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Abstract

We assemble bounding formulas for the interior fields and pin voltages inside a cylindrical coaxial
Faraday cage which has been struck by lightning. Approximate formulas for penetrations through a
circumferential door slot with subsequent coupling to the interior center conductor structure. Fields at
the opposite open end are estimated and used to drive a capped connector and estimate interior pin
voltages. Finally, penetrations through small circular holes and direct diffusion through the barrier are
also addressed.
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1 INTRODUCTION
This report provides approximate formulas for calculating penetrant electric and magnetic fields and resulting
induced voltages inside a finite length cylindrical coaxial Faraday cage structure which has been struck by
lightning. At one end a door with a circular slot causes coupling to the interior coax; reductions in coupling
due to conductive door gaskets in the slot are also examined. At the other end the center conductor terminates
resulting in an open-circuited coaxial arrangement. The electric field problem involves a dominant coaxial
symmetric mode, but the magnetic field problem involves a dominant asymmetric coaxial mode. Our purpose
is to determine the fields at the terminated end of the center conductor structure where a connector may
be located. Approximations are given to assess the fields associated with the open circuited end of the coax
and the resulting worst case pickup by a connector. Estimates for field penetrations through small circular
holes and by means of direct diffusion through the cylindrical barrier are also discussed.
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2 DOOR FIELDS
The induced voltage from a slot around the circular door at the end of the coaxial topology is derived.

2.1 Door Slot Penetration

As a worst case we assume lightning strikes the door near the circular slot, with a return on the cylinder on
the opposite side of the slot. The return can be through a breakdown which is taken to occur 180 degrees
around the slot at some gasket defect, or the return is at a door hinge. The current then flows in the walls
of the slot with the distribution (where the azimuth coordinate is s = bϕ)

I (s, t) = ±1
2
I0 (t) =

1

2
I0 (t) sgn (s) , − h < s < h (1)

2h = 2πb (2)

where b is the approximate cylinder radius. The slot external inductance per unit length is [1]

1/L = 1/Lintr + 1/Lextr (3)

where the interior part is (µ0 = 4π × 10−7 H/m is the magnetic permeability of free space)

Lintr = µ0w/d (4)

and the exterior part is

Lextr ∼ πµ0/Ω
extr
e (5)

with

Ωextre = 2 ln
¡
2h/a0e

¢
+ Ce (6)

Ce = 2 (ln 2− 7/3) (7)

a0e ∼
2w

πe
, d > 0.3w (8)

The transmission line equation for the slot voltage is

d

ds
V (s, t) = −L ∂

∂t
I (s, t) (9)

where

V (±h, t) ≈ 0 (10)

The integration then gives

V (s, t) =
1

2
(h− |s|)L ∂

∂t
I0 (t) (11)

The average external door voltage used to drive the symmetric (in azimuth) coaxial problem, is then

hVexti = 1

2h

Z h

−h
V (s, t) ds =

1

2h
L
∂

∂t
I0 (t)

Z h

0

(h− s) ds =
1

4
hL

∂

∂t
I0 (t) (12)

9



Note that for large slot depth compared to the slot width d >> w, we can approximate and bound the total
inductance per unit length L by the interior part Lintr

V (s, t) . 1

2
(h− |s|)Lintr ∂

∂t
I0 (t) (13)

and average door voltage

hVext (t)i . 1

4
hLintr

∂

∂t
I0 (t) (14)

2.2 Finitely Conducting Slot Walls

When the metallic slot walls are finitely conducting with conductivity σ and magnetic permeability µ, there
is a surface electric field present, which is related to the surface magnetic field through [1], [2]

E0 (t) =
p
µ/σ

∂1/2

∂t1/2
H0 (t) (15)

For a linear ramp magnetic field in time (with rise time τr) this becomes [1]

H0 (t) = H0 (t/τr) , 0 < t < τ r (16)

E0 (t) = (H0/τr)

r
4µt

πσ
(17)

We approximate the interior slot surface magnetic field by the total slot current divided by the slot depth

H (s, t) . I (s, t) /d = sgn (s) I0 (t) / (2d) (18)

The internal slot voltage is then (one half the contribution results from each of the parallel interior walls)

1

2
Vint (s, t) .

1

2
(h− |s|) 1

d

p
µ/σ

∂1/2

∂t1/2
I0 (t) (19)

For a linear ramp current in time

I0 (t) = I0 (t/τr) , 0 < t < τ r (20)

1

2
Vint (s, t) .

1

2
(h− |s|) 1

d

p
µ/σ (I0/τr)

r
4µt

πσ
(21)

The average is then

hVint (t)i . 1

2
h
1

d

p
µ/σ

∂1/2

∂t1/2
I0 (t) (22)

and for the ramp current profile

hVinti . 1

2
h
1

d
(I0/τ r)

r
4µt

πσ
(23)

The total average is then

10



hVtot (t)i = hVext (t)i+ hVint (t)i . 1

4
hLintr

∂

∂t
I0 (t) +

1

2
h
1

d

p
µ/σ

∂1/2

∂t1/2
I0 (t) (24)

and for the ramp current profile

hVtoti = hVexti+ hVinti . 1

4
hLintr (I0/τ r) +

1

2
h
1

d
(I0/τ r)

r
4µt

πσ
=
1

4

h

d

Ã
µ0w + 2

r
4µt

πσ

!
(I0/τ r) (25)

To obtain an approximation for the largest value of the voltage we can set t = τr

hVtoti . 1

4

h

d

Ã
µ0w + 2

r
4µτ r
πσ

!
(I0/τ r) =

πb

4d

Ã
w +

2

µ0

r
4µτr
πσ

!
µ0 (I0/τr) (26)

For one-percentile worst case lightning we can take I0 = 200 kA and τ r = 0.5 µs. If we have stainless steel
slot walls σ = 1.4× 106 S/m, µ = µ0 and

2

µ0

r
4µτr
πσ

≈ 1.2031 mm (27)

For commercial aluminum slot walls σ = 2.6× 107 S/m, µ = µ0 and

2

µ0

r
4µτr
πσ

≈ 0.2792 mm (28)

2.3 Hinge Inductance

Hinges (and/or latches) on the circular door often have a high inductance so they are sometimes ignored
versus a breakdown (however, the rise rate is increased in a breakdown event due to the shorter voltage
collapse time). The hinge inductance model can be approximated by a half loop or a half solenoid, depending
on the hinge (azimuthal) length. A half loop of radius Rloop and wire radius aloop on a ground plane has
inductance

Lhalfloop =
1

2
µ0Rloop [ln (8Rloop/aloop)− 2] (29)

A half single-turn solenoid of radius Rhinge and length chinge on a ground plane is

Lhalfsol =
1

2
µ0πR

2
hinge/chinge (30)

A correction to the solenoid is [3]

Lhinge = Lhalfsol =
1

2
µ0πR

2
hinge/ (chinge + 0.9Rhinge) , chinge > 0.8Rhinge (31)

For some hinge designs we can add two quarter loop inductances (each one half the half loop inductance) in
parallel at the ends of the half solenoid geometry to complete the connection to the door. In this case the
total hinge inductance is taken as

Lhinge = Lhalfsol +
1

2
· 1
2
Lhalfloop (32)

The voltage across the hinge is then

11



Vhinge = Lhinge
∂

∂t
I0 (t) (33)

We could add the internal impedance contribution, but since this hinge inductance is usually substantial we
neglect internal impedance. This terminating hinge voltage is added to the slot voltage distribution. For a
linear ramp current in time

I0 (t) = I0 (t/τr) , 0 < t < τ r (34)

Vhinge = Lhinge (I0/τ r) (35)

The total voltage across the door-to-cylinder then consists of the sum of this constant hinge voltage and the
slot voltage.

2.4 Conductive Slot Gasket

We now consider a conductive gasket occupying a depth dg < d in the door slot. We bound the penetration
in this section by assuming that the decay length in the gasket is larger than the gasket depth dg.

2.4.1 Gasket Decay Length

The decay length in the gasket is approximated by the skin depth in the gasket material, with electrical
conductivity σg and magnetic permeability µg

δg =
q
2/
¡
ωµgσg

¢ ≈q2τ r/ ¡µgσg¢ (36)

which is assumed to be larger than the gasket depth dg (if this is not true there will also be exponential
decay in the gasket depth direction).

2.4.2 Time Domain Conductive Gasket Voltage

The slot transmission line equations in this case are

∂V

∂s
= −L∂I

∂t
(37)

∂I

∂s
= −GV (38)

where we take the gasket conductance per unit length to be

G = σgdg/w (39)

and assuming the gasket permeability is that of free space µg → µ0, we can approximate the inductance per
unit length as

L ≤ Lintr = µ0w/d (40)

Eliminating the slot voltage gives

∂2I

∂s2
= LG

∂I

∂t
(41)

12



To find solutions we first let

I = tβF (ξ) , ξ = s/tα (42)

Substituting into the partial differential equation yields

t1−2α
d2

dξ2
F (ξ) = LG

·
βF (ξ)− αξ

d

dξ
F (ξ)

¸
(43)

Choosing α = 1/2 to eliminate the explicit t dependence, and for convenience letting ξ = 2u/
√
LG, gives

the ordinary differential equation

d2

du2
F (u) + 2u

d

du
F (u)− 4βF (u) = 0 (44)

The solutions are the iterated complementary error functions [4]

F (u) = Ai2βerfc (u) +Bi2βerfc (−u) (45)

where

inerfc (u) =
Z ∞
u

in−1erfc (u0) du0 (46)

i0 = erfc (u) (47)

i−1erfc (u) =
2√
π
e−u

2

(48)

i1erfc (u) = −uerfc (u) + 1√
π
e−u

2

(49)

i2erfc (u) =
1

2

µ
1

2
+ u2

¶
erfc (u)− u

2

1√
π
e−u

2

(50)

i3erfc (u) = −u
3

·
1

2

µ
3

2
+ u2

¶
erfc (u)− u

2

1√
π
e−u

2

¸
+

1

6
√
π
e−u

2

(51)

i4erfc (u) = −u
4

·
−u
3

·
1

2

µ
3

2
+ u2

¶
erfc (u)− u

2

1√
π
e−u

2

¸
+

1

6
√
π
e−u

2

¸
+
1

8

·
1

2

µ
1

2
+ u2

¶
erfc (u)− u

2

1√
π
e−u

2

¸
Note that

lim
u→0

inerfc (u) =
1

2nΓ (n/2 + 1)
(52)

lim
u→0

i2erfc (u) = 1/4 (53)

Choosing β = 1 for a linear ramp current in time at s = 0, and selecting B = 0 for vanishing value at u→∞

F (u) = Ai2erfc (u) (54)

13



with

1

2
s
p
LG/t = u (55)

we have current distribution

I (s, t) = Ati2erfc (u) = At

·
1

2

µ
1

2
+
1

4
s2LG/t

¶
erfc

µ
1

2
s
p
LG/t

¶
− 1
4
s
p
LG/t

1√
π
e−

1
4s

2LG/t

¸
(56)

where the constant A is determined from I0 by means of

I (0, t) = At/4 =
1

2
(I0/τr) t (57)

The derivative is

∂

∂s
I (s, t) = At

∂u

∂s

∂

∂u
i2erfc (u) = −A1

2

√
LGti1erfc (u) = A

1

2

√
LGt

·
uerfc (u)− 1√

π
e−u

2

¸
(58)

∂I

∂s
(0, t) = −A1

2

p
LGt/π (59)

Thus the voltage is

V (s, t) = − 1
G

∂

∂s
I (s, t) (60)

with value at s = 0

V (0, t) = − 1
G

∂I

∂s
(0, t) = A

1

2

r
Lt

πG
= (I0/τr)

r
Lt

πG
(61)

Taking the maximum of the voltage at the rise time (after which the current changes from the linear ramp)

V (0, τr) = (I0/τr)

r
Lτr
πG

(62)

These distributions of voltage and current apply to the finite length slot provided the decay length is smaller
than the slot half length h = πb.
The average voltage around the slot is then

hV (s, t)i = 1

πb

Z πb

0

V (s, t) ds =
1

πbG
[I (0, t)− I (πb, t)] =

I (0, t)

πbG
=

1

2πbG
(I0/τr) t (63)

Taking the maximum at t = τ r

hV (s, τr)i = I0
2πbG

=
wI0

2πbσgdg
(64)

For very conductive gaskets these voltages are typically much smaller than the case without a very conductive
gasket.

hV (s, τr)i / hVexti = wI0
2πbσgdg

/

·
1

4
hL (I0/τ r)

¸
=

2 (d/dg)

(πb)2 σg (µ0/τr)
(65)
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2.4.3 Conductive Gasket With Gap

If there is a small gap 2hgap in the conductive gasket length dimension, there will be an inductive voltage
contribution from the gap in addition to the preceding conductive gasket contribution. Approximating this
extra inductance as if the current is injected uniformly in the depth direction gives the extra leading term
(ignoring the internal contribution within the metal)

Vtot = Lhgap
1

2
(I0/τ r) + V (0, τr) = µ0

w

d
hgap

1

2
(I0/τ r) + V (0, τr) (66)

If this gap is small in azimuth its average over azimuth will be relatively small

hVtoti ≈ 1
2

hgap
πb

Lhgap
1

2
(I0/τ r) + hV (s, t)i = 1

2

hgap
πb

µ0
w

d
hgap

1

2
(I0/τ r) + V (0, τr) (67)
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3 COAXIAL REGION ELECTRIC FIELD
The coaxial region has an induced field due to fields propagating in the dominant Transverse Electromagnetic
Mode (TEM) mode without decay along the length, and the other higher-order modes exhibiting decay. We
first estimate the electric field at the end of the terminated center (inner) conductor. We next estimate the
capacitance element between the door and the center conductor near the door; this is used to estimate the
induced center conductor voltage from the door excitation voltage.

