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Executive Summary 

Specimens of AISI 304L VAR steel are punctured with AISI 4340 steel probes in a series of 

drop-table experiments. The times when the probe contacts the specimen and when it breaks 

through are indicated by the acceleration of the drop-table carriage. The change in the total 

energy of the carriage between these times is the energy mitigated by each specimen. 

Precision intervals bounding the energy mitigation provided by the specimens are derived by 

classical statistical inference. The lower bounds are reasonable because a sufficient number 

of replications are performed. The adequacy of making predictions about future observations 

from the population of all possible specimens of identical manufacture based on the normal, 

log-normal, Weibull, or gamma distribution are evaluated by standard techniques. The 

normal distribution is considered to fit the mitigated energy data, and the lower bounds in 

the table below are calculated with it. As an alternative to the statistics, a safety factor of 1.5 

may be applied to the sample mean, resulting in a threshold mitigated energy of 21.7 ft-lb. 

Table 1: Statistics of Energy Mitigated by 0.063-Inch-Thick Specimens of 

AISI 304L VAR Steel Punctured by 0.25-Inch-Diameter Flat-End Probe 

Statistic Mitigated Energy 

Mean 32.5 ft-lb 

Standard Deviation 1.8 ft-lb 

Median, 50% 31.7 ft-lb 

Lower Bound, 1% 25.9 ft-lb 

Lower Bound, 1E-3 24.0 ft-lb 

Lower Bound, 1E-6 19.8 ft-lb 

Lower Bound, 1E-9 16.7 ft-lb 
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Introduction 

Robert Waymel performed a series of experiments on a drop table to measure the energy 

mitigated by American Iron and Steel Institute (AISI) type 304L vacuum arc remelted 

(VAR) steel as a projectile passed through it (Ref. 1). Specimens were machined from bar 

stock that was sliced with the wire in an electrical discharge machine (EDM). The natural 

surface finish left by the EDM was preserved to give the specimens a texture representative 

of actual components. Cracks nucleate at flaws in the material, and a normal quantity of 

flaws produces characteristic performance. Polished specimens would likely have mitigated 

more energy but would have been unrealistic for comparison to cast or machined housings, 

covers, and containers. The interior features of the specimens were produced by milling 

operations, as many actual components are. 

The disc specimen shown in Figure 1 has a pocket where the thickness is reduced to 1.60 

mm (0.063 in) so that a projectile can easily penetrate. The thick rim constrains the thin 

portion, giving it a fixed boundary condition around the circular perimeter. The reaction 

forces at the boundary pull downward and radially inward on the rim and tend to curl it such 

that the outer edges lift off of the fixture. The rim is designed to minimize this deformation. 

The probes are straight cylinders turned from AISI 4340 steel bars and hardened to 42–48 

Rockwell C hardness (HRC). Figure 2 gives the dimensions in inches. 

 

Figure 1: AISI 304L VAR Disc Specimen with Thickness of 0.063 Inch 
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Figure 2: Cylindrical Probe with Diameter of 0.250 Inch and Flat End 

The drop table has a 1370 N (308 lb) carriage that guides the probe along a straight path 

intersecting the specimen. The specimens are held in fixtures that constrain them against 

being pushed by the probe and resist lateral motion after a little clearance is removed. The 

specimens are free to lift off of the fixture and deform. Two laser interferometers measure 

the position of the carriage, and an accelerometer on the carriage measures the resistance to 

the falling mass. When the carriage is released from a planned height, the acceleration drops 

from 1 G to between 0.40 G and 0.70 G; friction in the guide rods prevents free-fall, and 

they are lubricated regularly to minimize it. Data collection begins as the probe approaches 

the specimen. Upon contact, an elastic wave travels through the probe to the carriage and 

registers an increase in the acceleration (resistance to gravity). The acceleration rises to 

about 8 G as the steel work hardens and drops off quickly after it reaches the ultimate stress 

and the specimen fractures. The peak acceleration indicates the maximum force required to 

puncture the specimen, after which the probe passes through a hole in the fixture, and the 

carriage settles onto felt programming rings. The data of interest are collected before the 

carriage contacts the rings. 

As the probe punctured each specimen, it formed a circular plug. Many of the plugs adhered 

to the end of the probe. Following each test, the specimen clamped onto the probe and was 

lifted when the carriage raised to the reset position. A few broken specimens appear in the 

figures below. 
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Figure 3: Probe, Specimen 1, and Ejected Plug After Test 7 
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Figure 4: Probes Impaled In Specimens After Tests 

The sample size is large enough to apply classical statistical inference techniques and obtain 

positive energy values at the customary 95% confidence. The Student’s t distribution fits 

small samples from normally distributed populations. As the number of specimens in a 

sample approaches 30, the two-tailed Student’s t distribution converges to the normal 

distribution within 5%. Given the available stock material and testing budget, a sample size 

of 24 was selected, for which the Student’s t distribution only applies a slight penalty. All of 

the specimens were machined to the same specifications from the same stock material, and 

all were tested in the same fixtures and at approximately the same impact velocity. The 

specimens in the sample are considered independent but identically distributed. 

(a) Specimen 3 After Test 8, Plug Fused to Probe (b) Specimen 7 After Test 14, Plug Ejected 

(c) Specimen 11 After Test 18, Top Surface (d) Specimen 23 After Test 30, Bottom Surface 
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Data Processing Method 

The times when the probe contacts the specimen and penetrates it are determined from the 

acceleration data. A threshold acceleration (at) of 0.4 G is selected for all of the tests. Impact 

is considered to occur at the last time (ti) when the acceleration is less than the threshold 

prior to the peak acceleration (ap), and the puncture is considered complete at the last time 

(tp) when the acceleration is greater than the threshold after the peak. Figure 5 illustrates 

these accelerations and times. The figures in Appendix A show the acceleration data for 

each test with the thresholds for impact and complete puncture. 

 

Figure 5: Representative Acceleration Curve with Impact and Puncture Times Identified 

Although the threshold acceleration is constant, other processing parameters differ between 

tests. Table 2 lists these optimized parameters. Although consistency in the processing 

parameters has been preferred, these values are customized to the data and cannot be the 

same for every test. 
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Table 2: Data Processing Parameters 

Test Specimen 

Acceleration Puncture Time Reference 

Position, pr Free-Fall, 

af (G) 

Peak, 

ap (G) 

Offset, 

Δto,p (ms) 

Period, 

ΔtE,p (ms) (mm) (in) 

7 1 0.455 8.12 0.60 2.20 -7.55 -0.297 

10 2 0.396 8.03 0.10 2.30 -7.62 -0.300 

8 3 0.484 8.06 0.30 2.20 -7.61 -0.299 

11 4 0.466 7.98 0.40 2.10 -8.02 -0.316 

12 5 0.433 8.15 0.20 2.20 -7.66 -0.302 

13 6 0.452 8.01 0.70 2.50 -8.59 -0.338 

14 7 0.571 8.17 0.25 2.10 -8.02 -0.316 

15 8 0.536 7.76 0.10 2.10 -7.55 -0.297 

16 9 0.539 7.99 0.40 2.00 -8.17 -0.322 

17 10 0.446 7.89 0.25 2.20 -7.77 -0.306 

18 11 0.458 7.89 0.50 2.00 -8.35 -0.329 

19 12 0.444 8.02 0.40 2.00 -8.05 -0.317 

20 13 0.487 7.99 0.40 2.00 -8.14 -0.320 

21 14 0.508 8.09 0.10 2.20 -7.62 -0.300 

22 15 0.511 7.83 0.10 2.10 -7.54 -0.297 

23 16 0.510 7.99 0.30 2.10 -8.01 -0.315 

24 17 0.510 8.15 0.40 2.40 -7.21 -0.284 

25 18 0.542 8.29 0.25 2.20 -8.10 -0.319 

26 19 0.539 8.13 0.10 2.40 -7.58 -0.299 

27 20 0.588 8.21 0.15 2.20 -7.63 -0.300 

28 21 0.665 8.07 0.10 2.30 -7.58 -0.299 

29 22 0.695 7.91 0.40 2.00 -8.26 -0.325 

30 23 0.438 8.29 0.10 2.30 -7.84 -0.309 

31 24 0.438 8.10 0.80 2.20 -9.40 -0.370 

 

The position data from the two laser interferometers (pL on the left and pR on the right) are 

averaged and shifted with Equation 1. The reference position (pr) is selected such that the 

position is zero when the puncture process is complete (tp). The reference position also 

makes the potential energy (EP, Eq. 2) positive when the probe contacts the specimen and 

zero when it breaks through. The mass (m) of the carriage with the attached mounting 

fixtures, accelerometer, and probe is 139.7 kg (9.57 slug). The free-fall acceleration of the 

carriage (af) is calibrated to correspond to a free-fall condition prior to the time of impact, 

accounting for friction in the guide rods, and is explained subsequently. 

 p =
p

L
+ p

R

2
− p

r
 (1) 

 EP = m af p (2) 

The average carriage position is differentiated to obtain the carriage velocity (v, Eq. 3). For 

each time in the data set, the velocity value (vj) is given by Equation 4, where j is the index 

of the data points. The majority of the velocity values are computed with the second-order 

central finite difference formula; the first and last velocity values are evaluated with first-

order finite difference formulas based on the available data points. The kinetic energy of the 

carriage and probe is defined by Equation 5 and the total energy by Equation 6. 
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 v =
dp

dt
 (3) 

 vj =

{
 
 
 

 
 
 

p
j+1
− p

j

tj+1 − tj
j = 1

p
j+1
− p

j−1

tj+1 − tj−1

j = 2… n − 1

p
j
− p

j−1

tj − tj−1

j = n

 (4) 

 EK =
m v2

2
 (5) 

 ET = EP + EK (6) 

The free-fall acceleration of the carriage is optimized such that a linear fit to the total energy 

during a certain period of time prior to the probe contacting the specimen has zero slope. 

