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The explosive growth in data collection and the need to process it efficiently, as well as the desire to 
automate increasingly complex tasks in transportation, medical care, manufacturing, security and many 
other fields have motivated a growing interest in neuromorphic computing.1  Unlike the binary, transistor-
based ON/OFF logic gates and separate logic and memory functionalities employed in digital computing, 
neuromorphic computing is inspired by animal brains that use interconnected synapses and neurons to 
perform processing, storage and transmission of information at the same location, while only consuming 
~20 W or less of power. Motivated by the brain’s efficiency, adaptability, self-learning and resiliency 
qualities, neuromorphic computing can be broadly defined as an approach to processing and storing 
information using hardware and algorithms inspired by models of biological neural systems. Present 
research in neuromorphic computing encompasses approaches that vary significantly in their degree of 
neuro-inspiration, from systems that only incorporate features such as asynchronous, event-driven 
operation or use crossbar arrays of non-volatile memory (NVM) elements to accelerate deep neural 
networks (DNNs), to designs that embrace the extreme parallelism, sparsity, reconfigurability, adaptability, 
complexity and stochasticity observed in nervous systems.2 The term ‘neuromorphic’ computing is often 
credited to Carver Mead, who in the 1980s investigated Si-based analog electronics to replicate functions 
of the animal retina.3 Earlier important advances in this field include the work of Frank Rosenblatt,4  who 
proposed the concept of the perceptron, Bernard Widrow,5  who used this concept to build one of the first 
analog neural networks, the Adaline and many other researchers (see ref. 6 for an historical perspective on 
neuromorphic computing). With the recent increase in the use of artificial intelligence and large language 
models, and rising concerns over the associated energy costs, interest in neuromorphic hardware has 
expanded rapidly. According to some estimates, driven largely by the drastic growth in the training use of 
artificial intelligence (AI) models using the current computing architectures, the energy cost of computing 
is projected to reach the energy supply worldwide by 2045.7 While this is not a realistic outcome, it means 
that, if more efficient computing technologies are not developed -- soon -- the world will soon become one 
where demand for energy and market constraints limit the continued increase of societal access to AI and 
cloud services from data centers. Data centers used for training and use of these models consume hundreds 
of terawatt hours of electricity, already past 4% of the US electricity demand.8 
 
Numerous established microelectronics manufacturers and startups have announced efforts to 
commercialize energy-efficient neuromorphic chips, with some systems that contain over one billion 
neurons, capable of supporting spiking algorithms, event-driven asynchronous communications, and some 
level of reconfigurability.1, 9 Nevertheless, the computational abilities of these schemes remain restricted to 
relatively narrow tasks and fall far short in terms of learning efficiency, contextualization and other aspects 
of general intelligence associated with mammalian brains10. In fact, the gap in computational abilities 
between artificial and biological systems with regards to general intelligence is enormous, despite very 
impressive progress in neuromorphic device technologies.  To narrow this gap and to increase functionality 
and efficiency, a growing number of researchers have focused on exploring new neuromorphic device 
concepts that exploit spin, ionic, ferroelectric, microstructural, Mott, and other physical/chemical 
mechanisms to develop novel computational primitives for neuromorphic computing.11 Many of these 
approaches have shown encouraging results for training and inference acceleration of deep neural networks, 
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edge processing of sensor signals, Bayesian neural networks, graph neural networks and physical reservoir 
computing schemes.12  Also promising are approaches that explore coupling between different effects or 
state variables (e.g., Joule heating leading to Mott or spin transitions) to emulate complex neuronal 
dynamics, axon-like signal transmission and ensemble effects.13, 14  
 
