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ABSTRACT
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a
SPICE-compatible, high-performance analog circuit simulator, and has been written to support the
simulation needs of the Sandia National Laboratories electrical designers. This development has focused on
improving capability over the current state-of-the-art in the following areas:

• Capability to solve extremely large circuit problems by supporting large-scale parallel computing
platforms (up to thousands of processors). This includes support for most popular parallel and serial
computers.

• A differential-algebraic-equation (DAE) formulation, which better isolates the device model package
from solver algorithms. This allows one to develop new types of analysis without requiring the
implementation of analysis-specific device models.

• Device models that are specifically tailored to meet Sandia’s needs, including some radiation-aware
devices (for Sandia users only).

• Object-oriented code design and implementation using modern coding practices.

Xyce is a parallel code in the most general sense of the phrase — a message passing parallel
implementation — which allows it to run efficiently a wide range of computing platforms. These include
serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific
nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of
processors grows.
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1. INTRODUCTION

Welcome to Xyce™

The Xyce™ Parallel Electronic Simulator is a SPICE-compatible [1] [2] circuit simulator that has been
written to support the unique simulation needs of electrical designers at Sandia National Laboratories. It is
specifically targeted to run on large-scale parallel computing platforms, but is also available on a variety of
architectures including single processor workstations. It aims to support a variety of devices and models
specific to Sandia needs, as well as standard capabilities available from current commercial simulators.
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1.1. Xyce Overview

The Xyce Parallel Electronic Simulator project was started in 1999 to support the simulation needs of
electrical designers at Sandia National Laboratories and has evolved into a mature platform for large-scale
circuit simulation.

Xyce includes several unique features. An important driver has been the need to simulate very large-scale
circuits (100,000 devices or more) on the transistor level. To this end, scalable algorithms for simulating
large circuits in parallel have been developed. In addition Xyce includes novel approaches to numerical
kernels including model-order reduction, continuation algorithms, time-integration, nonlinear and linear
solvers. Also, unlike most SPICE-based codes, Xyce uses a differential-algebraic-equation (DAE)
formulation, which better isolates the device model package from solver algorithms.

1.2. Xyce Capabilities

1.2.1. Support for Large-Scale Parallel Computing

Xyce is a truly parallel simulation code, designed and written from the ground up to support large-scale
parallel computing architectures with up to thousands of processors. This provides Xyce the capability to
solve large circuit problems with quick enough runtimes to make these simulations practical. Xyce uses a
message passing parallel implementation, allowing it to run efficiently on a variety of parallel computing
platforms. These include serial, shared-memory and distributed-memory parallel. Careful attention has
been paid to the specific nature of circuit-simulation problems to ensure optimal parallel efficiency, even as
the number of processors increases.

1.2.2. Differential-Algebraic Equation (DAE) formulation

Xyce has been designed to use a DAE formulation. Among other advantages, this has the benefit of
allowing the device models to be nearly independent of the type analysis to be performed, and allows a lot
of encapsulation between the models and the solver layers of the source code. In a SPICE-based code, new
device functions are created for each type of analysis, such as transient and AC analysis. With Xyce’s DAE
implementation, this is not necessary. The same device load functions can be used for all analysis types,
resulting in faster development time for new types of analysis.

1.2.3. Device Model Support

The Xyce development team continually adds new device models to Xyce to meet the needs of Sandia users.
This includes the full set of models that can be found in most SPICE-based codes. For current device
availability, consult The Xyce Reference Guide [3].
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1.3. Reference Guide

The Xyce User’s Guide companion document, the Xyce Reference Guide [3], contains detailed information
including a netlist reference for Xyce-supported input-file commands and elements; a command line
reference, which describes the available command line arguments; and quick-references for users of other
circuit codes, such as Orcad’s PSpice [4].

1.4. How to Use this Guide

This guide is designed to enable one to quickly find the information needed to use Xyce. It assumes
familiarity with basic Unix-type commands, and how Unix manages applications and files to perform
routine tasks (e.g., starting applications, opening files, and saving work).

1.4.0.1. Typographical conventions

Table 1-1 defines the typographical conventions used in this guide.

Table 1-1. Xyce typographical conventions.

Notation Example Description

Typewriter text mpirun -np 4
Commands entered from the
keyboard on the command line
or text entered in a netlist.

Bold Roman Font Set nominal temperature using
the TNOM option.

SPICE-type parameters used in
models, etc.

Gray Shaded Text DEBUGLEVEL
Feature that is designed
primarily for use by Xyce
developers.

[text in brackets] Xyce [options] <netlist> Optional parameters.

<text in angle brackets> Xyce [options] <netlist>
Parameters to be inserted by the
user.

<object with asterisk>* K1 <ind. 1> [<ind. n>*]
Parameter that may be multiply
specified.

<TEXT1|TEXT2>

.PRINT TRAN
+ DELIMITER=<TAB|COMMA|
SEMICOLON|COLON|
“string”>

Parameters that may only take
specified values.
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2. INSTALLING AND RUNNING XYCE

Chapter Overview
This chapter describes the basic mechanics of installing and running Xyce. It includes the following
sections:

• Section 2.1, Xyce Installation

• Section 2.2, Running Xyce
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2.1. Xyce Installation

Xyce is distributed in two ways: source code and binary installers. Instructions for both methods of
installation are available on the Xyce web site http://xyce.sandia.gov.