Table 2 gives the optimal values. This calibrates the data to a true free-fall condition prior to 

the time of impact. It correctly accounts for friction in the carriage guide rods and the 

increase in potential energy as the carriage falls through the specimen. The time period 

spans 10 ms (ΔtE,i) and ends 0.3 ms (Δto,i) before the impact time (ti); during this period, 

several complete cycles of oscillation are observed in the total energy. The average of the 

total energy in this period is taken as the total energy before impact (ET,i). The total energy 

after complete puncture (ET,p) is the average value in a period of time beginning about 0.3 

ms (Δto,p) after the puncture time (tp) and lasting about 2 ms (ΔtE,p). Table 2 has the actual 

values of the time offset and period for each test. The total energy mitigated by the specimen 

is 

 EM = ET,i − ET,p (7) 

Figure 6 illustrates the time periods over which the total energy is averaged and the 

difference between the averages. The figures in Appendix B plot the total energy as a 

function of time and bracket the time periods that are averaged before impact and after 

complete puncture. 
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Figure 6: Representative Total Energy Curve and Time Periods for Averaging 

The carriage velocity before impact (vi) is found by averaging the velocity values over a 

time period of 0.5 ms (Δtv,i) that ends 0.3 ms (Δto,i) before impact (ti). The velocity after 

complete puncture (vp) is the average value over a time period of 0.5 ms (Δtv,p) that starts 

approximately 0.3 ms (Δto,p) after the penetration is complete (tp). The time period and offset 

from the impact time are constant, but the offset from the puncture time is unique to each 

test (Table 2). Figure 7 illustrates the time periods over which the velocity is averaged. 

Appendix C has plots of the velocity data for each test and the time periods in which it is 

averaged. 

 

Figure 7: Representative Velocity Curve and Time Periods for Averaging 
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The distance traveled by the probe during the puncture process is the difference in the 

positions at the impact and puncture times (ti, tp). The results of the distance, velocity, and 

energy calculations are provided in Tables 3 and 4. The maximum deviation between the 

measured thickness in Table 3 (the average of several measurements) and the nominal 

thickness is 2.3%. 

Table 3: Measurements and Results of Puncture Experiments on AISI 304L VAR Bar 

Test Specimen 

Thickness Distance Traveled Impact Velocity, vi Puncture Velocity, vp 

(mm) (in) (mm) (in) (m/s) (fps) (m/s) (fps) 

7 1 1.636 0.0644 9.90 0.390 2.19 7.17 2.06 6.77 

10 2 1.572 0.0619 9.79 0.386 2.04 6.68 1.89 6.20 

8 3 1.609 0.0634 9.86 0.388 2.10 6.88 1.97 6.46 

11 4 1.621 0.0638 10.08 0.397 2.02 6.62 1.87 6.14 

12 5 1.617 0.0637 9.83 0.387 1.99 6.53 1.84 6.05 

13 6 1.599 0.0630 10.68 0.421 2.02 6.61 1.88 6.16 

14 7 1.634 0.0644 10.16 0.400 2.21 7.25 2.08 6.84 

15 8 1.613 0.0635 9.75 0.384 2.17 7.13 2.06 6.74 

16 9 1.632 0.0643 10.30 0.405 2.15 7.04 2.01 6.61 

17 10 1.601 0.0631 9.84 0.387 2.11 6.92 1.98 6.48 

18 11 1.617 0.0637 10.49 0.413 2.15 7.07 2.02 6.63 

19 12 1.618 0.0637 10.12 0.398 2.10 6.89 1.97 6.48 

20 13 1.629 0.0642 10.28 0.405 2.14 7.01 2.00 6.55 

21 14 1.604 0.0632 9.81 0.386 2.16 7.09 2.04 6.68 

22 15 1.613 0.0635 9.66 0.380 2.13 6.98 2.01 6.58 

23 16 1.622 0.0639 10.31 0.406 2.23 7.30 2.10 6.89 

24 17 1.626 0.0640 9.46 0.372 2.17 7.10 2.04 6.70 

25 18 1.632 0.0643 10.24 0.403 2.21 7.26 2.08 6.82 

26 19 1.617 0.0637 9.76 0.384 2.23 7.33 2.12 6.95 

27 20 1.628 0.0641 9.91 0.390 2.24 7.35 2.12 6.94 

28 21 1.637 0.0645 9.82 0.386 2.27 7.43 2.14 7.03 

29 22 1.619 0.0638 10.46 0.412 2.29 7.51 2.18 7.14 

30 23 1.619 0.0638 10.18 0.401 2.33 7.64 2.22 7.29 

31 24 1.612 0.0635 11.77 0.463 2.40 7.88 2.29 7.50 
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Table 4: Total Energy in Puncture Experiments on AISI 304L VAR Bar 

Test Specimen 

Total Energy Mitigated 

Energy, EM Before Impact, ET,i After Puncture, ET,p 

(J) (ft-lb) (J) (ft-lb) (J) (ft-lb) 

7 1 341.3 251.7 298.8 220.4 42.5 31.4 

10 2 295.5 218.0 250.6 184.8 44.9 33.1 

8 3 313.8 231.5 272.1 200.7 41.7 30.7 

11 4 291.7 215.2 246.3 181.7 45.4 33.5 

12 5 283.1 208.8 237.8 175.4 45.3 33.4 

13 6 291.0 214.6 247.2 182.3 43.8 32.3 

14 7 350.0 258.1 303.9 224.2 46.1 34.0 

15 8 337.3 248.7 295.6 218.0 41.7 30.7 

16 9 330.4 243.7 283.7 209.2 46.7 34.4 

17 10 317.3 234.0 273.5 201.8 43.7 32.3 

18 11 330.8 244.0 284.9 210.2 45.8 33.8 

19 12 314.9 232.3 272.5 201.0 42.4 31.3 

20 13 326.5 240.8 279.6 206.2 46.9 34.6 

21 14 333.0 245.6 290.9 214.5 42.1 31.0 

22 15 323.2 238.4 282.6 208.4 40.6 30.0 

23 16 353.9 261.0 308.7 227.7 45.2 33.3 

24 17 334.2 246.5 292.3 215.6 41.9 30.9 

25 18 349.9 258.1 302.3 223.0 47.6 35.1 

26 19 356.3 262.8 315.0 232.3 41.3 30.5 

27 20 360.4 265.8 314.1 231.7 46.3 34.2 

28 21 368.8 272.0 322.8 238.1 46.0 33.9 

29 22 376.8 277.9 331.2 244.3 45.6 33.6 

30 23 384.4 283.5 346.5 255.5 38.0 28.0 

31 24 412.0 303.9 366.7 270.5 45.3 33.4 
 

Statistical Methods 

The method for defining precision intervals on a data set is well known and available in 

many sources (e.g. Ref. 2–4); however, the equations are presented for the convenience of 

readers. The complete set of equations also facilitates explaining the methods. 

Normal Probability Distribution 

The goal is to use the information from the experiments to predict future observations of 

similar specimens under the same conditions. The entire population of specimens is assumed 

to be normally distributed with mean μ and standard deviation σ. These parameters are 

unknown but may be bounded by statistics of the sample that was tested. Each test result 

(the energy mitigated by a specific specimen, EM) is xi, for i = 1…n, where n is the sample 

size (24). The normal probability density function (PDF) is (Ref. 2, p. 117, Eq. 4.8; Ref. 3, 

p. 204; Ref. 4, p. 118, Eq. 3.3.27; Ref. 5) 

 
f(x) =

1

σ
√

2πe
(
x−μ

σ
)

2

=
1

σ√2π
e
−

1
2
(
x−μ

σ
)

2

 
(8) 
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The probability (p) that a single measurement is less than a lower bound (bL) is found by 

solving the normal cumulative distribution function (CDF; Ref. 3, p. 207; Ref. 4, p. 119, Eq. 

3.3.29–30; Ref. 5): 

 p =
1

σ√2π
∫ e

−
1
2
(
x−μ

σ
)

2

dx

bL

−∞

 (9) 

The maximum likelihood estimates (MLE) for the parameters of the normal distribution are 

(Ref. 4, p. 299) 

 μ̂ =
1

n
∑ xi

n

i=1

 (10) 

 σ̂ = √
1

n
∑(xi − x̅)2

n

i=1

 (11) 

The mean value of a data set xi, for i = 1…n, is (Ref. 2, p. 121, Eq. 4.14a; Ref. 4, p. 264, Eq. 