However, despite a growing number of compelling demonstrations of performance at the individual device 
level, the realization of practical neuromorphic computing systems based on emerging device concepts that 
can challenge digital Si CMOS-based computing systems remains a challenge.  This is in part because most 
practical computing applications require scaling to many devices, as well as their integration with other 
components, including digital CMOS. Without such scaling and integration, validation of predicted 
computing advantages is difficult. Also difficult is the design of novel architectures and neuromorphic 
algorithms, which require a substantial level of abstraction at the device and small circuit scale, as well as 
a ‘user-friendly’ interface for programming and software development. The need to reliably fabricate at 
scale and integrate devices necessitates a detailed mechanistic understanding of the physical and chemical 
processes that underpin the computation primitives, the effects of material composition, structure, defects, 
interfaces, device geometries and dimensions, as well as external variables and drivers such as temperature 
and potential. This is a daunting task that calls out for a multidisciplinary codesign approach with 
contributions from chemistry, physics, materials science, electrical engineering, computer science and 
neuroscience.    
 
In this thematic issue of Chemical Reviews, we include contributions from leading researchers engaged in 
advancing neuromorphic computing by focusing on the materials used to make neuromorphic hardware, 
the special mechanisms that enable computational primitives, their advantages in terms of efficiency and 
latency, and the challenges to making these new computing paradigms broadly applicable.  The authors in 
this issue covered several distinct topics with some overlaps, that can be broadly categorized by the type of 
materials (e.g., organic versus inorganic) as well as applications (e.g., bio-integration versus chip scale 
systems).   For example, S. Ramanathan et al. discuss how doping with protons of various organic and 
inorganic functional materials leads to behaviors useful for neuromorphic computing, and how these 
characteristics are related to biological neurotransmitters. They also discuss extensively the approaches and 
challenges to characterizing proton transport and effects in materials.  Y. Zhou et al. review the scientific 
basis, status and challenges related to flexible neuromorphic materials and devices, including quantum dots, 
nanowires, nanocrystals, 2D layered semiconductors, nanomaterials (zero-, one-, and two-dimensional 
nanomaterials, and heterostructures), graphene and polymers. T-W. Lee et al. focus on biocompatible 
neuromorphic materials and devices, emphasizing both the sensor and the processing aspects involved in 
realizing functional interfaces between machines and the nervous system, including brain-computer 
interfaces and artificial muscle systems. V. K. Sangwan and M. C. Hersam et al., review the recent advances 
in 2D materials such as the transition metal dichalcogenides for neuromorphic hardware, with emphasis on 
establishing robust relations between the growth, fabrication, transport and device characteristics, as well 
as the challenges for integration of 2D materials and van der Waals heterojunctions for neuromorphic 
electronic and optoelectronic devices, and circuits. J. J. Yang et al. provide a detailed review of memristive 
devices that exploit ion dynamics to realize various characteristics useful for neuromorphic computing, 
ranging from analog synaptic behavior to complex dynamics that emulate neuronal models and involve 
coupling of several mechanisms. S. Kumar et al., review the history, mechanisms and opportunities for 
neuromorphic device engineering based on filament formation in devices based on various materials and 
configurations. They discuss both thermodynamic and kinetic aspects to provide a more unified 
understanding of the various phenomena and how these can be leveraged for advancing neuromorphic 
device concepts. A. A. Talin, Y. Li and B. Yildiz et al. review the scientific foundations and device 
applications of electrochemical random access memory (ECRAM), including extensive discussions of 
protonic, lithium-ion and oxygen vacancy types of electrochemical memories, their respective advantages 
and disadvantages, and the opportunities for realizing artificial synaptic and neuronal devices. D. Ielmini 
and G. Pedretti review the potential of resistive-switching random-access memory (RRAM) for in-memory 



computing (IMC), outlining its advantages, and addressing the paths to address the requirements for a range 
of storage and computing applications, from materials, device, circuit, and application viewpoints. G. S. 
Syed et al. review the current state of phase-change materials (PCM), PCM device physics, and the design 
and fabrication of PCM-based chips for in memory computing and provide an overview of the landscape 
for applications and future developments.  
 
We hope that these Reviews will help investigators interested in contributing to this rapidly evolving and 
fertile field get an appreciation of how the different aspects and challenges are connected and to identify 
opportunities for innovative solutions guided by fundamental understanding. 
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