2.1.1. Postinstallation steps: PATH setting

In order to run Xyce, either type the path to its binary every time, or add the installed location of Xyce to the
PATH variable. Do so by editing the shell start-up file (.bashrc if your shell is bash, .profile if the shell
is sh, or .cshrc if the shell is the c-shell). Exact syntax depends on the shell used, but for bash and sh the
syntax is:

export PATH=$PATH:/usr/local/Xyce-Release-6.9.0/bin

The exact path will depend on the installed version of Xyce. Look in /usr/local with the following
command:

ls -l /usr/local

to identify the actual install directory used by the installed version of Xyce. Once entered into the start-up
file, the path will be set this way at the next log in. The same command can be issued directly in the
command line and it will take effect immediately.

Binary installations on Windows create a “Command Prompt” shortcut for Xyce that sets this path for you.
When the command prompt is opened with this shortcut, Xyce may simply be invoked by typing its name.

2.2. Running Xyce

While it is possible to connect Xyce to graphical interfaces, such as gEDA [5] or Qucs-s [6], Xyce is not
provided with any graphical user interface. It is primarily used as a command-line-only program across all
supported platforms, including traditionally “GUI-centered” platforms such as Mac OS X and Microsoft
Windows.

This section describes how Xyce is run from the command line, for serial and MPI parallel simulations.

2.2.1. Command Line Simulation

The syntax for running Xyce from the command line differs depending it is the serial or parallel version.
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Running Xyce Assuming the Xyce executable in in the user’s path, then the commands for running
Xyce are:

• Running serial Xyce:

Xyce [options] <netlist filename>

• Running Xyce in parallel:

mpirun -np <# procs> Xyce [options] <netlist filename>

Note that mpiexec is sometimes provided as an alternative to mpirun. With Open MPI, the two commands
are identical, but that is not the case for all MPI implementations.

General comments The [options] are the command line arguments for Xyce. For example, to log
output to a file named sample.log type:

Xyce -l sample.log <netlist filename>

The next example runs parallel Xyce on four processors and places the results into a set of files with the
“basename” of results . So, for example, the output from any .PRINT TRAN and/or .MEASURE TRAN
lines in the netlist would be placed into the files results.prn and results.mt0, respectively (assuming a
source code install):

mpirun -np 4 Xyce -o results <netlist filename>

While Xyce is running, simulation progress is output to the command line window along with any error
messages.

Xyce assumes that <netlist filename> is either in the current working directory, or includes the path
(full or relative) to the netlist file. Enclose the filename in quotation marks (") if the path contains spaces.
Help is accessible with the -h option.

Consult the documentation installed with MPI on the user’s platform for more details concerning MPI
options. The -np <# procs> denotes the number of processors to use for the simulation.
NOTE: It is critical that the number of processors used must be smaller than the number of devices and
voltage nodes in the netlist.

2.2.1.1. Guidance for Running Xyce in Parallel

The basic mechanics of running Xyce in parallel have been discussed above. For general guidance regarding
solver options, partitioning options, and other parallel issues, refer to chapter 11. Distributed memory
circuit simulation still contains a number of research issues, so obtaining an optimal simulation in parallel
is a bit of an art.

NOTE: If you are running on Linux, please see chapter 11, especially section 11.2, for critical guidance on
OpenMPI options that can seriously impact the performance of parallel jobs on a multiuser system.
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2.2.2. Command Line Options

Xyce supports a handful of command line options that must be given before the netlist filename. Table 2-1
lists Xyce core options.

Table 2-1. List of Xyce command line arguments.
Argument Description Usage Default
-h Help option. Prints usage and exits. -h -
-v Prints the version banner and exits. -v -
-license Prints the license text and exits. -license -

-capabilities Prints a list of compiled-in options
and exits. -capabilities -

-delim Set the output file field delimiter.
-delim <TAB|COMMA|
SEMICOLON|COLON|
string>

-

-o

Place the output result(s) into file(s)
with the specified basename and the
appropriate extension (e.g.,
<basename>.prn or
<basename>.mt0).

-o <basename>
output file
name(s) based on
netlist file name.

-l Place the log output into specified
file. -l <file>

Log output sent
to standard out.

-r Output a binary rawfile. -r <file>
No rawfile
written.

-a

Use with -r to output a readable
(ASCII) rawfile. Without the
concurrent use of -r, -a will cause
all .PRINT lines that use
FORMAT=RAW to produce ASCII
rawfiles.

-r <file> -a
-a

Default rawfile is
binary.

-nox Use the NOX nonlinear solver. -nox <ON|OFF> on

-linsolv Set the linear solver.
-linsolv <KLU|
KSPARSE|SUPERLU|
AZTECOO|BELOS>

klu(serial) and
aztecoo(parallel)

-param
Print a terse summary of model
parameters, device parameters and
default values.

-param -

-remeasure Recompute .measure and/or .fft
results with existing data. -remeasure -

-syntax Check netlist syntax and exit. -syntax -

-norun Check netlist syntax and topology
and exit. -norun -

-quiet
Suppress some of the
simulation-progress messages sent
to stdout for transient simulations.

-quiet -

-namesfile
Output a list of all solution
variables generated by the netlist
into <filename>

-namesfile <filename> -

-noise_names_file
Output a list of all noise sources for
all devices generated by the netlist
into <filename>

-noise_names_file
<filename>

-
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Table 2-1. List of Xyce command line arguments.
Argument Description Usage Default

-randseed

Set random number seed for
expression library’s random number
functions and also .SAMPLING
analysis.