8.2.1) 

 x̅ = μ̂ =
1

n
∑ xi

n

i=1

 (12) 

The number of degrees of freedom (DoF) of the data relative to the mean is (Ref. 2, p. 121): 

 ν = n− 1 (13) 

The standard deviation of the set is the square root of the variance between the data and the 

mean, which is normalized by the DoF (Ref. 2, p. 121, Eq. 4.14b; Ref. 4, p. 266, Eq. 8.2.7): 

 sx = σ̂√
n

ν
= √

1

ν
∑(xi − x̅)2

n

i=1

 (14) 

The parameters of interest (μ, σ) are location-scale parameters; therefore, 
μ̂−μ

σ̂
 and 

σ̂

σ
 are 

pivotal quantities suitable for deriving confidence intervals about the parameters of the 

entire population (μ, σ) based on the sample statistics (x̅, sx) (Ref. 4, p. 364). The confidence 

level (c) is the probability that confidence intervals developed from the statistics of a 

replicate sample will contain the true mean and standard deviation. The confidence level is 

also termed the frequentist coverage and has a customary value of 95%. Given a sample 

from a past test, the probability that the confidence intervals include the true parameters is 

either 0 or 1 but is unknown; therefore, the confidence level denotes the confidence in 

bounding the parameters of the distribution but not the probability of bounding a future test 

result. The significance level is (Ref. 2, p. 127; Ref. 4, p. 391) 

 s = 1− c (15) 

For an infinite sample size equal to the entire population, the normal distribution defines the 

confidence interval about the true mean. The Student’s t distribution accounts for additional 

uncertainty due to the finite number of specimens and converges to the normal distribution 

as the degrees of freedom increase. For 24 samples (23 DoF) and 95% confidence, the 

difference between the two-tailed bounds is 5.5%. The difference is less than 2% for 63 

samples (62 DoF) and 1% for 124 samples (123 DoF) with 95% confidence. 
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Figure 8: Convergence of Student’s t and Normal Probability Density Functions 

 

Figure 9: Convergence of Student’s t and Normal Cumulative Distribution Functions 

The Student’s t PDF can be written (Ref. 4, p. 274, Eq. 8.4.2; Ref. 6) 
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(16) 

or 

f(x) =
1

Β (
1
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ν
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x2
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1
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(17) 

The gamma function in Equation 16 is (Ref. 3, p. 222; Ref. 4, p. 111, Eq. 3.3.4; Ref. 7) 
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 Γ(γ) = ∫ uγ−1e−udu

∞

0

 (18) 

and the beta function in Equation 17 is (Ref. 3, pp. 226–227, Eq. 6.3; Ref. 3, p. 285; Ref. 6) 

 Β(β
1
, β

2
) = ∫ uβ1−1(1− u)β2−1du

1

0

=
Γ(β

1
) Γ(β

2
)

Γ(β
1
+ β

2
)

 (19) 

The CDF is the integral of the PDF from negative infinity to the non-dimensional limit 

parameter t and may be written in terms of gamma functions by placing Equation 16 in the 

integral or in terms of beta functions by substituting u =
ν

x2+ν
 into Equation 17. Functions are 

available in many commercial software packages to solve these equations; the reason to 

include them here is to show what calculations are performed by those functions and explain 

the choice of the probability values based on the limits of integration. In Equations 16 and 

17, the specific value that the probability equates to is computed from the significance such 

that the integral of the PDF over the interval {−t, t} equals the confidence; this requires that 

half of the significance be located in each tail of the distribution. 

 p = 1−
s

2
=

Γ (
n
2
)

√πν Γ (
ν
2
)
∫(1 +

x2

ν
)

−
n
2

dx

t

−∞

 (20) 

or 

p = 1 −
s

2
=

{
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0
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ν
2
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1
2du

1

0
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 (21) 

One of Equations 20 or 21 is solved for the parameter t. The confidence interval about the 

true mean is (Ref. 2, p. 124, Eq. 4.17; Ref. 4, p. 365, Eq. 11.3.5) 

 μ
L
= x̅ −

t sx

√n
≤ μ ≤ x̅ +

t sx

√n
= μ

U
 (22) 

The chi-square distribution defines the confidence interval about the true variance. It is a 

specific gamma distribution (Ref. 4, p. 111, Eq. 3.3.8, and p. 268) with the PDF (Ref. 4, p. 

597, Table B.2; Ref. 7) 

 f(x) =
x

ν
2
−1

Γ (
ν
2
)√2

ν
ex

 (23) 

The CDF (Ref. 4, p. 112, Eq. 3.3.10, and p. 268; Ref. 7) may be expressed in two forms by 

substituting x = 2u and the gamma function (Eq. 18) into the PDF. 

 p =
1

√2
ν
 Γ (

ν
2
)
∫ x

ν
2
−1

e
−

x
2dx

χ2

0
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∫ u

ν
2
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e−udu
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2
0

∫ u
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2
−1

e−udu
∞

0

 (24) 
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The lower and upper bounds for the true variance are obtained by solving the CDF at 

different probabilities such that the total probability of being between the bounds equals the 

confidence, or half of the significance is in each tail of the distribution (Ref. 4, p. 365). 

 p
L
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 (26) 

The confidence interval about the true variance is (Ref. 2, p. 127, Eq. 4.27; Ref. 4, p. 365, 

Eq. 11.3.6) 

 
ν sx

2

χ
L
2
≤ σ2 ≤

ν sx
2

χ
U
2

 (27) 

The bounds on the true standard deviation are 

 σL = sx√
ν

χ
L
2
 (28) 

 σU = sx√
ν

χ
U
2

 (29) 

The precision interval bounds future observations bi with probability p and confidence c. 

 bL ≤ bi ≤ bU (30) 

The lower bound (bL) is obtained by solving the normal CDF (Eq. 9) with the lower bound 

for the true mean (μL, Eq. 22) and the upper bound for the true standard deviation (σU, Eq. 

29); Equation 31 encapsulates this combination of inputs to the CDF. The upper bound (bU) 

is calculated by solving the normal CDF with the upper bounds for both parameters (μU, Eq. 

22; σU, Eq. 29) and the complement of the probability; Equation 32 expresses this relation. 

 p =
1

σU√2π
∫ e

−
1
2
(
x−μL

σU
)

2

dx

bL

−∞

 (31) 

 1 − p =
1

σU√2π
∫ e

−
1
2
(
x−μU

σU
)

2

dx

bU

−∞

 (32) 

Log-Normal Probability Distribution 

Up to this point, the mitigated energy has been assumed to fit a normal distribution, but it 

physically cannot be negative, and the normal distribution does admit negative input values. 

Therefore, the log-normal distribution is also considered for establishing bounds on future 

observations. The PDF (Ref. 4, p. 199, Eq. 6.3.3; Ref. 8) is 
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f(x) =

1

xσ
√

2πe
[
ln(x)−μ

σ
]
2
=

1

xσ√2π
e
−

1
2
[
ln(x)−μ

σ
]
2

 
(33) 

The data set xi, for i = 1…n, is transformed with 

 y
i
= ln(xi) (34) 

The natural logarithm function ensures that the input xi does not take on negative values 

when the log-normal distribution is solved for specific probabilities. Equations 35 and 36 are 

evaluated to find the sample mean (y̅) and standard deviation (sy); these are simply 

Equations 12 and 14 with yi substituted for xi. The precision interval about a future 

observation may be computed by the same method as for the normal distribution but with 

the substitution of Equation 34; then the reverse substitution (antilogarithm function) must 

be applied to the bounds of the interval. 

 y̅ =
1

n
∑ y

i

n

i=1

 (35) 

 sy = √
1

ν
∑(y

i
− y̅)

2

n

i=1

 (36) 

Equations 37 and 38 (Ref. 4, p. 597, Table B.2) map the sample statistics through the 

logarithmic transformation and express them in terms of the measured random variable (x). 

The random variable y is normally distributed and x is lognormally distributed. The results 

of Equations 37 and 38 differ from those of Equations 12 and 14 by 0.009% and 2%, 

respectively. 

 
x̅ = e

(y̅+
sy
2

2
)
 

(37) 

 sx = √e(2y̅+sy
2) (esy

2

− 1) (38) 

Equations 22 and 29 are evaluated to place bounds on the true mean (μL, μU) and standard 

deviation (σL, σU) of the transformed random variable (y), which is normally distributed. 

Then the log-normal CDF (Ref. 4, p. 119, Eq. 3.3.29–30, and p. 199, Eq. 6.3.5; Ref. 8) is 

solved for the bounds on the mitigated energy (bL, bU), given the probability (p). 

 p =
1

σU√2π
∫ e

−
1
2
(
x−μL

σU
)

2

dx

ln(bL)

−∞

 (39) 

 1− p =
1

σU√2π
∫ e

−
1
2
(
x−μU

σU
)

2

dx

ln(bU)

−∞

 (40) 

The bounds (Eq. 22, 28, and 29) on the parameters of the log-normal distribution are 

denoted μL,y, μU,y, σL,y, and σU,y. These are transformed back to the original units with 

Equations 41 through 44, which are derived from Equations 37 and 38. 
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 σL,x = √e
(2μL,y+σL,y

2 )
(e

σL,y
2

− 1) (43) 

 σU,x = √e
(2μU,y+σU,y

2 )
(e

σU,y
2

− 1) (44) 

Weibull Probability Distribution 

The Weibull distribution does not assume negative values when it is solved for specific 

probabilities, so it is also a good option for predicting precision intervals on the mitigated 

energy. The PDF is (Ref. 3, p. 225; Ref. 4, p. 116, Eq. 3.3.20; Ref. 9) 

 f(x) =
α

β
(
x

β
)

α−1

e
−(

x
β
)

α

=
α

β
α xα−1e

−(
x
β
)

α

 (45) 

where α is the shape parameter and β is the scale parameter. The mean and standard 

deviation are (Ref. 4, p. 117) 

 μ
w
= β Γ (1+

1

α
) (46) 

 σw = β√Γ (1+
2

α
) − [Γ (1+

1

α
)]

2

 (47) 

The MLE of the parameters (α, β) for a data set xi are α̂, which is the solution of (Ref. 4, p. 