3.1 Fields In Coaxial And Cylindrical Regions

Taking the electric displacement D and electric field E to be determined from the electric vector potential
Ae by means of

D = ε0E = −∇×Ae (68)

where Faraday’s law in this low frequency limit is

∇×E = −Jm (69)

and Jm is the magnetic current density. Then substituting the potential representation gives

∇×∇×Ae = ∇ (∇ ·Ae)−∇2Ae = ε0Jm (70)

Using the Coulomb gauge

∇ ·Ae = 0 (71)

we have

∇2Ae = −ε0Jm (72)

In this case we take the magnetic current to be ϕ-directed and to be independent of azimuth ϕ so that we
only have Aeϕ. Then using

∇2Ae =
¡∇2 − 1/ρ2¢Aeϕ (73)

we can write

¡∇2 − 1/ρ2¢Aeϕ =

µ
∂2

∂ρ2
+
1

ρ

∂

∂ρ
− 1

ρ2
+

∂2

∂z2

¶
Aeϕ = −ε0Jmϕ (74)

Taking the solutions to be combinations

Aeϕ = e±ζnzR1 (ζnρ) , (z − z0) ρ
±1 (75)

we have the source free form µ
d2

dρ2
+
1

ρ

d

dρ
+ ζ2n −

1

ρ2

¶
R1 (ζnρ) = 0 (76)

with solutions R1 (ζnρ), where

R1 (ζnρ) = J1 (ζnρ) , Y1 (ζnρ) (77)
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We place the termination of the center conductor at z = 0 with a cylindrical problem to the right z > 0 and
0 < ρ < b and a coaxial problem to the left z < 0 and a < ρ < b.
On the right we have boundary condition·

1

ρ

∂

∂ρ
(ρAeϕ)

¸
ρ=b

= −ε0Ez (ρ = b) = 0 , z > 0 (78)

and thus

Aeϕ =
∞X
n=1

A+n e
−ξnzJ1 (ξnρ) , z > 0 (79)

where only the Bessel functions can be retained due to the boundary condition and the finiteness of the
solution at ρ = 0. Then using

1

ρ

∂

∂ρ
[ρJ1 (ξnρ)] = ξn

µ
∂

ξn∂ρ
+

1

ξnρ

¶
J1 (ξnρ) = ξnJ0 (ξnρ) (80)

we have radial boundary condition

J0 (ξnb) = J0 (j0,n) = 0 (81)

where

ξn = j0,n/b (82)

The Bessel function roots are [4]

j0,n ∼ β +
1

2 (4β)
− 31

2 (4β)
3
3
+

3779

3 (4β)
5
5
+ · · · (83)

β = (n− 1/4)π (84)

j0,1 ≈ 2.4048255577 (85)

j0,2 ≈ 5.5200781103 (86)

j0,3 ≈ 8.6537279129 (87)

j0,4 ≈ 11.7915344391 (88)

j0,5 ≈ 14.9309177086 (89)

j0,6 ≈ 18.0710639679 (90)

j07 ≈ 21.2116366299 (91)

j0,8 ≈ 24.3524715308 (92)
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j0,9 ≈ 27.4934791320 (93)

j0,10 ≈ 30.6346064684 (94)

On the left we have radial boundary conditions·
1

ρ

∂

∂ρ
(ρAeϕ)

¸
ρ=a,b

= −ε0Ez (ρ = a, b) = 0 , z < 0 (95)

and as solution

Aeϕ =
A0 (z − z0)

ρ
+
∞X
n=1

A−n e
ζnzR1 (ζnρ) , z < 0 (96)

where

R1 (ζnρ) = J0 (ζna)Y1 (ζnρ)− J1 (ζnρ)Y0 (ζna) (97)

and from

1

ρ

∂

∂ρ
[ρR1 (ζnρ)] = ζn

µ
∂

ζn∂ρ
+

1

ζnρ

¶
R1 (ζnρ) = ζnR0 (ζnρ) (98)

we have

R0 (ζnρ) = J0 (ζna)Y0 (ζnρ)− J0 (ζnρ)Y0 (ζna) (99)

R0 (ζna) = 0 (100)

and

R0 (ζnb) = J0 (ζna)Y0 (ζnb)− J0 (ζnb)Y0 (ζna) = 0 (101)

These coaxial roots are [4]

ζna ∼ β +
p

β
+

q − p2

β3
+

r − 4pq + 2p3
β5

+ · · · (102)

β = nπ/ (b/a− 1) (103)

p =
−1
8b/a

(104)

q =
25
¡
b2/a2 + b/a+ 1

¢
6 (4b/a)3

(105)

r =
−1073 ¡b4/a4 + b3/a3 + b2/a2 + b/a+ 1

¢
5 (4b/a)

5 (106)

Some solutions are [4]
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ζ1,0a ≈ 2.07322886 for a/b = 0.4 (107)

ζ1,0a ≈ 4.69706410 for a/b = 0.6 (108)

ζ2,0a ≈ 4.17730 for a/b = 0.4 (109)

ζ2,0a ≈ 9.41690 for a/b = 0.6 (110)

ζ3,0a ≈ 6.27537 for a/b = 0.4 (111)

ζ3,0a ≈ 14.13189 for a/b = 0.6 (112)

ζ4,0a ≈ 8.37167 for a/b = 0.4 (113)

ζ4,0a ≈ 18.84558 for a/b = 0.6 (114)

ζ5,0a ≈ 10.46723 for a/b = 0.4 (115)

ζ5,0a ≈ 23.55876 for a/b = 0.6 (116)

3.2 Excitation Of Modes At Junction

We next examine the excitation of modes at the junction of coaxial and cylindrical regions. If we take the
radial field (or magnetic current) in the coaxial dominant mode as

Eρ ≈ V0
ρ ln (b/a)

, a < ρ < b , z > 0 (117)

and thus at the junction we can introduce a magnetic current density to represent the electric field

Jmϕ = Kmϕδ (z) = Imδ (z) /ρ , a < ρ < b (118)

where the surface magnetic current density is found from the discontinuity of electric field at a surface with
normal n pointing from region 1 to region 2

Km = −n× (E2 −E1) (119)

We can evaluate Kmϕ (ρ), Im (ρ), or Eρ (ρ), as a function of ρ by expanding in a basis, with say ρ1 = a and
ρJ = b

1

2
ρKmϕ (ρ) = ρEρ (ρ, 0) = V0/ ln (b/a) +

JX
j=1

Ejfj (ρ) (120)

A linear basis is
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fj (ρ) =
ρ− ρj−1
ρj − ρj−1

, ρj−1 < ρ ≤ ρj

=
ρj+1 − ρ

ρj+1 − ρj
, ρj < ρ < ρj+1

= 0 , otherwise (121)

matching the value of Dz = ε0Ez at z = 0 for a ≤ ρ = ρj0 ≤ b , j0 = 1, ..., J to determine Ej values. Instead,
it is advantages in carrying out the moments here to use a pulse basis

fj (ρ) = 1 , ρj−1/2 < ρ < ρj+1/2

= 0 , otherwise (122)

ρj =
³
ρj+1/2 + ρj−1/2

´
(123)

The potential representations are

Aeϕ =
ε0V0

ρ ln (b/a)
(z − z0) +

∞X
n=1

A−n e
ζnzR1 (ζnρ) , z < 0 , a < ρ < b (124)

Rm (ζnρ) = J0 (ζna)Ym (ζnρ)− Jm (ζnρ)Y0 (ζna) (125)

Aeϕ =
∞X
n=1

A+n e
−ξnzJ1 (ξnρ) , z > 0 , 0 < ρ < b (126)

Note that the z0 term does not contribute to the fields

Dz = ε0Ez = −1
ρ

∂

∂ρ
(ρAeϕ) (127)

Dρ = ε0Eρ =
∂

∂z
Aeϕ (128)

We have the radial fields

ε0Eρ =
ε0V0

ρ ln (b/a)
+
∞X
n=1

A−n ζne
ζnzR1 (ζnρ) , z < 0 , a < ρ < b (129)

ε0Eρ = −
∞X
n=1

A+n ξne
−ξnzJ1 (ξnρ) , z > 0 , 0 < ρ < b (130)

Orthogonality, from the section below, givesZ b

0

J1 (ξnρ) J1 (ξn0ρ) ρdρ =
b2

2
[J1 (j0,n)]

2 δnn0 (131)

Z b

a

R1 (ζnρ)R1 (ζn0ρ) ρdρ =
b2

2

·
R21 (ζnb)−

4

π2ζ2nb
2

¸
δnn0 (132)
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Applying this yields

ε0

Z b

a

·
ρEρ (ρ, 0)− V0

ln (b/a)

¸
R1 (ζnρ) dρ

= ε0

Z b

a

ρEρ (ρ, 0)R1 (ζnρ) dρ = −
ε0
ζn

JX
j=1

Ej

h
R0

³
ζnρj+1/2

´
−R0

³
ζnρj−1/2

´i

=
∞X

n0=1

A−n0ζn0
Z b

a

R1 (ζn0ρ)R1 (ζnρ) ρdρ = A−n ζn
b2

2

h
R21 (ζnb)− 4/ (πζnb)2

i
(133)

ε0

Z b

a

ρEρ (ρ, 0)J1 (ξnρ) dρ =
ε0V0
ln (b/a)

[J0 (ξna) /ξn]−
ε0
ξn

JX
j=1

Ej

h
J0

³
ξnρj+1/2

´
− J0

³
ξnρj−1/2

´i

= −
∞X

n0=1

A+n0ξn0

Z b

a

J1 (ξn0ρ)J1 (ξnρ) ρdρ = −A+n ξn
b2

2
J21 (j0,n) (134)

where we have used Z b

a

R1 (ζnρ) dρ = −
1

ζn
[R0 (ζnb)−R0 (ζna)] = 0 (135)

Then we have

ε0

Z b

a

·
Eρ (ρ, 0)− V0

ρ ln (b/a)

¸
(ζnρ)R1 (ζnρ) dρ = ε0

Z b

a

Eρ (ρ, 0) (ζnρ)R1 (ζnρ) dρ =

−ε0
JX
j=1

Ej

h
R0

³
ζnρj+1/2

´
−R0

³
ζnρj−1/2

´i
=
1

2
A−n

h
(ζnb)

2R21 (ζnb)− (2/π)2
i

(136)

−ε0
Z b

a

Eρ (ρ, 0) (ξnρ)J1 (ξnρ) dρ =

− ε0V0
ln (b/a)

J0 (ξna) + ε0

JX
j=1

Ej

h
J0

³
ξnρj+1/2

´
− J0

³
ξnρj−1/2

´i
=
1

2
A+n j

2
0,nJ

2
1 (j0,n) (137)

We next make the potential continuous at z = 0

− ε0V z0
ρ ln (b/a)

+
∞X
n=1

A−nR1 (ζnρ) =
∞X
n=1

A+nJ1 (ξnρ) , a < ρ < b (138)

or

∞X
n=1

£
A+nJ1 (ξnρ)−A−nR1 (ζnρ)

¤
=

ε0V0z0
ρ ln (b/a)

, a < ρ < b (139)

which gives the integral equation
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Z b

a

Eρ (ρ, 0)G (ρ, ρ
0) dρ

=

Z b

a

Eρ (ρ, 0) 2
∞X
n=1

"
(ξnρ)J1 (ξnρ) J1 (ξnρ

0)
j20,nJ

2
1 (j0,n)

+
(ζnρ)R1 (ζnρ)R1 (ζnρ

0)
(ζnb)

2
R21 (ζnb)− (2/π)2

#
dρ =

V0 (−z0)
ρ0 ln (b/a)

, a < ρ0 < b

(140)
Rewriting this as

2
∞X
n=1

"
J1 (ξnρ

0)
j20,nJ

2
1 (j0,n)

Z b

a

Eρ (ρ, 0) (ξnρ)J1 (ξnρ) dρ

+
R1 (ζnρ

0)
(ζnb)

2
R21 (ζnb)− (2/π)2

Z b

a

½
Eρ (ρ, 0)− V0

ρ ln (b/a)

¾
R1 (ζnρ) (ζnρ) dρ

#

=
V0 (−z0)
ρ0 ln (b/a)

, a < ρ0 < b (141)

and substituting the basis

JX
j=1

Ej

∞X
n=1

"
J1 (ξnρ

0)
j20,nJ

2
1 (j0,n)

n
J0

³
ξnρj+1/2

´
− J0

³
ξnρj−1/2

´o

+
R1 (ζnρ

0)
(ζnb)

2
R21 (ζnb)− (2/π)2

n
R0

³
ζnρj+1/2

´
−R0

³
ζnρj−1/2

´o#

=
V0z0

2ρ0 ln (b/a)
+

V0
ln (b/a)

∞X
n=1

J1 (ξnρ
0)J0 (ξna)

j20,nJ
2
1 (j0,n)

, a < ρ0 < b (142)

Applying a Galerkin scheme Z b

a

fj0 (ρ
0) dρ0 =

Z ρj0+1/2

ρj0−1/2
dρ0 (143)

gives

JX
j=1

E0j
∞X
n=1


n
J0

³
ξnρj0+1/2

´
− J0

³
ξnρj0−1/2

´on
J0

³
ξnρj+1/2

´
− J0

³
ξnρj−1/2

´o
j30,nJ

2
1 (j0,n)

+

n
R0

³
ζnρj0+1/2

´
−R0

³
ζnρj0−1/2

´on
R0

³
ζnρj+1/2

´
−R0

³
ζnρj−1/2

´o
(ζnb)

n
(ζnb)

2R21 (ζnb)− (2/π)2
o



=
1

2
(−z0/b) ln

³
ρj0+1/2/ρj0−1/2

´
+
∞X
n=1

n
J0

³
ξnρj0+1/2

´
− J0

³
ξnρj0−1/2

´o
J0 (ξna)

j30,nJ
2
1 (j0,n)

, j0 = 1, ...J (144)
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where we have set

Ej =
V0

ln (b/a)
E0j (145)

and

1

2
ρKmϕ (ρ) = ρEρ (ρ, 0) =

V0
ln (b/a)

1 + JX
j=1

E0jfj (ρ)

 (146)

Rm (ζnρ) = J0 (ζna)Ym (ζnρ)− Jm (ζnρ)Y0 (ζna) (147)

We need to pick a value for z0/b and proceed to solve the linear system. This choice influences the solution
and the resulting value of the total voltage across the gap from this choice. We solve the system

