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Abstract

We assemble bounding formulas for the interior fields and pin voltages inside a cylindrical coaxial
Faraday cage which has been struck by lightning. Approximate formulas for penetrations through a
circumferential door slot with subsequent coupling to the interior center conductor structure. Fields at
the opposite open end are estimated and used to drive a capped connector and estimate interior pin
voltages. Finally, penetrations through small circular holes and direct diffusion through the barrier are
also addressed.
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1 INTRODUCTION

This report provides approximate formulas for calculating penetrant electric and magnetic fields and resulting
induced voltages inside a finite length cylindrical coaxial Faraday cage structure which has been struck by
lightning. At one end a door with a circular slot causes coupling to the interior coax; reductions in coupling
due to conductive door gaskets in the slot are also examined. At the other end the center conductor terminates
resulting in an open-circuited coaxial arrangement. The electric field problem involves a dominant coaxial
symmetric mode, but the magnetic field problem involves a dominant asymmetric coaxial mode. Our purpose
is to determine the fields at the terminated end of the center conductor structure where a connector may
be located. Approximations are given to assess the fields associated with the open circuited end of the coax
and the resulting worst case pickup by a connector. Estimates for field penetrations through small circular
holes and by means of direct diffusion through the cylindrical barrier are also discussed.
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2 DOOR FIELDS

The induced voltage from a slot around the circular door at the end of the coaxial topology is derived.

2.1 Door Slot Penetration

As a worst case we assume lightning strikes the door near the circular slot, with a return on the cylinder on
the opposite side of the slot. The return can be through a breakdown which is taken to occur 180 degrees
around the slot at some gasket defect, or the return is at a door hinge. The current then flows in the walls
of the slot with the distribution (where the azimuth coordinate is s = by)

1 1
I(s,t) = :|:§Io ()= 5.70 (t)sgn(s) , —h<s<h (1)
2h = 2mb (2)
where b is the approximate cylinder radius. The slot external inductance per unit length is [1]
I/LZI/LintT+1/LemtT (3)

where the interior part is (u, = 47 x 10~7 H/m is the magnetic permeability of free space)

L — g /d 4)
and the exterior part is
Lextr ~ WUO/Q:MT (5)
with
sztr =2In (2h/a2) +C. (6)
C.=2(In2-17/3) (7)
2w
0
~— ,d>03 8
e~ —, d>03uw (8)
The transmission line equation for the slot voltage is
d 0
— t)=—L—=—1(s,t
SV (5,8) = ~L oI (5.1) ©)
where
V (£h,t) =0 (10)
The integration then gives
V (s.0) = 5 (h— [s]) Lo Iy 1 (1)
T o’
The average external door voltage used to drive the symmetric (in azimuth) coaxial problem, is then
I 1.9 h 10
Vewt) = — Vis,t)ds = =—=L—1y(t h—s)ds=—-hL—1y(t 12
W) = 5 [ Visids = 5L Do) [ (=) ds = HLZ 0 1) (12



Note that for large slot depth compared to the slot width d >> w, we can approximate and bound the total
inductance per unit length L by the interior part L™"

1 it O
< Z _ wntr 7
V(s,t) S 5 (h=ls) ™ 20 (1) (13)
and average door voltage
(Vear (1)) S Lppimir 2 (t) (14)
ext ~ Y ot 0

2.2 Finitely Conducting Slot Walls

When the metallic slot walls are finitely conducting with conductivity o and magnetic permeability u, there
is a surface electric field present, which is related to the surface magnetic field through [1], [2]

61/2
Eo (1) = /] Ho (1) (15)
For a linear ramp magnetic field in time (with rise time 7,.) this becomes [1]
Hy(t) = Ho (t/7) , 0<t<T, (16)
T

Eo (t) = (Ho/Tr) (17)

Yo

We approximate the interior slot surface magnetic field by the total slot current divided by the slot depth

H (s,t) SI(s,t)/d=sgn(s)Ip(t)/(2d) (18)
The internal slot voltage is then (one half the contribution results from each of the parallel interior walls)
1 1 1 oY/?
SVine (5:) < 5 (b~ 1) 2 V/ifo s o (1) (19)

For a linear ramp current in time

Iy(t) =1y (t/7r) , O<t < T, (20)

SVint (5,0) £ 5 (b= s]) 3/ (To/m) | (21)

The average is then

11 oY/?
Vit () S 5h5V/ilo 5710 (1) (22)
and for the ramp current profile
1.1 4ut
N < 2 kg
Vint) S 555 (To/70) | = (23)

The total average is then

10



) 1/2
(Viow () = (Vear (0) + (Vins (0) S FhE 1o (6) + b Jafo o o (1) (24)

and for the ramp current profile

To

View) = (Vear) + (Vina) S ghE™ (To ) + 3 (To/72) [ 2 iZ( +2\/‘fo) (o) (25)

To obtain an approximation for the largest value of the voltage we can set t = 7,

Viet) 32 (uow +2f 45::) (o) =75 <w el 45::) po (Io/72) (26)

For one-percentile worst case lightning we can take Iy = 200 kA and 7, = 0.5 us. If we have stainless steel
slot walls o = 1.4 x 10° S/m, p = p, and

2 |dur,
Ho V. TO

For commercial aluminum slot walls o = 2.6 x 107 S/m, u = i, and

~ 1.2031 mm (27)

i,
=2 £ 0.2792 mm (28)
Ho V. TO

2.3 Hinge Inductance

Hinges (and/or latches) on the circular door often have a high inductance so they are sometimes ignored
versus a breakdown (however, the rise rate is increased in a breakdown event due to the shorter voltage
collapse time). The hinge inductance model can be approximated by a half loop or a half solenoid, depending
on the hinge (azimuthal) length. A half loop of radius R0, and wire radius ajep on a ground plane has
inductance

1

Lhalfloop = §,LLORloop [ln (8Rloop/aloop) - 2] (29)

A half single-turn solenoid of radius Rpinge and length £4;nge on a ground plane is

1
Lhaifsol = gluOWR%Linge/ghing@ (30)
A correction to the solenoid is [3]
1

Lhinge = Lhalfsol = §/L07TR}2”<nge/ (ghinge + 0-9Rhinge) s ghinge > O-SRhinge (31)

For some hinge designs we can add two quarter loop inductances (each one half the half loop inductance) in
parallel at the ends of the half solenoid geometry to complete the connection to the door. In this case the
total hinge inductance is taken as

11
_Lhalfloop (32)

Lhinge = Lhalfsol + 5 . D)

The voltage across the hinge is then

11



0
Vhinge = Lhinge a—[o (t) (33)

We could add the internal impedance contribution, but since this hinge inductance is usually substantial we
neglect internal impedance. This terminating hinge voltage is added to the slot voltage distribution. For a
linear ramp current in time

Iy(t) =1y (t/7r) , O<t<T, (34)

Vhinge = Lhinge (IO/T’I“> (35)
The total voltage across the door-to-cylinder then consists of the sum of this constant hinge voltage and the
slot voltage.
2.4 Conductive Slot Gasket
We now consider a conductive gasket occupying a depth d, < d in the door slot. We bound the penetration
in this section by assuming that the decay length in the gasket is larger than the gasket depth d,.
2.4.1 Gasket Decay Length

The decay length in the gasket is approximated by the skin depth in the gasket material, with electrical
conductivity o, and magnetic permeability p,

by =2/ (wiyoy) = \/271/ (1y0,) (36)

which is assumed to be larger than the gasket depth d, (if this is not true there will also be exponential
decay in the gasket depth direction).

2.4.2 Time Domain Conductive Gasket Voltage

The slot transmission line equations in this case are

ov oI

i (37)
oI
5 = GV (38)

where we take the gasket conductance per unit length to be

G = 0ydy/w (39)

and assuming the gasket permeability is that of free space y, — f14, we can approximate the inductance per
unit length as

L < L™ = pgw/d (40)
Eliminating the slot voltage gives
0?1 ol
— =LG— 41
0s? ot (41)

12



To find solutions we first let

I=t°F (&), £=5s/t® (42)
Substituting into the partial differential equation yields
12 P = 16 [pr () - ag LF (©) (43)
dé dg§

Choosing a = 1/2 to eliminate the explicit ¢ dependence, and for convenience letting £ = 2u/v/ LG, gives
the ordinary differential equation

d2
du?

The solutions are the iterated complementary error functions [4]

F(u)+ 2udqu (u) —48F (u) =0 (44)

F (u) = Ai*Perfc (u) + Bi*Perfc (—u) (45)
where
i"erfc (u) :/ i"Lerfe (u') du/ (46)
i = erfc (u) (47)
i terfe (u) = ie_“2 (48)
N
iterfc (u) = —uerfc (u) + %e_qﬁ (49)
1 u 1 2
-2 [ e 2 _ 2 _— ,-u
i“erfc (u) = 5 <2 +u ) erfc (u) \/776 (50)
3 R R S B cul e, b
i“erfc (u) = 3 [2 ( +u )erfc(u) 5 \/7_r€ } + Gﬁe (51)
2 1 2 1|1 /1 u 1 2
-4 £ :73 7% i 2 £ >z —u e 7) i el 2 £ e 7}
i~erfc (u) 117313 2+u erfc (u) 2\/%e +6\/7_Te +8 5 2+u erfc (u) ﬁe
Note that
lim i"erfe (1) = = (52)
" T T o (2 1)
1ir% ierfc (u) = 1/4 (53)

Choosing 8 = 1 for a linear ramp current in time at s = 0, and selecting B = 0 for vanishing value at u — oo

F (u) = Aierfc (u) (54)

13



with
1
28 LG/t=u (55)

we have current distribution

1

1 1 1 1 1 1.2
I (s,t) = Ati*erfc (u) = At {5 (§ + ZSQLG/t> erfc <§s\/LG/t> - Zs\/LG/tTe_ZS LG/ (56)
T

where the constant A is determined from [y by means of

1
1(0,t)=At/4= 5 (Io/7:)t (57)
The derivative is
%I (5:) = At% %izerfc (u) = —A%V LGti'erfc (u) = A%\/m werfc (u) — %e_uz (58)
oI 1
o (0.t) = A VG 50
Thus the voltage is
10
Vist) =G5l 51 60
<S’ ) GO (57 ) ( )
with value at s =0
101 1 /Lt Lt
V00 =55 00 =45\ g = D/my g (61)
Taking the maximum of the voltage at the rise time (after which the current changes from the linear ramp)
L,
V(0,7) = lo/7r)\| —&~ (62)

These distributions of voltage and current apply to the finite length slot provided the decay length is smaller
than the slot half length h = 7b.
The average voltage around the slot is then

1 1
Vi) == [ V= Sz 00~ 1m0 = e = e /rt ()
Taking the maximum at ¢t = 7,

- 1 0 . wl 0

- 2mbG 2mbo 4dg
For very conductive gaskets these voltages are typically much smaller than the case without a very conductive
gasket,.

(V (s, 70))

(64)

wl 2(d/d,)

(V(ss70)) [ (Vewr) = -/ EhL(Io/Tr)] = 520 (o)7e) (65)
T Jg 0 Tr

o 27bogd,

14



2.4.3 Conductive Gasket With Gap

If there is a small gap 2hg,p in the conductive gasket length dimension, there will be an inductive voltage
contribution from the gap in addition to the preceding conductive gasket contribution. Approximating this
extra inductance as if the current is injected uniformly in the depth direction gives the extra leading term
(ignoring the internal contribution within the metal)

1 w 1
Viot = thap§ (IO/TT‘) +V (Oa Tr) = Noghgap§ (IO/TT) +V (0, TT) (66)

If this gap is small in azimuth its average over azimuth will be relatively small

T hgy w 1
=9 ap Hoigteery

View) = 3222 Lhy = (Tof7,) + {V (s,1) (To/7e) +V (0,7,) (67)

2 b

15
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3 COAXIAL REGION ELECTRIC FIELD

The coaxial region has an induced field due to fields propagating in the dominant Transverse Electromagnetic
Mode (TEM) mode without decay along the length, and the other higher-order modes exhibiting decay. We
first estimate the electric field at the end of the terminated center (inner) conductor. We next estimate the
capacitance element between the door and the center conductor near the door; this is used to estimate the

induced center conductor voltage from the door excitation voltage.