591, Eq. 16.4.4, 16.4.5) 

 
∑ [xi

α̂ ln(xi)]
n
i=1

∑ xi
α̂n

i=1

−
1

α̂
=

1

n
∑ ln(xi)
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 (48) 

and 

β̂ = (
1

n
∑ xi

α̂

n

i=1

)

1
α̂

 (49) 

There is not a closed-form solution of Equation 48 (Ref. 4, p. 591), so the values of α̂ and β̂ 

are found by non-linear optimization. The 95% confidence bounds on the parameters are 

returned by the same software tools, but the details of the optimization and bounding 

methods are too lengthy to present here. Selecting the lower bound on each MLE (α̂L, β̂
L
) 

minimizes the lower bounds on the mitigated energy (bL), which are found by solving the 

CDF (Ref. 3, p. 224, Eq. 6.2; Ref. 4, p. 116, Eq. 3.3.22) at specific probability values (p). 

 
p = 1− e

−(
x

β̂L

)

α̂L

 
(50) 

The closed-form solution of Equation 50 is 
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 x = β̂
L
[ln (

1

1 − p
)]

1
α̂L

 (51) 

Gamma Probability Distribution 

The gamma distribution does not take on negative values when it is solved for specific 

probabilities, so it is another good option for predicting the energy mitigated by future 

specimens. The PDF is (Ref. 3, p. 222; Ref. 4, p. 111, Eq. 3.3.8; Ref. 10) 
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(
x
β
)

α−1

e
−

x
β

β Γ(α)
=

xα−1e
−

x
β

β
α
 Γ(α)

 
(52) 

where α is the shape parameter and β is the scale parameter. The mean and standard 

deviation are (Ref. 3, p. 360, Table 7.2; Ref. 4, pp. 113–114) 

 μ
g
= αβ (53) 

 σg = √αβ (54) 

There is not a closed-form solution for the MLE of the parameters, so the values are found 

by multi-variate non-linear optimization. The 95% confidence bounds on the parameters are 

returned by the same software tools, but no details of the optimization or bounding methods 

are presented here. 

The lower bounds on the parameter values (α̂L, β̂
L
) minimize the lower bounds on the 

mitigated energy (bL), which are found by solving the CDF (Ref. 4, p. 112, Eq. 3.3.10) at 

specific probability values (p). 

 p =
1

β̂
L

α̂L
 Γ(α̂L)

∫ xα̂L−1e
−

x

β̂L dx

bL

−∞

 (55) 

Results of Statistical Inference and Safety Factor Method 

The sample size is known, and the population is considered to be infinite. Four probability 

distributions are hypothesized to fit the data set for the purpose of predicting the energy 

mitigated by future specimens from the population. The parameters of each distribution are 

either calculated with explicit equations or optimized by numerical methods. The MLE of 

the parameters for all of the probability distributions are bounded at the same confidence 

and significance levels, so half of the significance (Eq. 26) and the one-tail probability (Eq. 

20, 21, 25) are also the same. The parameters in Table 5 are common to all the distributions. 

Table 5: General Parameters for Bounding the MLE of Probability Distributions 

Parameter Value 

Sample Size, n 24 

Degrees of Freedom, ν 23 

Confidence Level, C 0.950 

Significance Level, s 0.050 

Half Significance 0.025 

One Tail Probability 0.975 

Student’s t Parameter 2.069 
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Summary statistics for the energy mitigated by the specimens are presented in Tables 6 and 

7. The differences between the normal and log-normal distributions are almost negligible 

with the appropriate number of significant digits in the results. The means and standard 

deviations of the Weibull and gamma distributions are computed with either the MLE or the 

lower bounds of both parameters: the statistics based on the MLE show that the optimized 

parameters are correct because they agree closely with the sample statistics, and the statistics 

based on the lower bounds relate to the precision intervals. The shape parameter of the 

Weibull distribution is moderately large because the sample standard deviation is small 

relative to the sample mean; the resulting shape concentrates most of the probability from 

Equation 45 far from the origin. The Weibull scale parameter is comparable to the upper 

bounds on the mean values of the normal and log-normal distributions. The gamma 

distribution has a very large shape parameter, considering that it is an exponent in Equation 

52, and a relatively small scale parameter (less than 1 ft-lb). This combination of optimal 

parameter values could produce numerical instability in evaluating Equation 55. 

Table 6: Mitigated Energy Statistics for the Normal and Log-Normal Distributions 

Statistic 

Normal 

Distribution 

Log-Normal 

Distribution 

Sample Mean 44.0 J 32.5 ft-lb 44.0 J 32.5 ft-lb 

Sample Standard Deviation 2.42 J 1.784 ft-lb 2.47 J 1.822 ft-lb 

Lower Bound on Mean 43.0 J 31.7 ft-lb 43.0 J 31.7 ft-lb 

Upper Bound on Mean 45.1 J 33.2 ft-lb 45.2 J 33.3 ft-lb 

Lower Bound on Standard Deviation 1.880 J 1.387 ft-lb 1.874 J 1.382 ft-lb 

Upper Bound on Standard Deviation 3.39 J 2.50 ft-lb 3.56 J 2.62 ft-lb 

 

Table 7: Mitigated Energy Statistics for the Weibull and Gamma Distributions 

Statistic 

Weibull 

Distribution Gamma Distribution 

MLE of Shape Parameter, α 23.7 23.7 337 337 

MLE of Scale Parameter, β 45.1 J 33.3 ft-lb 130.7E-3 J 96.4E-3 ft-lb 

Mean Based on MLE 44.1 J 32.5 ft-lb 44.0 J 32.5 ft-lb 

Standard Deviation Based on 

MLE 

2.32 J 1.710 ft-lb 2.40 J 1.770 ft-lb 

Lower Bound on α 17.09 17.09 191.3 191.3 

Upper Bound on α 32.8 32.8 593 593 

Lower Bound on β 44.3 J 32.7 ft-lb 74.2E-3 J 54.8E-3 ft-lb 

Upper Bound on β 45.9 J 33.9 ft-lb 230E-3 J 169.8E-3 ft-lb 

Mean Based on Lower Bounds 42.9 J 31.7 ft-lb 14.20 J 10.48 ft-lb 

Standard Deviation Based on 

Lower Bounds 

3.10 J 2.28 ft-lb 1.027 J 757E-3 ft-lb 

 

The lower bounds of the precision intervals for the mitigated energy are listed in Table 8 at 

several probability values of interest, including those that define screening thresholds in 

Reference 11, page 2 (1E­6, 1E­9). The normal distribution yields positive lower bounds for 

the mitigated energy at the screening probabilities, although they are extremely small, and 

the other hypothetical distributions always produce positive energy values. The lower 

bounds for the normal and log-normal distributions are based on the lower bound for the 
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mean and the upper bound for the standard deviation. The lower bounds for the Weibull and 

gamma distributions are based on the lower bounds for both the shape and scale parameters. 

Predicting a lower bound for the energy mitigated by future test specimens depends on the 

assumptions that the sample data come from the selected probability distribution and that the 

parameters of the distribution are known when, in fact, they are only estimated. The 

adequacy of each distribution for making these predictions is considered subsequently. 

Table 8: Lower Bounds for Energy Mitigated by Disc Specimens of AISI 304L VAR Bar 

Probability of Lower 

Future Observation 

Normal 

Distribution 

Log-Normal 

Distribution 

Weibull 

Distribution 

Gamma 

Distribution 

(J) (ft-lb) (J) (ft-lb) (J) (ft-lb) (J) (ft-lb) 

50% 500E-3 43.0 31.7 42.9 31.7 43.4 32.0 14.2 10.5 

10% 100E-3 38.7 28.5 38.8 28.6 38.8 28.6 12.9 9.5 

5% 50E-3 37.4 27.6 37.7 27.8 37.2 27.5 12.6 9.3 

1% 10E-3 35.1 25.9 35.8 26.4 33.8 25.0 11.9 8.8 

0.1% 1E-3 32.5 24.0 33.7 24.8 29.6 21.8 11.2 8.3 

0.0001% 1E-6 26.9 19.8 29.5 21.8 19.7 14.6 9.8 7.3 

0.0000001% 1E-9 22.7 16.7 26.8 19.8 13.2 9.7 8.9 6.6 

 

With n specimens (24), the Student’s t parameter (2.069) is close enough to the inverse 

standard normal cumulative distribution function (1.960) at the customary 95% confidence 

that the relative difference is small—5.5%. The effect of the finite sample size on the lower 

bounds is not severe (­23% at 1E­9) but it could be diminished by testing more specimens. 

An alternative to classical statistical inference is to divide the sample mean by a safety factor 

of 1.5 (Ref. 12, p. 7). 

 bL =
x̅

1.5
 (56) 

The result, 29.4 J (21.7 ft-lb), happens to be above the lower bounds predicted by the 

normal, Weibull, and gamma distributions at a probability of 1E­6 and below the prediction 

of the lognormal distribution at the same probability, but this is a consequence of the 

variance in the sample. The safety factor does not correlate to any probability or confidence 

level; it expresses engineering judgement regarding the reliability of specimens made to the 

same material specifications, dimensional tolerances, and surface finishes. 

Adequacy of Probability Distributions for Predicting Future Observations 

The data are arranged into a histogram (Fig. 10) for evaluating the adequacy of the 

hypothetical probability distributions as predictors for future outcomes. The shaded area of 

the histogram equals the integrals of the PDF curves that are overlaid on it. The bins of the 

histogram are coarse with an interval of 2.71 J (2.00 ft-lb). The normal, log-normal, and 

gamma distributions are remarkably similar when plotted with the MLE of the parameters. 