JX
j=1

E0j
∞X
n=1


n
J0

³
j0,nρj0+1/2/b

´
− J0

³
j0,nρj0−1/2/b

´on
J0

³
j0,nρj+1/2/b

´
− J0

³
j0,nρj−1/2/b

´o
j30,nJ

2
1 (j0,n)

+

n
R0

³
ζnρj0+1/2

´
−R0

³
ζnρj0−1/2

´on
R0

³
ζnρj+1/2

´
−R0

³
ζnρj−1/2

´o
(ζnb)

n
(ζnb)

2
R21 (ζnb)− (2/π)2

o


=
1

2
(−z0/b) ln

³
ρj0+1/2/ρj0−1/2

´
+
∞X
n=1

n
J0

³
j0,nρj0+1/2/b

´
− J0

³
j0,nρj0−1/2/b

´o
J0 (j0,na/b)

j30,nJ
2
1 (j0,n)

, j0 = 1, ...J

(148)
To find the resulting total voltage from the center conductor to the outer conductor

V =

Z b

a

Eρ (ρ, 0) dρ =

Z b

a

V0
ρ ln (b/a)

1 + JX
j=1

E0jfj (ρ)

 dρ = V0

1 + JX
j=1

E0j ln
³
ρj+1/2/ρj−1/2

´
/ ln (b/a)


(149)

Let us normalize the resulting electric fields, including the TEM mode unity term, by the bracketed quantity
V/V0

V0 = V/

1 + JX
j=1

E0
j ln

³
ρj+1/2/ρj−1/2

´
/ ln (b/a)

 (150)

The total field is then

Eρ (ρ, 0) =
V0

ρ ln (b/a)

1 + JX
j=1

E0jfj (ρ)


=

V

ρ ln (b/a)

1 + JX
j=1

E0jfj (ρ)

 /
1 + JX

j=1

E0j ln
³
ρj+1/2/ρj−1/2

´
/ ln (b/a)

 (151)
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The modal coefficients are then given by

− V

ln (b/a)

JX
j=1

E0j

R0
³
ζnρj+1/2

´
−R0

³
ζnρj−1/2

´
(ζnb)

2
R21 (ζnb)− (2/π)2

 /
1 + JX

j=1

E0j ln
³
ρj+1/2/ρj−1/2

´
/ ln (b/a)

 = 1

2ε0
A−n

(152)

− V

ln (b/a)

J0 (ξna)

j20,nJ
2
1 (j0,n)

+
V

ln (b/a)

JX
j=1

E0j

J0
³
ξnρj+1/2

´
− J0

³
ξnρj−1/2

´
j20,nJ

2
1 (j0,n)

 /
1 + JX

j=1

E0j ln
³
ρj+1/2/ρj−1/2

´
/ ln (b/a)


=

1

2ε0
A+n (153)

3.3 Electric Field At Terminated End Of Inner Conductor

The axial field is

Dz = ε0Ez = −1
ρ

∂

∂ρ
(ρAeϕ) (154)

and using

1

ρ

∂

∂ρ
[ρR1 (ζnρ)] = ζn

µ
∂

ζn∂ρ
+

1

ζnρ

¶
R1 (ζnρ) = ζnR0 (ζnρ) (155)

ε0Ez = −
∞X
n=1

A−n ζne
ζnzR0 (ζnρ) , z < 0 , a < ρ < b (156)

ε0Ez = −
∞X
n=1

A+n ξne
−ξnzJ0 (ξnρ) , z > 0 , 0 < ρ < b (157)

The field at z = +0 and ρ = 0 is then

Ez (0,+0) = −
∞X
n=1

1

ε0
A+n ξn

=
2V0

b ln (b/a)

∞X
n=1

1

j0,nJ21 (j0,n)

J0 (j0,na/b)− JX
j=1

E0j
n
J0

³
j0,nρj+1/2/b

´
− J0

³
j0,nρj−1/2/b

´o

=
2V

b ln (b/a)

∞X
n=1

1

j0,nJ21 (j0,n)

J0 (j0,na/b)− JX
j=1

E0j
n
J0

³
j0,nρj+1/2/b

´
− J0

³
j0,nρj−1/2/b

´o

/

1 + JX
j=1

E0
j ln

³
ρj+1/2/ρj−1/2

´
/ ln (b/a)

 (158)
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The result for the summation in this equation, with J = 100 basis functions, is shown as the black curve
in Figure 1. A fit is

Ez (0,+0) ≈ 2V

b ln (b/a)

h
(b/a− 1) /2 + (b/a)3/2 /25

i
(159)

where the bracketed part of this fit is shown as the gray curve in Figure 1. The approximate results from
the radial field approximation, in the section below, are shown as the blue curve (the summation) and the
green curve (the linear parenthetical expression) in Figure 1.

E0z (0,+0) =
2V

b ln (b/a)

∞X
n=1

J0 (j0,na/b)

j0,nJ21 (j0,n)
≈ 2V

b ln (b/a)

µ
b

2a
− 0.4373

¶
(160)

Also shown as the red curve is the TEM mode (182)

Eρ ≈ V

a ln (b/a)
(161)

This field at the terminal end of center conductor can be used to drive a connector at this point.

3.4 End Capacitance

It is sometimes of interest to determine the capacitance of the terminated center conductor (this exists in
addition to the coaxial capacitance). The charge, assuming Aeϕ remains continuous from region to region is

Q =

Z
S

D · ndS = −
I
C

Ae · dc = −2πaAeϕ (a,−d0) (162)

where

Aeϕ (a,−d0) = − ε0V0
a ln (b/a)

(−d0 − z0)−
∞X
n=1

A−n e
−ζnd0R1 (ζna) (163)

Taking d0 to be large, and removing the dominant TEM field charge, the difference charge is then

∆Q = Q− 2πε0V0d0
ln (b/a)

=
2πε0V0 (−z0)
ln (b/a)

(164)

We can write this charge correction in terms of the moment solution

∆Q =
2πε0V0 (−z0)
ln (b/a)

=
2πε0V (−z0)
ln (b/a)

/

1 + JX
j=1

E0j ln
³
ρj+1/2/ρj−1/2

´
/ ln (b/a)

 (165)

or difference capacitance

∆C = ∆Q/V =
2πε0 (−z0)
ln (b/a)

/

1 + JX
j=1

E0j ln
³
ρj+1/2/ρj−1/2

´
/ ln (b/a)


=

2πaε0
ln (b/a)

(−z0/b) (b/a) /
1 + JX

j=1

E0j ln
³
ρj+1/2/ρj−1/2

´
/ ln (b/a)

 (166)
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Figure 1: Comparison of sum involved in tip electric field at the center of the end of the solid coaxial center
conductor as a function of ratio of outer-to-inner coaxial radii. The exact solution is the black curve; a
simple fit is the gray curve. The blue curve uses an approximate radial electric field between the coax and
cylindrical regions, which is proportional to the inverse radius; the green curve is a simple approximation to
the tip field in the form of a linear function. The brown curve is a simple estimate based on the constant
transverse electromagnetic mode.
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which can be written as

∆C = ε02πρe
(−z0/b)
(1− a/b)

/

1 + JX
j=1

E0
j ln

³
ρj+1/2/ρj−1/2

´
/ ln (b/a)

 (167)

with [5]

ρe = (b− a) / ln (b/a) (168)

A fit is

∆C ≈ 2ε0ρe
·
1

2.3
ln

µ
π

ln (b/a)

¶
+ 0.0125b/a

¸
= 2ε0ρe

·
1

2.3

½
ln

µ
πeρe/4

b− a

¶
+ 2 ln 2− 1

¾
+ 0.0125b/a

¸
(169)

The capacitance using the approximate radial field, from the section below, is

∆C0 =
2πaε0
ln (b/a)

2
∞X
n=1

·
J0 (j0,na/b)

j0,nJ1 (j0,n)

¸2
= ε02πρe

2a/b

(1− a/b)

∞X
n=1

·
J0 (j0,na/b)

j0,nJ1 (j0,n)

¸2
(170)

Figure 2 shows the moment solution using J = 100 as the black curve. The fit is shown as the green curve.
This result using the approximate radial electric field in the next subsections is the gray curve.

3.5 Approximation For Radial Electric Field Or Magnetic Current At Termi-
nated Inner Conductor

Suppose we approximate the radial field (or magnetic current) in the coaxial dominant mode as

Eρ ≈ V

ρ ln (b/a)
, a < ρ < b , z > 0 (171)

and use

Dρ = ε0Eρ =
∂

∂z
Aeϕ = −

∞X
n=1

A+n ξne
−ξnzJ1 (ξnρ) , z > 0 (172)

to set

ε0V

ρ ln (b/a)
≈ −

∞X
n=1

A+n ξnJ1 (ξnρ) , a < ρ < b (173)

we can use orthogonality of the Bessel functions to writeZ b

0

J1 (ξnρ)J1 (ξn0ρ) ρdρ = b2
Z 1

0

J1 (j0,nu)J1 (j0,n0u)udu =
b2

2
[J1 (j0,n)]

2 δnn0 (174)

1

ρ

∂

∂ρ
[ρJ1 (ξnρ)] = ξn

µ
∂

ξn∂ρ
+

1

ξnρ

¶
J1 (ξnρ) =

1

ρ
[J1 (ξnρ) + ξnρJ

0
1 (ξnρ)] = ξnJ0 (ξnρ) (175)

J1 (j0,n) + j0,nJ
0
1 (j0,n) = j0,nJ0 (j0,n) = 0 (176)
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Figure 2: Correction capacitance (addition to simple coaxial capacitance) due to termination of coaxial
center conductor. Black curve is exact solution; green curve is simple fit. Gray curve is approximate result
using a radial electric field at the junction between coax and cylinder which is proportional to the inverse of
the radius.
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Then

ε0V

ln (b/a)

Z b

a

J1 (ξnρ) dρ =
ε0V

ln (b/a)

1

ξn
[J0 (ξna)− J0 (ξnb)] ≈ −A+n ξn

b2

2
[J1 (j0,n)]

2 (177)

or

A+n
1

2
j20,n [J1 (j0,n)]

2 ≈ [J0 (j0,n)− J0 (j0,na/b)]
ε0V

ln (b/a)
= −J0 (j0,na/b) ε0V

ln (b/a)
(178)

and thus

Ez (0,+0) ≈ E0z (0,+0) =
2V

b ln (b/a)

∞X
n=1

J0 (j0,na/b)

[J1 (j0,n)]
2
j0,n

(179)

we also find

∞X
n=1

J0 (j0,na/b)

[J1 (j0,n)]
2 j0,n

≈ b

2a
− 0.4373 ≈ b

2a
− 0.8747/2 (180)

Using this linear approximation we therefore obtain

E0z (0,+0) ≈
V

ln (b/a)
(1/a− 0.8747/b) (181)

Noting that the radial electric field on the center conductor for the TEM mode is

Eρ ≈ V

a ln (b/a)
(182)

we see that this is a bound on the tip electric field (181), with correction factor 1− 0.8747a/b. This simple
coaxial result (182) is only slightly below the numerical solution fit (159) for b/a > 6.

Remainder Of Summation A remainder has been added to improve convergence of the modal summation

j0,n ∼ (n− 1/4)π (183)

J0 (j0,na/b) ∼
s

2

πj0,na/b
cos (j0,na/b− π/4) (184)

J1 (j0,n) ∼
s

2

πj0,n
cos (j0,n − 3π/4) ∼

s
2

πj0,n
(−1)n−1 (185)

2V

b ln (b/a)

r
πb

2a

∞X
n=N+1

1p
j0,1

cos (j0,na/b− π/4) ∼ 2V

b ln (b/a)

r
b

2a

∞X
n=N+1

1p
n− 1/4 cos ((n− 1/4)πa/b− π/4)

∼ 2V

b ln (b/a)

r
b

2a

"
cos ((a/b+ 1)π/4)

∞X
n=N+1

1√
n
cos (nπa/b)− sin ((a/b+ 1)π/4)

∞X
n=N+1

1√
n
sin (nπa/b)

#
(186)
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cos ((n− 1/4)πa/b− π/4) = cos (nπa/b) cos ((a/b+ 1)π/4)− sin (nπa/b) sin ((a/b+ 1)π/4) (187)

∞X
n=1

J0 (j0,na/b)

[J1 (j0,n)]
2 j0,1

∼
NX
n=1

J0 (j0,na/b)

[J1 (j0,n)]
2 j0,1

+

r
b

2a

∞X
n=N+1

1p
n− 1/4 cos ((n− 1/4)πa/b− π/4) (188)

3.5.1 Capacitance Using Approximate Radial Electric Field

The additional capacitance at the terminating coax, using the radial electric field approximation, is

Eρ ≈ V

ρ ln (b/a)
, a < ρ < b , z > 0 (189)

Q =

Z
S

D · ndS = −
I
C

Ae · dc = −2πaAeϕ (a,+0) = ∆Q
0 (190)

Aeϕ =
∞X
n=1

A+n e
−ξnzJ1 (ξnρ) , z > 0 (191)

A+n ≈ −
J0 (j0,na/b)

j20,n [J1 (j0,n)]
2

2ε0V

ln (b/a)
(192)

∆Q0 = −2πa
∞X
n=1

A+n J1 (j0,na/b) = 2πa
2ε0V

ln (b/a)

∞X
n=1

·
J0 (j0,na/b)

j0,nJ1 (j0,n)

¸2
(193)

∆C0 = 2aε0
2π

ln (b/a)

∞X
n=1

·
J0 (j0,na/b)

j0,nJ1 (j0,n)

¸2
= 2ε0ρe

2πa/b

(1− a/b)

∞X
n=1

·
J0 (j0,na/b)

j0,nJ1 (j0,n)

¸2
(194)

J0 (j0,na/b) ∼ J0 (j0,n) + (1− a/b)J1 (j0,1) + · · · (195)

ρe = (b− a) / ln (b/a) (196)

The limit of a small coaxial gap is

∆C0 ∼ 2ε0ρe2π (a/b) (1− a/b)
∞X
n=1

1

j20,n
= 2ε0ρe

π

2
(a/b) (1− a/b) , a/b→ 1 (197)

where

∞X
n=1

1

j20,n
= 1/4 (198)

31



3.6 Connector Cover Charge And Current

If a connector is capped at the terminal end of the center conductor, this cap substantially reduces the
voltage and resulting electric field incident on the underlying pins. One way to estimate its effect is to first
estimate the charge deposited by the electric field at the center conductor tip

Qcap
sc = Acap

e ε0Ez (0,+0) (199)

The electric current from this cap to the center conductor end (crossing to the connector base) is then the
time derivative of this charge

Icapsc =
∂

∂t
Qcap
sc ≤

1

τr
Qcap
sc =

1

τ r
Acap
e ε0Ez (0,+0) (200)

An estimate for the area Acap
e can be taken as the connector surface area. In this electric field case we can

take

Kcap
sc ≈ Icapsc / (2πacap) (201)

Because of the permittivity ε0 factor in the charge this is a relatively small current and current density. The
magnetic field driven current density (367) is assumed to be larger.

