson-
Darling test methods that were applied. The Shapiro-Wilk and Anderson-Darling tests both
confirm that the normal distribution is admissible for setting the lower bounds on the
precision intervals of the mitigated energy.

The data set may be improved by increasing the number of specimens. The variance might
increase or decrease depending on how consistent the new specimens are with those that
have already been tested, but the Student’s t parameter would decrease, which would tend to
raise the lower bounds. Any additional experiments should be performed according to the
same test procedure (Ref. 27) to minimize the variance in the augmented data set. The
experiments were performed with specimens from the same stock material, so they
experienced the same heat treatments. This minimized the variance and maximized the
lower bounds on the mitigated energy at each probability; however, it also neglected
differences between heat treatment lots and material production batches. Testing specimens
from multiple manufacturers would reduce this unconservative bias.

Uncertainty in the measurements of the energy mitigated by each specimen is due to the
accuracy of the laser interferometers, machining tolerances, spatial variation in material
properties (non-homogeneity), and the stochastic nature of ductile fracture. The acceleration
data serves as a trigger for selecting the time ranges over which to average the total energy,
but the energy is calculated solely from the position data, and the trigger times are adjusted
such that the intervals appear reasonable on the total energy plot. Therefore, error in the
accelerometer has no influence on the test results. The specimens are manufactured with
reasonable tolerances and surface roughness limits for milling operations. The variation in
thickness can be as much as 3% and remain within the tolerance limits. The hardness of
304L VAR steel has been shown to vary by 5% over a cross-section of a bar (Ref. 28).
Ductile fracture occurs when voids form in the material and coalesce into cracks. The
locations of voids and the reduction in the engineering strength as they grow and combine
depend on the microstructure, which is not known before a component fractures and is,
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therefore, assumed to be homogeneous. Uncertainty about the microstructure makes the
crack paths appear random although they follow patterns based on the boundary conditions.

The methods described in this memorandum may be applied to setting energy thresholds
based on experiments with continuous results (real numbers). Logistic regression (Ref. 29,
30) applies to experiments that have binary results, such as those that measure the
mechanical impact energy that causes a pyrotechnic material to react.

Considering the assumptions and limitations of statistics, the simpler method of applying a
safety factor may be preferred. Dividing by a safety factor of 1.5, the sample mean of the
mitigated energy is reduced to 29.4 J (21.7 ft-1b). This method credits engineering
judgement that a future test of a specimen made to the same specifications would mitigate at
least two-thirds as much energy as the average of the specimens in the sample.

References

1.
2.

10.

11.

12.

Waymel, R., “MIP Puncture Disc Results,” Sandia National Laboratories, 15 July 2020.

Figliola, R. S., and Beasley, D. E., Theory and Design for Mechanical Measurements, 3" ed.,
John Wiley & Sons, 2000.

Ross, S., A First Course in Probability, 5" ed., Prentice Hall, 1998.

Bain, L. J., and Engelhardt, M., Introduction to Probability and Mathematical Statistics, 2"
ed., Duxbury Press, 1992.

National Institute of Standards and Technology with Semiconductor Manufacturing
Technology, “Engineering Statistics Handbook: §1.3.6.6.1. Normal Distribution,” U.S.
Department of Commerce, https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.
htm, Accessed 30 September 2024.

National Institute of Standards and Technology with Semiconductor Manufacturing
Technology, “Engineering Statistics Handbook: §1.3.6.6.4. t Distribution,” U.S. Department
of Commerce, https://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm, Accessed
30 September 2024.

National Institute of Standards and Technology with Semiconductor Manufacturing
Technology, “Engineering Statistics Handbook: §1.3.6.6.6. Chi-Square Distribution,” U.S.
Department of Commerce, https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.
htm, Accessed 30 September 2024.

National Institute of Standards and Technology with Semiconductor Manufacturing
Technology, “Engineering Statistics Handbook: §1.3.6.6.9. Lognormal Distribution,” U.S.
Department of Commerce, https://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.
htm, Accessed 30 September 2024.