The shape of the Weibull distribution based on the MLE of the parameters is distinct but 

compatible with the data set. The large left tail causes it to predict lower energy thresholds at 

small probabilities of not bounding future observations. 
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Figure 10: Histogram of Experimental Results and Probability Distributions 

The data set (xi) is sorted in ascending order. The measurement quantile (ri) is the number of 

specimens with an equal or lesser result. The theoretical quantile (qi) is defined by Equations 

57 through 60 for the standard normal, log-normal, Weibull, and gamma distributions, 

respectively. The measurement and theoretical quantiles are co-plotted in Figures 11 and 12, 

which show similar trends. A line is fitted to each quantile plot by minimizing the sum of 

the squares of the residuals between the measurement and theoretical quantiles, 

∑ (ri − q
i
)

2n
i=1 . Equations 61 through 63 define the lines that are overlaid on the quantile 

plots to make the variance visible. The proximity of the points to the line indicates how well 

the probability distribution fits the data. Equation 64 calculates the coefficient of 

determination, which is 0.920 for the normal, Weibull, and gamma distributions and 0.905 

for the log-normal distribution. 

 q
i
=

xi − x̅

sx

 (57) 

 q
i
=

y
i
− y̅

sy

 (58) 
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i
=

xi − μ
w

σw

 (59) 

 q
i
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g
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 (60) 

 Li = a0 + a1q
i
 (61) 
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i
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2
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∑ q

i
n
i=1 ∑ ri

n
i=1 − n∑ (q
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 R2 = 1−
(n− 1) ∑ (Li − ri)

2n
i=1

(n− 2) ∑ (ri −
n+ 1

2
)

2
n
i=1

 (64) 

 

Figure 11: Quantile Plots of Normal and Log-Normal Probability Distributions 

 

Figure 12: Quantile Plots of Weibull and Gamma Probability Distributions 

Another method for investigating the possibility that a probability distribution fits a data set 

is the Anderson-Darling test (Ref. 13–23). The probability (p) of each data point occurring if 

the data were from the normal or log-normal distribution is computed with the CDF based 

on the sample mean and standard deviation. Equation 65 applies to the normal distribution 

(compare Eq. 9) and Equation 66 to the log-normal distribution (compare Eq. 33 and 34). 

The probability (p) of the data coming from the Weibull or gamma distribution is computed 

with the CDF based on the MLE of the parameters. Equation 67 applies to the Weibull 

distribution (compare Eq. 50) and Equation 68 to the gamma distribution (compare Eq. 55). 
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1
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−
1
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i
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p(xi) = 1− e

−(
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β̂
)

α̂

 
(67) 

 p(xi) =
1

β̂
α̂
 Γ(α̂)

∫ uα̂−1e
−

u

β̂ du

xi

−∞

 (68) 

The Anderson-Darling statistic is given by Equation 69 for the normal distribution (Ref. 14, 

p. 9-82; Ref. 15; Ref. 16, p. 731; Ref. 18, p. 2, Eq. 1; Ref. 19; Ref. 21; Ref. 22; Ref. 23, p. 

24, Eq. 4), or Equation 70 for the log-normal distribution. References 15, 18, and 19 also 

apply Equation 69 to the Weibull distribution, but Reference 14 (p. 9-91) specifies Equation 

71 for the Weibull distribution and uncensored data. Reference 18 (p. 4, Eq. 2) combines 

Equations 67 and 69 to obtain the simplified form of Equation 72. Reference 19 applies 

Equation 69 to the gamma distribution. 

 A
2 = −n−

1

n
∑(2i− 1)

n

i=1

(ln[p(xi)] + ln[1− p(xn−i+1)]) (69) 
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2 = −n−
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n
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i
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)]) (70) 
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n

2
(3+ [p(x1)]

2) −
1

n
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i=1

ln[p(xi)] − 2p(xi) (71) 
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2 = −n−

1

n
∑(2i− 1)

n

i=1

(ln [1− e
−(

xi

β̂
)

α̂

] − [
xn−i+1

β̂
]

α̂

) (72) 

The Anderson-Darling statistics from Equations 69 and 70 are adjusted because the sample 

statistics serve as estimates for the parameters of the distributions in Equations 65 through 

68. The adjusted statistic for both the normal and log-normal distributions is either Equation 

73 (Ref. 16, page 732, Table 1A, case 3) or Equation 74 (Ref. 19; Ref. 21; Ref. 23, p. 24, 

Eq. 5), depending on the source of the critical values it is compared to. The adjusted statistic 

for the Weibull distribution is evaluated with Equation 75 (Ref. 18, p. 4, Eq. 2; Ref. 19, Fig. 

2), and the adjusted statistic for the gamma distribution is given by Equation 76 (Ref. 19, 

Fig. 2, α̂ ≥ 2). 

 AD = A
2 (1 +

4

n
−

25

n2
) (73) 

 AD = A
2 (1 +

3

4n
+

9

4n2
) (74) 
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 AD = A
2 (1+

1

5√n
) (75) 

 AD = A
2 +

1

n
(
1

5
+

3

10α̂
) (76) 

The probability (p) that it would be incorrect to reject a normal or log-normal distribution as 

a fit for the data is Equation 77 (Ref. 19, 21), which is a piece-wise-defined function of the 

adjusted statistic in Equation 74. For the Weibull distribution, the probability is given by 

Equation 78 (Ref. 18, p. 4). 

 p =

{
 
 

 
 

 

1− e−13.436+101.14 AD−223.73 AD2

1− e−8.318+42.796 AD−59.938 AD2

AD ≤ 0.2

0.2 < AD ≤ 0.34

e0.9177−4.279 AD−1.38 AD2

e1.2937−5.709 AD+0.0186 AD2

0.34 < AD < 0.6

AD ≥ 0.6

 (77) 

 p =
1

1+ e−0.1+1.24 ln(AD)+4.48 AD
 (78) 

A probability of at least 5% is recommended to infer that the selected distribution fits the 

data and has the correct parameters (Ref. 18, p. 4; Ref. 21). This inference is considered 

valid if neither the distribution nor the parameters are refuted, so it is termed the null 

hypothesis (H0; Ref. 18, p. 2; Ref. 21). The alternative hypothesis (H1) is that the either the 

distribution or the parameters are incorrect (Ref. 18, p. 2; Ref. 21). 

The more general test criterion is to compare either the Anderson-Darling statistic to an 

adjusted critical value (Ref. 14; 18, p. 2) or the adjusted Anderson-Darling statistic to a 

critical value (Ref. 15; 16; 18, p. 4). Reference 19 adjusts both the statistic and the critical 

value. The customary significance level (s) is 5%, and the most frequently quoted critical 

value for a normal or log-normal distribution at this significance is 0.752 (Ref. 14, p. 9-82; 

Ref. 15; Ref. 18, p. 2). References 16 (p. 732, Table 1A, case 3) and 17 (p. 367, Table 4, 

case 3) also provide values for ADc, which are quoted in Table 9; these apply to normal and 

log-normal distributions. Reference 17 states on page 368 that it corrects the values 

published in Reference 16 but follows the same method for the Anderson-Darling test. 

Table 9: Critical Values of Adjusted Anderson-Darling Statistic for Normal and Log-Normal 

Distributions 

Significance, 

s 

Critical Adjusted Statistic, ADc 

(Ref. 16) (Ref. 17) 

1.0% 1.092 1.029 

2.5% 0.918 0.870 

5.0% 0.787 0.751 

10.0% 0.656 0.632 

15.0% 0.576 0.560 

 

The critical values of the adjusted Anderson-Darling statistic for the Weibull and gamma 

distributions are obtained from Reference 20 and listed in Table 10. 
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Table 10: Critical Values of Adjusted Anderson-Darling Statistic for Weibull and Gamma 

Distributions 

Significance, 

s 

Critical Adjusted Statistic, ADc 

Weibull Gamma 

0.5%  1.159 

1.0% 1.038 1.035 

2.5% 0.877 0.873 

5.0% 0.757 0.752 

10.0% 0.637 0.631 

25.0% 0.474 0.470 

 

References 14 (p. 9-82) and 18 (p. 2) adjust the critical value of the Anderson-Darling 

statistic for a normal or log-normal distribution in a manner analogous to Equation 74: 

 Ac
2 =

ADc

1+
3
4n
+

9

4n2

 (79) 

Reference 14 compares the result of Equation 71 directly to the critical value defined by 

Equation 80 (p. 9-91, Eq. 9.5.4.7.3, uncensored) to determine if the Weibull distribution is 

adequate (A
2 < Ac

2
). 

 Ac
2 = 0.3951+ 41.86E-6 n (80) 

With a significance of s (5%) and n specimens (24), the adjusted critical value from 

References 14 and 18 is 0.726. If the Anderson-Darling statistic does not exceed this value 

(A2 ≤ Ac
2), the null hypothesis is not rejected at the selected significance level and the 

proposed distribution might fit the data (Ref. 14, 18, 22). If Equation 79 with n equal to 24 

specimens is applied to the values from Reference 17 in Table 9, Table 11 results. 

Table 11: Adjusted Critical Values of Anderson-Darling Statistic 

Significance, 

s 

Adjusted Critical 

Statistic, Ac
2 

1.0% 0.994 

2.5% 0.840 

5.0% 0.725 

10.0% 0.611 

15.0% 0.541 

 

Reference 19 calculates the critical value of the adjusted statistic (ADc) with Equation 81. 

The parameters a, b, and d are tabulated in Reference 20 and Table 12. The results of 

Equation 81 with n equal to 24 specimens are also included in Table 12. 

 ADc = a (1 −
b

n
−

d

n2
) (81) 
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Table 12: Parameters and Critical Values of Adjusted Anderson-Darling Statistic 

Significance, 

s 

Parameter Critical Adjusted 

Statistic, ADc (n = 24) a b d 

0.5% 1.1578 1.063 1.34 1.104 

1.0% 1.0348 1.013 0.93 0.989 

2.5% 0.8728 0.881 0.94 0.839 

5.0% 0.7514 0.795 0.89 0.725 

10.0% 0.6305 0.750 0.80 0.610 

20.0% 0.5091 0.756 0.39 0.493 

 

The values of parameter a are similar to the values of ADc from Reference 17 in Table 9, 

and the values of ADc in Table 12 are similar to the values of Ac
2
 in Table 11 at the same 

significance levels. Equations 79 and 81 appear to have a similar effect over a range of 

significance levels, but the adjustment is already accomplished with Equation 74 in the 

method of Reference 19. The possibility that the distribution fits the data is not rejected if 

the adjusted statistic is less than or equal to the critical value (AD ≤ ADc; Ref. 15, 16, 19). 