3.7 Cap To Connector Inductance/Resistance

Because the connector cap has an inductance to the base of the connector, there is a voltage developed
between the connector cap and the connector base. We can estimate the maximum values around the
perimeter as [1]

Vmax = V ext
max + V int

max + V int
pin (202)

V ext
max = Lcapmax2hcap

d

dt
Kcap
sc ≤ Lcapmax2hcapK

cap
sc /τr (203)

1

2
V int
max =

Lcapmax

µ0wcap

q
µcap/σcap

d1/2

dt1/2
Ipin ≤

s
4µcapt

πσcap

Lcapmax

µ0wcap
Ipin/τ r

=
Lcapmax

µ0wcap

q
µcap/σcap2hcap

d1/2

dt1/2
Kcap
sc ≤

s
4µcapt

πσcap

Lcapmax

µ0wcap
2hcapK

cap
sc /τr (204)

with maximum in time

1

2
V int
max ≤

s
4µcapτr

πσcap

Lcapmax

µ0wcap
2hcapK

cap
sc /τr (205)

where µcap and σcap are the magnetic permeability and electrical conductivity of the connector cap material
(and the connector base is assumed to be the same material here, although the formulas could easily be
generalized). The penetration depth is (here using general symbols µ and σ)

δ =
p
2/ (ωµσ)→

p
2τ r/ (µσ) (206)

There is also an internal voltage contribution due to the pin (between cap and connector base) itself. If
the current is confined to the surface of the pin for the rise time region
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V int
pin =

wcap

2πapin

q
µpin/σpin

∂1/2

∂t1/2
Ipin (t) =

wcap

2πapin

s
4µpint

πσpin
(Ipin/τ r) (207)

with maximum value

V int
pin ≤

wcap

2πapin

s
4µpinτr

πσpin
(Ipin/τr) (208)

where µpin and σpin are the magnetic permeability and conductivity of the pin material. If the current is
uniformly distributed in the pin this changes to the resistive value

V int
pin ≤

wcapIpin
πa2pinσpin

(209)

The two contributions compare as

(skin effect)
r

µpinσpin

πτr
⇐⇒ 1

apin
(resistive) (210)

Therefore using the skin effect form

Vmax ≤
"
Lcapmax

Ã
1 +

s
4µcapτr

πσcap

2

µ0wcap

!
+

wcap

2πapin

s
4µpinτ r

πσpin

#
2hcapK

cap
sc /τ r (211)

An estimate for this cap inductance can be made due to the cap-to-connector base slots [1], [6]

Lcapmax ∼
µ0wcap

2π
ln

µ
hcap
πapin

¶
, dcap >> ccap = 2hcap (212)

Lcapmax ∼
1

4
µ0hcap

wcap

dcap
+

µ0wcap

2π
ln

 dcap/ (2πapin)r
cos (πfpin/dcap) +

³
πapin
2dcap

´2
 , dcap < hcap (213)

where 2hcap = ccap is the distance between pin contacts, dcap is the overlap depth, wcap is the gap width,
apin is the pin radius, and fpin is the displacement of the pins from the depth center toward the interior of
the connector. For fpin = 0 a function which incorporates both these limits, and remains uniformly valid, is
[1]

Lcapmax ≈
1

4
µ0hcap

wcap

dcap
+

µ0wcap

2π

·
ln

µ
dcap/2

hcap + dcap/2

¶
− ln

³
1− e−πapin/hcap

´¸
, fpin = 0 (214)

The variation of the voltage around the cap perimeter is a somewhat weak function of the azimuth angle
when the depth is larger than the half length, the pin radius is small, and the bolt is not near the transmitted
slot outlet.
Near the outer radius of the cap, but interior to the connector, the voltage appears at the top of the

cap, where the cap insulator exists. This voltage spreads out to develop the electric field near the pins. We
estimate the electric field at the pins by using the a parallel plate formula

hconnEcap ∼ V cap
max (215)
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where hconn is the height of the cap above the base of the pins. If the insulator is foam with a dielectric
constant near unity, the height hconn is the distance to the cap metallic surface. Alternatively, if it is a solid
dielectric this height should be reduced somewhat (the thickness of the insulator reduced by the inverse of
the dielectric constant) to account for the dielectric constant of the insulator.

3.8 Connector Pin Voltage

Treating the connector pin as a monopole with effective height he, the electric field (181) gives a connector
pin open circuit voltage

V pin
oc = heEz (0,+0)→ heEcap (216)

where the final expression uses the preceding interior cap electric field.

3.8.1 Pin-Wire Voltages

The Thevinen drive circuit with the preceding connector pin open circuit voltage has an accompanying large
(nearly open circuited) capacitive impedance element. At the low frequencies associated with lightning,
this impedance element is nearly open, and hence for typical attached load impedances the actual voltage
delivered to a load VL will often be reduced. We often do not really know the load impedance of a particular
pin, however, the interior intervening cable capacitive reactance alone should reduce the voltage delivered
to the load. Consider a capacitive voltage divider consisting of the pin capacitance (to connector) of the
Thevinen source and the cable capacitance of an interior line to the shield. The capacitance of a short
monopole of height hp with radius ap above a ground plane is

Cp .
4πε0hp
Ωep

= hp2πε0/ ln [(hp/e) /ap] (217)

where

Ωep = 2 ln (2hp/ap)− 2 (ln 2 + 1) (218)

The capacitance of an interior cable run can be underestimated (due to neglect of the other lines) by the
eccentric coax formula

Cw . cw2πε0/Arccosh
µ
a2coax + b2coax − d2coax

2acoaxbcoax

¶
(219)

where cw is the wire length in the coax, acoax is the radius of the wire (connected to the pin of interest) in
the coax, bcoax is the radius of the shield return (this could also include the effect of the other wires in the
cable in which case it is smaller than the shield radius, dcoax is the offset between the pin wire center and
the shield center. For a center coax dcoax = 0 and

Cw → cw2πε0/ ln

µ
bcoax
acoax

¶
(220)

Because we expect that the multiplier of the coaxial capacitance per unit length cw is very large compared
to the monopole pin multiplier hp, we also expect that Cw is very large compared to Cp. Hence we expect
that the pin voltage, even with an open circuit at the other end of the coax, to be

VL . V pin
oc

Cp

Cp + Cw
(221)
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We expect the ratio to be in the range Cw/Cp > 10 and hence the voltage delivered to a high impedance
load to still be considerably reduced.

3.9 Door To Coaxial Capacitance Element

The induced charge or capacitance matrix element to the center coaxial conductor, resulting from the door
to outer container voltage, is now found. The charge on the cylindrical center conductor, due to the door
voltage, is found by driving the shorted coax (held at the potential of the outer cylinder) with two magnetic
current loops to support the door voltage Vd (one at radius a and one at radius b). Using

Km = −n× (E2 −E1) (222)

we can image the magnetic currents and remove the door, extending the coaxial region beyond the door
location z = −h. Then we have magnetic current loops

Kmϕ = 2Vdδ (z + h) , ρ = b

= −2Vdδ (z + h) , ρ = a (223)

The representation is taken as (there is no 1/ρ term since the center conductor is assumed to be shorted to
chassis, or the outer cylinder, here)

Aeϕ =
∞X
n=1

A+hn e−ζn(z+h)R1 (ζnρ) , z > −h

=
∞X
n=1

A−hn eζn(z+h)R1 (ζnρ) , z < −h (224)

where

R1 (ζnρ) = J0 (ζna)Y1 (ζnρ)− J1 (ζnρ)Y0 (ζna) (225)

·
1

ρ

∂

∂ρ
(ρAeϕ)

¸
ρ=b

= −ε0Ez (ρ = b) = 0 = −ε0Ez (ρ = a) =

·
1

ρ

∂

∂ρ
(ρAeϕ)

¸
ρ=a

, z > −h (226)

1

ρ

∂

∂ρ
[ρR1 (ζnρ)] = ζn

µ
∂

ζn∂ρ
+

1

ζnρ

¶
R1 (ζnρ) = ζnR0 (ζnρ) (227)

R0 (ζnρ) = J0 (ζna)Y0 (ζnρ)− J0 (ζnρ)Y0 (ζna) (228)

R0 (ζna) = 0 (229)

R0 (ζnb) = J0 (ζna)Y0 (ζnb)− J0 (ζnb)Y0 (ζna) = 0 (230)

Then the fields are

Dz (ρ, z) = ε0Ez (ρ, z) = −1
ρ

∂

∂ρ
(ρAeϕ) = −

∞X
n=1

A+hn e−ζn(z+h)ζnR0 (ζnρ) , z > −h (231)
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Dρ = ε0Eρ =
∂

∂z
Aeϕ = −

∞X
n=1

A+hn e−ζn(z+h)ζnR1 (ζnρ) , z > −h (232)

We now match

ε0Eρ (ρ,−h) = ε0Vdδ (ρ− b)− ε0Vdδ (ρ− a) = −
∞X
n=1

A+hn ζnR1 (ζnρ) (233)

and use orthogonalityZ b

a

R1 (ζnρ)R1 (ζn0ρ) ρdρ = δnn0

·
1

2
ρ2
½µ
1− 1

ζ2nρ
2

¶
R21 (ζnρ) +R021 (ζnρ)

¾¸b
a

= δnn0

·
1

2
b2
½µ
1− 1

ζ2nb
2

¶
R21 (ζnb) +R021 (ζnb)

¾
− 1
2
a2
½µ
1− 1

ζ2na
2

¶
R21 (ζna) +R021 (ζna)

¾¸
(234)

where

Rm (ζnρ) = J0 (ζna)Ym (ζnρ)− Jm (ζnρ)Y0 (ζna) (235)

and the first required condition for orthogonality is

h1ζnR2 (ζnb)− h2R1 (ζnb) = 0

= h1ζn [J0 (ζna)Y2 (ζnb)− J2 (ζnb)Y0 (ζna)]− h2 [J0 (ζna)Y1 (ζnb)− J1 (ζnb)Y0 (ζna)] (236)

With h1 = b and h2 = 2

ζnbJ2 (ζnb)− 2J1 (ζnb) = −ζnbJ0 (ζnb) (237)

ζnbY2 (ζnb)− 2Y1 (ζnb) = −ζnbY0 (ζnb) (238)

h1ζnR2 (ζnb)− h2R1 (ζnb) = −ζnb [J0 (ζna)Y0 (ζnb)− J0 (ζnb)Y0 (ζna)] = −ζnbR0 (ζnb) = 0 (239)

The second condition for orthogonality is

k1ζnR2 (ζna)− k2R1 (ζna) = 0

= k1ζn [J0 (ζna)Y2 (ζna)− J2 (ζna)Y0 (ζna)]− k2 [J0 (ζna)Y1 (ζna)− J1 (ζna)Y0 (ζna)] (240)

With k1 = a and k2 = 2

ζnaJ2 (ζna)− 2J1 (ζna) = −ζnaJ0 (ζna) (241)

36



ζnaY2 (ζna)− 2Y1 (ζna) = −ζnaY0 (ζna) (242)

k1ζnR2 (ζna)− k2R1 (ζna) = −ζna [J0 (ζna)Y0 (ζna)− J0 (ζna)Y0 (ζna)] = −ζnaR0 (ζna) = 0 (243)

Noting that h1 and h2 are not both zero, k1 and k2 are not both zero, we see that the orthogonality conditions
are met. Then we find

ε0Vd

Z b

a

R1 (ζnρ) [δ (ρ− b)− δ (ρ− a)] ρdρ = ε0Vd [bR1 (ζnb)− aR1 (ζna)] = −A+hn ζn

Z b

a

R21 (ζnρ) ρdρ

= −A+hn ζn

·
1

2
b2
½µ
1− 1

ζ2nb
2

¶
R21 (ζnb) +R021 (ζnb)

¾
− 1
2
a2
½µ
1− 1

ζ2na
2

¶
R21 (ζna) +R021 (ζna)

¾¸
(244)

R01 (ζnρ) = J0 (ζna)Y
0
1 (ζnρ)− J 01 (ζnρ)Y0 (ζna)

= J0 (ζna)Y0 (ζnρ)− J0 (ζnρ)Y0 (ζna) +
1

ζnρ
{J1 (ζnρ)Y0 (ζna)− J0 (ζna)Y1 (ζnρ)} (245)

R01 (ζna) =
2

π (ζna)
2 (246)

R01 (ζnb) = R0 (ζnb)−R1 (ζnb) / (ζnb) = −R1 (ζnb) / (ζnb) (247)

R1 (ζnb) = J0 (ζna)Y1 (ζnb)− J1 (ζnb)Y0 (ζna) (248)

R1 (ζna) = J0 (ζna)Y1 (ζna)− J1 (ζna)Y0 (ζna) = −
2

πζna
(249)

and then

2ε0Vd/ [(ζnb)R1 (ζnb)− 2/π] = −A+hn (250)

Now with these coefficients A+hn we can determine the values of Aez. The local induced charge on the center
conductor is (here the surface S covers the cylindrical surface of the center conductor and the contour C
bounds the surface S (directed to keep the surface on the left as we traverse the contour in a counter-clockwise
sense)

Qe =

Z
S

D · ndS = −
I
C

Ae · dc = 2πa [Aeϕ (ρ = a, z → +∞)−Aeϕ (ρ = a, z = +∆− h)]