-randseed <number>

If not provided,
Xyce will select a
seed using the
system “time”
function.

-maxord Maximum time integration order. -maxord <1..5> -

-max-warnings Maximum number of warning
messages. -max-warnings <#> 100

-jacobian_test Jacobian matrix diagnostic. -jacobian_test -

-redefined_params

Set precendence for multiply
defined parameters. Can be set to
ignore (use last), usefirst, warn
or error.

-redefined_params
<option>

ignore, which
means use the last
duplicate
parameter in the
netlist without
warning or error.

-hspice-ext

Hspice parser extensions. This will
override several parser issues that
are difficult to translate with scripts.

-hspice-ext
<all|separator
|units|math>

The second
argument will
determine which
features are
enabled. For
details see the
Xyce Reference
Guide [3].

While these options are intended for general use, others may exist for new features that are disabled by
default, and older, deprecated features. The Xyce Reference Guide [3] provides a comprehensive list,
including trial and deprecated options.
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3. SIMULATION EXAMPLES WITH XYCE

Chapter Overview
This chapter provides several simple examples of Xyce usage. An example circuit is provided for each
available analysis type.

• Section 3.1, Example Circuit Construction

• Section 3.2, DC Sweep Analysis

• Section 3.3, Transient Analysis
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3.1. Example Circuit Construction

This section describes how to use Xyce to create the simple diode clipper circuit shown in figure 3-1.

Xyce only supports circuit creation via netlist editing. Xyce supports most of the standard netlist entries
common to Berkeley SPICE 3F5 and Orcad PSpice. For users familiar with PSpice netlists, the Xyce
Reference Guide [3] lists the differences between PSpice and Xyce netlists.

3.1.0.1. Example: diode clipper circuit

Figure 3-1. Schematic of diode clipper circuit with DC and transient voltage sources.

Using a plain text editor (e.g., vi, Emacs, Notepad), but not a word processor (e.g., OpenOffice or Microsoft
Word), create a file containing the netlist of figure 3-2. For this example, the file is named clipper.cir

The netlist in figure 3-2 illustrates some of the syntax of a netlist input file. Netlists always begin with a title
line (e.g. “Diode Clipper Circuit”), and may contain comments (lines beginning with the “*”
character), devices, and model definitions. Netlists must always end with the “.END” statement.

The diode clipper circuit contains two-terminal devices (diodes, resistors, and capacitors), each of which
specifies two connecting nodes and either a model (for the diode) or a value (resistance or capacitance). The
netlist of figure 3-2 describes the circuit shown in the schematic of figure 3-1

This netlist file is not yet complete and will not run properly using Xyce (see section 2.2 for instructions on
running Xyce) as it lacks an analysis statement. This chapter later decribes how to add the appropriate
analysis statement and run the diode clipper circuit.
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Diode Clipper Circuit
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3-2. Diode clipper circuit netlist

3.2. DC Sweep Analysis

This section includes an example of DC sweep analysis using Xyce. The DC response of the clipper circuit
is obtained by sweeping the DC voltage source (Vin) from -10 to 15 volts in one-volt steps. Chapter 7.2
provides more details about DC analysis, as does the Xyce Reference Guide [3].
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3.2.0.1. Example: DC sweep analysis

To set up and run a DC sweep analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file (clipper.cir) using a standard text editor (e.g. vi, Emacs,
Notepad, etc.).

2. Enter the analysis control statement (as shown in the netlist in figure 3-4):

.DC VIN -10 15 1

3. Enter the output control statement:

.PRINT DC V(3) V(2) V(4)

4. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce:

Xyce clipper.cir

5. Open the results file (clipper.cir.prn) and examine (or plot) the output voltages that were
calculated for nodes 3 (Vin), 2 and 4 (Out). Figure 3-3 shows the output plotted as a function of the
swept variable Vin.

Figure 3-3. DC sweep voltages at Vin, node 2, and Vout
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Diode Clipper Circuit with DC sweep analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3-4. Diode clipper circuit netlist for DC sweep analysis
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3.3. Transient Analysis

This section contains an example of transient analysis in Xyce. In this example, the DC analysis of the diode
clipper circuit of the previous section has been modified so that the input voltage source (Vin) is a
time-dependent sinusoidal input source. The frequency of Vin is 1 kHz, and has an amplitude of 10 volts.
For more details about transient analysis see chapter 7.3, or the Xyce Reference Guide [3].

3.3.0.1. Example: transient analysis

To set up and run a transient analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file file (clipper.cir) using a standard text editor (e.g. VI,
Emacs, Notepad, etc.).

2. Remove DC analysis and output statements if added in the previous example (figure 3-4).

3. Enter the analysis control (as shown in the netlist in figure 3-5):

.TRAN 2ns 2ms

4. Enter the output control statement:

.PRINT TRAN V(3) V(2) V(4)

5. Modify the input voltage source (Vin) to generate the sinusoidal input signal:

VIN 3 0 SIN(0V 10V 1kHz)

6. At this point, the netlist should look similar to the netlist in figure 3-5. Save the netlist file and run
Xyce on the circuit. For example, to run serial Xyce:

Xyce clipper.cir

7. Open the results file and examine (or plot) the output voltages for nodes 3 (Vin), 2, and 4 (Out). The
plot in figure 3-6 shows the output plotted as a function of time.