Consequently, the method of Reference 19 is more stringent than the method of References 

14 and 18. 

The Anderson-Darling test can only disprove that a particular probability distribution fits a 

data set with a specified significance. The test is designed such that a false rejection will 

only occur with probability less than the significance level; otherwise, it may be reasonable 

to assert that the distribution fits. The nature of the test biases it in favor of admitting (not 

rejecting) the hypothesis that the distribution fits the data, but it is never conclusive. Tables 

9 through 12 demonstrate that low significance corresponds to a lenient test criterion and 

high significance corresponds to a strict criterion. 

In contrast to the precision interval, where the confidence in the result is negatively 

correlated to the significance by Equation 15, the complement of the significance is not the 

confidence in the conclusion of the Anderson-Darling test. With a precision interval, the 

significance level is the probability that a future observation is unbounded. In a fit quality 

test, it is the probability of error if the null hypothesis is rejected, but no conclusion can be 

made about the likelihood that the distribution fits the data. 

Clearly, there are many ways to approach the Anderson-Darling test and adjust the criterion 

for uncertainty in the parameters of the proposed probability distribution. Table 13 

summarizes four methods for applying the test to normal and log-normal distributions. The 

general rows apply to all four methods. When the inference is to admit the fit (methods 1 

and 2 for the normal distribution), the null hypothesis is not rejected at the selected 

significance. An inference that the null hypothesis should be rejected at the specified 

significance (methods 3 and 4 for the normal distribution and all methods for the log-normal 

distribution) means that the distribution is less likely to fit the data because there would be 

less probability of error in rejecting the fit than the stated significance. 
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Table 13: Results of Anderson-Darling Tests for the Normal and Log-Normal Distributions 

Method External References 

Internal 

Reference Parameter 

Normal 

Distribution 

Log-Normal 

Distribution 

General 14–16, 18, 19, 21–23 Eq. 69 A2 0.701 0.747 

 14–22 p. 24 s 5.0% 5.0% 

1 19, 21, 23 Eq. 74 AD 0.726 0.773 

 19, 21 Eq. 77 p 5.8% 4.5% 

 19  Inference Admit Reject 

2 14, 18 Eq. 79 Ac
2 0.726 0.726 

 14, 18  Inference Admit Reject 

3 16 Eq. 73 AD 0.787 0.839 

 17 Table 9 ADc 0.751 0.751 

 15, 16  Inference Reject Reject 

4 19, 21, 23 Eq. 74 AD 0.726 0.773 

 19, 20 Eq. 81 ADc 0.725 0.725 

 15, 19  Inference Reject Reject 

 

The first two methods support the hypothesis that the experimental data are normally 

distributed and reject the hypothesis that they are log-normally distributed. The third and 

fourth methods reject the null hypothesis for both probability distributions. Although the 

margin is small, engineering judgement suggests that the normal distribution is suitable for 

calculating the precision intervals in Table 8. The second method is preferred because it is 

simple and published in an industry standard (Ref. 14). 

Three methods of applying the Anderson-Darling test to a Weibull distribution are 

summarized in Table 14, and all three admit the possibility that it fits the data set. The 

method from Reference 19 that applies to the gamma distribution is also included, but it 

rejects the null hypothesis, so this is not a good probability distribution for establishing 

precision intervals. 

Table 14: Results of Anderson-Darling Tests for the Weibull and Gamma Distributions 

Method 

External 

References 

Internal 

References Parameter 

Weibull 

Distribution 

Gamma 

Distribution 

General 14, 15, 18, 19 p. 24 s 5.0% 5.0% 

1 15, 18, 19 Eq. 69 A2 0.560  

 18, 19 Eq. 75 AD 0.583  

 18 Eq. 78 p 13.7%  

 18  Inference Admit  

2 14 Eq. 71 A2 0.316  

 14 Eq. 80 Ac
2 0.396  

 14  Inference Admit  

3 15, 18, 19 Eq. 69 A2 0.560 0.756 

 18, 19 Eq. 75, 76 AD 0.583 0.765 

 20 Table 10 ADc 0.757 0.752 

 15, 19  Inference Admit Reject 
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The Shapiro-Wilk test (Ref. 23–26) is another option for evaluating the possibility that the 

normal and log-normal distributions fit the data set. The Shapiro-Wilk statistic is calculated 

with Equation 82 or 83 for the normal or log-normal distribution, respectively (Ref. 23, p. 

25, Eq. 8; Ref. 25). It depends on the sample size (n), the number of data points below the 

median (d), and the coefficients in Tables 15 through 20 (Ref. 26). The number of points 

below the median is half of the sample size truncated to an integer. For a sample size of 24, 

there are 12 points below the median, and the 12 coefficients are obtained from Table 17. 

 W =
[∑ ai(xn−i+1 − xi)

d
i=1 ]

2

∑ (xi − x̅)2n
i=1

 (82) 

 W =
[∑ ai(yn−i+1

− y
i
)d

i=1 ]
2

∑ (y
i
− y̅)

2n
i=1

 (83) 

Table 15: Shapiro-Wilk Coefficients for Sample Sizes from 3 to 10 

Coefficient 

Sample Size 

3 4 5 6 7 8 9 10 

a1 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 

a2  0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291 

a3    0.0875 0.1401 0.1743 0.1976 0.2141 

a4      0.0561 0.0947 0.1224 

a5        0.0399 

 

Table 16: Shapiro-Wilk Coefficients for Sample Sizes from 11 to 18 

Coefficient 

Sample Size 

11 12 13 14 15 16 17 18 

a1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 

a2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 

a3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 

a4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 

a5 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587 

a6  0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 

a7    0.0240 0.0433 0.0593 0.0725 0.0837 

a8      0.0196 0.0359 0.0496 

a9        0.0163 
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Table 17: Shapiro-Wilk Coefficients for Sample Sizes from 19 to 26 

Coefficient 

Sample Size 

19 20 21 22 23 24 25 26 

a1 0.4808 0.4734 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 

a2 0.3232 0.3211 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 

a3 0.2561 0.2565 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 

a4 0.2059 0.2085 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 

a5 0.1641 0.1686 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 

a6 0.1271 0.1334 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 

a7 0.0932 0.1013 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 

a8 0.0612 0.0711 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 

a9 0.0303 0.0422 0.0530 0.0618 0.0696 0.0764 0.0823 0.0876 

a10  0.0140 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672 

a11    0.0122 0.0228 0.0321 0.0403 0.0476 

a12      0.0107 0.0200 0.0284 

a13        0.0094 

 

Table 18: Shapiro-Wilk Coefficients for Sample Sizes from 27 to 34 

Coefficient 

Sample Size 

27 28 29 30 31 32 33 34 

a1 0.4366 0.4328 0.4291 0.4254 0.4220 0.4188 0.4156 0.4127 

a2 0.3018 0.2992 0.2968 0.2944 0.2921 0.2898 0.2876 0.2854 

a3 0.2522 0.2510 0.2499 0.2487 0.2475 0.2463 0.2451 0.2439 

a4 0.2152 0.2151 0.2150 0.2148 0.2145 0.2141 0.2137 0.2132 

a5 0.1848 0.1857 0.1864 0.1870 0.1874 0.1878 0.1880 0.1882 

a6 0.1584 0.1601 0.1616 0.1630 0.1641 0.1651 0.1660 0.1667 

a7 0.1346 0.1372 0.1395 0.1415 0.1433 0.1449 0.1463 0.1475 

a8 0.1128 0.1162 0.1192 0.1219 0.1243 0.1265 0.1284 0.1301 

a9 0.0923 0.0965 0.1002 0.1036 0.1066 0.1093 0.1118 0.1140 

a10 0.0728 0.0778 0.0822 0.0862 0.0899 0.0931 0.0961 0.0988 

a11 0.0540 0.0598 0.0650 0.0697 0.0739 0.0777 0.0812 0.0844 

a12 0.0358 0.0424 0.0483 0.0537 0.0585 0.0629 0.0669 0.0706 

a13 0.0178 0.0253 0.0320 0.0381 0.0435 0.0485 0.0530 0.0572 

a14  0.0084 0.0159 0.0227 0.0289 0.0344 0.0395 0.0441 

a15    0.0076 0.0144 0.0206 0.0262 0.0314 

a16      0.0068 0.0131 0.0187 

a17        0.0062 
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Table 19: Shapiro-Wilk Coefficients for Sample Sizes from 35 to 42 

Coefficient 

Sample Size 

35 36 37 38 39 40 41 42 

a1 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964 0.3940 0.3917 

a2 0.2834 0.2813 0.2794 0.2774 0.2755 0.2737 0.2719 0.2701 

a3 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368 0.2357 0.2345 

a4 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098 0.2091 0.2085 

a5 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878 0.1876 0.1874 

a6 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691 0.1693 0.1694 

a7 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526 0.1531 0.1535 

a8 0.1317 0.1331 0.1344 0.1356 0.1366 0.1376 0.1384 0.1392 

a9 0.1160 0.1179 0.1196 0.1211 0.1225 0.1237 0.1249 0.1259 

a10 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108 0.1123 0.1136 

a11 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986 0.1004 0.1020 

a12 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870 0.0891 0.0909 

a13 0.0610 0.0645 0.0677 0.0706 0.0733 0.0759 0.0782 0.0804 

a14 0.0484 0.0523 0.0559 0.0592 0.0622 0.0651 0.0677 0.0701 

a15 0.0361 0.0404 0.0444 0.0481 0.0515 0.0546 0.0575 0.0602 

a16 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444 0.0476 0.0506 

a17 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343 0.0379 0.0411 

a18  0.0057 0.0110 0.0158 0.0203 0.0244 0.0283 0.0318 

a19    0.0053 0.0101 0.0146 0.0188 0.0227 

a20      0.0049 0.0094 0.0136 

a21        0.0045 
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Table 20: Shapiro-Wilk Coefficients for Sample Sizes from 43 to 50 