= −2πa
∞X
n=1

A+hn e−ζn∆R1 (ζna) (251)

or
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−Qe/Vd = 4πaε0

∞X
n=1

e−ζn∆
2/ (πζna)

(ζnb)R1 (ζnb)− 2/π
(252)

The gap can be inserted by taking [7] (the gap in the reference is twice the gap to the door ground plane
here 2g)

∆ = 2 (2g) / (πe) (253)

and adding the parallel plate end cap capacitance

Cstruc ≈ ε0πa
2/g −Qe/Vd (254)

We also take the door drive voltage as the average

Vd = hVtoti (255)

The spacing is taken equal to the gap equivalent radius ∆ = 2 (2g) / (πe). If we choose a gap value g0 << a
with ∆0 = 2 (2g0) / (πe), we can estimate the variation about this value by [7] (the voltage in the reference
is twice the voltage to the ground plane here and hence the correction doubles)

−Qe/Vd = − (Qe/Vd)0 + ε02πa
2

π
ln (g0/g) (256)

Then

− (Qe/Vd) / (2πaε0) = 2
∞X
n=1

e−ζn∆0
2/ (πζna)

(ζnb)R1 (ζnb)− 2/π
+
2

π
ln (g0/g) (257)

Picking the value 2g0/a = 0.01 we find

2
∞X
n=1

e−ζn∆0
2/ (πζna)

(ζnb)R1 (ζnb)− 2/π
≈ ln

³
(b/a)2 − 1

´
+ 2 + 2 (b/a)−3/2 (258)

This coaxial function summation is shown as the black curve in Figure 3 and the simple fit on the right hand
side is shown as the gray curve.
Using this simple fit we then have

Cstruc ≈ ε02πa

·
ln
³
(b/a)2 − 1

´
+ 2 + 2 (b/a)−3/2 +

2

π
ln (g0/g) + a/ (2g)

¸
(259)

We can choose the center conductor radius here to be different a→ a0 than at the other end of the coax

Cstruc ≈ ε02πa0

·
ln
³
(b/a0)

2 − 1
´
+ 2 + 2 (b/a0)

−3/2 +
2

π
ln

µ
a0/100

2g

¶
+ a0/ (2g)

¸
(260)

We can take g up to O (a0), with b/a ≥ 2, with reasonable accuracy O (10%).
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Figure 3: The electric charge on the coaxial center conductor (held at the potential of the outer cylinder)
when the end door is held at voltage Vd with respect to the outer cylinder (and the center cylinder); the
local contribution from the narrow gap from the center conductor to the door (as well as the parallel plate
contribution of the end of the center conductor to door) are not included in this plot (and must be added).
This plot is a comparison of the coaxial Bessel function summation associated with the structure to door
capacitve element shown by the black curve with the simple fit for this quantity shown by the gray curve.
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3.10 Support Capacitance Element To Outer Cylinder

The center conductor structure has a capacitance to the outer conductor Cinsul. For a simple coaxial case

Cinsul ≈ 2πε0ccoax/ ln (b/a) (261)

However, in some cases there may be direct connections to the cylinder isolated by thin insulator coatings,
where the simplest calculation would be

Cinsul = ε0εrAinsulator/ginsulator (262)

where for dielectric coatings isolating the structures, a relative permittivity of εr may be present. In either
case the center conductor voltage will be the result of a capacitive divider

V =
Cstruc

Cstuct + Cinsul
Vd (263)
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4 COAXIAL REGION MAGNETIC FIELDS
The coaxial region has an induced field from the door represented by fields propagating in the higher-order
waveguide modes, which decay along the length direction. Because the center conductor is open circuited at
both ends the TEM mode for the magnetic field is negligible. The magnetic field is nevertheless important
because it directly drives surface currents at the opposing end of the center conductor independent of
displacement current coupling (which is negligible at these low frequencies).

4.1 Magnetic Field In Coaxial Region

The quasi-magnetostatic field satisfying

∇×H = 0 (264)

is taken to be represented by the magnetic scalar potential

H = −∇φm (265)

Gauss’s law

∇ ·B = ρm (266)

and constitutive equation (relating magnetic induction B to the field H)

B = µ0H (267)

satisfies a Poisson equation

∇2φm = −ρm/µ0 (268)

In regions free of magnetic charge ρm this is Laplace’s equation

∇2φm =
µ

∂2

∂ρ2
+
1

ρ

∂

∂ρ
+
1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

¶
φm = 0 (269)

with radial boundary conditions in the coaxial region

Hρ = −∂φm
∂ρ

= 0 , ρ = a, b (270)

and has solutions

φm =
©
J 0m
¡
ζ 0m,na

¢
Ym

¡
ζ 0m,nρ

¢− Jm
¡
ζ 0m,nρ

¢
Y 0
m

¡
ζ 0m,na

¢ª½ cos (mϕ)
sin (mϕ)

¾
e±ζ

0
m,nz (271)

where

J 0m
¡
ζ 0m,na

¢
Y 0
m

¡
ζ 0m,nb

¢− J 0m
¡
ζ 0m,nb

¢
Y 0
m

¡
ζ 0m,na

¢
= 0 (272)

Note that the Laplace solutions ρ±m (c0 + c1z) cos (mϕ) and ρ±m (c0 + c1z) sin (mϕ) cannot be used since
such pairs do not obey both the boundary conditions. Some solutions for the symmetric case m = 0 are [4]

J 00
¡
ζ 00,na

¢
Y 0
0

¡
ζ 00,nb

¢− J 00
¡
ζ 00,nb

¢
Y 0
0

¡
ζ 00,na

¢
= J1

¡
ζ 00,na

¢
Y1
¡
ζ 00,nb

¢− J1
¡
ζ 00,nb

¢
Y1
¡
ζ 00,na

¢
= 0 (273)
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ζ 00,1a ≈ 2.15647249 for a/b = 0.4 (274)

ζ 00,1a ≈ 4.75805426 for a/b = 0.6 (275)

ζ 00,2a ≈ 4.22309 for a/b = 0.4 (276)

but we are not primarily interested in this symmetric case. An asymptotic formula is [4]

ζ 0m,na ∼ β +
p

β
+

q − p2

β3
+

r − 4pq + 2p3
β5

+ · · · (277)

where

β = nπ/ (b/a− 1) (278)

p =
¡
4m2 + 3

¢
/ (8b/a) (279)

q =

¡
16m4 + 184m2 − 63¢ ¡b2/a2 + b/a+ 1

¢
6 (4b/a)3

(280)

r =

¡
64m6 + 2960m4 − 8212m2 + 1899

¢ ¡
b4/a4 + b3/a3 + b2/a2 + b/a+ 1

¢
5 (4b/a)5

(281)

ζ 0m,na ∼ nπ/ (b/a− 1) + ¡4m2 + 3
¢ 1
2

µ
b/a− 1
4nπb/a

¶
(282)

+
n¡
16m4 + 184m2 − 63¢ ¡b2/a2 + b/a+ 1

¢− 6 ¡4m2 + 3
¢2
(b/a)

o 1
6

µ
b/a− 1
4nπb/a

¶3
+ · · · (283)

Then

ζ 00,1a ∼ π/ (b/a− 1) + 3
2

µ
b/a− 1
4πb/a

¶
− 1
2

£
21
¡
b2/a2 + 1

¢
+ 39b/a

¤µb/a− 1
4πb/a

¶3

+
r (4b/a)

4 − 1
12

¡
16m4 + 184m2 − 63¢ ¡b2/a2 + b/a+ 1

¢ ¡
4m2 + 3

¢
+
¡
4m2 + 3

¢3
(b/a)

(4πb/a)
4
π/ (b/a− 1)5 + · · · (284)

ζ 01,1a ∼ π/ (b/a− 1) + 7
2

µ
b/a− 1
4πb/a

¶
+
©
137

¡
b2/a2 + 1

¢− 157b/aª 1
6

µ
b/a− 1
4πb/a

¶3
+ · · · (285)

ζ 02,1a ∼ π/ (b/a− 1) + 19
2

µ
b/a− 1
4πb/a

¶
+
©
929

¡
b2/a2 + 1

¢− 1237 (b/a)ª 1
6

µ
b/a− 1
4πb/a

¶3
+ · · · (286)

ζ 03,1a ∼ π/ (b/a− 1) + 39
2

µ
b/a− 1
4πb/a

¶
+
©
963

¡
b2/a2 + 1

¢− 2079 (b/a)ª 1
2

µ
b/a− 1
4πb/a

¶3
+ · · · (287)
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For the example a/b = 0.4

ζ 00,1a ∼
2

3
π +

3

2

µ
3

20π

¶
− 999

8

µ
3

20π

¶3
+ · · ·

∼ 2
3
π

"
1 +

3

20

µ
3

2π

¶2
− 999

8000

µ
3

2π

¶4
+ · · ·

#
≈ 2
3
π [1 + 0.0341959− 0.0064899455 + · · ·]

≈ 2.1524223 (288)

ζ 01,1a ∼
2

3
π +

7

2

µ
3

20π

¶
+
801

8

µ
3

20π

¶3
+ · · ·

∼ 2
3
π

"
1 +

7

20

µ
3

2π

¶2
+
801

8000

µ
3

2π

¶4
+ · · ·

#
≈ 2
3
π [1 + 0.079790432 + 0.005203650 + · · ·]

≈ 2.2724063 (289)

ζ 02,1 ∼
2

3
π +

19

2

µ
3

20π

¶
+
1

8
4857

µ
3

20π

¶3
+ · · ·

∼ 2
3
π

"
1 +

19

20

µ
3

2π

¶2
+

1

8000
4857

µ
3

2π

¶4
+ · · ·

#
≈ 2
3
π [1 + 0.21657403 + 0.0316 + · · ·]

≈ 2.6141 (290)

ζ 03,1a ∼
2

3
π +

39

2

µ
3

20π

¶
+
1

8
7137

µ
3

20π

¶3
+ · · ·

∼ 2
3
π

"
1 +

39

20

µ
3

2π

¶2
+
7137

8000

µ
3

2π

¶4
+ · · ·

#
≈ 2
3
π [1 + 0.4445 + 0.0464 + · · ·]

≈ 3.1226 (291)

As n increases these results increase nearly proportional to n. If the structure is open circuited beyond some
point z = 0, the TEM mode is driven to zero beyond this point (at low frequencies where the displacement
current is negligible) but the higher-order modes continue with decay. The lowest order asymmetric m = 1
mode has roots of the equation [4]

J 01
¡
ζ 01,na

¢
Y 0
1

¡
ζ 01,nb

¢− J 01
¡
ζ 01,nb

¢
Y 0
1

¡
ζ 01,na

¢
= 0

=

"
J0
¡
ζ 01,na

¢− 1

ζ 01,na
J1
¡
ζ0n,1a

¢#"
Y0
¡
ζ 01,nb

¢− 1

ζ01,nb
Y1
¡
ζ 01,nb

¢#

−
"
J0
¡
ζ 01,nb

¢− 1

ζ 01,nb
J1
¡
ζ 01,nb

¢#"
Y0
¡
ζ 01,na

¢− 1

ζ 01,na
Y1
¡
ζ01,na

¢#

43



=
£
J0
¡
ζ 01,na

¢
Y0
¡
ζ 01,nb

¢− J0
¡
ζ 01,nb

¢
Y0
¡
ζ 01,na

¢¤
− 1

ζ 01,nb

£
J0
¡
ζ01,na

¢
Y1
¡
ζ 01,nb

¢− J1
¡
ζ 01,nb

¢
Y0
¡
ζ 01,na

¢¤
− 1

ζ 01,na

£
J1
¡
ζ 01,na

¢
Y0
¡
ζ 01,nb

¢− J0
¡
ζ 01,nb

¢
Y1
¡
ζ 01,na

¢¤
+

1

ζ 01,naζ
0
1,nb

£
J1
¡
ζ 01,na

¢
Y1
¡
ζ 01,nb

¢− J1
¡
ζ01,nb

¢
Y1
¡
ζ 01,na

¢¤
(292)

with asymptotic solution

ζ 01,na ∼ β +
p

β
+

q − p2

β3
+

r − 4pq + 2p3
β5

+ · · · (293)

where

β = nπ/ (b/a− 1) (294)

p = 7/ (8b/a) (295)

q =
137

¡
b2/a2 + b/a+ 1

¢
6 (4b/a)

3 (296)

r =
−3289 ¡b4/a4 + b3/a3 + b2/a2 + b/a+ 1

¢
5 (4b/a)5

(297)

ζ 01,na ∼ nπ/ (b/a− 1) + 7
2

µ
b/a− 1
4nπb/a

¶
+
©
137

¡
b2/a2 + 1

¢− 157 (b/a)ª 1
6

µ
b/a− 1
4nπb/a

¶3
+ · · · (298)

ζ 01,1a ∼ π/ (b/a− 1) + 7
2

µ
b/a− 1
4πb/a

¶
+
©
137

¡
b2/a2 + 1

¢− 157b/aª 1
6

µ
b/a− 1
4πb/a

¶3
+ · · · (299)

ζ 01,2a ∼ 2π/ (b/a− 1) +
7

4

µ
b/a− 1
4πb/a

¶
+
©
137

¡
b2/a2 + 1

¢− 157 (b/a)ª 1
48

µ
b/a− 1
4πb/a

¶3
+ · · · (300)

However, the first (or initial) root is not captured by this asymptotic formula (and we label it with number
n = 0). We can estimate this particular initial root by examining the physical problem it corresponds to. If
we consider a planar waveguide wrapped around the coax at the effective radius ρe, the scalar potential can
be taken as

∇2φm =
µ

∂2

∂x2
+

∂2

∂z2

¶
φm = 0 (301)

with
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∂φm
∂ρ

=
∂φm
∂y

= 0 , ρ = a, b (302)

φm = e±ζ
0
1,nz

½
cos
¡
ζ 01,0x

¢
sin
¡
ζ 01,0x

¢ ¾ (303)

φm (x = 0) = φm (x = 2πρe) (304)

ρe = (a+ b) /2 (305)

ζ01,02πρe = 2π (306)

ζ 01,0ρe = 1 (307)

ζ 01,0b ∼ 2/ (1 + a/b) (308)