Figure 3-5 shows the modified netlist and figure 3-6 shows the corresponding results.
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Diode clipper circuit with transient analysis statement
*
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
*
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE
* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(
+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ VJ = .4
+ M = .38
+ EG = 1.36
+ XTI = -8
+ KF = 0
+ AF = 1
+ FC = .9
+ BV = 600
+ IBV = 1E-4)
*
.END

Figure 3-5. Diode clipper circuit netlist for transient analysis
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Figure 3-6. Sinusoidal input signal and clipped outputs
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4. NETLIST BASICS

Chapter Overview
This chapter contains introductory material on netlist syntax and usage. Sections include:

• Section 4.1 General Overview

• Section 4.2 Devices Available for Simulation

• Section 4.3 Parameters and Expressions

• Section 4.4 Device Multiplier M
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4.1. General Overview

4.1.1. Introduction

Using a netlist to describe a circuit for Xyce is the primary method for running a circuit simulation. Netlist
support within Xyce largely conforms to that used by Berkeley SPICE 3F5 and other SPICE-style
simulators, with several new options for controlling functionality unique to Xyce.

In a netlist, the circuit is described by a set of element lines defining circuit elements and their associated
parameters, the circuit topology (i.e., the connection of the circuit elements), and a variety of control
options for the simulation. The first line in the netlist file must be a title and the last line must be “.END”.
Between these two constraints, the order of the statements is irrelevant.

4.1.2. Nodes

Nodes and elements form the foundation for the circuit topology. Each node represents a point in the circuit
that is connected to the leads of multiple elements (devices). Each lead of every element is connected to a
node, and each node is connected to multiple element leads.

A node is simply a named point in the circuit. The naming of normal nodes is mainly known within the
level of circuit hierarchy where they appear. Nodes can be passed into subcircuits through an argument list,
and in this manner subcircuits are given access to nodes from the upper-level circuit. Historicaly, this is how
nodes are passed thru the circuit hierarchy in most circuit simulators, and this is the convention used by
most circuit netlists.

However, Xyce also has the capability for fully resolved, internal subcircuit nodes to be accessed in the top
level circuit. Examples of this usage are as follows:

* example usage of fully resolved subcircuit nodes
Vin 1 0 1.0
Rin 1 2 1.0
X1 2 3 test
Rout 3 0 1.0

.subckt test A B
Rt1 A testNode 1.0
Rt2 testNode B 1.0
.ends

* this works:
Btest1 4 0 V = V(X1:testNode)
Rtest1 4 0 1.0

* this also works:
Itest2 0 5 1.0
Rtest2 X1:testNode 5 1.0
Rtest3 X1:testNode 0 1.0
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The fully resolved name is specific to a single subcircuit instance. Also, note that the field separator in this
example is the colon (:), but Xyce can optionally use other characters as the separator, including a period
(.) . For information about specifying a different separator, see section 2.2.2, about Xyce command line
arguments, or the Xyce Reference Guide [3] for even more details.

4.1.2.1. Global Nodes

For cases where a particular node is used widely throughout various subcircuits it can be more convenient
to use a global node, which is referenced by the same name throughout the circuit. This is often the case for
power rails such as VDD or VSS.

Global nodes start with the prefix $G. Examples of global node names would be: $G_VDD or $G1. Nodes
or global nodes require no declaration, as they are declared implicitly by appearing in element lines.

The .GLOBAL command can be used to define global nodes that do not start with the prefix “$G”. Consult
the Xyce Reference Guide [3] for more details.

4.1.3. Elements

An element line defines each circuit element instance. While each element type determines the specific
format, the general format is given by:

<type><name> <node information> <element information...>

The <type> must be a letter (A through Z) with the <name> immediately following. For example,
RARESISTOR specifies a device of type “R” (for “Resistor”) with a name ARESISTOR. Nodes are separated
by spaces, and additional element information required by the device is given after the node list as
described in the Netlist Reference section of the Xyce Reference Guide [3]. Xyce ignores character case
when reading a netlist such that RARESISTOR is equivalent to raresistor. The only exception to this case
insensitivity occurs when including external files in a netlist where the filename specified in the netlist must
have the same case as the actual filename.

A number field may be an integer or a floating-point value. Either one may be followed by one of the
following scaling factors shown in Table 4-1:
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Table 4-1. Scaling factors.

Symbol Equivalent Value

T 1012

G 109

Meg 106

X 106

K 103

mil 25.4−6

m 10−3

u (𝜇) 10−6

n 10−9

p 10−12

f 10−15

Node information is given in terms of node names, which are character strings. One key requirement is that
the ground node is named ‘0’. (Note: Consult the Xyce Reference Guide [3] for more details on allowed
characters in both node names and device names.) There is one restriction on the circuit topology: there
can be no loop of voltage sources and/or inductors. In addition to this requirement, the following additional
topology constraints are highly recommended:

• Every node has a DC path to ground.

• Every node has at least two connections (with the exception of unterminated transmission lines and
MOSFET substrate nodes).

While Xyce can theoretically handle netlists that violate the above two constraints, such topologies are
typically the result of human error in creating a netlist file, and will often lead to convergence failures.
Chapter 14 provides more information on this topic.

The following line provides an example of an element line that defines a resistor between nodes 1 and 3
with a resistance value of 10kΩ.