3.1 Fields In Coaxial And Cylindrical Regions

Taking the electric displacement D and electric field E to be determined from the electric vector potential

A_ by means of
D=eE=-V x A,

where Faraday’s law in this low frequency limit is

VxE=-J

1

and J,, is the magnetic current density. Then substituting the potential representation gives

VxVxA, =V(V-A)-V?A, =¢e],,
Using the Coulomb gauge

we have

V2A, = —cod,,

(68)

(72)

In this case we take the magnetic current to be (-directed and to be independent of azimuth ¢ so that we

only have A.,. Then using

VA, = (V? = 1/p?) Aey
we can write

2 10 1 0?
(V2 — 1/p2) Aeap = (a—p2 + ;a—p - ? + ﬁ) Aeap = *50Jm<p

Taking the solutions to be combinations

Acp = €= Ry (Cop), (2 — 20) p™

we have the source free form

with solutions Ry (¢,,p), where

Ry (Cnp) = J1 (o), Y1 (Cop)

17
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We place the termination of the center conductor at z = 0 with a cylindrical problem to the right z > 0 and
0 < p < b and a coaxial problem to the left z < 0 and a < p < .
On the right we have boundary condition

10
—— (pA. ] =—E, (p=b)=0,2>0 78
[pap( o], = TPl =0) (78)
and thus
g = 3 AL (Eup) 5 2> 0 (79)
n=1

where only the Bessel functions can be retained due to the boundary condition and the finiteness of the
solution at p = 0. Then using

10 0 1
pap[P 1 (&) e e 1 (&) 0 (£np) (80)
we have radial boundary condition
Jo (§,0) = Jo (Jo,n) =0 (81)
where
The Bessel function roots are [4]
1 31 3779
Jo, B 2(4B) 2(45)33 3(46)55 ( )
joa ~ 2.4048255577 (85)
jo,2 A 5.5200781103 (86)
jo.s ~ 8.6537279129 (87)
joa ~ 117915344391 (88)
jo.s ~ 14.9309177086 (89)
jo.s A~ 18.0710639679 (90)
jor A~ 21.2116366299 (91)
jo,s A 24.3524715308 (92)

18



Jo,0 = 27.4934791320

Jo,10 ~ 30.6346064684

On the left we have radial boundary conditions

{%gp (pAeap):| b = —cok. (p=aq, b) =0, 2<0
and as solution

AW, _ Ap (Zp— ZO) + iAT_Lecanl (gnp) , 2<0

n=1

where

Rl (Cnp) = JO (Cna‘) Yl (Cnp) - ‘]1 (Cnp) YO (Cna)
and from

R = g L R =(, R

L3 ot €l = G (2o ) P (o) = G o)
we have
RO (Cna‘) =0

and

These coaxial roots are [4]

—p2  r—dpg+ 2p°
L Pq + 2p
B 6 B

B=nn/(b/a—1)

Coa~ B+ o

-1
p= m
25 (b?/a® +b/a + 1)
6 (4b/a)’
~ —1073 (b*/a* +b3/a® +b*/a® + b/a+1)
" 5(4b/a)®

Some solutions are [4]

19
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(y.0a = 2.07322886 for a/b = 0.4 (107)

Cy 00 =~ 4.69706410 for a/b = 0.6 (108)
Ca,00 ~ 4.17730 for a/b = 0.4 (109)
Ca00 ~ 9.41690 for a/b = 0.6 (110)
(3,00 ~ 6.27537 for a/b = 0.4 (111)
Cy00 ~ 14.13189 for a/b = 0.6 (112)
(400 ~ 8.37167 for a/b= 0.4 (113)
(400 ~ 18.84558 for a/b = 0.6 (114)
(500 ~ 10.46723 for a/b = 0.4 (115)
(5,00 ~ 23.55876 for a/b = 0.6 (116)

3.2 Excitation Of Modes At Junction

We next examine the excitation of modes at the junction of coaxial and cylindrical regions. If we take the
radial field (or magnetic current) in the coaxial dominant mode as

Vo
F~—
* = pla(b/a)

and thus at the junction we can introduce a magnetic current density to represent the electric field

,a<p<b,z>0 (117)

Ime = Kmud (2) =Ind (2) [p, a<p<b (118)

where the surface magnetic current density is found from the discontinuity of electric field at a surface with
normal n pointing from region 1 to region 2

K, =-nx (EQ _El> (119)

m

We can evaluate K, (p), Im (p), or E, (p), as a function of p by expanding in a basis, with say p; = a and
py="0

J
£PKon (0) = 0B, (p,0) = Vo/ In (b/a) + 3 By ; (o) (120)

Jj=1

A linear basis is

20



P—Pj—1
Pj—Pj—1
Pj+1 — P
== Pj <P <pjt1

Pijr1— Py

fi(p) =

sy Pj1 <P =P

=0, otherwise (121)

matching the value of D, = eoE, at z =0fora < p=p; <0, j'=1,...,J to determine E; values. Instead,
it is advantages in carrying out the moments here to use a pulse basis

fi(p) =1, pj_1/2<p<pji1)2

=0, otherwise (122)
P = (/)j+1/2 + ij1/2) (123)
The potential representations are
Aw:ﬂ(zfzo)JriA;eganl(Cnp) ,2<0,a<p<b (124)
o1 (b/a) P
Ay = ZA:efganl (&.p) , 2>0,0<p<b (126)
n=1

Note that the zg term does not contribute to the fields

10
D, =¢yE, = ——— (pA. 127
0B: === (pAcy) (127)
0
D, = 0B, = 5-Ac, (128)
We have the radial fields
eoVo —
E,=—" Ay ¢ etn® b 12
sy pln(b/a)+; G TR (Cp) L 2 <0, a<p< (129)
c0B, ==Y AfEe 7T (6p) L 2>0, 0<p<b (130)
n=1
Orthogonality, from the section below, gives
b 2
b .
| €)7o = 55 1 o) B (131)
0
b I, 4

21



Applying this yields

€0 /a b {pEp (p,0) = ¢ 22] /a)} Ry (Cp) dp

=<0 /ab PE, (p,0) Ry (Cp) dp = — Cn p E [RO (Cn/’]+1/2> Ry (CnPjA/Q)}

2

- ZA G / Ry (Corp) Ry (Cop) pip = A7 G, [ B2 () — 4/ ()] (133)

b v

o [P (0.0 Ty (€a) dp = s Lo (600) /6]~ £ 5 [0 (§psi12) = o (§upsas) |
o0 b b2

== 3" AL [ €)1 €0 pdp = ~ AL ) (134)

n/=1 a

where we have used
b

/ R (cnmdp:—C—[Ro (Cab) — Ro (¢,0)] =0 (135)

Then we have

b VO b
& / [E W’)‘m] (Cu) Br (Cop) dp = 0 / By (6,0) (Cup) Br (Cop) dp =

J

03 By [Ro (Cupysase) = Ro (Cupyorse)] = 54 [0 B (C,b) — (2/m)°] (136)

j=1
b
<o [ B, (0.0) (€00) 1 (€00 o =

J
_hlg?b‘?a) Jo (€e) +e0 ) B {JO (5npj+1/2> —Jo (fnpjfm)} AnJonJl (Jo,n) (137)

Jj=1

We next make the potential continuous at z = 0

—pffl‘éjo + ZA R1 (¢,.p) ZA+J1 ,a<p<b (138)
or
= _ eoVoz
D AT () = ARy (Gup)] = S s a<p < (139)
n=1

which gives the integral equation
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b
/ E,(p,0)G (p,p')dp

gnp ‘]1 gnp) Ji (é.np ) (Cnp) R, (Cnp) R, (C"p’) _ Vo (720) /
/ZEP’ZEIl T2 (o) +(%WRH%®—@MVL1_ﬂmwmfa<p<b
(140)
Rewriting this as
3 M ’
nZ:: Lo 3 nJ? (Gon) /a Ep (p:0) (€np) J1 (€np) dp
Jr(Cnb)2 R2(¢,.b) — (2/7)? /a o (p,0) pln(b/a) [ (Cnp) (Cup) dp
_ Vo(=2) )
= ey <P <Y (141)
and substituting the basis
S A
;Ej ; lj{f;.}fi(;),n) {JO (gnpﬂ”rl/?) —Jo (gnpj71/2>}
Ry (C,p)
+(Cnb)2 R? (¢,,b) — (2/7‘1‘)2 {RO (cnpj-&-l/z) — Ry (Cnpj_l/g) }]
__ W Vo ~=J1(6.0) Do (€,0) ,
"2 h(/a) | W(b/a) ; 2T Gom) 0 OSPS0 (142)
Applying a Galerkin scheme
Pj'y1/2
) del = dpf 143
/ f] P = /pj/1/2 p ( )

gives
J 0 Jo (&P —Jo (&0 Jo (&,0; —Jo (&0
;E;; { 0( Pj +1/2> 0( Pj j}/i?];(goi)( P]+1/2> 0( Pj 1/2)}
{Ro (Cnpj/+1/2) — Ry (Cnﬂj/—l/2>} {RO (C7lﬂj+1/2) — Ry (Cnpj—uz)}
: () { (Cb)° BE (¢,0) = (2/m)* |
% (=20/b) In (Pg +1/2/PJ 1/2) i { ( i H/Q)j(;:;l?((izglﬂ) } 70 &n®) , i =1,.
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where we have set

Vi /
Ej =+ (bo/a) B (145)
and
1 Vo L
3PKme (p) = pE, (p,0) = In (b/a) [1 + ZEjfj (P)] (146)
j=1

We need to pick a value for zy/b and proceed to solve the linear system. This choice influences the solution
and the resulting value of the total voltage across the gap from this choice. We solve the system

{JO (jo,npj/+1/2/b> —Jo (jo,npju1/2/b)} {JO (j(),npj+1/2/b) —Jo (jO,npjfl/Q/b>}
j(:))’,nJl2 (jO,n)

{RO (Cnpj'+1/2) — Ry (Cnpj'—uz)} {RO (Cnpj+1/2) — Ry (Cnﬂj—1/2>}
() { (Cub)* R} (Cub) — (2/m)*

{0 (dompys1/2/0) = Io (dompye12/b) } Jo Goma/b)

1 o0
= (== bln( . )—1— . . i =1,..J
D) (=20/b) In ( pjs +1/2/Pj 1/2 ; JS,nJ% Gom) J
(148)
To find the resulting total voltage from the center conductor to the outer conductor
b b J
V:/ Ep(p70)dp:/ —_ 1+ZE’f] dp="V, 1+2Ej’»ln(pj+1/2/pj_l/2)/ln(b/a)
“ o pln b/a =
(149)

Let us normalize the resulting electric fields, including the TEM mode unity term, by the bracketed quantity
V/Vo

J

1+ 3 By (pj4a/2/p5-12) /0 (b/a) (150)
j=1

Vo=V/

The total field is then

B, (p.0) = — 0 1 JE/
p(Pa)—m +; 51 (p)

J
~ phn b/ 1+ZE,fJ / 1+ZE§ In (pj+1/2/Pj—1/2) /In(b/a) (151)

Jj=1
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The modal coefficients are then given by

3 - J
o) o)) [, »
[ (Cnb )+Rf (¢ab) — (2/7)° [ ;Ej In (Pj+1/2/Pj71/2) /In(b/a)| = 2_60A”

(152)

> S e XJ: { ( an“/Q) 2_ t']O (Enpjm)] / [1 " XJ:EQ In (Pj+1/2/ﬂj—1/2> /In (b/“)}

In(b/a) Jo w7 (JO n b/a Jo,nJ1 (Jo,n) =

=5 A (153)

3.3 Electric Field At Terminated End Of Inner Conductor
The axial field is

10
Dz = 80EZ = —;8—p (pA&p) (154)
and using
10 0 1
- = 1
S0 (ol = o (55 25 ) 1 ) = Cufta (o) (155)
60EZ - Z A;CnecanO (Cnp) y 2 < 0 y @< p< b (156)
n=1
coB. ==Y Af& ey (€p) , 2>0,0<p<b (157)
n=1
The field at z = +0 and p = 0 is then
= 1
E,(0,+0)=—)Y —Af¢,
(0,+0) ; A

oo

J
- blf(vbo/a) ;::1 jo,anl(jo,n) 0 (Jo,na/b) — z:: {Jo (Jo n/)g+1/2/b) Jo (jO,npj—1/2/b)}

) VA" 1

J
= b (/) 2 o T Gon) 0 (Jo,na/b) — g {Jo (Jo n/)]+1/2/b) Jo (jOmﬂj—l/Q/b)}
J
1+ Ejln (Pj+1/z/pj_1/z) /In(b/a) (158)
=1
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The result for the summation in this equation, with J = 100 basis functions, is shown as the black curve
in Figure 1. A fit is

E. (0,+0) ~ [(b/a — 1) /2+ (b/a)*? /25 (159)

2V
bln (b/a)
where the bracketed part of this fit is shown as the gray curve in Figure 1. The approximate results from
the radial field approximation, in the section below, are shown as the blue curve (the summation) and the
green curve (the linear parenthetical expression) in Figure 1.