The numerical roots are
a/b ζ 01,0b ζ01,1b ζ 01,2b ζ 01,3b ζ 01,4b ζ 01,5b ζ 01,6b
0.1 1.8034701 5.1371365 8.1991623 11.358793 14.634361 17.986417 21.383688
0.2 1.7051157 4.9608548 8.4330686 12.165052 15.993233 19.861628 23.750000
0.3 1.5820647 5.1373946 9.3082665 13.683644 18.115878 22.570710 27.036720
0.4 1.4617819 5.6591042 10.683252 15.848084 21.048785 26.263701 31.485678
0.5 1.3546720 6.5649424 12.706422 18.942659 25.202487 31.471691 37.745567
0.6 1.2620756 8.0410875 15.801059 23.623919 31.462382 39.307062 47.154847
0.7 1.1823634 10.591835 21.003708 31.455738 41.917753 52.383756 62.851750
0.8 1.1133663 15.777712 31.450758 47.147105 62.849263 78.553743 94.259385
0.9 1.0531161 31.446885 62.847328 94.258096 125.67144 157.08582 188.50072
The approximate roots are (the asymptotic expression for n ≥ 1 is evaluated to three terms except the

value with two terms is shown for some of the first roots and the second column is the physical planar
waveguide approximation for the n = 0 root)

a/b 2b/ (a+ b) ∼ ζ 01,1b ∼ ζ 01,2b ∼ ζ 01,3b ∼ ζ 01,4b ∼ ζ01,5b ∼ ζ 01,6b

0.1 1.8181818
5.99734892
(13.508129)

8.23466222
(9.1735097)

11.3075392
(11.585716)

14.5893072
(14.706663)

18.014717 21.396505

0.2 1.6666667
5.04107542
(5.6381588)

8.41102392
(8.4856594)

12.174448 15.995814 19.862548 23.750390

0.3 1.5384615
5.13787222
(5.2469479)

9.3145548 13.684636 18.116133 22.570797 27.036756

0.4 1.4285714 5.6810157 10.684272 15.848233 21.048822 26.263713 31.485683
0.5 1.3333333 6.5694964 12.706605 18.942685 25.202493 31.471693 37.745568
0.6 1.25 8.0419548 15.801090 23.623923 31.462383 39.307063 47.154847
0.7 1.1764706 10.591965 21.003712 31.455738 41.917753 52.383756 62.851750
0.8 1.1111111 15.777724 31.450758 47.147105 62.849263 78.553743 94.259385
0.9 1.0526316 31.446886 62.847328 94.258096 125.67144 157.08582 188.50072
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4.2 Magnetic Field In Cylindrical Region

The cylindrical region has the Laplace equation

∇2φm = 0 =
µ

∂2

∂ρ2
+
1

ρ

∂

∂ρ
+
1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

¶
φm (309)

with radial boundary condition

∂φm
∂ρ

(ρ = b) = 0 (310)

we take the solution as

φm = Jm
¡
j0m,nρ/b

¢
e±j

0
m,nz/b

½
cos (mϕ)
sin (mϕ)

¾
(311)

where

J 0m
¡
j0m,n

¢
= 0 (312)

The first roots now being
n j00,n j01,n j02,n
1 0 1.84118 3.05424
2 3.83170 5.33144 6.70613
3 7.01559 8.53632 9.96947
4 10.17346 11.70600 13.17037
5 13.32369 14.86359 16.34752

4.3 Magnetic Field Coaxial Region Mode Excitation

The excitation of the coaxial region modes from the door slot is examined without and with a conductive
door gasket.

4.3.1 No Conductive Gasket Coaxial Region Mode Excitation

If no conductive gasket exists then as a worst case we take the return to occur on the opposite side of the
slot from the strike point (through the hinge connection or through a breakdown) and then the current
distribution on the door side of the slot is

I (s) = ±1
2
I0 (t) =

1

2
I0 (t) sgn (s) , − h < s < h (313)

2h = 2πb (314)

Let us first consider a semi-infinite coax with magnetic flux per unit length Φ (s) injected at z = 0 around
the circumference with ρ = b and s = bϕ. The magnetic flux per unit length through the slot is then (there
may be some contribution from the magnetic field penetrating the metal, however for larger slot widths with
metallic walls, this is probably small at earlier times)

qm = Φ (s) = LI (s) = LI0 (t) sgn (s) = qm0sgn (ϕ) (315)

L ≈ µ0w/d (316)
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and note the Fourier expansion

sgn (ϕ) =
4

π

X
m,odd

sin (mϕ)

m
(317)

In this section we find the magnetic charge per unit length assuming the potential and fields will be found
with the conducting boundaries taken into account; in other words, there is no doubling of the magnetic
charge imposed, as there often is when aperture dipole moments are defined on a ground plane (see section
on hole penetration below). From Laplace’s equation on the interior of the cylinder

∇2φm = 0 =
µ

∂2

∂ρ2
+
1

ρ

∂

∂ρ
+
1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

¶
φm (318)

we take the solution as

φm = Rm

¡
ζ 0m,nρ

¢½ cos (mϕ)
sin (mϕ)

¾
e±ζ

0
m,nz (319)

where

Rm

¡
ζ 0m,nρ

¢
= J 0m

¡
ζ0m,na

¢
Ym
¡
ζ 0m,nρ

¢− Jm
¡
ζ 0m,nρ

¢
Y 0
m

¡
ζ 0m,na

¢
(320)

and from the radial coaxial boundary conditions

R0m
¡
ζ 0n,mρ

¢
= J 0m

¡
ζ 0m,na

¢
Y 0
m

¡
ζ 0m,nρ

¢− J 0m
¡
ζ 0m,nρ

¢
Y 0
m

¡
ζ 0m,na

¢
= 0 , ρ = a, b (321)

Also by use of the Wronskian for Bessel functions

Rm

¡
ζ 0m,na

¢
= J 0m

¡
ζ 0m,na

¢
Ym
¡
ζ 0m,na

¢−Jm ¡ζ 0m,na
¢
Y 0
m

¡
ζ 0m,na

¢
= −W £

Jm
¡
ζ 0m,na

¢
, Ym

¡
ζ 0m,na

¢¤
= − 2

πζ 0m,na
(322)

The orthogonality relation is

Z b

a

Rm

¡
ζ 0m,nρ

¢
Rm

¡
ζ 0m,n0ρ

¢
ρdρ = δnn0

"
1

2
ρ2

Ã
1− m2

ζ 02m,nρ
2

!
R2m

¡
ζ 0m,nρ

¢
+R02m

¡
ζ 0m,nρ

¢#b
a

= δnn0

"
1

2
b2

Ã
1− m2

ζ02m,nb
2

!
R2m

¡
ζ 0m,nb

¢−Ã1− m2

ζ 02m,na
2

!
2

π2ζ 02m,n

#
(323)

The axial field boundary condition is taken as

µ0Hz (ρ, ϕ, z = 0) = δ (ρ− b) qm0sgn (ϕ) = δ (ρ− b) qm0
4

π

X
m,odd

sin (mϕ)

m
(324)

The potential is then expanded as

φm =
X
n

X
m

Am,nRm

¡
ζ 0m,nρ

¢
sin (mϕ) e−ζ

0
m,nz (325)

Taking
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Am,n = eAm,n
4

µ0πmζ 0m,n

qm0 , m odd (326)

φm = (qm0/µ0)
X
n

4

π

X
m,odd

eAm,n
1

ζ0m,n

Rm

¡
ζ 0m,nρ

¢ sin (mϕ)

m
e−ζ

0
m,nz (327)

and X
n

X
m,odd

eAm,nRm

¡
ζ 0m,nρ

¢ sin (mϕ)

m
= δ (ρ− b)

X
m,odd

sin (mϕ)

m
(328)

Using orthogonality

X
n

X
m,odd

eAm,n
sin (mϕ)

m

Z b

a

Rm

¡
ζ0m,nρ

¢
Rm

¡
ζ 0m,n0ρ

¢
ρdρ =

X
m,odd

sin (mϕ)

m

Z b

a

Rm

¡
ζ 0m,n0ρ

¢
δ (ρ− b) ρdρ

(329)
or

X
m,odd

eAm,n
sin (mϕ)

m

"
1

2
b2

Ã
1− m2

ζ 02m,nb
2

!
R2m

¡
ζ 0m,nb

¢−Ã1− m2

ζ02m,na
2

!
2

π2ζ 02m,n

#
=
X
m,odd

sin (mϕ)

m
bRm

¡
ζ 0m,nb

¢
(330)

or

eAm,n

"
1

2
b2

Ã
1− m2

ζ 02m,nb
2

!
R2m

¡
ζ 0m,nb

¢−Ã1− m2

ζ02m,na
2

!
2

π2ζ 02m,n

#
= bRm

¡
ζ 0m,nb

¢
(331)

Now for a sizable distance down the coax we can truncate at the m = 1, n = 0 term

φm ∼ (qm0/µ0)
4

π
eA1,0 1

ζ 01,0
R1
¡
ζ01,0ρ

¢
sin (ϕ) e−ζ

0
1,0z (332)

eA1,0 "Ã1− 1

ζ 021,0b2

!
R21
¡
ζ 01,0b

¢−Ã1− 1

ζ 021,0a2

!
4

π2ζ 021,0b2

#
= 2R1

¡
ζ 01,0b

¢
/b (333)

or

φm ∼ 4 (qm0/µ0)
2

πζ01,0b
R1
¡
ζ 01,0b

¢³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´
4

π2ζ021,0b2

R1
¡
ζ 01,0ρ

¢
sin (ϕ) e−ζ

0
1,0z (334)

Rm

¡
ζ 0m,nρ

¢
= J 0m

¡
ζ0m,na

¢
Ym
¡
ζ 0m,nρ

¢− Jm
¡
ζ 0m,nρ

¢
Y 0
m

¡
ζ 0m,na

¢
(335)

where the lowest mode root is our planar waveguide approximation

ζ 01,0 ∼ 2/ (b+ a) (336)
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4.3.2 Conductive Gasket Coaxial Region Mode Excitation

When a conductive gasket is present the slot current becomes the lossy transmission line similarity solution

I (s, t) = Ati2erfc (u) = At

·
1

2

µ
1

2
+
1

4
s2LG/t

¶
erfc

µ
1

2
s
p
LG/t

¶
− 1
4
s
p
LG/t

1√
π
e−

1
4 s

2LG/t

¸
(337)

where the constant A is determined from I0 by means of

I (0, t) = At/4 =
1

2
(I0/τr) t (338)

qm (s) = Φ (s) = LI (s) (339)

The axial field boundary condition is

µ0Hz (ρ, ϕ, z = 0) = δ (ρ− b) qm (s) (340)

The potential expansion

φm =
X
n

X
m

Am,nRm

¡
ζ 0m,nρ

¢
sin (mϕ) e−ζ

0
m,nz (341)

then gives

δ (ρ− b) qm (s) = µ0Hz (ρ, ϕ, z = 0) = −µ0
∂

∂z
φm = µ0

X
n

X
m

Am,nζ
0
m,nRm

¡
ζ 0m,nρ

¢
sin (mϕ) (342)

Using the orthogonality relations

Z π

0

sin (mϕ) sin (m0ϕ) dϕ =
1

2
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− sin (m+m0)ϕ
(m+m0)

¸π
0

=
π

2
δmm0

(343)

Z b

a

Rm

¡
ζ 0m,nρ

¢
Rm

¡
ζ 0m,n0ρ

¢
ρdρ = δnn0

"
1

2
ρ2

Ã
1− m2

ζ 02m,nρ
2

!
R2m

¡
ζ 0m,nρ

¢
+R02m

¡
ζ 0m,nρ

¢#b
a

= δnn0

"
1

2
b2

Ã
1− m2

ζ02m,nb
2

!
R2m

¡
ζ 0m,nb

¢−Ã1− m2

ζ 02m,na
2

!
2

π2ζ 02m,n

#
(344)

we can write

Rm

¡
ζ 0m,nb

¢ Z π

0

sin (mϕ) qm (bϕ) bdϕ = µ0
π

2
Am,nζ

0
m,n

"
1

2
b2

Ã
1− m2

ζ 02m,nb
2

!
R2m

¡
ζ 0m,nb

¢−Ã1− m2

ζ 02m,na
2

!
2

π2ζ 02m,n

#
(345)

In the case where the decay length along the gasket is much smaller than the radius of the door slot we
can approximate by replacing the sine by its argument
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1

b
R1
¡
ζ 01,nb

¢ Z ∞
0

sqm (s) ds = µ0
π

2
A1,nζ

0
1,n

"
1

2
b2

Ã
1− 1

ζ 021,nb2

!
R21
¡
ζ 01,nb

¢−Ã1− 1

ζ021,na2

!
2

π2ζ 021,n

#
(346)

Noting that Z ∞
0

sqm (s) ds = L

Z ∞
0

sI (s, t) ds =
4At2

G

Z ∞
0

i2erfc (u)udu (347)

where

I (s, t) = Ati2erfc (u) = 2 (I0/τ r) ti2erfc (u) (348)

u =
1

2
s
p
LG/t (349)

integration by parts allows us to writeZ ∞
u

i2erfc (u)udu =
£−i3erfc (u)u¤∞

u
+

Z ∞
u

i3erfc (u) du = i3erfc (u)u+ i4erfc (u) (350)

where

inerfc (u) =
Z ∞
u

in−1erfc (u0) du0 (351)

and

lim
u→0

inerfc (u) =
1

2nΓ (n/2 + 1)
(352)

yields Z ∞
0

i2erfc (u)udu = lim
u→0

i4erfc (u) =
1

32
(353)

1

b
R1
¡
ζ 01,nb

¢ (I0/τr) t2
4G

= µ0
π

2
A1,nζ

0
1,n

"
1

2
b2

Ã
1− 1

ζ 021,nb2

!
R21
¡
ζ 01,nb

¢−Ã1− 1

ζ 021,na2

!
2

π2ζ 021,n

#
(354)

The growth of the coefficient with O
¡
t2
¢
results from the increasing current level in addition to the increasing

decay length with time. This behavior fails as we leave the linear growth regime of the current.
To address the region of slowly decaying current near the peak value we take β = 0 to obtain a constant

current behavior at s = 0 = u

I (s, t) =
1

2
I0erfc (u) (355)

u =
1

2
s
p
LG/t (356)