Example: RARESISTOR 1 3 10K

4.1.3.1. Title, Comments and End

The first line of the netlist is the title line of the netlist. This line is treated as a comment even if it does not
begin with an asterisk. It is a common mistake to forget the meaning of this first line and begin the circuit
elements on the first line; doing so will probably result in a parsing error.

Example: Test RLC Circuit

The “.END” line must be the last line in the netlist.
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Example: .END

Comments are supported in netlists and are indicated by placing an asterisk at the beginning of the
comment line. They may occur anywhere in the netlist but they must be at the beginning of a line. Xyce also
supports in-line comments. An in-line comment is designated by a semicolon and may occur on any line.
Xyce ignores everything after a semicolon. Xyce considers lines beginning with leading whitespace as
comments unless the first character after the whitespace is a + symbol, in which case it treats the line as a
continuation.

Example: * This is a netlist comment.

Example: WRONG:.DC .... * This type of in-line comment is not supported.

Example: .DC .... ; This type of in-line comment is supported.

4.1.3.2. Continuation Lines

Continuation lines begin with a + symbol, and their contents are appended to those of the previous line. If
the previous line or lines were comments, the continuation line is appended to the first noncomment line
preceding it. Continuation lines can have leading whitespace before the + symbol.

4.1.3.3. Netlist Commands

Command elements are used to describe the analysis being defined by the netlist. Examples include analysis
types, initial conditions, device models, and output control. The Xyce Reference Guide [3] contains a
reference for these commands.

Example: .PRINT TRAN V(Vout)

4.1.3.4. Analog Devices

Xyce-supported analog devices include most of the standard circuit components normally found in circuit
simulators, such as SPICE 3F5, PSpice, etc., plus several Sandia-specific devices.

Example: D_CR303 N_0065 0 D159700

The Xyce Reference Guide [3] provides more information concerning its supported devices.
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4.2. Devices Available for Simulation

The analog devices available in Xyce include all of the standard circuit components needed for most analog
circuits. User-defined models may be implemented using the .MODEL (model definition) statement, and
macromodels can be created as subcircuits using the .SUBCKT (subcircuit) statement.

In addition to the traditional analog devices, which are modeled in Xyce by sets of coupled differential
algebraic equations, Xyce also supports digital behavioral models. The digital devices are behavioral
devices in the sense that they rely on truth tables to determine their outputs. Once one or more of a digital
device’s inputs go past user-specified thresholds, its outputs will change according to its truth table after a
user-specified delay time. The impedance characteristics of the inputs and outputs of the digital devices are
modeled with RC time constants.

Xyce also include TCAD devices, which solve a coupled set of partial differential equations (PDEs),
discretized on a mesh. The use of these devices are described in detail in Chapter 15.

The device element statements in the netlist always start with the name of the individual device instance.
The first letter of the name determines the device type. The format of the subsequent information depends
on the device type and its parameters. Table 4-2 provides a quick reference to the analog devices and their
netlist formats as supported by Xyce. Except where noted, the devices are based upon those found in [7].
The Xyce Reference Guide [3] provides a complete description of the syntax for all the supported devices.

Table 4-2. Analog Device Quick Reference.

Device Type Letter Typical Netlist Format
Nonlinear Dependent
Source (B Source) B

B<name> <+ node> <- node>
+ <I or V>={<expression>}

Capacitor C
C<name> <+ node> <- node> [model name] <value>
+ [IC=<initial value>]

Diode D
D<name> <anode node> <cathode node>
+ <model name> [area value]

Voltage Controlled
Voltage Source E

E<name> <+ node> <- node> <+ controlling node>
+ <- controlling node> <gain>

Current Controlled
Current Source F

F<name> <+ node> <- node>
+ <controlling V device name> <gain>

Voltage Controlled
Current Source G

G<name> <+ node> <- node> <+ controlling node>
+ <- controlling node> <transconductance>

Current Controlled
Voltage Source H

H<name> <+ node> <- node>
+ <controlling V device name> <gain>

Independent Current
Source I

I<name> <+ node> <- node> [[DC] <value>]
+ [AC [magnitude value [phase value] ] ]
+ [transient specification]

Mutual Inductor K
K<name> <inductor 1> [<ind. n>*]
+ <linear coupling or model>

Inductor L
L<name> <+ node> <- node> [model name] <value>
+ [IC=<initial value>]
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Table 4-2. Analog Device Quick Reference.

Device Type Letter Typical Netlist Format

JFET J
J<name> <drain node> <gate node> <source node>
+ <model name> [area value]

MOSFET M
M<name> <drain node> <gate node> <source node>
+ <bulk/substrate node> [SOI node(s)]
+ <model name> [common model parameter]*

Lossy Transmission Line
(LTRA) O

O<name> <A port (+) node> <A port (-) node>
+ <B port (+) node> <B port (-) node>
+ <model name>

Bipolar Junction
Transistor (BJT) Q

Q<name> <collector node> <base node>
+ <emitter node> [substrate node]
+ <model name> [area value]

Resistor R
R<name> <+ node> <- node> [model name] <value>
+ [L=<length>] [W=<width>]

Voltage Controlled Switch S
S<name> <+ switch node> <- switch node>
+ <+ controlling node> <- controlling node>
+ <model name>

Generic Switch S
S<name> <+ switch node> <- switch node>
+ <model name> CONTROL=\{expression\}