2V & Jo (jo.na/b) 2V b
EY(0,40) = : ~ — —0.4373 160
S OAD) = FR ) 25 o o)~ B /) \ 20 oo

Also shown as the red curve is the TEM mode (182)

v
E,~ ———
" aln(b/a)

This field at the terminal end of center conductor can be used to drive a connector at this point.

(161)

3.4 End Capacitance

It is sometimes of interest to determine the capacitance of the terminated center conductor (this exists in
addition to the coaxial capacitance). The charge, assuming A., remains continuous from region to region is

Q= / D -ndS = 7%46 ~dl = —2maA., (a,—dy) (162)
o C
where
Aey, (a,—dy) = __=o% (=do — 20) — iAfefcndoR (¢,a) (163)
ep b 0 aln (b/a) 0 0 —~ n 1 n

Taking dy to be large, and removing the dominant TEM field charge, the difference charge is then

_ . 27T€0%d0 _ 27’(’80‘/0 (—Zo)
AQ=Q=3 070 =  m(b/a) (164)

We can write this charge correction in terms of the moment solution

J
AQ = ZWTE‘(/Z/(Q_;O) = Qﬂfﬁ‘(/b;a_)zo)/ 1+ Z Efln (Pj+1/2/ij1/2> /In(b/a) (165)

Jj=1

or difference capacitance

2meg (—2 J ,
AC:AQ/V:%/G)O)/ 1+;Ejln (pj+1/2/pj71/2>/1n(b/a)
= 2190 (o) (ba) / 1+§J:E' I (pj41/2/0j-1/2) / In (b/a) (166)
= o (b/a) 0 Z j Pj+1/2/Pj—1/2
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E,(0,0)/[2V/{bin(b/a)}]
w

-  Approximate Radial Electric Field
17 Linear Approximation
=  Moment Solution (J = 100)
0- Fit (b/a - 1)/ 2+(b/a)**1.5/ 25
= E radial TEM = b/(2a)
T T T T T
0 2 4 6 8 10

b/a

Figure 1: Comparison of sum involved in tip electric field at the center of the end of the solid coaxial center
conductor as a function of ratio of outer-to-inner coaxial radii. The exact solution is the black curve; a
simple fit is the gray curve. The blue curve uses an approximate radial electric field between the coax and
cylindrical regions, which is proportional to the inverse radius; the green curve is a simple approximation to
the tip field in the form of a linear function. The brown curve is a simple estimate based on the constant
transverse electromagnetic mode.
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which can be written as

J
—20/b
AczeﬂM%é—%%y[1+§jEﬂn@ﬂuyw]m)/mwm1 (167)
j=1
with [5]
pe=(b—a)/In(b/a) (168)
A fit is
N 1 T _ 1 mep, /4
AC = 2e9p, [2'3 In <1n (b/a)> + 0.0125b/a] = 2e0p, {2.3 {ln ( b—a ) +2In2 1} + 0.0125b/a]
(169)
The capacitance using the approximate radial field, from the section below, is
2magy .~ [ Jo (o na/b)r 2a/b & [Jo (o na/b)r
ACP = 2 { n” = £2mp, ———— 0O T 170
0701 2= (o Gom) |~ 2T = /) 2= [Jomh (o) 1o

n=1 n=1

Figure 2 shows the moment solution using J = 100 as the black curve. The fit is shown as the green curve.
This result using the approximate radial electric field in the next subsections is the gray curve.

3.5 Approximation For Radial Electric Field Or Magnetic Current At Termi-
nated Inner Conductor

Suppose we approximate the radial field (or magnetic current) in the coaxial dominant mode as

\%4

EPNW,a<p<b,z>0 (171)

and use

9 gt b

D,,:goEp:&sz—;Anfne "Iy (E,p) 5 2> 0 (172)

to set
i~f§:/ﬁ§,}(§ ), a<p<b (173)

pln(b/a) o nSnY1\SnpP) 14

we can use orthogonality of the Bessel functions to write

b 1 2
/ J1(&p) J1 (&p) pdp = 52/ J1 (Jo,nw) J1 (Jo,nrw) udu = % [J1 (jO,n)]2 Onn/ (174)
0 0
9 1,7 _ o 1Y, Ly ! —¢ 175
;%mlwwn—@(5%+g;)l@w—;[mgm+gpmgmpfnugm (175)
J1 (Jon) + Jond1 (Gon) = JonJo (Jon) =0 (176)
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ey

= Moment Solution (J = 100)
Approximate Radial Electric Field
Fit In{pin(b/a)}/ 2.3 + 0.0125 b/a

& 1.0+ |
[=)
w
o
S—
Q %
<] N
\.bl
0.5 7
0.0 T T T T T
0 2 4 3 g 10

Figure 2: Correction capacitance (addition to simple coaxial capacitance) due to termination of coaxial
center conductor. Black curve is exact solution; green curve is simple fit. Gray curve is approximate result

using a radial electric field at the junction between coax and cylinder which is proportional to the inverse of
the radius.
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Then

EQV b €0V 1 b2 . 2
= - ~—AtE — n 1
s | (€ do = G U (600) = o (648~ — A6, 1 o) ar7)
or
1 eV eV
Jr_ .2 . 2 ~ . . . 0 - . 0
An 2]0,11 [Jl (]0771)} [JO (]O,n) Jo (jo)na/b)] In (b/a) Jo (jovna/b) In (b/a) (178)
and thus
E. (0,40) ~ E° (0,40) = —2¥ Jo (dona/0) (179)
bln (b/a) £ [J1 (o))" jo.n
we also find
- jo,n/b b b
3 M ~ — —0.4373 ~ — — 0.8747/2 (180)
=1 [ Gow)] don 20 2a
Using this linear approximation we therefore obtain
E?(0,40) ~ v (1/a —0.8747/b) (181)
=AY In(b/a)
Noting that the radial electric field on the center conductor for the TEM mode is
v (182)

Ep~ aln(b/a)

we see that this is a bound on the tip electric field (181), with correction factor 1 — 0.8747a/b. This simple
coaxial result (182) is only slightly below the numerical solution fit (159) for b/a > 6.

Remainder Of Summation A remainder has been added to improve convergence of the modal summation

o~ (n—1/4)7 (183)

Jo Goma/b) ~ 1| —2—— cos (joma/b — m/4) (184)
0 (Jo,n@ Wjo,na/b COS (Jo,n@ m

T Gon) ~ 4| —— €0 (o — 31/4) ~ 4 | —— (—1)"" (185)
Lo 7Tj0,n 08 J0,n § 7Tj0,n

bln b/a \/; Z COb (Joma/b—m/4) ~ b/a \/; Z Cos((n—1/4)7ra/b—ﬂ-/4)

=N+1 ’ N+1

2V b i 1 ) 0 1
bln(b/a)\/7[COS((a/b-i-l)W/‘l) Z %cos(nwa/b)—Sln((a/b+1)7r/4) Z %sm(nwa/b)

n=N-+1 n=N+1
(186)
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cos ((n — 1/4) wa/b — w/4) = cos (nwa/b) cos ((a/b+ 1) w/4) — sin (nwa/b) sin ((a/b+ 1) 7/4) (187)

oo . N
Z o (?0_,na2/l?) ~ Z o Lo na/b \/;a Z ,771 =7 °° ((n—1/4)ma/b—7/4) (188)

=1 o) Jor 25 11 (Jon)] % jon N1

3.5.1 Capacitance Using Approximate Radial Electric Field

The additional capacitance at the terminating coax, using the radial electric field approximation, is

1%
E,~ — b 1
" pln(b/a)’a<p< , 2>0 (189)
Q= / D -ndS = _fée -dl = —21aA., (a,+0) = AQ" (190)
o C
Ao =Y Afe "1 (€,p) s 2> 0 (191)
n=1
A:lr ~ '2<]O (jO,n.a/b) . 250‘/ (192)
Jo.n (/1 (Jo,n)] In (b/a)
> . 280V — [ Jo (jo,na/b) ]
AQ° = —2ma Y AL T (joma/b) = 2ma { 193
N ,;1 1 Uona/t) n(b/a) ; JonJ1 (Jo,n) (193)
2 & [Jo (o na/b)r 2malb = {JO (jo na/b)r
AC® = 2ae [ 2 = 2e0p, RAALS 194
“In (b/a) ; Jon1 (Jo,n) o (1 —a/b) ; Jond1 (Jo,n) (194)
Jo (jo,na/b) ~ Jo (Jon) + (1 —a/b) Ji (jo,1) + - (195)
pe=(b—a)/In(b/a) (196)
The limit of a small coaxial gap is
ACO ~ 220p,27 (a/8) (1= a/b) 3 o = 2e0p, 5 (af8) (1= aft) , afp —1 (197)
n=1 Jo.n
where
o 1
Y =1/ (198)
n=1 Jo,n
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3.6 Connector Cover Charge And Current

If a connector is capped at the terminal end of the center conductor, this cap substantially reduces the
voltage and resulting electric field incident on the underlying pins. One way to estimate its effect is to first
estimate the charge deposited by the electric field at the center conductor tip
P = ASPenE, (0,+0) (199)
The electric current from this cap to the center conductor end (crossing to the connector base) is then the
time derivative of this charge
1
157 = DQUP < QNP = AT (0,40) (200)
T T’I‘

An estimate for the area AP can be taken as the connector surface area. In this electric field case we can
take
KeP = TP [ (2macap) (201)

Because of the permittivity g factor in the charge this is a relatively small current and current density. The
magnetic field driven current density (367) is assumed to be larger.

3.7 Cap To Connector Inductance/Resistance

Because the connector cap has an inductance to the base of the connector, there is a voltage developed
between the connector cap and the connector base. We can estimate the maximum values around the
perimeter as [1]

Vinax = Vi + Vitax + Vi (202)
d
Vnigc chr(llfx2hcap Kcap < Ll 2heap Ko /7y (203)

Lyine _ Lk \/T Mieap? LGE
9 'max LioWeap :U’cap cap dt1/2 pzn — T cap HoWeap pin/Tr
L e gt L2
= 28 o heap—r KPP < — 9P _Tmax op K&P /T 204
:u‘Owcap lucap/ capTeap dtl/Q a TOcap MHoWeap «“or / " ( )

with maximum in time
4“ Ty Lcap
Vlnt cap max 2h K ap 205
5 Vmax = \/ TOeap floWeap cap Plr, (205)

where pi.,,, and 0.4, are the magnetic permeability and electrical conductivity of the connector cap material
(and the connector base is assumed to be the same material here, although the formulas could easily be
generalized). The penetration depth is (here using general symbols p and o)

0 =2/ (wno) = /21, / (no) (206)
There is also an internal voltage contribution due to the pin (between cap and connector base) itself. If
the current is confined to the surface of the pin for the rise time region
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imn Weg, 81/2 Wea 4M int
Vit = —p\/Mpin/UPinWIPin (t) = 5= P2 (Lpin/Tr) (207)

2T apin 2T Apin \| TO pin

) ALy T
Vot < gt [ (1 ) (208)
PN pin

where (1, and o, are the magnetic permeability and conductivity of the pin material. If the current is
uniformly distributed in the pin this changes to the resistive value

with maximum value

. Weappi
Voinn S —5—— (209)
pin~ pLn
The two contributions compare as
(skin effect) BpinTpin (resistive) (210)
Ty Gpin

Therefore using the skin effect form

4 capTr 2 ca 4 inTr
reor (14 [Lear 4 Leap [ HpinTr | oy gean (211)
TOcap HMHoWcap 27Tapin TO pin

An estimate for this cap inductance can be made due to the cap-to-connector base slots [1], [6]

Vmax S

h
Lo~ Ho;;cap In (Waca? ) s deap >> Loap = 2Peap (212)
PN
1 ca ca dca 2 in
L ~ Zuohcapill) E+ “0; = 1n p/ (2mapin) , deap < Peap (213)
cap

\/cos (7 fpin/deap) + (%fa:) 2

where 2hcqp = fcqp is the distance between pin contacts, dgqp is the overlap depth, weq, is the gap width,
Qpin is the pin radius, and fp;, is the displacement of the pins from the depth center toward the interior of
the connector. For f,;, = 0 a function which incorporates both these limits, and remains uniformly valid, is

1]

ca 1 w LoW deap/2 ra,
ngx ~ Zﬂohcap d::j: + % |:hl <m> —In (1 — € pm/hmp)] ) fpin =0 (214)

The variation of the voltage around the cap perimeter is a somewhat weak function of the azimuth angle
when the depth is larger than the half length, the pin radius is small, and the bolt is not near the transmitted
slot outlet.