Then
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Z ∞
0

sqm (s) ds = L

Z ∞
0

sI (s, t) ds =
2I0t

G

Z ∞
0

erfc (u)udu (357)

Z ∞
u

erfc (u)udu = [−ierfc (u)u]∞u +

Z ∞
u

ierfc (u) du = ierfc (u)u+ i2erfc (u) (358)

Z ∞
0

erfc (u)udu = lim
u→0

i2erfc (u) = 1/4 (359)

and thus we find the coefficient as

1

b
R1
¡
ζ 01,nb

¢ I0t
2G

= µ0
π

2
A1,nζ

0
1,n

"
1

2
b2

Ã
1− 1

ζ 021,nb2

!
R21
¡
ζ 01,nb

¢−Ã1− 1

ζ 021,na2

!
2

π2ζ 021,n

#
(360)

This form gives us what we are after. We want to maximize the derivative of the magnetic field on the coaxial
structure. Notice that the time derivative of this coefficient and the time derivative of the preceding form
for this coefficient match at t = τr. Because this new form for the coefficient is linear in time it produces
a constant time derivative after the rise time portion of the current. It is only valid, however, during the
period where the decay length is smaller than the radius of the slot structure.
Taking only the leading term of the coaxial potential n = 0

φm ∼ A1,0R1
¡
ζ 01,0ρ

¢
sin (ϕ) e−ζ

0
1,0z (361)

1

b
R1
¡
ζ 01,0b

¢ I0t
2G

= µ0
π

2
A1,0ζ

0
1,0

"
1

2
b2

Ã
1− 1

ζ 021,0b2

!
R21
¡
ζ 01,0b

¢−Ã1− 1

ζ 021,0a2

!
2

π2ζ 021,0

#
(362)

We can compare the modal size of this leading mode result with conductive gasket present

Kz (ϕ, z) = HLM
ϕ (a, ϕ, z) = −1

a

∂φm
∂ϕ

(a, ϕ, z) ∼ −1
a
A1,0R1

¡
ζ 01,0a

¢
cos (ϕ) e−ζ

0
1,0z

∼ I0t

b2Gµ0

4
π2ζ021,0a2b

R1
¡
ζ 01,0b

¢³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´
4

π2ζ021,0b2

cos (ϕ) e−ζ
0
1,0z (363)

to the case without a conductive gasket present. Using the result without a gasket in the following sections,
we see that the ratio of the leading modal amplitude with and without gasket is

HLMgas
ϕ (a, ϕ, z) /HLM

ϕ (a, ϕ, z) =
I0t

2Gµ0
/ [4 (qm0/µ0)] =

I0t

b2Gµ0
/ [4LI0 (t) /µ0]

=
I0t

b2Gµ0
/ [4 (Lt (I0/τ r) /µ0)] =

τr
4b2LG

≈ d/dg

(2b)2 σg (µ0/τr)
(364)

This ratio is typically very small and is nearly the same as the average voltage ratio in the electric case.
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4.4 Maximum Magnetic Field On Center Conductor

We need the magnetic field at the end of the terminated inner conductor to drive a connector. We believe
that the current density on the inner cylinder can be used as an estimate of the current density at the center
of the end cap of the open circuited center conductor termination in a similar manner to the electric field case
(see actual tip field (181) versus maximum center conductor field (182)). This current density or magnetic
field is given by

Kz (ϕ, z) = HLM
ϕ (a, ϕ, z) = −1

a

∂φm
∂ϕ

(a, ϕ, z)

∼ 4 (qm0/µ0)
4

π2ζ021,0a2b
R1
¡
ζ 01,0b

¢³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´
4

π2ζ021,0b2

cos (ϕ) e−ζ
0
1,0z (365)

If we take position z = z1 and ϕ = 0

(b− a)Kz (0, z1) e
ζ01,0z1/ {4 (qm0/µ0)} =

(b/a− 1) (b/a) 4/π2

ζ021,0b2
R1
¡
ζ 01,0b

¢³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´
4/π2

ζ021,0b2

(366)

This current density is now applied to the connector at the tip

Kcap
sc ≤ Kz (0, z1) (367)

which is shown in Figure 4.

4.5 Magnetic Charge At Termination Of Center Conductor

As a check on the preceding approximate estimate of the magnetic field at the open end of the coax, we use
matching at the junction between the coaxial and cylindrical regions to estimate the actual tip magnetic field.
Note that we are actually ultimately interested in twice the tip magnetic field to represent the magnetic field
at the base of the connector (this factor of two is due to the field at the terminated end of the center conductor
then impinging on the cylindrical connector, with the maximum value doubling as in a field impinging on a
cylinder).
We insert a magnetic surface charge at z = z1

σm (ρ, ϕ, z1 ± 0) = ±µ0Hz (ρ, ϕ, z1 ± 0) = σm0 (ρ) sin (ϕ) (368)

σm0 (ρ) = ±µ0Hz (ρ, π/2, z1) (369)

The magnetic potential representation in the cylindrical region is

φm = (qm0/µ0)
4

π
sin (ϕ)

∞X
n=1

A+ne
−j01,n(z−z1)/bJ1

¡
j01,nρ/b

¢
, z > z1 (370)

and in the coaxial region is

φm = φincm + (qm0/µ0)
4

π
sin (ϕ)

∞X
n=0

A−ne−ζ
0
1,n(z1−z)R1

¡
ζ 01,nρ

¢
, z < z1 (371)

where the problem is driven by an incident lowest order coaxial mode
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Figure 4: Maximum (as function of azimuth) axial current density of dominant coaxial magnetic mode as
a function of coaxial outer-to-inner radii. This can be used as an approximate estimate for the maximum
magnetic field (current density) at the tip of the terminating center conductor.
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φincm ∼ 4 (qm0/µ0)
2

πζ01,0b
R1
¡
ζ01,0b

¢³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´
4

π2ζ021,0b2

R1
¡
ζ 01,0ρ

¢
sin (ϕ) e−ζ

0
1,0z

= B0
4

π
(qm0/µ0)R1

¡
ζ 01,0ρ

¢
sin (ϕ) e−ζ

0
1,0(z−z1) (372)

with

R1
¡
ζ 01,nρ

¢
= J 01

¡
ζ 01,na

¢
Y1
¡
ζ 01,nρ

¢− J1
¡
ζ 01,nρ

¢
Y 0
1

¡
ζ 01,na

¢
(373)

Matching to the axial magnetic field at the charge surface

Hz (ρ, π/2, z1 + 0) = −∂φm
∂z

(ρ, π/2, z1 + 0) = (qm0/µ0)
4

π

∞X
n=1

A+n
¡
j01,n/b

¢
J1
¡
j01,nρ/b

¢
, a < ρ < b

= 0 , 0 < ρ < a (374)

Hz (ρ, π/2, z1 − 0) = −∂φm
∂z

(ρ, π/2, z1 − 0) = − (qm0/µ0)
4

π

∞X
n=0

(A−n −B0δn0) ζ
0
1,nR1

¡
ζ 01,nρ

¢
, a < ρ < b

(375)
The relevant orthogonality relations are
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a
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#
(376)

Z b
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j0m,n0ρ/b
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ρdρ = b2
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(377)

and thus

Z b

a

J1
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¢
Hz (ρ, π/2, z1 + 0) ρdρ = (qm0/µ0)
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π
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¢ b2
2

Ã
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j021,n

!
J21
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j01,n

¢
, n = 1, 2, ...

(378)Z b

a

R1
¡
ζ 01,nρ

¢
Hz (ρ, π/2, z1 − 0) ρdρ

= − (qm0/µ0)
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π
(A−n −B0δn0) ζ
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1,n
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!
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¢−Ã1− 1
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#
, n = 0, 1, ...

(379)
Taking the basis
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ρHz (ρ, π/2, z1 ± 0) =
JX
j=1

Hjfj (ρ) (380)

fj (ρ) = 1 , ρj−1/2 < ρ < ρj+1/2

= 0, otherwise (381)

ρ1/2 = a (382)

ρJ+1/2 = b (383)

ρj = a+ (b− a) j/J , j = 0, 1, ..., J (384)

ρj+1/2 =
¡
ρj+1 + ρj

¢
/2 (385)

gives Z b
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Z ρj+1/2

ρj−1/2
J1
¡
j01,nρ/b

¢
dρ =
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(386)
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(387)

Next we match the potential at z = z1

B0R1
¡
ζ 01,0ρ

¢
+
∞X
n=0

A−nR1
¡
ζ 01,nρ

¢
=
∞X
n=1

A+nJ1
¡
j01,nρ/b

¢
, a < ρ < b (388)

Inserting the series coefficients

(µ0/qm0)
π

4

Z b

a

J1
¡
j01,nρ

0/b
¢
ρ0Hz (ρ

0, π/2, z1 + 0) d (ρ0/b) = A+nj
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(389)

(µ0/qm0)
π

4
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0¢ ρ0Hz (ρ
0, π/2, z1 − 0) d (ρ0/b)
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, n = 0, 1, ... (390)

then gives the integral equation
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If we insert the basis expansion
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If we integrate against the same basis function to obtain the Galerkin result
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This is a J × J system we can write as

AX = B (396)

with elements
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and
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Y0
¡
ζ 01,nρ

¢− J0
¡
ζ 01,nρ

¢
Y 0
1

¡
ζ 01,na

¢
(401)

From this system solution we then need the coefficients A+n

JX
j=1

Hj

j01,n
³
1− 1

j021,n

´
J21
¡
j01,n

¢ hJ0 ³j01,nρj−1/2/b´− J0

³
j01,nρj+1/2/b

´i
= (qm0/µ0)

2

π
j01,nA+n , n = 1, 2, ...

(402)
or

2B0

JX
j=1

xj

j01,n
³
1− 1

j021,n

´
J21
¡
j01,n

¢ hJ0 ³j01,nρj−1/2/b´− J0

³
j01,nρj+1/2/b

´i
= j01,nA+n , n = 1, 2, ... (403)

In the end we want to determine the tangential magnetic field at the center of the tip of the terminating
center conductor of the coax

Hy (0, z1 + 0) = −∂φm
∂ρ

(0, π/2, z1 + 0) = − (qm0/µ0)
4

π

∞X
n=1

¡
j01,n/b

¢
A+n

£
J 01
¡
j01,nρ/b

¢¤
ρ→0
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= − (qm0/µ0)
4

π

∞X
n=1

¡
j01,n/b

¢
A+n

"
J0
¡
j01,nρ/b

¢− 1

j01,nρ/b
J1
¡
j01,nρ/b

¢#
ρ→0

= − (qm0/µ0)
2

π

∞X
n=1

¡
j01,n/b

¢
A+n (404)

or

Hy (0, z1 + 0) / {4 (qm0/µ0) /a} =
a/b

2π

∞X
n=1

j01,nA+n

=
1

π
B0 (a/b)

∞X
n=1

JX
j=1

xj

j01,n
³
1− 1

j021,n

´
J21
¡
j01,n

¢ hJ0 ³j01,nρj−1/2/b´− J0

³
j01,nρj+1/2/b

´i
(405)

where

B0 =

2
ζ01,0b

R1
¡
ζ 01,0b

¢³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´
4

π2ζ021,0b2

e−ζ
0
1,0z1 (406)

We can write this solution for twice the tip field 2Hy (0, z1 + 0) as

(b/a− 1) 2Hy (0, z1 + 0) e
ζ01,0z1/ {4 (qm0/µ0) /a} =

(b/a− 1) 2
πζ01,0b

R1
¡
ζ 01,0b

¢³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´
4

π2ζ021,0b2

2 (a/b)
∞X
n=1

JX
j=1

xj

j01,n
³
1− 1

j021,n

´
J21
¡
j01,n

¢ hJ0 ³j01,nρj−1/2/b´− J0

³
j01,nρj+1/2/b

´i
=
h
(b/a− 1)HLM

ϕ (a, 0, z1) e
ζ01,0z1/ {4 (qm0/µ0) /a}

i
2¡

b
a

¢2 ³ 2
πζ01,0b

´ ∞X
n=1

JX
j=1

xj

j01,n
³
1− 1

j021,n

´
J21
¡
j01,n

¢ hJ0 ³j01,nρj−1/2/b´− J0

³
j01,nρj+1/2/b

´i
(407)

where the approximation using the lowest mode in the coax is

(b/a− 1)HLM
ϕ (a, 0, z1) e

ζ01,0z1/ {4 (qm0/µ0) /a} ≈
(b/a− 1) (b/a)

³
2

πζ01,0b

´2
R1
¡
ζ 01,0b

¢
³
1− 1

ζ021,0b2

´
R21
¡
ζ 01,0b

¢− ³1− 1
ζ021,0a2

´³
2

πζ01,0b

´2 (408)

Figure 5 shows this numerical solution (407) with J = 100 as the black curve; the dashed gray curve is the
preceding lowest order mode result (408) and the light gray curve is the ratio of the black and dashed gray
curve (correction to lowest order mode result). A fit is given by

(b/a− 1)HLM
ϕ (a, 0, z1) e

ζ01,0z1/ {4 (qm0/µ0) /a} ≈ 0.4 + 0.65 (a/b)2 + 0.15 (a/b)6 (409)

which is shown as the dash-dot curve.
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Figure 5: The solid black curve is the maximum magnetic field (current density) at the center of the tip
of the terminating center conductor as a function of the ratio of inner-to-outer coaxial radii. The dash-dot
curve is a simple fit. The gray dashed curve is the approximation discussed in the prior section, using the
maximum magnetic field of the dominant coaxial mode around a continuing coax at the location of the actual
termination (the solid gray curve is the ratio of the black to gray dashed curves).
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4.6 Cap To Connector Inductance/Resistance And Pin Voltage

We can apply the preceding current density driven by the magnetic field to the preceding formulas for the
connector cap inductance [1]