Transmission Line T
T<name> <A port + node> <A port - node>
+ <B port + node> <B port - node>
+ <ideal specification>

Digital Devices U
U<name> <type> <digital power node>
+ <digital ground node> [node]* <model name>

Independent Voltage
Source V

V<name> <+ node> <- node> [[DC] <value>]
+ [AC [magnitude value [phase value] ] ]
+ [transient specification]

Port Device P

P<name> <+ node> <- node> [[DC] <value>]
+ port=port number [Z0 = value]
+ [AC [magnitude value [phase value] ] ]
+ [transient specification]

Subcircuit X
X<name> [node]* <subcircuit name>
+ [PARAMS:[<name>=<value>]*]

Current Controlled Switch W
W<name> <+ switch node> <- switch node>
+ <controlling V device name> <model name>

Digital Devices, Y Type
(deprecated) Y<type> Y<type> <name> [node]* <model name>

PDE Devices YPDE YPDE <name> [node]* <model name>

Accelerated masses YACC
YACC <name> <acceleration> <velocity> <position>
+ [x0=<initial position>] [v0=<initial velocity>]

Linear Device YLIN YLIN <name> <+ node> <- node> <model name>

Memristor Device YMEMRISTOR YMEMRISTOR <name> <+ node> <- node> <model name>

MESFET Z
Z<name> <drain node> <gate node> <source node>
+ <model name> [area value]

45



4.3. Parameters and Expressions

In addition to explicit values, the user may use parameters and expressions to symbolize numeric values in
the circuit design.

4.3.1. Parameters

A parameter is a symbolic name representing a numeric value. Parameters must start with a letter or
underscore. The characters after the first can be letter, underscore, or digits. Once a parameter is defined (by
having its name declared and having a value assigned to it) at a particular level in the circuit hierarchy, it
can be used to represent circuit values at that level or any level directly beneath it in the circuit hierarchy.
One way to use parameters is to apply the same value to multiple part instances.

4.3.2. How to Declare and Use Parameters

For using a parameter in a circuit, one must:

• Define the parameter using a .PARAM statement within a netlist

• Replace an explicit value with the parameter in the circuit

Xyce reserves the following keywords that may not be used as parameter names:

• Time

• Freq

• Hertz

• Vt

• Temp

• Temper

• GMIN

Time, TEMP, Vt, FREQ and GMIN are reserved and defined as “special variables”, and may be used in B
source expressions. Their values are set by the simulator. HERTZ is a synonym for FREQ and TEMPER is a
synonym for TEMP.
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4.3.2.1. Example: Declaring a parameter

1. Locate the level in the circuit hierarchy at which the .PARAM statement declaring a parameter will be
placed. To declare a parameter capable of being used anywhere in the netlist, place the .PARAM
statement at the top-most level of the circuit.

2. Name the parameter and give it a value. The value can be numeric or given by an expression:

.SUBCKT subckt1 n1 n2 n3

.PARAM res = 100
*
* other netlist statements here
*
.ENDS

3. NOTE: The parameter res can be used anywhere within the subcircuit subckt1, including
subcircuits defined within it, but cannot be used outside of subckt1.

4.3.2.2. Example: Using a parameter in the circuit

1. Locate the numeric value (a device instance parameter value, model parameter value, etc.) that is to
be replaced by a parameter.

2. Replace the numeric value with the parameter name contained within braces ({}) as in:

R1 1 2 {res}

NOTE: Ensure the value being replaced remains accessible within the current hierarchy level.

4.3.3. Global Parameters

A normal parameter defined using .PARAM at the main circuit level will have global scope. However, such
parameters may be redefined within a subcircuit, which would change the value in the subcircuit and
below.

A global parameter, defined using .global_param, differs from a normal parameter in that it can only be
defined at the main circuit level. Both types of parameters can be modified by netlist commands such as
.STEP and .SAMPLING, as long as they are globally scoped.

Examples of some global parameter usages are:

.param dTdt=100

.global_param T={27+dTdt*time}
R1 1 2 RMOD TEMP={T}

or

.global_param T=27
R1 1 2 RMOD TEMP={T}
C1 1 2 CMOD TEMP={T}
.step T 20 50 10
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In these examples, T is used to represent an environmental variable that changes.

4.3.4. Expressions

In Xyce, an expression is a mathematical relationship that may be used any place one would use a number
(numeric or boolean). To use an expression in a circuit netlist:

1. Locate the value to be replaced (component, model parameter, etc.).

2. Substitute the value with an expression using the {} syntax:

{expression}

where expression can contain any of the following:

• Arithmetic and logical operators.

• Arithmetic, trigonometric, or SPICE-type functions.

• User-defined functions.

• User-defined parameters within scope.

• Literal operands.

The braces ({}) instruct Xyce to evaluate the expression and use the resulting value. Alternatively, for
netlist compatibility with other simulators expressions may be enclosed in single quotation marks
instead (’). In some circumstances, (also for compatibility) expressions don’t need to be surrounded
by either braces or single quotes at all. These circumstances include .param and .global_param
expressions, as well as device instance parameters that use an equals sign. Curly braces are the
original expression delimeter used by Xyce and it is recommended that the braces be used in netlists
written specifically for Xyce.

Additional time-dependent constructs are available in expressions used in analog behavioral
modeling sources (see chapter 6). Complete documentation of supported functions and operators
may be found in the Xyce Reference Guide [3].