Near the outer radius of the cap, but interior to the connector, the voltage appears at the top of the
cap, where the cap insulator exists. This voltage spreads out to develop the electric field near the pins. We
estimate the electric field at the pins by using the a parallel plate formula

hconnEcap ~ Viax (215)

max
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where hconn is the height of the cap above the base of the pins. If the insulator is foam with a dielectric
constant near unity, the height Aoy, is the distance to the cap metallic surface. Alternatively, if it is a solid
dielectric this height should be reduced somewhat (the thickness of the insulator reduced by the inverse of
the dielectric constant) to account for the dielectric constant of the insulator.

3.8 Connector Pin Voltage

Treating the connector pin as a monopole with effective height h., the electric field (181) gives a connector
pin open circuit voltage

VI = heE. (0,40) = heEeap (216)

where the final expression uses the preceding interior cap electric field.

3.8.1 Pin-Wire Voltages

The Thevinen drive circuit with the preceding connector pin open circuit voltage has an accompanying large
(nearly open circuited) capacitive impedance element. At the low frequencies associated with lightning,
this impedance element is nearly open, and hence for typical attached load impedances the actual voltage
delivered to a load Vi, will often be reduced. We often do not really know the load impedance of a particular
pin, however, the interior intervening cable capacitive reactance alone should reduce the voltage delivered
to the load. Consider a capacitive voltage divider consisting of the pin capacitance (to connector) of the
Thevinen source and the cable capacitance of an interior line to the shield. The capacitance of a short
monopole of height h, with radius a, above a ground plane is

4
Cp £ T2 = hy2meo/ (/) fay) (217)
ep
where
Qep =2In(2hy/ap) —2(In2+ 1) (218)

The capacitance of an interior cable run can be underestimated (due to neglect of the other lines) by the
eccentric coax formula

2 b2 _ d2
£y27meg / Arccosh (aco‘” + Ocoan C"”) (219)

where ¢, is the wire length in the coax, a.eq is the radius of the wire (connected to the pin of interest) in
the coax, beoqs is the radius of the shield return (this could also include the effect of the other wires in the
cable in which case it is smaller than the shield radius, d.oq; is the offset between the pin wire center and
the shield center. For a center coax d.,q, = 0 and

Cy S

~
20’600.1} bCOG.Zl)

b

Cy — Ly2meg/In (ﬂ) (220)
Gcoax

Because we expect that the multiplier of the coaxial capacitance per unit length ¢, is very large compared

to the monopole pin multiplier h,, we also expect that C, is very large compared to C,. Hence we expect

that the pin voltage, even with an open circuit at the other end of the coax, to be

VL < Vpin CP

e 221
~Y oc Cp + Cw ( )
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We expect the ratio to be in the range C,,/C, > 10 and hence the voltage delivered to a high impedance
load to still be considerably reduced.

3.9 Door To Coaxial Capacitance Element

The induced charge or capacitance matrix element to the center coaxial conductor, resulting from the door
to outer container voltage, is now found. The charge on the cylindrical center conductor, due to the door
voltage, is found by driving the shorted coax (held at the potential of the outer cylinder) with two magnetic
current loops to support the door voltage V; (one at radius a and one at radius b). Using

K, =-nx(E;,— E) (222)
we can image the magnetic currents and remove the door, extending the coaxial region beyond the door
location z = —h. Then we have magnetic current loops

Ky =2Vgd(z+h) , p=b
=-=2Vy6(z+h) , p=a (223)

The representation is taken as (there is no 1/p term since the center conductor is assumed to be shorted to
chassis, or the outer cylinder, here)

Ao =Y AfPe G Ry (Cp) 2> —h

=
Z GG R (Cp) ) 2 < —h (224)

where -
R1 (Cup) = Jo (Ca0) Vi (Gu) — 1 (C) Yo (G,0) (225)
B ”’Ae“’)]p_b — B (=) =0=-aiB: (=) = |32 (pi.,)] REEE
3 o €l = G (25 5 ) B (o) = o o) (227)
Ro (¢up) = 7o (€40) Yo (Cu) — Jo (C) Yo (¢,0) (228)
Ro(¢,a) =0 (229)
Fo (Cub) = Jo (€,0) Yo (C,b) — Jo () Yo (¢,a) = 0 (230)

Then the fields are

D (py2) =0 (p2) = oL (pAey) = LN ARSI Ry (Cop) 2> b (281)

n=1
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d > etz
Dy =coly = 5-Acp = = 3 A R (Gup) s 2> —h
n=1
We now match

oo

0B, (p,—h) = eaVad (p—b) — 2oVad (p — a) = = > AF"C, Ry ((,p)

n=1

and use orthogonality

b b
/ Ry (Cp) Ra (Cpprp) pdp = S BPQ { (1 - #) R} (C,p) + R (CnP)H

R (Cp) = Jo ((,0) Yon (Cp) — I (Cp) Yo (C0)

and the first required condition for orthogonality is

hiC, R (C,0) — halRy (¢,0) =0

= h1G, [Jo (€,a) Y2 (€,,0) — J2 (€,,0) Yo (C,0)] — ha [Jo (Ca) Y (C0) — J1 (Cb) Yo (Cra)]
With hl = b and hg =2

thnR2 (Cnb) - h2R1 (Cnb) = _Cnb [JO (Cna‘) YO (Cnb) - JO (Cnb) }/0 (Cna’)] = _CanU (Cnb) =0

The second condition for orthogonality is

k1C, R (¢,a) — kR (Ca) =0

= k1, [Jo (€na) Y2 (Ca) — J2 (Cra) Yo (Ca)] — k2 [Jo (Ca) Ya (Cna) — J1(Ca) Yo (C0)]

With k1 =a and ky =2

gnaJ2 (Cna/) - 2Jl (Cna/) = _gna’JO (Cna/)
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k1, Ra (Cpa) — ko Ry (Cra) = —Chaldo (C,a) Yo (¢na) — Jo (Cua) Yo (¢na)] = —CaRo ((ra) =0 (243)

Noting that hi and ho are not both zero, k1 and ks are not both zero, we see that the orthogonality conditions
are met. Then we find

b b
son/ Ry (C,p) [6(p—b) =3 (p—a)l pdp = €0V [bR1 (C,,b) — aRy (Ca)] = —AIhCn/ R (C,p) pdp

=it ] (1= ) B+ G - e { (1= i) B o+ BE (G ]| 2

R} (¢0) = — (246
T (Ga)’
Ra (€0) = J0 (€0) Y3 (6a) = 1 (Gu0) Y (Gu) = ——— (249)
and then
260Va/ [(C,b) Ra () — 2/7] = — A" (250)

Now with these coefficients Af{h we can determine the values of A.,. The local induced charge on the center
conductor is (here the surface S covers the cylindrical surface of the center conductor and the contour C
bounds the surface S (directed to keep the surface on the left as we traverse the contour in a counter-clockwise
sense)

Qe:/Q-ﬂdS:fy{Ae-d_ﬁz27Ta[Aw(p:a,zHJroo)wa(p:a,z:+A7h)]
S
c

= —27a Z Afthe=2 Ry (¢,0) (251)
n=1

or
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- _ 2/ (n¢,a
QY= tmazy 3 e R 252

The gap can be inserted by taking [7] (the gap in the reference is twice the gap to the door ground plane
here 2g)

n=1

A =2(2g)/ (me) (253)
and adding the parallel plate end cap capacitance

Cstruc ~ £':()7-‘—042/9 - Qe/Vd (254)

We also take the door drive voltage as the average

Vi = (Viot) (255)

The spacing is taken equal to the gap equivalent radius A = 2(2g) / (we). If we choose a gap value gy << a
with Ag = 2(2go) / (we), we can estimate the variation about this value by [7] (the voltage in the reference
is twice the voltage to the ground plane here and hence the correction doubles)

~Qe/Va = = (Qu/Va)y +<02ma= 1 (90/9) (256)

Then

@) Zl(&g?)?)— o %1“ (90/9) o

- (Qe/Vd> / (277'@80) =2 Z e*CnAo

n=1

Picking the value 2gg/a = 0.01 we find

— 2/ (r¢,a) 2 —3/2
23 ¢ ¢no n zln(b a —1)+2+2(b/a) (258)
2N TG~z = ()
This coaxial function summation is shown as the black curve in Figure 3 and the simple fit on the right hand
side is shown as the gray curve.
Using this simple fit we then have

_: 2
Cstrue & €02Ta {ln ((b/a)2 - 1) +242(bfa) "+ - In(go/g) +a/ (29)} (259)
We can choose the center conductor radius here to be different a — ag than at the other end of the coax
_ 2 100
Cistrue ~ £027a0 [m ((b/a0)2 _ 1) +2+2(b/ag) "+ =l <aoég > +ao/ (Qg)] (260)

We can take g up to O (ag), with b/a > 2, with reasonable accuracy O (10%).

38



6 —
& 5
=
2i)
2 4-
<)
3 e Coaxial Function Summation (2 g_0 =a/100
Simple Fit In{(b/a)*™2 - 1}+2+2/(b/a)*™*1.5
/
2 -
I | I | |
0 2 4 6 8 10

bfa

Figure 3: The electric charge on the coaxial center conductor (held at the potential of the outer cylinder)
when the end door is held at voltage Vy with respect to the outer cylinder (and the center cylinder); the
local contribution from the narrow gap from the center conductor to the door (as well as the parallel plate
contribution of the end of the center conductor to door) are not included in this plot (and must be added).
This plot is a comparison of the coaxial Bessel function summation associated with the structure to door
capacitve element shown by the black curve with the simple fit for this quantity shown by the gray curve.
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3.10 Support Capacitance Element To Outer Cylinder

The center conductor structure has a capacitance to the outer conductor Cj,s.;. For a simple coaxial case

Cinsul ~ 27T€0€coaz/1n (b/a) (261)

However, in some cases there may be direct connections to the cylinder isolated by thin insulator coatings,
where the simplest calculation would be

Cinsul = EOETAinsulator/ginsulator (262)

where for dielectric coatings isolating the structures, a relative permittivity of ¢, may be present. In either
case the center conductor voltage will be the result of a capacitive divider

Cstruc
V=——mrr"—r—V 263
Cstuct + Cinsul ¢ ( )
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4 COAXIAL REGION MAGNETIC FIELDS

The coaxial region has an induced field from the door represented by fields propagating in the higher-order
waveguide modes, which decay along the length direction. Because the center conductor is open circuited at
both ends the TEM mode for the magnetic field is negligible. The magnetic field is nevertheless important
because it directly drives surface currents at the opposing end of the center conductor independent of
displacement current coupling (which is negligible at these low frequencies).