Coefficient 

Sample Size 

43 44 45 46 47 48 49 50 

a1 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751 

a2 0.2684 0.2667 0.2651 0.2635 0.2620 0.2604 0.2589 0.2574 

a3 0.2334 0.2323 0.2313 0.2302 0.2291 0.2281 0.2271 0.2260 

a4 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032 

a5 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847 

a6 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691 

a7 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554 

a8 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430 

a9 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 0.1312 0.1317 

a10 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212 

a11 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113 

a12 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020 

a13 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932 

a14 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846 

a15 0.0628 0.0651 0.0673 0.0694 0.0713 0.0731 0.0748 0.0764 

a16 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685 

a17 0.0442 0.0471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608 

a18 0.0352 0.0383 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532 

a19 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411 0.0436 0.0459 

a20 0.0175 0.0211 0.0245 0.0277 0.0307 0.0335 0.0361 0.0386 

a21 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314 

a22  0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244 

a23    0.0039 0.0076 0.0111 0.0143 0.0174 

a24      0.0037 0.0071 0.0104 

a25        0.0035 

 

The Shapiro-Wilk statistic is tabulated in Reference 26 with respect to the sample size (n) 

and the probability (p) of erroneously rejecting the null hypothesis (H0). The statistic may be 

interpolated between the values in Table 21 on the row corresponding to the sample size to 

obtain the probability from the table heading, as recommended by Reference 25. Letting j be 

the index of the last column that is less than or equal to the statistic, limited so as to prevent 

extrapolating beyond the provided values, Equation 84 performs the interpolation. 

Table 21: Shapiro-Wilk Statistic 

Sample 

Size 

Probability or Significance Level 

1% 2% 5% 10% 50% 90% 95% 98% 99% 

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000 

4 0.687 0.707 0.748 0.792 0.935 0.987 0.992 0.996 0.997 

5 0.686 0.715 0.762 0.806 0.927 0.979 0.986 0.991 0.993 

6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989 

7 0.730 0.760 0.803 0.838 0.928 0.972 0.979 0.985 0.988 

8 0.749 0.778 0.818 0.851 0.932 0.972 0.978 0.984 0.987 

9 0.764 0.791 0.829 0.859 0.935 0.972 0.978 0.984 0.986 

10 0.781 0.806 0.842 0.869 0.938 0.972 0.978 0.983 0.986 
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Table 21: Shapiro-Wilk Statistic, Continued 

Sample 

Size 

Probability or Significance Level 

1% 2% 5% 10% 50% 90% 95% 98% 99% 

11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986 

12 0.805 0.828 0.859 0.883 0.943 0.973 0.979 0.984 0.986 

13 0.814 0.837 0.866 0.889 0.945 0.974 0.979 0.984 0.986 

14 0.825 0.846 0.874 0.895 0.947 0.975 0.980 0.984 0.986 

15 0.835 0.855 0.881 0.901 0.950 0.975 0.980 0.984 0.987 

16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 0.985 0.987 

17 0.851 0.869 0.892 0.910 0.954 0.977 0.981 0.985 0.987 

18 0.858 0.874 0.897 0.914 0.956 0.978 0.982 0.986 0.988 

19 0.863 0.879 0.901 0.917 0.957 0.978 0.982 0.986 0.988 

20 0.868 0.884 0.905 0.920 0.959 0.979 0.983 0.986 0.988 

21 0.873 0.888 0.908 0.923 0.960 0.980 0.983 0.987 0.989 

22 0.878 0.892 0.911 0.926 0.961 0.980 0.984 0.987 0.989 

23 0.881 0.895 0.914 0.928 0.962 0.981 0.984 0.987 0.989 

24 0.884 0.898 0.916 0.930 0.963 0.981 0.984 0.987 0.989 

25 0.888 0.901 0.918 0.931 0.964 0.981 0.985 0.988 0.989 

26 0.891 0.904 0.920 0.933 0.965 0.982 0.985 0.988 0.989 

27 0.894 0.906 0.923 0.935 0.965 0.982 0.985 0.988 0.990 

28 0.896 0.908 0.924 0.936 0.966 0.982 0.985 0.988 0.990 

29 0.898 0.910 0.926 0.937 0.966 0.982 0.985 0.988 0.990 

30 0.900 0.912 0.927 0.939 0.967 0.983 0.985 0.988 0.990 

31 0.902 0.914 0.929 0.940 0.967 0.983 0.986 0.988 0.990 

32 0.904 0.915 0.930 0.941 0.968 0.983 0.986 0.988 0.990 

33 0.906 0.917 0.931 0.942 0.968 0.983 0.986 0.989 0.990 

34 0.908 0.919 0.933 0.943 0.969 0.983 0.986 0.989 0.990 

35 0.910 0.920 0.934 0.944 0.969 0.984 0.986 0.989 0.990 

36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0.989 0.990 

37 0.914 0.924 0.936 0.946 0.970 0.984 0.987 0.989 0.990 

38 0.916 0.925 0.938 0.947 0.971 0.984 0.987 0.989 0.990 

39 0.917 0.927 0.939 0.948 0.971 0.984 0.987 0.989 0.991 

40 0.919 0.928 0.940 0.949 0.972 0.985 0.987 0.989 0.991 

41 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991 

42 0.922 0.930 0.942 0.951 0.972 0.985 0.987 0.989 0.991 

43 0.923 0.932 0.943 0.951 0.973 0.985 0.987 0.990 0.991 

44 0.924 0.933 0.944 0.952 0.973 0.985 0.987 0.990 0.991 

45 0.926 0.934 0.945 0.953 0.973 0.985 0.988 0.990 0.991 

46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991 

47 0.928 0.936 0.946 0.954 0.974 0.985 0.988 0.990 0.991 

48 0.929 0.937 0.947 0.954 0.974 0.985 0.988 0.990 0.991 

49 0.929 0.938 0.947 0.955 0.974 0.985 0.988 0.990 0.991 

50 0.930 0.939 0.947 0.955 0.974 0.985 0.988 0.990 0.991 

 

 p = p
j
+ (p

j+1
− p

j
)

W −Wj

Wj+1 −Wj

 (84) 
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Alternately, the desired significance level (s) may be selected from the values in the heading 

of Table 21 to obtain the critical value of the Shapiro-Wilk statistic (Wc) from the same 

column and the appropriate row for the sample size (n). The criterion for the probability is to 

admit the possibility that a normal or log-normal distribution fits the data if p ≥ s. The 

distribution is also considered a possible fit if W ≥ Wc. These two methods are equivalent 

because the same statistic is evaluated with respect to the same tabular values. Table 22 

summarizes the results of the Shapiro-Wilk tests for the normal and log-normal 

distributions. The Shapiro-Wilk test is more lenient than the Anderson-Darling test for this 

data set because it admits both distributions with sufficient margin. Reference 22 states that 

the Anderson-Darling test is more sensitive to variance between the data and the tails of the 

distribution, whereas the Shapiro-Wilk test is more sensitive to outliers. References 16 and 

23 consider the Shapiro-Wilk test to be slightly more accurate than the Anderson-Darling 

test for admitting normal distributions and rejecting others. All of these sources concur that 

the two tests are comparable (Ref. 16, 22, 23). 

Table 22: Results of Shapiro-Wilk Tests for the Normal and Log-Normal Distributions 

Method 

External 

References 

Internal 

References Parameter 

Normal 

Distribution 

Log-Normal 

Distribution 

General  p. 11 n 24 24 

 25 p. 28 d 12 12 

 25, 26 Eq. 82, 83; 

Table 17 

W 0.930 0.921 

 25 p. 24 s 5.0% 5.0% 

1 25, 26 Table 21 p 9.8% 6.6% 

 25  Inference Admit Admit 

2 26 Table 21 Wc 0.916 0.916 

   Inference Admit Admit 
 

Conclusion 

Experiments were performed to measure the energy mitigated by specimens of AISI 304L 

VAR bar as a cylindrical bar of AISI 4340 steel punctured them. The 24 specimens were cut 

from the same stock material with the same processes and nominal dimensions. The initial 

and boundary conditions were kept as similar as possible for all of the tests. These data are 

amenable to classical statistical inference because there are enough specimens to achieve 

low variance and positive lower bounds for precision intervals with 95% confidence. The 

median mitigated energy is within 3% of the sample mean. Given the large sample size (24) 

and low ratio of the standard deviation to the mean (5.5%), this data set appears adequate for 

setting precision intervals with bounding probabilities as low as 1% (10E­3) but not lower. 