4.3.4.1. Example: Using an expression

Scaling the DC voltage of a 12𝑉 independent voltage source, designated VF, by some factor can be
accomplished by the following netlist statements (in this example the factor is 1.5):

.PARAM FACTORV=1.5
VF 3 4 {FACTORV*12}

Xyce will evaluate the expression to 12 ∗ 1.5 or 18 volts.
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4.4. Device Multiplier M

Many device models support a special parameter, M, which is used to approximate multiple identical
devices placed in parallel. It can also be thought of as a current multiplier, and as such is not required to be
an integer.

The following devices support the multiplier M:

Table 4-3. Devices supporting multipliers

Device Type Letter
Capacitor C

Diode D

Inductor L

MOSFET M

Bipolar Junction
Transistor (BJT) Q

Resistor R

Subcircuit X

The handling of the multiplier parameter in subcircuits, represented by the letter X, is a special case. This is
described in section 5.4.
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5. WORKING WITH SUBCIRCUITS AND MODELS

Chapter Overview
This chapter provides model examples and summarizes ways to create and modify models. Sections
include:

• Section 5.1, Model Definition

• Section 5.2, Subcircuit Creation

• Section 5.3, Model Organization

• Section 5.4, Subcircuit Multiplier M
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5.1. Model Definitions

A model describes the electrical performance of a part, such as a specific vendor’s version of a 2N2222
transistor. To simulate a part requires specification of simulation properties. These properties define the
model of the part.

Depending on the given device type and the requirements of the circuit design, a model is specified using a
model parameter set, a subcircuit netlist, or both.

In general, model parameter sets define the parameters used in ideal models of specific device types, while
subcircuit netlists allow the user to combine ideal device models to simulate more complex effects. For
example, one could simulate a bipolar transistor using the Xyce BJT device by specifying model parameters
extracted to fit the simulation behavior to the behavior of the part used. One could also develop a subcircuit
macro-model of a capacitor that adds effects such as lead inductance and resistance to the basic capacitor
device.

Both methods of defining a model use a netlist format, with precise syntax rules. In this section we give an
overview of how to define model parameter sets in Xyce. A subsequent subsection will provide a similar
overview of how to define subcircuit models. For full details, consult the Xyce Reference Guide [3].

Defining models using model parameters Although Xyce has no built-in part models, models can
be defined for a device by changing some or all of the model parameters from their defaults via the .MODEL
statement. For example:

M5 3 2 1 0 MLOAD1
.MODEL MLOAD1 NMOS (LEVEL=3 VTO=0.5 CJ=0.025pF)

This example defines a MOSFET device M5 that is an instance of a part described by the model parameter
set MLOAD1. The MLOAD1 parameter set is defined in the .MODEL statement.

Most device types in Xyce support some form of model parameters. Consult the Xyce Reference Guide [3]
for the model parameters supported by each device type.

Defining models using subcircuit netlists In Xyce, models may also be defined using the
.SUBCKT/.ENDS subcircuit syntax. This syntax allows the creation of Netlists, which define the
configuration and function of the part, and the use of Variable input parameters, which can be used to
create device-specific implementations of the model. The .SUBCKT syntax, and an example of how to use
.SUBCKT to implement a model, is given in Section 5.2.
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5.2. Subcircuit Creation

A subcircuit can be created within Xyce using the .SUBCKT keyword. The .ENDS keyword is used to mark
the end of the subcircut. All the lines between the two keywords are considered to be part of the subcurcuit.
Figure 5-1 provides an example of how a subcircuit is defined and used.

****other devices
X5 5 6 7 8 l3dsc1 PARAMS: ScaleFac=2.0
X6 9 10 11 12 l3dsc1
****more netlist commands

*** SUBCIRCUIT: l3dsc1
*** Parasitic Model: microstrip
*** Only one segment
.SUBCKT l3dsc1 1 3 2 4 PARAMS: ScaleFac=1.0
C01 1 0 4.540e-12
RG01 1 0 7.816e+03
L1 1 5 3.718e-08
R1 5 2 4.300e-01
C1 2 0 4.540e-12
RG1 2 0 7.816e+03
C02 3 0 4.540e-12
RG02 3 0 7.816e+03
L2 3 6 3.668e-08
R2 6 4 4.184e-01
C2 4 0 4.540e-12
RG2 4 0 7.816e+03
CM012 1 3 5.288e-13
KM12 L1 L2 2.229e-01
CM12 2 4 {5.288e-13*ScaleFac}
.ENDS

Figure 5-1. Example subcircuit model.

In this example, a subcircuit model named l3dsc1, which implements one part of a microstrip transmission
line, is defined between the .SUBCKT/.ENDS lines; and two different instances of the subcircuit are used in
the X lines. This somewhat artificial example shows how input parameters are used, where the last capacitor
in the subcircuit is scaled by the input parameter ScaleFac. If input parameters are not specified on the X
line (as in the case of device X6), then the default values specified on the .SUBCKT line are used.
Non-default values are specified on the X line after the optional PARAMS: keyword. Consult the Xyce
Reference Guide [3] for precise syntax.