4.1 Magnetic Field In Coaxial Region
The quasi-magnetostatic field satisfying

VxH=0 (264)

is taken to be represented by the magnetic scalar potential

H=-V¢, (265)
Gauss’s law
V-B=p,, (266)
and constitutive equation (relating magnetic induction B to the field H)
B =puH (267)
satisfies a Poisson equation
V2 = =P/ Ho (268)
In regions free of magnetic charge p,,, this is Laplace’s equation
0? 10 1 02 0?
Vg =|=—+-—t " = =0 269
¢77l <ap2+pap+p28¢2+az2)¢m ( )
with radial boundary conditions in the coaxial region
9¢
Hp:—a—;nzo,p:a,b (270)
and has solutions
_ cos (m@) | +¢, .=
6 = (T Conn®) Yo (o) = I Con) Vi Co)}{ Snfrn) i (271)
where
T (Cnn@) Vi (Coninb) = T (Cond) Y (@) =0 (272)

Note that the Laplace solutions p™™ (cg + ¢12) cos (my) and p™™ (¢ + c12) sin (my) cannot be used since
such pairs do not obey both the boundary conditions. Some solutions for the symmetric case m = 0 are [4]

‘][/) (C{),na) YE)/ (C(),nb) - J(l) (C(),nb) }/OI (Cé),na) = Jl (C(),na’) Yl (Cé),nb) - Jl (C(),nb) Yl (Cé),na) =0 (273)
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o0 ~ 2.15647249 for a/b= 0.4

€010 ~ 4.75805426 for a/b = 0.6

Co .00 ~ 4.22309 for a/b = 0.4

but we are not primarily interested in this symmetric case. An asymptotic formula is [4]

where

Then

/!

q

Cm,na‘ ~ 5

—p? o —dpg+ 2p°
L el S et/ S
B B B

B=nr/(b/a—1)

p=(4m*+3) / (8b/a)

(16m* + 184m? — 63) (b%/a® + b/a + 1)

6 (4b/a)®

(64m® + 2960m* — 8212m? + 1899) (b*/a* + b*/a® + b?/a® + b/a + 1)

T =

5(4b/a)’

Cruma ~nm/ (bja—1) + (4m? + 3) % (b/a — 1)

dnmb/a

T {(16m4 +184m> — 63) (b°/a + b/a+ 1) — 6 (4m? + 3)° (b/a)} % (

2

Cora~m/(bja—1)+ % (b/a — 1) 1 [21 (b*/a® + 1) + 39b/a]

4mb/a

b/a—1
dnmdb/a

)+

=)

L (4b/a)* — & (16m* + 184m?2 — 63) (bi/aQ +b/a+1) (4m? + 3) + (4m? +3)° (b/a)
(4zbja)* 7/ (b)a —1)°

Ghaar ) Ofa= 1)+ (

Copa~m/(b/a—1)

Cspa~m/(b/a—1)

+19
2

L
2

(
(

b/a

b/a—1
4mb/a

b/a—1
4mb/a

-1

b/ > + {137 (b*/a® + 1) — 157b/a} % <

> + {929 (v*/a® +1) — 1237 (b/a)} % <

> + {963 (b*/a® + 1) — 2079 (b/a)}% <
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b/a—1
47b/a

)+

(274)
(275)

(276)

(277)

(278)

(279)

(280)

(281)

(282)

(283)

(284)

(285)

(286)

(287)



For the example a/b = 0.4
oo Ze 339 (3N,
017 3% T 2\ 20m 8 \ 207

2 4
3 /(3 999 ([ 3 2
14+ — (—) - S <%> + - 1 R~ 37 [1+ 0.0341959 — 0.0064899455 + - - -]

~ 37 20 8000
~ 2.1524223 (288)
3
(l a zﬁJrz i Jr@ i +
1,1 3 2 \ 207 8 \ 207
2l L (2 2+ 801 (3 4+ ~ 2 7 [1 4 0.079790432 + 0.005203650 + - - -]
2n (3 oL [ N P
3 20 \ 27 8000 \ 27 ~ 37
~ 2.9724063 (289)
2 19/ 3 3\*
!
~ — — 4 DY
Coa ~ 5T+ (20 )+8 857(20 ) +
U PR 3 2+ L ys57(2 4+ ~ 2 [1+0.21657403 + 0.0316 + - - -]
~ 37 20 8000 o ~ 37 ' '

~ 2.6141 (290)

3
, 2 39/ 3 3
Chaa~ 37+ 5 5om +87137 5= )+

39 /3\? 7137 /3\* 2
1+22 (= Rl oo A~ Sl 0.444 0464 4 - - -
+35 <2W> + 2000 (2ﬂ> + ] 37r[ +0.4445 4 0.0464 + - - |

2
3"

~ 3.1226 (291)

As n increases these results increase nearly proportional to n. If the structure is open circuited beyond some
point z = 0, the TEM mode is driven to zero beyond this point (at low frequencies where the displacement
current is negligible) but the higher-order modes continue with decay. The lowest order asymmetric m = 1
mode has roots of the equation [4]

J1 (¢hna) YT (¢hab) — J1 (¢hu0) YT (¢ na) =0

1

- 6t = g )

1

757 i

mm)gl<uﬂ

YO (C&,n )

- [JO (Cll,n ) Cll (Cl n )
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= [JO (gll,na) YO (Cll,nb) - JO (gllfnb) YO (Cll,na’)]

1 ! ! ! !
*m [JO (Cl,na) Y1 (CLnb) -2 (Cl,nb) Yo (Q,naﬂ
a1 (€400 Yo (Chnb) = o (€)Y (Gh0)]
1
+m [Jl (Cll,na) Y (Cllnb) - N (Cll,nb) Y (C’lna)} (292)

with asymptotic solution

, —p2 r—4 2p3
C17na~5+%+q53p + ;;q;rp T (293)
where

B=nr/(b/a—1) (294)
p=1/(8b/a) (295)
_ 137 (0?/a® + béa +1) (206)

6 (4b/a)
. —3289 (b*/a* 4 b%/a® +5b2/a2 +b/a+1) (207)

5(4b/a)
(ipa~mnm/(bla—1)+ ; (Z{;b/i) + {137 (b*/a® + 1) — 157 (b/a) } % (Z{mb/i) 4 (298)

3
Claa~m/(bla—1)+ g <bi:b/al> + {137 (b*/a® + 1) — 157b/a} % <bi:b/a1) N (299)
3
Chpa~ 27/ (bfa—1)+ Z (bi;b/;) + {137 (b*/a® + 1) — 157 (b/a) % (bi:b/al) .. (300)

However, the first (or initial) root is not captured by this asymptotic formula (and we label it with number
n = 0). We can estimate this particular initial root by examining the physical problem it corresponds to. If
we consider a planar waveguide wrapped around the coax at the effective radius p,, the scalar potential can
be taken as

0?2 0?2
V2,, = (@ @) GO =0 (301)

with
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The num/erical roots are

a/b  (yob SRL

0.1 1.8034701 5.1371365
0.2 1.7051157 4.9608548
0.3 1.5820647 5.1373946
0.4 1.4617819 5.6591042
0.5 1.3546720 6.5649424
0.6 1.2620756 8.0410875
0.7 1.1823634 10.591835
0.8 1.1133663 15.777712
0.9 1.0531161 31.446885

9 _

dp

_ +¢l 2 ) cos
¢)m_e L {

P (2 =

Oy ’

sin

p=a,b

)

0) = ¢, (& = 2mp,)

po = (a+b) /2

§'17027rpe =27

Cll,Ope =1

Chob~2/(1+a/b)

b

8.1991623
8.4330686
9.3082665
10.683252
12.706422
15.801059
21.003708
31.450758
62.847328

b

11.358793
12.165052
13.683644
15.848084
18.942659
23.623919
31.455738
47.147105
94.258096

b

14.634361
15.993233
18.115878
21.048785
25.202487
31.462382
41.917753
62.849263
125.67144

b

17.986417
19.861628
22.570710
26.263701
31.471691
39.307062
52.383756
78.553743
157.08582

b

21.383688
23.750000
27.036720
31.485678
37.745567
47.154847
62.851750
94.259385
188.50072

(302)

(303)
(304)
(305)
(306)
(307)

(308)

The approximate roots are (the asymptotic expression for n > 1 is evaluated to three terms except the
value with two terms is shown for some of the first roots and the second column is the physical planar
waveguide approximation for the n = 0 root)

a/b
0.1

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2/ (a + b)
1.8181818

1.6666667

1.5384615

1.4285714
1.3333333
1.25

1.1764706
1.1111111
1.0526316

~ 411,117 ~ <I1,2b ~ €/1,3b

5.9973489, 8.2346622, 11.3075392

(13.508129) (9.1735097) (11.585716)

5.0410754, 8.4110239,

(5.6381588) (8.4856594) 12.174448

5.1378722,

(5.2469479) 9.3145548 13.684636
5.6810157 10.684272 15.848233
6.5694964 12.706605 18.942685
8.0419548 15.801090 23.623923
10.591965 21.003712 31.455738
15.777724 31.450758 47.147105
31.446886 62.847328 94.258096

45

~ C11,4b ~ C11,5b

14.589307,

(14.706663) 18.014717
15.995814 19.862548
18.116133 22.570797
21.048822 26.263713
25.202493 31.471693
31.462383 39.307063
41.917753 52.383756
62.849263 78.553743
125.67144 157.08582

~ 1 6b
21.396505

23.750390

27.036756

31.485683
37.745568
47.154847
62.851750
94.259385
188.50072



4.2 Magnetic Field In Cylindrical Region

The cylindrical region has the Laplace equation

02 10 1 02 0?
v —0= 21+ -2, - < Y 309
Pra <8p2+pap+p2 dp? +5Z2)¢m (309)
with radial boundary condition
0y,
=b)=0 310
S (o= ) (310)
we take the solution as
- i i, 2/b | €0S (M)
where
T (Gmn) =0 (312)
The first roots now being
n o Jon Jin Jo.n
1 0 1.84118  3.05424
2 3.83170  5.33144  6.70613
3 7.01559  8.53632  9.96947
4 10.17346 11.70600 13.17037
5 13.32369 14.86359 16.34752

4.3 Magnetic Field Coaxial Region Mode Excitation

The excitation of the coaxial region modes from the door slot is examined without and with a conductive
door gasket.

4.3.1 No Conductive Gasket Coaxial Region Mode Excitation

If no conductive gasket exists then as a worst case we take the return to occur on the opposite side of the
slot from the strike point (through the hinge connection or through a breakdown) and then the current
distribution on the door side of the slot is

I(s) = %10 (1) = %10 (t)sen(s) , —h<s<h (313)
2h = 2rb (314)

Let us first consider a semi-infinite coax with magnetic flux per unit length ® (s) injected at z = 0 around
the circumference with p = b and s = bp. The magnetic flux per unit length through the slot is then (there
may be some contribution from the magnetic field penetrating the metal, however for larger slot widths with
metallic walls, this is probably small at earlier times)

qm =P (S) =LI (5) = LIy (t) sgn (3) = gmoSgNn (<P) (315)

L~ pow/d (316)

46



and note the Fourier expansion

4 sin (m)
sgn () = — m%d -

(317)

In this section we find the magnetic charge per unit length assuming the potential and fields will be found
with the conducting boundaries taken into account; in other words, there is no doubling of the magnetic
charge imposed, as there often is when aperture dipole moments are defined on a ground plane (see section

on hole penetration below). From Laplace’s equation on the interior of the cylinder

92 19 1 02 02
2 0= (02 L -7 L Z
V' m 3p2+p@p+p?3<p2+322 Om

we take the solution as

O = Rm (C;n,np) { cos (my) }eignmz

sin (my)

where

R, (C;n,np) = Jrln (Clm,na) Y (C;n,np) —JIm (C;n,np) Yviv, (C;n,na)

and from the radial coaxial boundary conditions

Ry (ComP) = T (Conn@) Yo (Crnp) = T (Cnp) Yoo (Cna) =0 p=a,b

Also by use of the Wronskian for Bessel functions

R’m (C;n,na’) = Jvln (C;n,na) Ym (C;n,na’)_‘]m (C;n,na) len (C;n,na’) =-W [Jm (C;n,na) 7Ym (C;n,na)} =

The orthogonality relation is

9 b

b 1
/ Rm (C;n,np) Rm (Clmﬂl/p) pdp = 57ml [5%32 (1 B m—2> R?n (C;n,np) + Rﬁ (C;rz,np)]

P

_ Lo m’ 2 (1 m? 2
o |39 (1 ) ot (- 55 )

The axial field boundary condition is taken as

a

4 sin (m
ol (0.7 = 0) = 8 (p — ) gosin (9) = 6 (0 — b) o = S L")
m,odd

The potential is then expanded as
¢m = Z Z Am,an (C;n,np) sin (m@) e*Cm,nZ

Taking
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(318)

(319)

(320)

(321)

2

/

TCp @

(322)

(323)

(324)

(325)



- 4

Am,n = Am,ni/qmo , m odd (326)
MOTrmCm,n
4 ~ 1 p sin (mep) o
(bm = ((JmO/MO) Z ; Z Am,nC/—Rm (Cm,np) Te ™m,n (327)
n m,odd m,n
and
SN AR () S 5y 3 SRUE) (328)
m,n-tm m,np m P m
n  m,odd m,odd