The data are assumed to be normally distributed, though the Weibull distribution might also 

fit. The parameters of both distributions are conservatively bounded at 95% confidence and 

used to calculate the lower bounds on the energy mitigated by the AISI 304L steel disc 

specimens for a range of probabilities (Table 23). Probabilities of one per thousand, million, 

and billion are included for reference; however, these lower bounds are considered uncertain 

because they would change significantly if more independent but identically distributed 

specimens were tested. The probabilities that define the screening thresholds in Reference 

11, page 2, are extremely small, but the normal and Weibull distributions yield positive 

lower bounds for the precision intervals on mitigated energy. 
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Table 23: Lower Bounds for Mitigated Energy Based on Normal and Weibull Distributions 

Bounding Probability 

Probability of Lower 

Future Observation 

Normal Distribution Weibull Distribution 

(J) (ft-lb) (J) (ft-lb) 

Median 50% 500E-3 43.0 31.7 43.4 32.0 

One in One Hundred 1% 10E-3 35.1 25.9 33.8 25.0 

One in One Thousand 0.1% 1E-3 32.5 24.0 29.6 21.8 

One in One Million 0.0001% 1E-6 26.9 19.8 19.7 14.6 

One in One Billion 0.0000001% 1E-9 22.7 16.7 13.2 9.7 

 

Anderson-Darling and Shapiro-Wilk tests are performed to evaluate the assumption that a 

normal distribution fits the data. The methods of comparing a probability value to a 

significance level (Ref. 19, 21, 25) and comparing a statistic to an adjusted critical value 

(Ref. 14, 18) support the possibility of using the normal distribution to predict future 

observations similar to the experimental measurements. The methods of comparing an 

adjusted statistic to a critical value in References 15, 16, and 19 refute this hypothesis. The 

log-normal, Weibull, and gamma distributions are also considered for bounding future 

observations because they only predict positive lower bounds for the energy values. The 

Shapiro-Wilk test supports using both the normal and log-normal distributions, and the 

Anderson-Darling test admits the Weibull distribution as a possible fit, although the PDF 

differs visibly from the other proposed distributions (Fig. 10). However, the hypotheses that 

the log-normal and gamma distributions fit this data set are rejected by all of the Anderson-

Darling test methods that were applied. The Shapiro-Wilk and Anderson-Darling tests both 

confirm that the normal distribution is admissible for setting the lower bounds on the 

precision intervals of the mitigated energy. 

The data set may be improved by increasing the number of specimens. The variance might 

increase or decrease depending on how consistent the new specimens are with those that 

have already been tested, but the Student’s t parameter would decrease, which would tend to 

raise the lower bounds. Any additional experiments should be performed according to the 

same test procedure (Ref. 27) to minimize the variance in the augmented data set. The 

experiments were performed with specimens from the same stock material, so they 

experienced the same heat treatments. This minimized the variance and maximized the 

lower bounds on the mitigated energy at each probability; however, it also neglected 

differences between heat treatment lots and material production batches. Testing specimens 

from multiple manufacturers would reduce this unconservative bias. 

Uncertainty in the measurements of the energy mitigated by each specimen is due to the 

accuracy of the laser interferometers, machining tolerances, spatial variation in material 

properties (non-homogeneity), and the stochastic nature of ductile fracture. The acceleration 

data serves as a trigger for selecting the time ranges over which to average the total energy, 

but the energy is calculated solely from the position data, and the trigger times are adjusted 

such that the intervals appear reasonable on the total energy plot. Therefore, error in the 

accelerometer has no influence on the test results. The specimens are manufactured with 

reasonable tolerances and surface roughness limits for milling operations. The variation in 

thickness can be as much as 3% and remain within the tolerance limits. The hardness of 

304L VAR steel has been shown to vary by 5% over a cross-section of a bar (Ref. 28). 

Ductile fracture occurs when voids form in the material and coalesce into cracks. The 

locations of voids and the reduction in the engineering strength as they grow and combine 

depend on the microstructure, which is not known before a component fractures and is, 
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therefore, assumed to be homogeneous. Uncertainty about the microstructure makes the 

crack paths appear random although they follow patterns based on the boundary conditions. 

The methods described in this memorandum may be applied to setting energy thresholds 

based on experiments with continuous results (real numbers). Logistic regression (Ref. 29, 

30) applies to experiments that have binary results, such as those that measure the 

mechanical impact energy that causes a pyrotechnic material to react. 

Considering the assumptions and limitations of statistics, the simpler method of applying a 

safety factor may be preferred. Dividing by a safety factor of 1.5, the sample mean of the 

mitigated energy is reduced to 29.4 J (21.7 ft-lb). This method credits engineering 

judgement that a future test of a specimen made to the same specifications would mitigate at 

least two-thirds as much energy as the average of the specimens in the sample. 
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Appendix A: Acceleration 

 

Figure 13: Carriage Acceleration in Test 7 with Specimen 1 

 

Figure 14: Carriage Acceleration in Test 10 with Specimen 2 

 

Figure 15: Carriage Acceleration in Test 8 with Specimen 3 
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Figure 16: Carriage Acceleration in Test 11 with Specimen 4 

 

Figure 17: Carriage Acceleration in Test 12 with Specimen 5 

 

Figure 18: Carriage Acceleration in Test 13 with Specimen 6 
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Figure 19: Carriage Acceleration in Test 14 with Specimen 7 

 

Figure 20: Carriage Acceleration in Test 15 with Specimen 8 

 

Figure 21: Carriage Acceleration in Test 16 with Specimen 9 
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Figure 22: Carriage Acceleration in Test 17 with Specimen 10 

 

Figure 23: Carriage Acceleration in Test 18 with Specimen 11 

 

Figure 24: Carriage Acceleration in Test 19 with Specimen 12 



 - 41 - 7 April 2025 
 

 

Figure 25: Carriage Acceleration in Test 20 with Specimen 13 

 

Figure 26: Carriage Acceleration in Test 21 with Specimen 14 

 

Figure 27: Carriage Acceleration in Test 22 with Specimen 15 
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Figure 28: Carriage Acceleration in Test 23 with Specimen 16 

 

Figure 29: Carriage Acceleration in Test 24 with Specimen 17 

 

Figure 30: Carriage Acceleration in Test 25 with Specimen 18 
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Figure 31: Carriage Acceleration in Test 26 with Specimen 19 

 

Figure 32: Carriage Acceleration in Test 27 with Specimen 20 

 

Figure 33: Carriage Acceleration in Test 28 with Specimen 21 
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Figure 34: Carriage Acceleration in Test 29 with Specimen 22 

 

Figure 35: Carriage Acceleration in Test 30 with Specimen 23 

 

Figure 36: Carriage Acceleration in Test 31 with Specimen 24 
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Appendix B: Total Energy 

 

Figure 37: Total Energy in Test 7 with Specimen 1 

 

Figure 38: Total Energy in Test 10 with Specimen 2 

 

Figure 39: Total Energy in Test 8 with Specimen 3 



 - 46 - 7 April 2025 
 

 

Figure 40: Total Energy in Test 11 with Specimen 4 

 

Figure 41: Total Energy in Test 12 with Specimen 5 

 

Figure 42: Total Energy in Test 13 with Specimen 6 
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Figure 43: Total Energy in Test 14 with Specimen 7 

 

Figure 44: Total Energy in Test 15 with Specimen 8 

 

Figure 45: Total Energy in Test 16 with Specimen 9 
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Figure 46: Total Energy in Test 17 with Specimen 10 

 

Figure 47: Total Energy in Test 18 with Specimen 11 

 

Figure 48: Total Energy in Test 19 with Specimen 12 
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Figure 49: Total Energy in Test 20 with Specimen 13 

 

Figure 50: Total Energy in Test 21 with Specimen 14 

 

Figure 51: Total Energy in Test 22 with Specimen 15 
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Figure 52: Total Energy in Test 23 with Specimen 16 

 

Figure 53: Total Energy in Test 24 with Specimen 17 

 

Figure 54: Total Energy in Test 25 with Specimen 18 
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Figure 55: Total Energy in Test 26 with Specimen 19 

 

Figure 56: Total Energy in Test 27 with Specimen 20 

 

Figure 57: Total Energy in Test 28 with Specimen 21 
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Figure 58: Total Energy in Test 29 with Specimen 22 

 

Figure 59: Total Energy in Test 30 with Specimen 23 

 

Figure 60: Total Energy in Test 31 with Specimen 24 
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Appendix C: Velocity 

 

Figure 61: Carriage Velocity in Test 7 with Specimen 1 

 

Figure 62: Carriage Velocity in Test 10 with Specimen 2 

 

Figure 63: Carriage Velocity in Test 8 with Specimen 3 
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Figure 64: Carriage Velocity in Test 11 with Specimen 4 

 

Figure 65: Carriage Velocity in Test 12 with Specimen 5 

 

Figure 66: Carriage Velocity in Test 13 with Specimen 6 
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Figure 67: Carriage Velocity in Test 14 with Specimen 7 

 

Figure 68: Carriage Velocity in Test 15 with Specimen 8 

 

Figure 69: Carriage Velocity in Test 16 with Specimen 9 
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Figure 70: Carriage Velocity in Test 17 with Specimen 10 

 

Figure 71: Carriage Velocity in Test 18 with Specimen 11 

 

Figure 72: Carriage Velocity in Test 19 with Specimen 12 
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Figure 73: Carriage Velocity in Test 20 with Specimen 13 

 

Figure 74: Carriage Velocity in Test 21 with Specimen 14 

 

Figure 75: Carriage Velocity in Test 22 with Specimen 15 
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Figure 76: Carriage Velocity in Test 23 with Specimen 16 

 

Figure 77: Carriage Velocity in Test 24 with Specimen 17 

 

Figure 78: Carriage Velocity in Test 25 with Specimen 18 
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Figure 79: Carriage Velocity in Test 26 with Specimen 19 

 

Figure 80: Carriage Velocity in Test 27 with Specimen 20 

 

Figure 81: Carriage Velocity in Test 28 with Specimen 21 
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Figure 82: Carriage Velocity in Test 29 with Specimen 22 

 

Figure 83: Carriage Velocity in Test 30 with Specimen 23 

 

Figure 84: Carriage Velocity in Test 31 with Specimen 24 
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Sandia National Laboratories is a multimission laboratory managed and operated by 

National Technology and Engineering Solutions of Sandia, LLC, a wholly owned 

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s 

National Nuclear Security Administration under contract DE-NA0003525. 
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