National Institute of Standards and Technology with Semiconductor Manufacturing
Technology, “Engineering Statistics Handbook: §1.3.6.6.8. Weibull Distribution,” U.S.
Department of Commerce, , Accessed 3 February 2025.

National Institute of Standards and Technology with Semiconductor Manufacturing
Technology, “Engineering Statistics Handbook: §1.3.6.6.11. Gamma Distribution,” U.S.
Department of Commerce, , Accessed 3 February 2025.

Department of Energy, DOE-NA-STD-3016-2023, “Hazard Analysis Reports for Nuclear
Explosive Operations,” 2023.

Weapon Response Analysis Department, “Use of Safety Factors in Weapon Response
Technical Basis,” Sandia National Laboratories, 28 February 2024.



https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

-36 - 7 April 2025

Anderson, T. W., and Darling, D. A., “Asymptotic Theory of Certain ‘Goodness of Fit’
Criteria Based on Stochastic Processes,” Annals of Mathematical Statistics, Vol. 23, No. 2,
pp. 193-212, June 1952.

Department of Defense, MIL-HDBK-5J, “Metallic Materials and Elements for Aerospace
Vehicle Structures,” 31 January 2003.

National Institute of Standards and Technology with Semiconductor Manufacturing
Technology, “Engineering Statistics Handbook: §1.3.5.14. Anderson-Darling Test,” U.S.
Department of Commerce, https://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.
htm, Accessed 8 November 2023.

Stephens, M. A., “EDF Statistics for Goodness of Fit and Some Comparisons,” Journal of the
American Statistical Association, Vol. 69, No. 347, pp. 730737, September 1974.

Stephens, M. A., “Asymptotic Results for Goodness-of-Fit Statistics with Unknown
Parameters,” The Annals of Statistics, Vol. 4, No. 2, pp. 357-369, 1976.

Romeu, J. L., “Anderson-Darling: A Goodness of Fit Test for Small Samples Assumptions,”
Selected Topics in Assurance Related Technologies, Vol. 10, No. 5, Department of Defense,
Reliability Analysis Center, https://web.cortland.edu/matresearch/AndrsDarlSTART.pdf,
Accessed 8 November 2023.

Zaiontz, C., “One-Sample Anderson-Darling Test,” https://real-statistics.com/non-parametric-
tests/goodness-of-fit-tests/anderson-darling-test, Accessed 8 November 2023.

Zaiontz, C., “One-Sample Anderson-Darling Test Table,” https://real-statistics.com/statistics-
tables/anderson-darling-test-table, Accessed 8 November 2023.

SPC for Excel Software, “Anderson-Darling Test for Normality,” https://www.spcforexcel.
com/knowledge/basic-statistics/anderson-darling-test-for-normality, Accessed 8 November
2023.

SixSigma, “A Complete Guide to the Anderson-Darling Normality Test,” https://www.6sigma
.us/six-sigma-in-focus/anderson-darling-normality-test, 31 July 2024, Accessed 3 October
2024.

Razali, N. M., and Wah, Y. B., “Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov,
Lilliefors and Anderson-Darling Tests,” Journal of Statistical Modeling and Analytics, Vol. 2,
No. 1, pp. 21-33, 2011.

Shapiro, S. S., and Wilk, M. B., “An Analysis of Variance Test for Normality (Complete
Samples),” Biometrika, VVol. 52, Nos. 3-4, pp. 591-611, 1 December 1965.

Zaiontz, C., “Shapiro-Wilk Original Test,” https://real-statistics.com/tests-normality-and-
symmetry/statistical-tests-normality-symmetry/shapiro-wilk-test, Accessed 30 January 2025.
Zaiontz, C., “Shapiro-Wilk Tables,” https://real-statistics.com/statistics-tables/shapiro-wilk-
table, Accessed 30 January 2025.

Hubbard, N., “Test Plan for 304L Steel Puncture Specimens,” Sandia National Laboratories, 6
April 2020.