Using orthogonality

m
n m,odd m,odd

. . b . b
S A2 R () R (o) = S T [ () 50— )

(329)

~ sin (mg@) 1 m2 ’ m2 2 sin (mga) ’
Z Am,nT libQ (1 - w> Rzn (Cm,nb) - (1 - C/2 a2> ﬂ_QC/Q ] = Z Tme (Cm,nb)

m,odd m,n m,n m,n m,odd
(330)
or
Ton [Re2 (1 22 ) 2 (¢oab)— 1 m” 2 | = bR () (331)
’ 2 <,7727,,an e ﬁ,nap WQC;Z,TL -
Now for a sizable distance down the coax we can truncate at the m = 1, n = 0 term
4 -~ ]. / . 74-/ P
G ~ (Gmo/ 11o) ;ALOC/—Rl (C1,0P) sin () e~ 1.0 (332)
1,0
A P, (Chob) — [1- L 1 = 2Ry (¢ ob) /b (333)
’ /12,0172 P C/12,0a2 7T2C112,ob2 o
or
2 ’
—2 Ry (¢ o)
w¢h ob 1,0 . e
G ~ 4 (gmo/ o) — " R ((h0p) sin () 710" (334)
(1 et ) B2 (€100~ (1~ ) st
Ry (Conn) = T (Cnin@) Yon (Cr) = T (Cnn?) Yo (Cin@) (335)
where the lowest mode root is our planar waveguide approximation
Clo~2/(b+a) (336)
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4.3.2 Conductive Gasket Coaxial Region Mode Excitation

When a conductive gasket is present the slot current becomes the lossy transmission line similarity solution

I(s,t) = Ati’erfc (u) = At B (% + ESQLG/t> erfc (%sﬂLG/t) - is\/LG/t%efiSQLG/t (337)
T

where the constant A is determined from Iy by means of

1(0,¢) = At/4 = % (Io/m)t (338)
Gm (8) =@ (s) = LI (s) (339)
The axial field boundary condition is
toHz (p, .2 =0) =0 (p =) g (s) (340)
The potential expansion
¢m = Z Z Am,an (C;n,np) sin (mcp) e—C'm,nz (341)

then gives

0 .
0(p=0) am (5) = HoH: (py 0,2 = 0) = o = 19 Y D AmnConnBom (o) sin (meg) - (342)
Using the orthogonality relations

1

" . , R AN , 1 sin(mfm’)gp_sin(m+m’)<pﬂ_z
/0 sin (my) sin (m') dp = 2/0 [cos (m —m) ¢ — cos (m +m') p]dp = 5 [ (m =) i) |, 26mm/
(343)
b 1 m? ’
/ Bon (Cin) Bon (G P) pdp = e | 507 1= 7 R2 (Cranp) + Bon (Crnf)
1 m? m?> 2
= Spp [5192 (1 - W) RZ, (Crpnb) — (1 — na2> g (344)

we can write

, L T , 1, m? o /o m? 2
R, (Cm,nb) /0 s (m<p) m (b(p) bdyp = NOEAm,nCm,n [513 (1 - W) R, (Cm,nb) o (1 - Cfm,n(ﬂ) WQg;i’n]
(345)
In the case where the decay length along the gasket is much smaller than the radius of the door slot we
can approximate by replacing the sine by its argument
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1 o 7 1 1 1 2
ERl (C'l,nb)/o 5qm () ds = uo§A1,nC'1,n [§b2 <1 - W) R} (C}..b) — <1 - /2—a2> —1 (346)

2
1,n 7.[-2(/1,71
Noting that

0 o0 4 A2
/ Sqm (s)ds = L/ sl (s,t)ds = t
0 0

/ i*erfc (u) udu (347)
0
where

I (s,t) = Ati’erfc (u) = 2 (Io/1,) tierfc (u) (348)

u= %SW (349)

integration by parts allows us to write

/ i*erfe (u) udu = [—i’erfc (u) u] uoo + / iderfe (u) du = i3erfe (u) u + i*erfe (u) (350)
where
i"erfc (u) = / i"Lerfe (u') du/ (351)
and
Jim "erfe (v) L (352)
im ¢"er =——
0 YT o (/2 + 1)
yields
° ) . 4 1
/ i“erfc (u) udu = lim i*erfc (u) = — (353)
0 u—0 32
1 p (Io/Tr)t>  m PR 1 5 1 2
310 (CLnd) =15 = Hog AunCin 507 | 1~ e RY (Chab) — (1 2 ) e (354)

The growth of the coefficient with O (tQ) results from the increasing current level in addition to the increasing
decay length with time. This behavior fails as we leave the linear growth regime of the current.

To address the region of slowly decaying current near the peak value we take 5 = 0 to obtain a constant
current behavior at s=0=1u

I(s,) = %Ioerfc (u) (355)

u=55v/IGfE (356)

Then
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/ Sqm (8)ds = L/ sl (s,t)ds = 2ot / erfe (u) udu (357)
0 0 G Jo
/ erfc (u) udu = [—ierfc (u) u;” + / ierfc (u) du = derfc (u) u + i2erfc (u) (358)
/ erfc (u) udu = 111% iferfc (u) = 1/4 (359)
0 u=

and thus we find the coefficient as

1 It r 1 1 1 2
1 (¢1.0) el MO§A1,nC'1,n [ng (1 - m) RT (C),b) — (1 - /2—a2> Wllgn] (360)

1,n 1,n

This form gives us what we are after. We want to maximize the derivative of the magnetic field on the coaxial
structure. Notice that the time derivative of this coefficient and the time derivative of the preceding form
for this coefficient match at ¢ = 7,.. Because this new form for the coefficient is linear in time it produces
a constant time derivative after the rise time portion of the current. It is only valid, however, during the
period where the decay length is smaller than the radius of the slot structure.

Taking only the leading term of the coaxial potential n =0

G ~ A10R1 (¢ 0p) sin () e 102 (361)

1 1 1 2
21— R D) -1 — | — 362
2 ( a%w) 1 (o) ( c&%ﬁ)ﬁd%} 2

We can compare the modal size of this leading mode result with conductive gasket present

1 Iot m
gRl (¢1.0b) G = H0§A1,0C/1,0

10 1 o
KZ (907 Z) = Hfo/M (a’ 2 Z) = - ¢m (aa 9072) ~ __Al,ORl (C/l Oa) COs (QD) € Cl’o
a Op a ’
Ipt WQCQ?OaQle (CILOb)

cos (p) e $1.07 (363)

RSTE 1 2 (! 1 4
o (1= e ) B2 (Cuob) = (1= tes) st
to the case without a conductive gasket present. Using the result without a gasket in the following sections,
we see that the ratio of the leading modal amplitude with and without gasket is

IOt I()t

HEM9% (a, 0, 2) [HEM (0,0, 2) = m/ [4 (gmo/ o)) = m/ [AL1o (t) /po)
_ It - __Tr d/dg
= gy 1 o/ ) )] = gz ~ el (364

This ratio is typically very small and is nearly the same as the average voltage ratio in the electric case.
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4.4 Maximum Magnetic Field On Center Conductor

We need the magnetic field at the end of the terminated inner conductor to drive a connector. We believe
that the current density on the inner cylinder can be used as an estimate of the current density at the center
of the end cap of the open circuited center conductor termination in a similar manner to the electric field case
(see actual tip field (181) versus maximum center conductor field (182)). This current density or magnetic
field is given by

l 8¢m

K, (QO’Z> = Hszl;M (a,gp,z) = _a 8(,0

(@, ¢,2)

e i (C1ob)

1 2 / 1 4
L= gt ) B (Gob) — (1= ) ok

If we take position z = z; and p =0

cos () e 107 (365)

~ 4 (qmo/ o) (

(bfa—1) (b/a) 245 Ry (Chob)

(b—a) K (0,21) €207 / {4 (gmo/ 1)} = 1 > 1 e (366)
(1= ) B (o) - (1 - i)
This current density is now applied to the connector at the tip
KP < K. (0,21) (367)

which is shown in Figure 4.

4.5 Magnetic Charge At Termination Of Center Conductor

As a check on the preceding approximate estimate of the magnetic field at the open end of the coax, we use
matching at the junction between the coaxial and cylindrical regions to estimate the actual tip magnetic field.
Note that we are actually ultimately interested in twice the tip magnetic field to represent the magnetic field
at the base of the connector (this factor of two is due to the field at the terminated end of the center conductor
then impinging on the cylindrical connector, with the maximum value doubling as in a field impinging on a
cylinder).

We insert a magnetic surface charge at z = 23

Om (/)7 ¥, 21 + O) = i/’[’O]{z (pv ¥, 21 + O) = 0mo (p) sin (QO) (368)

omo (p) = £poH: (p;7/2, 21) (369)

The magnetic potential representation in the cylindrical region is

4 . > il (ges )
G = (Gmo/ o) i (¢) ZA+ne Anlz=20/b gy (G p/b) 2>z (370)

n=1

and in the coaxial region is

inc 4 . = —¢ (-2
O = G+ (o /1) =5 () 3 Ae™ S CIR (G p) 2 < 21 (371)

n=0

where the problem is driven by an incident lowest order coaxial mode
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Figure 4: Maximum (as function of azimuth) axial current density of dominant coaxial magnetic mode as
a function of coaxial outer-to-inner radii. This can be used as an approximate estimate for the maximum
magnetic field (current density) at the tip of the terminating center conductor.
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2 /
wcgyole (Cl,Ob)
1 / 1 4
1 gim) B (o) = (1 -~ i) ke

4 . _! _
= Bo; (@mo/ 1) R1 (¢ 0p) sin (@) e Co(z=21) (372)

G~ 4 (gmo/ 1) ( Ry (¢h0p) sin () e 10

with

Ry (C1np) = J1 (€1,00) Y1 (C1np) — 1 (C1np) Y (€ 00) (373)

Matching to the axial magnetic field at the charge surface

Oy, 4 & ‘ ‘
H,(p,7/2,1+0) = 5, (py7/2,21 +0) = (gmo/ o) = ZA+" (]{n/b) Ji (jinp/b) ,a<p<b
n=1
=0,0<p<a (374)
8¢m 4 = / !
H, (pa W/Q,Zl - O) = 7% (pa 71'/2, 21— 0) = - (QmO/,uO) ; Z (A—n - Bo5n0) Cl,an (Cl,np) y a<p< b
n=0

(375)
The relevant orthogonality relations are

b , , B2 2 . 2 2
/ R, (Cm,np) R, (Cm,n’p) pdp = Onps [E <1 o ﬁ) R?n (Cm,nb) - (1 - C/;n ) 72 ] (376)

m,n 7T2Cm,n

b 1 2 2
0 G 8) T ) o =12 [ G0) i ) e = 80 (1= F2= ) 72 (i)
0 0

m,n
(377)
and thus

b 2
. 4 ) b 1 .
/ J1 (]i,np/b) H, (,0, 71—/2’ z1 + 0) pdp = (QmO/NO) ;A-i-n (]i,n/b) E (1 - j/2 ) J12 (]i,n) ,n=12,..
a 1,n
(378)

b
/ Ry (Cll,np) H, (p, 7T/2, 21— 0) pdp

= — (gmo/ )é(A — Bobno) ¢} v - R? (¢1.0) — L DU I
= dmo/ Ko o —n 09n0)G1,n 9 Cfnbz 1\61,n C/12,n(l2 W2<i%n ) =Yy dy ..
(379)

Taking the basis
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PH. (p. /2. £0) = 3" H;f; () (380)

fi(p) =1, pj_1/2<p<pji1)2

=0, otherwise (381)

P12 =@ (382)

Pi+1/2 = b (383)
pj=a+b—a)j/J, j=0,1,..,J (384)
Pivijz = (Pj+1+p;) /2 (385)

gives

b
/ Ty (4100 /b) H (po/2, 21+ 0) pdp

= ZHj /ijrl/2 J1 (ji,np/b) dp = i 1, [Jo (j{,npjfl/Q/b) —Jo (ji,nijrl/Q/b)} (386)