Vmax = V ext
max + V int

max (410)

with external inductive cap voltage

V ext
max = Lcapmax2hcap

d

dt
Kcap
sc ≤ Lcapmax2hcapK

cap
sc /τr (411)

and internal cap voltage

1

2
V int
max =

Lmax
µ0wcap

p
µ/σ

d1/2

dt1/2
Ipin ≤

r
4µt

πσ

Lmax
µ0wcap

Ipin/τr

=
Lmax
µ0wcap

p
µ/σ2hcap

d1/2

dt1/2
Kcap
sc ≤

r
4µt

πσ

Lmax
µ0wcap

2hcapK
cap
sc /τ r (412)

with maximum in time

1

2
V int
max ≤

r
4µτr
πσ

Lcapmax

µ0wcap
2hcapK

cap
sc /τr (413)

There is also an internal voltage contribution due to the pin itself (between cap and connector base). If the
current is confined to the surface of the pin for the rise time region

V int
pin =

wcap

2πapin

q
µp/σp

∂1/2

∂t1/2
Ipin (t) =

wcap

2πapin

s
4µpt

πσp
(Ipin/τr) (414)

with maximum value

V int
pin ≤

wcap

2πapin

s
4µpτr

πσp
(Ipin/τ r) (415)

where µp and σp are the magnetic permeability and conductivity of the pin material. Therefore

Vmax ≤
"
Lcapmax

Ã
1 +

r
4µτ r
πσ

2

µ0wcap

!
+

wcap

2πapin

s
4µpτr

πσp

#
2hcapK

cap
sc /τr (416)

The estimate for this cap inductance due to the cap-to-connector base slots [1], [6] is

Lcapmax ∼
µ0wcap

2π
ln

µ
hcap
πapin

¶
, dcap >> ccap = 2hcap (417)

or

Lcapmax ∼
1

4
µ0hcap

wcap

dcap
+

µ0wcap

2π
ln

·
dcap/ (2πapin)

cos (πfpin/dcap)

¸
, dcap << ccap (418)

where 2hcap = ccap is the distance between pin contacts, dcap is the overlap depth, wcap is the gap width,
apin is the pin radius, and fpin is the displacement of the pins from the depth center toward the interior of
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the connector. For fpin = 0 a function which incorporates both these limits, and remains uniformly valid, is
[1]

Lcapmax ≈
1

4
µ0hcap

wcap

dcap
+

µ0wcap

2π

·
ln

µ
dcap/2

hcap + dcap/2

¶
− ln

³
1− e−πapin/hcap

´¸
, fpin = 0 (419)

Near the outer radius of the cap, but interior to the connector, the voltage appears at the top of the
cap, where the cap insulator exists. This voltage spreads out to develop the electric field near the pins. We
estimate the electric field at the pins by using the a parallel plate formula

hconnEcap ∼ V cap
max (420)

where hconn is the height of the cap above the base of the pins. If the insulator is foam with a dielectric
constant near unity, the height hconn is the distance to the cap metallic surface. Alternatively, if it is a solid
dielectric this height should be reduced somewhat (the thickness of the insulator reduced by the inverse of
the dielectric constant) to account for the dielectric constant of the insulator.
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5 OTHER PENETRATION MECHANISMS
If the cylindrical barrier has any small holes (circular hole results are given here) we can estimate interior
fields by estimating the hole dipole moments either for a direct lightning strike or the fields from a close
strike. Another mechanism is direct diffusion of the low frequency lightning field through the conductive
barrier; although uniform field drives can be easily treated, the practical worst case drive is a strike to some
exterior conductor near the barrier surface, providing a line source current drive.

5.1 Hole Fields

If there is a small circular hole in the outer cylindrical shield, we can estimate the penetrant magnetic and
electric fields. The magnetic field through an open hole in a thin shield is large but decreases rapidly with
distance, and the thickness of the shield causes exponential decay of the penetrant amplitude. Let us use
the magnetic dipole moment of a circular hole to see how big the magnetic field at a distance will be. In
this section we define the dipole moments taking into account the presence of the ground plane (in other
words the potential and fields can be found in free space from these moments). The dipole moment for a
wire (carrying lightning current) laying across a circular aperture of radius ahole is [2]

my = −2I0 (t) a2hole (421)

If we had an excitation of a uniform short circuit field Hsc
y instead of this localized source, the general

definition of the aperture magnetic dipole moment in terms of the magnetic polarizability αm = αm,yy is [8]

my = −2αmHsc
y (422)

where in a thin shield the polarizability is [8]

α0m =
4

3
a3hole (423)

The shield in this case often has a large wall thickness ∆, and thus the polarizability for this case is modified
to [9]

αm ≈ α0m 0.838 e
−j011(∆/ahole) (424)

where j011 = 1.841 is the first root of J
0
1 (x) = 0. In our case with the local current excitation we thus include

the exponential decay factor

my ≈ −2I0 (t) a2holee−j
0
11(∆/ahole) (425)

The magnetic potential from this dipole moment is then

φm =
m · r
4πr3

=
my sin θ sinϕ

4πr2
(426)

The magnetic field is then

H = −∇φm (427)

or

Hr = − ∂

∂r
φm =

my sin θ sinϕ

2πr3
= −I0 (t) (ahole/r)

2
sin θ sinϕ

πr
e−j

0
11(∆/ahole) (428)

63



Hθ = −1
r

∂

∂θ
φm = −

my cos θ sinϕ

4πr3
=

I0 (t) (ahole/r)
2 cos θ sinϕ

2πr
e−j

0
11(∆/ahole) (429)

Hϕ = − 1

r sin θ

∂

∂ϕ
φm = −

my cosϕ

4πr3
=

I0 (t) (ahole/r)
2 cosϕ

2πr
e−j

0
11(∆/ahole) (430)

The field values can double on an interior conductor surface. Hole depth (waveguide decay) reduces these
levels if the wall thickness is substantial. Skin depth can effectively increase the hole radius, but we are
interested in the time derivative of the magnetic field, so the early time t = τ r, is of primary interest.
There is also an electric dipole moment of the hole, which for a uniform drive field Esc

z is [8]

pz = 2ε0αeE
sc
z (431)

and for a circular hole the polarizability in a thin screen is [8]

α0e =
2

3
a3hole (432)

For a large thickness this is modified to [9]

αe ≈ α0e 0.825e
−j0,1(∆/ahole) (433)

where j0,1 = 2.405 is the first root of J0 (x) = 0. In our case we simply add the exponential decay

pz ≈ 2ε0 2
3
a3holeE

sc
z (t) e

−j0,1(∆/ahole) (434)

The electric potential from this electric dipole moment is then

φ =
p · r
4πε0r3

=
pz cos θ

4πε0r2
(435)

The electric field is then

E = −∇φ (436)

or

Er = − ∂

∂r
φ =

pz cos θ

2πε0r3
=
2

3π
(ahole/r)

3Esc
z (t) e

−j0,1(∆/ahole) cos θ (437)

Eθ = −1
r

∂

∂θ
φ = −pz sin θ

4πε0r3
= − 1

3π
(ahole/r)

3Esc
z (t) e

−j0,1(∆/ahole) sin θ (438)

Eϕ = 0 (439)

We take the planar breakdown level for the electric field to be the typical 3 MV/m or

Esc
z ≤ 30 kV/cm (440)

with a time rate of change of roughly τr.
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5.1.1 Hole Cover

If a hole cover is in place, made out of anodized aluminum, then there will be a thin slot around the cover
instead of an open hole. The slot can behave in a similar manner to the door slot, except it is taken to be
much smaller in overall diameter. The magnetic charge per unit length around the slot qm (s) will generate
the magnetic dipole moment in this case hhole = πahole

m =
1

µ0

Z hhole

−hhole
qm (s) rds (441)

1

2
qm (s) = Lanod

1

2
I0 (t) sgn (s) (442)

1

2
my =

1

µ0
LanodI0 (t) a

2
hole

Z π

0

sinϕdϕ = (Lanod/µ0) I0 (t) 2πa
2
hole (443)

Lanode/µ0 = π/Ωholee (444)

Ωholee ≈ 2 ln (8hhole/whole) + πdhole/whole (445)

When Ωholee is large, this dipole moment is much smaller then the open hole dipole moment of the preceding
section. Skin effect can increase the effective hole radius here. If the hole depth dhole > hhole there will be
exponential decay in this slot gap region. Instead we add the preceding exponential decay through the hole

my = 2 (Lanod/µ0) I0 (t) 2πa
2
holee

−j011(∆/ahole) (446)

and thus

H ≈ 2I0 (t) /r

(2/π) ln (8hhole/whole) + dhole/whole
(ahole/r)

2
e−j

0
11(∆/ahole) (447)

The electric dipole moment of the hole is now created by the voltage of the cover and is reduced from
the open hole case.

pz = −1
2
ε0ahole

Z hhole

−hhole
Im (s) ds = −1

2
ε0 hImiπa2hole (448)

where the magnetic current of the gap is taken as

Im (s) = 2V (s) (449)

Adding the exponential decay factor

pz ≈ −1
2
ε0 hImiπa2holee−j0,1(∆/ahole) (450)

After breakdown of the cover at a point, the voltage assumes a linear profile around the azimuth, and thus

hIm (s)i = 2 hV (s)i = V (0) (451)

with

V (0) =
1

2
(I0/τ r)hholeLanod (452)
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and

E ≈ µ0hhole (I0/τr) / (8r)

(2/π) ln (8hhole/whole) + dhole/whole
(ahole/r)

2
e−j0,1(∆/ahole) (453)

Also, because breakdown is now a possible mechanism for initial contact of the cover with the surrounding
enclosure, there can be an initial increase in the change of the electric dipole moment with time, and the
collapse from a uniform voltage gives

hIm (s)i = 2 hV (s)i = 2V0 (454)

and therefore

E ≈ V0
2r
(ahole/r)

2
e−j0,1(∆/ahole) (455)

Experimental evidence gives V0 ≤ 1 kV [10] and a breakdown time of O (1 ns). This electric field limit also
overrides the preceding result driven by the lightning current.

5.2 Diffusion Field

We now summarize the diffusion penetration. The cylindrical wall has thickness ∆. To treat this problem
we give the field penetration through a conductive layer with conductivity σ driven by a decaying electric
line current exterior to the barrier

I (t) = I0e
−αt , I0 = 200 kA, α = 1/ (288 µs) (456)

modeled by a transfer impedance boundary condition. This simplified boundary condition usually gives
accurate results for the distance between source and observation point ρ0 larger than the wall thickness ∆

Hx (0, ρ0) = −
I0
2πsi

·
− e−αt

ρ0/si
+

1

αt+ ρ0/si
+ e−αt−ρ0/si {Ei (ρ0/si)− Ei (αt+ ρ0/si)}

¸
, ρ0 > ∆ (457)

where the electrical distance associated with the transfer impedance boundary condition is (µ0 = 4π× 10−7
H/m)

si = 1/ (αµ0σ∆/2) (458)

and we have frequently used the electrical conductivity of 304 stainless steel alloy σ = 1.4 × 106 S/m or
commercial aluminum 6061 alloy with σ = 2.6×106 S/m. The exponential integral is defined as the principal
value integral

Ei (x) = −PV
Z ∞
−x

e−u
du

u
(459)

For ρ0 >> si we can use the asymptotic expansion

Ei (x) ∼ (ex/x) [1 + 1/x+ ...+ n!/xn + ...] , x >> 1 (460)

to rewrite this field as

Hx ∼ I0
2πρ0

"
− e−αt

ρ0/si
+

ρ0/si

(αt+ ρ0/si)
2

#
, ρ0 >> si, ρ0 > ∆ (461)
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Taking the time derivative

∂

∂t
Hx ∼ I0

2πρ0

"
αe−αt

ρ0/si
− 2αρ0/si

(αt+ ρ0/si)
3

#
, ρ0 >> si, ρ0 > ∆ (462)

and setting αt << 1

∂

∂t
Hx ∼ I0αsi

2πρ20
=

I0
πρ20µ0σ∆

, ρ0 >> si, ρ0 > ∆ (463)

If we have several different conductive layers we can use the total thickness

∆ =
JX
j=1

∆j (464)

and effective conductivity σe

∆/σe =
JX
j=1

∆j/σj (465)

We then use

si = 1/ (αµ0σe∆/2) (466)

and

∂

∂t
Hx ∼ I0αsi

2πρ20
=

I0
πρ20µ0σe∆

, ρ0 >> si, ρ0 > ∆ (467)

The electric field from diffusion is small since it is created by current flow through the surface impedance
of the metallic wall.
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6 CONCLUSIONS
This report considers a cylindrical enclosure, with a door at one end having a circular or azimuthal slot
penetration, when struck by lightning. Interior to the enclosure is a coaxial structure topology having an
open circuit at the opposite end with a capped connector. Using approximate analytical techniques the
penetration of the drive fields and final coupling to the connector pins is estimated.
The report provides formulas for the average door voltage (26), plus hinge voltage (35), when struck by

lightning. The induced center conductor coaxial voltage is (263), with capacitances (262), (260), and voltage
drive (255). The resulting interior center conductor electric field (159) is determined, along with approximate
values (181) and (182). These are used to find the connector cap short circuit current (200), connector cap
voltage (211), and finally the pin voltage (216); because of the high impedance associated with the Thevinen
equivalent circuit at the low frequencies associated with lightning we expect the voltage delivered to a load
to be further reduced (221).
The magnetic field drive to the connector is also treated. The door slot charge per unit length (315),

drives the dominant mode magnetic potential (334), with decay constant (336). The tip magnetic field (407)
and (409), or approximate value from the dominant coaxial mode (408), drives the connector cap and gives
voltage (416).
The low frequency coaxial modes are examined in some detail with approximations given to estimate

capacitance and fields at terminated ends through closed form fits shown in the Figures.
The reduction in the door voltage drive when a conductive gasket in the door slot is used is given by

(65). The reduction in magnetic field drive when a conductive gasket in the door slot is used is given by
(364), which is nearly the same as the voltage reduction due to the gasket.
The field penetration through a small circular hole in the wall is given for the magnetic field by (428) and

for the electric field by (437). The penetration through a circular hole with cover is given for the magnetic
field by (447) and for the electric field by (453).
The diffusion penetration mechanism produces an interior magnetic field derivative (467) when driven

by an exterior line source lightning current.
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