Kramer, S., Antoun, B., Lu, W., Jones, A., Sanborn, B., Song, B., Jin, H., and Deibler, L.,
SAND2019-10152PE, “DE L2 Milestone Presentation: Ductile Failure,” Sandia National
Laboratories, 21 August 2019.

Kleinbaum, D. G., and Klein, M., Logistic Regression: A Self-Learning Text, 3" ed., Springer,
2010, https://link.springer.com/book/10.1007/978-1-4419-1742-3, Accessed 12 March 2025.

Neyer, B. T., “A D-Optimality-Based Sensitivity Test,” Technometrics, VVol. 36, No. 1, pp.
61-70, February 1994.



https://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm
https://web.cortland.edu/matresearch/AndrsDarlSTART.pdf
https://real-statistics.com/non-parametric-tests/goodness-of-fit-tests/anderson-darling-test
https://real-statistics.com/non-parametric-tests/goodness-of-fit-tests/anderson-darling-test
https://real-statistics.com/statistics-tables/anderson-darling-test-table
https://real-statistics.com/statistics-tables/anderson-darling-test-table
https://www.spcforexcel.com/knowledge/basic-statistics/anderson-darling-test-for-normality
https://www.spcforexcel.com/knowledge/basic-statistics/anderson-darling-test-for-normality
https://www.6sigma.us/six-sigma-in-focus/anderson-darling-normality-test
https://www.6sigma.us/six-sigma-in-focus/anderson-darling-normality-test
https://real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/shapiro-wilk-test
https://real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/shapiro-wilk-test
https://real-statistics.com/statistics-tables/shapiro-wilk-table
https://real-statistics.com/statistics-tables/shapiro-wilk-table
https://link.springer.com/book/10.1007/978-1-4419-1742-3

-37 - 7 April 2025

Appendix A: Acceleration
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Figure 13: Carriage Acceleration in Test 7 with Specimen 1
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Figure 14: Carriage Acceleration in Test 10 with Specimen 2
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Figure 15: Carriage Acceleration in Test 8 with Specimen 3
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Figure 16: Carriage Acceleration in Test 11 with Specimen 4
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Figure 17: Carriage Acceleration in Test 12 with Specimen 5
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Figure 18: Carriage Acceleration in Test 13 with Specimen 6
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Figure 19: Carriage Acceleration in Test 14 with Specimen 7
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Figure 20: Carriage Acceleration in Test 15 with Specimen 8
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Figure 21: Carriage Acceleration in Test 16 with Specimen 9
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Figure 22: Carriage Acceleration in Test 17 with Specimen 10
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Figure 23: Carriage Acceleration in Test 18 with Specimen 11
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Figure 24: Carriage Acceleration in Test 19 with Specimen 12
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Figure 25: Carriage Acceleration in Test 20 with Specimen 13
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Figure 26: Carriage Acceleration in Test 21 with Specimen 14
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Figure 27: Carriage Acceleration in Test 22 with Specimen 15
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Figure 28: Carriage Acceleration in Test 23 with Specimen 16
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Figure 29: Carriage Acceleration in Test 24 with Specimen 17
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Figure 30: Carriage Acceleration in Test 25 with Specimen 18
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Figure 31: Carriage Acceleration in Test 26 with Specimen 19
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Figure 32: Carriage Acceleration in Test 27 with Specimen 20
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Figure 33: Carriage Acceleration in Test 28 with Specimen 21
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Figure 34: Carriage Acceleration in Test 29 with Specimen 22
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Figure 35: Carriage Acceleration in Test 30 with Specimen 23
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Figure 36: Carriage Acceleration in Test 31 with Specimen 24
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Appendix B: Total Energy
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Figure 37: Total Energy in Test 7 with Specimen 1
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Figure 38: Total Energy in Test 10 with Specimen 2
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Figure 39: Total Energy in Test 8 with Specimen 3
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Figure 40: Total Energy in Test 11 with Specimen 4
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Figure 41: Total Energy in Test 12 with Specimen 5
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Figure 42: Total Energy in Test 13 with Specimen 6
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Figure 43: Total Energy in Test 14 with Specimen 7