T
j=1 Pi—1/2 j=1 .71,n/

J

b Pj+1/2
/ Ry (C)p) He (pym/2,21 — 0) pdp = S H, / Ry (Cyp) dp
a J:1

Pj—1/2

= Z gj [J{ (C/l,na) {Yo (Cll,npj—l/Q) - Yo (Cll,npj+1/2)} - {Jo (Cll,npj_yz) —Jo (Cll,npj+1/2)}yl/ (C/Lna)}

Jj=1°>%
(387)
Next we match the potential at z = z;

BoRiy (Chop) + > AR (C1up) =D Avni (41,,0/0) , a<p<b (388)

n=0 n=1

Inserting the series coefficients
™ b Y / / / g1 1 2 (s
(NO/QMO)Z J1 (Jl,np /b)sz (paﬂ—/2521+0)d(p /b) :A+7l]1,7z§ 17‘77 Jl (.]1 n) ; n:172a'~'

™

b
(i0/am0) § [ s (¢1.00") 9L (6152, = 0) d ')
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1 1 1 2
- (A*n - BO(SnO) C/l,nb li (1 - ﬁ) R% (C/l,nb) - (1 - C/12 a2> 7T2<-/12 b2‘| , n=0,1,.. (390)

then gives the integral equation

% (gmo/ ko) Bolt (Cll,op)

> Ry (C1np ’
= Z , 1 o 1/< B ) 1 4 / Ry (Cll,np/) pIHZ (,0/7 7T/27 Z1 = 0) d (p//b)
i b [(1- ) B (Gat) = (1~ ) moetm]

- Jl (]:/lynp/b) b -/ / / / /

+Z : ; s / J1 (J1..0"/6) P H: (0 7/2,20+0)d (p'/b) , a<p<b (391)
n=1J1, (1 - E) It (41) Je

If we insert the basis expansion

4 /
p (gmo/ o) Bolt (CLOP)

o Ry (¢1.0p)
T () Gt - (1 ) ]

—

i g‘Hib Jl C1 n@ ) {YO (Cll,npj—1/2> - Y (Cll,npj+1/2)} - {JO (Cll,nﬂj—l/2> —Jo (Cll,npj-&-l/Z)}Yl/ (Cll,na’)j|

=1

<.

J2 (31, 7= Jin

J
(J1.np/b) , .
+ Z (1 L ) Z s [JO (]£7np]—1/2/b> —Jo (Ji,npj+1/2/b>:| y @ <p< b (392)
If we integrate against the same basis function to obtain the Galerkin result

Pj'+1/2
~ (o) Bo [ Ba (Ghop) (/D)

Pjr—1/2

1 /Pj/+1/2 ,
_ Ry (C1,np) d(p/b)
G- ) R (- ) ] oo

J
H;
2T

j=1

—

J1 C1 na ) {YO (Cll,npj—l/Q) -Yy (Cll,npj-&-l/Q)} - {JO (Cll,npj—l/Q) —Jo (Cll,npj+1/2)}yll (</1,7za’):|
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Pj'+1/2

- 1
* i (1.p/b) d (p/b)
g L (1 a ﬁ) Tt (Jin) Pjl—1/2 1( ' )
L H
Zl_j[ (31 nPj— 1/z/b) Jo (ji,npm/z/b)} N (393)
j=1
or

4 1
— (gm, By——
T (q O/IU‘O) OC/LOb

56 5 1) =3 ()}~ 0 )~ (o) 2 o)

_ i 1
_ 1 :
) ) ) ]

S G (- ) )

(71 (¢1u0) {¥0 (Gpimrj) = Yo (Cupyae) } = {0 (Clnpyarse) = o (Chpirnse) ¥ (CLao)]

3,9t {306 12) 30 Ghatrrs)} (90 Gsen) 9 (Gn)}1 6)]
=1

gy o Gteeaalt) (et
iHJ’ o (35.005-1/2/8) = Jo (30py1/2/0) | o 5 =150 (304)
=

or

- (q 10/ Ho) Bo Cllob [Rl (§I1,0Pj’—1/2) - Ry (C&,o/’j’—&-l/Q)]

1

o ) B (Cab) — (

[RO (Cll,opj'—l/z) — Ry (C/I,Opj’+1/2>} ZHj {RO (C/Lopj—l/z) — Ry (Cll,opj+1/2>}

j=1

"

+ Z ( ',21 S ) [JO (ji,npj/—l/Q/b> —J (ji,npj’+1/2/b):|
Iin )

n= 1]171
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J
S"H; [ o (1b5-12/0) = o (Fabsiaselb)] o 7 =10 (395)
j=1
This is a J x J system we can write as

AX =B (396)
with elements
4
— (amo/ho) Bow; = Hj (397)
_ 1 !/ !
b]/ = C/1,ob {RO (5170%/—1/2) Ry (C170/)j'+1/2)} (398)

ajy = ! " }

20 @) (1 ) B () = (1= ) o
[RO (Cll,npjul/Q) — Ry (Cl,npj’+1/2>} [RO (Cll,npjfl/2) — Ry (C/l,npjﬂ/z)]

[ee]
1 . . . .
+ s (1 L) 2 (7 [JO (ji,npj/—l/Q/b) —Jo (Ji,nﬂj/+1/2/b)] [JO (Ji,npj—l/Q/b> —Jo (Ji,nﬂj+1/2/bﬂ
n=1J1n ( ’2n) Jl (.71,n)
(399)
and
From this system solution we then need the coefficients A,
i 1, {JO (ji,npj—1/2/b) —Jo (ji,npj+1/2/b)} = (qmo/ 1) zjim,A'i‘n ;=12 ..
=t (1= ) I3 () ™
(402)
or
J
2By Z & [JO (ji,npj—l/Q/b) —Jo (ji,npj—i-l/Q/b)] = ji,nA-i-n , =12, (403)

=7t (1= 5) T2 ()

In the end we want to determine the tangential magnetic field at the center of the tip of the terminating
center conductor of the coax

by, 4 &
Hy (0,21 +0) = o (0,7/2, 21+ 0) = — (gmo/1o) — > (/b)) Apn 1 (41, nP/0)]
n=1
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4 & 1 .
= (amo/1o) = D (G1,0/0) Asn | Jo (71,00/b) — T (71,n0/b)
n=1 ]1,np p—0
2 o0
= (gmo/10) = > (71.0/%) At (404)
n=1
or
a/b S~
Hy (0,21 +0) / {4 (amo/ 1) fa} = 5= S 1w A
n=1
1 oo J T
= ;BO (a/b) Z Z , 1J S [JO (ji/l,npj—l/Q/b) —Jo (j£7npj+1/2/b)} (405)
n=1j=1J1n (1 - K) JE (41.)
where

ﬁfﬂ (¢1.00)

_1 2 (! 1 4
(1= ) B (6hot) - (1 - ) et
We can write this solution for twice the tip field 2H, (0,21 + 0) as

By = e C1o% (406)

(b/a = 1) == R (C1,0b)
) 7 )~ (1~ ) v

(bfa—1)2H, (0,21 +0) 0% / {4 (quo/py) Ja} = =

oo J
2(a/) 3 Y - = ;)J% m )[Jo (7.005-12/6) = Jo (71,00541/2/0) |

= [(b/a - 1) HéM (CL, 0, Zl) eCILOZl / {4 (QmO/NO) /a}}

(E) (Trgf b) nzljzl Ji " (1 B j) J2 ( /A n) [JO (ji,npj—l/Z/b) —Jo (jivnpj+1/2/b):| (407)

where the approximation using the lowest mode in the coax is

(ba—1) /) (325 ) B (¢hob)

(1- ) B (o) - (1- ) (=)

Figure 5 shows this numerical solution (407) with J = 100 as the black curve; the dashed gray curve is the
preceding lowest order mode result (408) and the light gray curve is the ratio of the black and dashed gray
curve (correction to lowest order mode result). A fit is given by

(b/a—1) HZM (a,0,21) €440% / {4 (gmo/ o) /a} ~

(408)

(b/a — 1) HEM (a,0, 21) €192 / {4 (gmo/1o) /a} ~ 0.4+ 0.65 (a/b)” + 0.15 (a/b)° (409)
which is shown as the dash-dot curve.
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Figure 5: The solid black curve is the maximum magnetic field (current density) at the center of the tip
of the terminating center conductor as a function of the ratio of inner-to-outer coaxial radii. The dash-dot
curve is a simple fit. The gray dashed curve is the approximation discussed in the prior section, using the
maximum magnetic field of the dominant coaxial mode around a continuing coax at the location of the actual
termination (the solid gray curve is the ratio of the black to gray dashed curves).
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4.6 Cap To Connector Inductance/Resistance And Pin Voltage

We can apply the preceding current density driven by the magnetic field to the preceding formulas for the
connector cap inductance [1]

Vinax = Vit + Vit (410)
with external inductive cap voltage
ext cap d cap cap cap
Vmax = Lmax2hCGPEKsc < Lmaxzh’CU«PKsc /TT (411)
and internal cap voltage
1 Vint Lmax \/T d1/2 I < 4,Ut Lmax I /
— = o ; —_— in/Tr
2 0 Weap HIET gz tvin = V 70 poweap
Linax dr/? Aut Liax
= — /1) 02hcap— s Koe? < . “—2hcapKse? [Ty (412)
HoWeap datt/? TO HoWeap
with maximum in time
1_. /4 Leep
_Vrﬁi < ﬂﬂthap[(scgp/TT (413)
2 MO fhgWeap

There is also an internal voltage contribution due to the pin itself (between cap and connector base). If the
current is confined to the surface of the pin for the rise time region

in Wea, 81/2 Wea 4M t
Viin = gma\ Mol Or gz i (8) = 52y [ ——= (Tyin/Tr) (414)

2T Apin 2T Apin \| TOp

with maximum value

yint < Weap 4“pTT
pin =
2T apin o,

(Lpin/Tr) (415)

where p,, and o), are the magnetic permeability and conductivity of the pin material. Therefore

4 r 2 ca 4 Tr
Vinar < | L6 [ 14 /21T 4 Weap [T o KCaP)7, (416)
TO  foWeap 2mapin \| wop

The estimate for this cap inductance due to the cap-to-connector base slots [1], [6] is

ca HoWeap hcap
LR~ 1 dea leap = 2hcq 41
max om n (ﬂ-apin) ’ P >> P P ( 7)
or
1 w LW deap/ (2Tapin)
R - hca cap 0Wecap 1 cap pin dca gca 418
max 41”0 P dcap + T n |:COS (ﬂ—fpin/dcap) ’ iy << iy ( )

where 2hcqp = fcqp is the distance between pin contacts, dgqp is the overlap depth, weq, is the gap width,
Qpin is the pin radius, and fp;, is the displacement of the pins from the depth center toward the interior of
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the connector. For f,;, = 0 a function which incorporates both these limits, and remains uniformly valid, is

1]

ca 1 w HoW. deap/2 e
LeP = Z:u()hcap dCC:;’ + % {111 (m) —In (1 _e pm/hmp)] s fpin=0 (419)

Near the outer radius of the cap, but interior to the connector, the voltage appears at the top of the
cap, where the cap insulator exists. This voltage spreads out to develop the electric field near the pins. We
estimate the electric field at the pins by using the a parallel plate formula

hconnEcap ~ Vrﬁgi (420)

where hconn is the height of the cap above the base of the pins. If the insulator is foam with a dielectric
constant near unity, the height Ao, is the distance to the cap metallic surface. Alternatively, if it is a solid
dielectric this height should be reduced somewhat (the thickness of the insulator reduced by the inverse of
the dielectric constant) to account for the dielectric constant of the insulator.
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5 OTHER PENETRATION MECHANISMS

If the cylindrical barrier has any small holes (circular hole results are given here) we can estimate interior
fields by estimating the hole dipole moments either for a direct lightning strike or the fields from a close
strike. Another mechanism is direct diffusion of the low frequency lightning field through the conductive
barrier; although uniform field drives can be easily treated, the practical worst case drive is a strike to some
exterior conductor near the barrier surface, providing a line source current drive.

5.1 Hole Fields

If there is a small circular hole in the outer cylindrical shield, we can estimate the penetrant magnetic and
electric fields. The magnetic field through an open hole in a thin shield is large but decreases rapidly with
distance, and the thickness of the shield causes exponential decay of the penetrant amplitude. Let us use
the magnetic dipole moment of a circular hole to see how big the magnetic field at a distance will be. In
this section we define the dipole moments taking into account the presence of the ground plane (in other
words the potential and fields can be found in free space from these moments). The dipole moment for a
wire (carrying lightning current) laying across a circular aperture of radius apepe 18 [2]

my = —2I (t) a12zole (421)

If we had an excitation of a uniform short circuit field H;¢ instead of this localized source, the general
definition of the aperture magnetic dipole moment in terms of the magnetic polarizability cu, = @ yy is [§]

my = =2, H)° (422)
where in a thin shield the polarizability is [8]
4
a?n = gaiole (423)

The shield in this case often has a large wall thickness A, and thus the polarizability for this case is modified
to [9]

i =~ a2, 0.838 ¢ 11 (A/anore) (424)

where j1; = 1.841 is the first root of Ji (z) = 0. In our case with the local current excitation we thus include
the exponential decay factor

my ~ —2I (t) a2y e (B anote) (425)
The magnetic potential from this dipole moment is then

m-r mysinfsing

= = 426
¢m A3 Ar2 ( )

The magnetic field is then
H=-V¢, (427)

or
. . 2 . .
" - _ﬁ¢ _ mysin 9[smap _ 1o (t) (anote/T) Sln951n‘lpe—j{1(A/ahoze) (428)
or™™m 2mr3 r
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10 mycosfsing Iy (t) (anote/r)? cosfsing
H)y = — - — - - ote J11(A/anote) 499
o rofg" ™ 473 27r ¢ (429)
1 0 mycose  Io(t) (anote/r)* cosp
H —=—-—— 2 - 1 — J11(A/anote) 4
© rsinf Op Om 43 2mr c (430)

The field values can double on an interior conductor surface. Hole depth (waveguide decay) reduces these

levels if the wall thickness is substantial. Skin depth can effectively increase the hole radius, but we are

interested in the time derivative of the magnetic field, so the early time ¢t = 7., is of primary interest.
There is also an electric dipole moment of the hole, which for a uniform drive field EZ¢ is [8]

Pz = 2e0q. B¢ (431)
and for a circular hole the polarizability in a thin screen is [8]
2 .
a(e] = gaiole (432)
For a large thickness this is modified to [9]
e ~ a? 0.825¢ 701 (A anote) (433)
where jo 1 = 2.405 is the first root of Jy () = 0. In our case we simply add the exponential decay

2 . )
e R 2203 0l B (1) 0 (3ot (134)

The electric potential from this electric dipole moment is then

p-r _pzcosﬁ

== = 435
dmegr3  4dmegr? (435)
The electric field is then
E=-V¢ (436)
or
0 P, cos b 2 3 .
E,=——¢= —— Esc Jo,1(A/anote) 0 4
. mea® ~ 3n (anote/7T)" E€(t) e cos (437)
10 P, sinf 1 3 i .
By— _~ Y= _ z _ = ole E5¢ (t jo,1(A/anote) 0 4
0 T 80¢ 4dmegr3 3r (anote/r)” B2 (t) € st (438)
E,=0 (439)
We take the planar breakdown level for the electric field to be the typical 3 MV /m or
EJ° <30 kV/cm (440)

with a time rate of change of roughly 7.
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5.1.1 Hole Cover

If a hole cover is in place, made out of anodized aluminum, then there will be a thin slot around the cover
instead of an open hole. The slot can behave in a similar manner to the door slot, except it is taken to be
much smaller in overall diameter. The magnetic charge per unit length around the slot g, (s) will generate
the magnetic dipole moment in this case hpole = Tanoie

1 Rhote
m=— Gm (8) rds (441)
Ho J—hpote
1 1
§Qm (s) = Lanodil—o (t)sgn (s) (442)
1 1 9 T 2
§my = ‘LL_LGWOdIO (t) Apole Sm SOdQD = (LanOd/:u’O) IO (t) 27ra’hole (443)
0 0
Lanode/ﬂ(} - W/Qéwle (444)
ngle ~2In (Shhole/whole) + 7T-dhole/ujhole (445)

When Q79 is large, this dipole moment is much smaller then the open hole dipole moment of the preceding
section. Skin effect can increase the effective hole radius here. If the hole depth dpoe > hpote there will be
exponential decay in this slot gap region. Instead we add the preceding exponential decay through the hole

my =2 (Lanod/lu’O) IO (t) 27ra’%bolee_j{1(A/ahOle) (446)
and thus
21y (t) /r
(2/7T> ln (Shhole/whole) + dhole/whole

The electric dipole moment of the hole is now created by the voltage of the cover and is reduced from
the open hole case.

H~

(@noter)? e~ Fha /et (447)

1 Rhote 1
P, = —§anhole/ Im (S) ds = _560 <Im> 7Ta12wle (448)

—hhote

where the magnetic current of the gap is taken as

I, (s) =2V (s) (449)
Adding the exponential decay factor

1 .
e % =520 () w0 (8010 (450)

After breakdown of the cover at a point, the voltage assumes a linear profile around the azimuth, and thus
(Im (s)) = 2(V (s)) = V (0) (451)
with

1
Vv (0) = 5 (IU/T’I‘) hholeLanod (452)
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and

toPhote (IO/TT) / (87“) 2 —joa(A/ )
E =~ Ghole/T)” €701 2/ Ghole 453
(2/7T> In (Shhole/whole) + dhole/whole ( ° 6/ ) ( )
Also, because breakdown is now a possible mechanism for initial contact of the cover with the surrounding
enclosure, there can be an initial increase in the change of the electric dipole moment with time, and the
collapse from a uniform voltage gives

(I (s)) = 2(V (s)) = 2Vp (454)
and therefore
~ Vo 2 —jo,1(A/anote)
E =~ o (ahote /)" €770 (455)

Experimental evidence gives Vp < 1 kV [10] and a breakdown time of O (1 ns). This electric field limit also
overrides the preceding result driven by the lightning current.

5.2 Diffusion Field

We now summarize the diffusion penetration. The cylindrical wall has thickness A. To treat this problem
we give the field penetration through a conductive layer with conductivity o driven by a decaying electric
line current exterior to the barrier

I(t)=Toe | Iy =200 kA, a = 1/ (288 us) (456)

modeled by a transfer impedance boundary condition. This simplified boundary condition usually gives
accurate results for the distance between source and observation point p, larger than the wall thickness A

Iy e~ 1

 2ms; _Po/s' * at + py/si +e Tl i (pg/si) — Bi(at + po/si)}| 5 po > A (457)

HI (07 pO) =

where the electrical distance associated with the transfer impedance boundary condition is (pq = 47 x 1077
H/m)

si =1/ (apgoA/2) (458)

and we have frequently used the electrical conductivity of 304 stainless steel alloy o = 1.4 x 10 S/m or
commercial aluminum 6061 alloy with o = 2.6 x 10 S/m. The exponential integral is defined as the principal
value integral

e d
Ei(z) = —PV / e*“zu (459)
For p, >> s; we can use the asymptotic expansion
Ei(z)~ (/) 14+ 1/z+ .. +nl/z" +..] , >>1 (460)

to rewrite this field as

x

Iy e ot N Po/Si
2mpo | po/si (ot + po/si)

] yPo >> SiyPo > A (461)
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Taking the time derivative

QH N Iy aef’)‘t_ 20p/ s
o " 2mpy | pofsi (ot + py/si)’

0o >> Si,pg > A

and setting at <<'1
0 H I()OZSZ' I()

ot " ampE

>> s > A
WP%NOUA » Po iy Po

If we have several different conductive layers we can use the total thickness

A=A

Jj=1

and effective conductivity o,

J
A/O’e = Z Aj/O’j
j=1
We then use
s = 1/ (oA /2)
and

) TIyas; Iy
—H, ~ = Py S>> Siypg > A
ot 2mpt mpRugoeA Po 56 Po

(462)

(463)

(464)

(465)

(466)

(467)

The electric field from diffusion is small since it is created by current flow through the surface impedance

of the metallic wall.
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6 CONCLUSIONS

This report considers a cylindrical enclosure, with a door at one end having a circular or azimuthal slot
penetration, when struck by lightning. Interior to the enclosure is a coaxial structure topology having an
open circuit at the opposite end with a capped connector. Using approximate analytical techniques the
penetration of the drive fields and final coupling to the connector pins is estimated.

The report provides formulas for the average door voltage (26), plus hinge voltage (35), when struck by
lightning. The induced center conductor coaxial voltage is (263), with capacitances (262), (260), and voltage
drive (255). The resulting interior center conductor electric field (159) is determined, along with approximate
values (181) and (182). These are used to find the connector cap short circuit current (200), connector cap
voltage (211), and finally the pin voltage (216); because of the high impedance associated with the Thevinen
equivalent circuit at the low frequencies associated with lightning we expect the voltage delivered to a load
to be further reduced (221).

The magnetic field drive to the connector is also treated. The door slot charge per unit length (315),
drives the dominant mode magnetic potential (334), with decay constant (336). The tip magnetic field (407)
and (409), or approximate value from the dominant coaxial mode (408), drives the connector cap and gives
voltage (416).

The low frequency coaxial modes are examined in some detail with approximations given to estimate
capacitance and fields at terminated ends through closed form fits shown in the Figures.

The reduction in the door voltage drive when a conductive gasket in the door slot is used is given by
(65). The reduction in magnetic field drive when a conductive gasket in the door slot is used is given by
(364), which is nearly the same as the voltage reduction due to the gasket.

The field penetration through a small circular hole in the wall is given for the magnetic field by (428) and
for the electric field by (437). The penetration through a circular hole with cover is given for the magnetic
field by (447) and for the electric field by (453).

The diffusion penetration mechanism produces an interior magnetic field derivative (467) when driven
by an exterior line source lightning current.

References

[1] L. K. Warne, W. A. Johnson, K. C. Chen, and K. O. Merewether, “Joint Voltages Resulting From
Lightning Currents,” SAND2007-1267, March 2007.

[2] R. E. Jorgenson and L. K. Warne, “Useful Equations For Calculating The Induced Voltage Inside A
Faraday Cage That Has Been Struck By Lightning,” SAND2001-2950, Sept. 2001.

[3] S. Ramo, J. R. Whinnery, and R. Van Duzer, Fields And Waves In Communication Electronics,
New York: John Wiley & Sons, Inc., 1965, pp. 311-313.

[4] M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions, National Bureau of
Standards, Dec. 1972, pp. 299, 371, 374, 409, 415.

[5] L. K. Warne, L. I. Basilio, W. A. Johnson, M. E. Morris, M. B. Higgins, and J. M. Lehr, “Capacitance
and Effective Area of Flush Mounted Monopole Probes,” SAND2004-3994, Sept. 2004.

[6] L. K. Warne, W. A. Johnson, B. F. Zinser, W. L. Langston, R. S. Coats, I. C. Reines, J. T. Williams,
L. I. Basilio, and K. C. Chen, “Narrow Slot Algorithm,” SAND2020-3979, April 2020.

[7] L. K. Warne, W. A. Johnson, L. I. Basilio, W. L. Langston, and M. B. Sinclair, “Subcell Method For
Modeling Metallic Resonators In Metamaterials,” PIER B, Vol. 38, pp. 135-164, 2012.

69



[8] K. S. H. Lee (editor), EMP Interaction: Principles, Techniques, and Reference Data, New
York: Hemisphere Pub. Corp., 1986, p. 441.

[9] L. K. Warne, L. I. Basilio, W. L. Langston, K. C. Chen, H. G. Hudson, M. E. Morris, S. L. Stronach,
W. A. Johnson, and W. Derr, “Electromagnetic Coupling Into Two Standard Calibration Shields On
The Sandia Cable Tester,” Sandia National Laboratories Report, SAND2014-0842, February 2014.

[10] M. A. Dinallo and R. J. Fisher, “Voltages Across Assembly Joints Due To Direct-Strike Lightning
Currents,” Sandia National Laboratories Report, SAND93-0788, August 1994.

70



DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

K. O. Merewether 02900 MS0405

W. L. Langston 01324 MS1152

J. D. Kotulski 01324 MS1152

A. R. Pack 01322 MS1152

R. A. Pfeiffer 01324 MS1152

L. San Martin 01322 MS1152

L. K. Warne 01324 MS1152

Technical Library 01911 sanddocs@sandia.gov

Hardcopy—Internal

Number of

Copies Name Org. Mailstop

L. San Martin 01322 MS1152
L. K. Warne 01324 MS1152

71




Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract

DE-NA0003525.