Total Energy

Before Impact

r —— After Puncture

15 20 25 30 35 40
Time (ms)

Figure 44: Total Energy in Test 15 with Specimen 8
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Figure 45: Total Energy in Test 16 with Specimen 9
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Figure 46: Total Energy in Test 17 with Specimen 10
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Figure 47: Total Energy in Test 18 with Specimen 11
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Figure 48: Total Energy in Test 19 with Specimen 12
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250 I
240 1
230 1
220 |
i Total Energy
210 T Before Impact
| —— After Puncture
200 e '
15 20 25 30 35 40 45
Time (ms)
Figure 50: Total Energy in Test 21 with Specimen 14
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Figure 51: Total Energy in Test 22 with Specimen 15
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Figure 52: Total Energy in Test 23 with Specimen 16
250
240 |

Total Energy (ft-lb
E
o

220 |

Total Energy

[ Before Impact
r —— After Puncture
210 — — e :
15 20 25 30 35 40

Time (ms)

Figure 53: Total Energy in Test 24 with Specimen 17
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Figure 54: Total Energy in Test 25 with Specimen 18
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Figure 55: Total Energy in Test 26 with Specimen 19
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Figure 56: Total Energy in Test 27 with Specimen 20
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Figure 57: Total Energy in Test 28 with Specimen 21
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Figure 58: Total Energy in Test 29 with Specimen 22
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Figure 59: Total Energy in Test 30 with Specimen 23
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Figure 60: Total Energy in Test 31 with Specimen 24
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Appendix C: Velocity

Velocity (fps)

Velocity (fps)

Velocity (fps)

8.7
[ —— Velocity
.58 | ——BeforeImpact
—— After Puncture
8.9 T
704
714
e ST
-72_"'}'1'1'i"‘i"'i"'
24 26 28 30 32 34

-6.4

.85 | ——Before mpact
66

87 1

e L T

Time (ms)

Figure 61: Carriage Velocity in Test 7 with Specimen 1
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Figure 62: Carriage Velocity in Test 10 with Specimen 2
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Figure 63: Carriage Velocity in Test 8 with Specimen 3
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Figure 64: Carriage Velocity in Test 11 with Specimen 4

Time (ms)

Figure 65: Carriage Velocity in Test 12 with Specimen 5
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Figure 66: Carriage Velocity in Test 13 with Specimen 6
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Figure 67: Carriage Velocity in Test 14 with Specimen 7
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Figure 68: Carriage Velocity in Test 15 with Specimen 8
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Figure 69: Carriage Velocity in Test 16 with Specimen 9
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Figure 70: Carriage Velocity in Test 17 with Specimen 10
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Figure 71: Carriage Velocity in Test 18 with Specimen 11
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Figure 72: Carriage Velocity in Test 19 with Specimen 12
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Figure 73: Carriage Velocity in Test 20 with Specimen 13
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Figure 74: Carriage Velocity in Test 21 with Specimen 14
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Figure 75: Carriage Velocity in Test 22 with Specimen 15
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Figure 76: Carriage Velocity in Test 23 with Specimen 16
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Figure 77: Carriage Velocity in Test 24 with Specimen 17
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Figure 78: Carriage Velocity in Test 25 with Specimen 18
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Figure 79: Carriage Velocity in Test 26 with Specimen 19
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Figure 80: Carriage Velocity in Test 27 with Specimen 20

—Velocity
—— Before Impact

—— After Puncture

28

30

Time (ms)

32 34 36

Figure 81: Carriage Velocity in Test 28 with Specimen 21
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Figure 82: Carriage Velocity in Test 29 with Specimen 22
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Figure 83: Carriage Velocity in Test 30 with Specimen 23
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Figure 84: Carriage Velocity in Test 31 with Specimen 24
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