In addition to devices, a subcircuit may contain definitions, such as models via the .MODEL statement,
parameters via the .PARAM statement, and functions via either the .FUNC or .PARAM statements. Xyce also
supports the definition of one or more subcircuits within another subcircuit. Subcircuits can be nested to an
arbitrary extent, where one subcircuit can contain another subcircuit, which can contain yet another
subcircuit, and so on.
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The creation of nested subcircuits requires an understanding of “scope,” such that each subcircuit defines
the scope for the definitions it contains. That is, the definitions contained within a subcircuit can be used
within that subcircuit and within any subcircuit it contains, but not at any higher level. Definitions
occurring in the main circuit have global scope and can be used anywhere in the circuit. A name, such as a
model, parameter, function, or subcircuit name, occurring in a definition at one level of a circuit hierarchy
can be redefined at any lower level contained directly by that subcircuit. In this case, the new definition
applies at the given level and those below.

5.2.1. Examples of Scoping for Parameters, Models and Functions

The idea of “scope” may be best illustrated by examples. This section gives example for parameters and
models. However, this discussion also applies to functions (defined with .FUNC or .PARAM statements).

In the netlist provided in Figure 5-2, the model named MOD1 can be used in subcircuits SUB1 and SUB2, but
not in the subcircuit SUB3. The parameter P1 has a value of 10 in subcircuit SUB1 and a value of 20 in
subcircuit SUB2. In subcircuit SUB3, P1 has no meaning. In addition, MOD1 and P1 would have no meaning
at the main circuit level.

.SUBCKT SUB1 1 2 3 4

.MODEL MOD1 NMOS(LEVEL=2)

.PARAM P1=10
*
* subcircuit devices omitted for brevity
*
.SUBCKT SUB2 1 3 2 4
.PARAM P1=20
*
* subcircuit devices omitted for brevity
*
.ENDS
.ENDS

.SUBCKT SUB3 1 2 3 4
*
* subcircuit devices omitted for brevity
*
.ENDS

Figure 5-2. Example subcircuit hierarchy, with scoping.

In the netlist provided in Figure 5-3, the parameters P2 and P3 are defined in the main circuit. So, P2 is
accessible in subcircuit SUB4, and has a value of 5 there. The parameter P3 was redefined in the context of
subcircuit SUB4. So, P3 has a value of 10 in the main circuit, and a value of 15 in the context of subcircuit
SUB4 and any subcircuit subsequently defined within subcircuit SUB4.
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* parameters defined in main circuit
.PARAM P2=5
.PARAM P3=10

.SUBCKT SUB4 1 2 3 4

.PARAM P3=15
*
* subcircuit devices omitted for brevity
*
.ENDS

Figure 5-3. Example subcircuit, with parameter definition override.

In the netlist provided in Figure 5-4, the definition of subcircuit SUB5 defines the argument A1. The
subcircuit instance X1 would use the default value of 5 for A1. So the resistance value of device X1:R1
would be 5. The subcircuit instance X2 uses the specified A1 value of 10. So the resistance value of device
X2:R1 would be 10. Another key point about “scope” is that node, device, and model names are scoped to
the subcircuit in which they are defined. So, It is allowable to use names in a subcircuit that has been
previously used in either the main circuit netlist or in other subcircuit definitions. When the subcircuits are
flattened (expanded to become part of the main netlist), all of their names are given prefixes via their
subcircuit instance names. For example, device R1 in subcircuit X1 becomes the unique device name X1:R1
after expansion.

* subcircuit instance lines
X1 a b SUB5
X2 e f SUB5 PARAMS: A1=10
R1 1 2 2

* Note use of {} around A1 and FSIN parameters in
* the body of the subcircuit definition.
.SUBCKT SUB5 1 2 PARAMS: A1=5 FSIN=1
VSIN 1 g SIN(0 1V {FSIN} 0)
R1 g 2 {A1}
.ENDS

Figure 5-4. Example subcircuit, with PARAMS arguments.
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5.3. Model Organization

While it is always possible to make a self-contained netlist in which all models for all parts are included
along with the circuit definition, Xyce provides a simple mechanism to conveniently organize frequently
used models into separate model libraries. Models are simply collected into model library files, and then
accessed by netlists as needed by inserting an .INCLUDE directive. This section describes that process in
detail.

5.3.1. Model Libraries

Device model and subcircuit definitions may be organized into model libraries as text files (similar to netlist
files) with one or more model definitions. Many users choose to name model library files ending with .lib,
but they may be named using any convention.

In general, most users create model libraries files that include similar model types. In these files, the header
comments describe the models therein.

5.3.2. Model Library Configuration using .INCLUDE

Xyce uses model libraries by inserting an .INCLUDE statement into a netlist. Once a file is included, its
contents become available to the netlist just as if the entire contents had been inserted directly into the
netlist.

As an example, one might create the following model library file called bjtmodels.lib, containing
.MODEL statements for common types of bipolar junction transistors:

*bjtmodels.lib
* Bipolar transistor models
.MODEL Q2N2222 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=5 Ne=1.307
+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.MODEL 2N3700 NPN (IS=17.2E-15 BF=100)

.MODEL 2N2907A PNP (IS=1.E-12 BF=100)

The models Q2N2222, 2N3700 and 2N2907A could then be used in a netlist by including the
bjtmodels.lib file.

.INCLUDE "bjtmodels.lib"
Q1 1 2 3 Q2N2222
Q2 5 6 7 2N3700
Q3 8 9 10 2N2907A
*other netlist entries
.END

56



Because the contents of an included file are simply inserted into the netlist at the point where the .INCLUDE
statement appears, the scoping rules for .INCLUDE statements are the same as for other types of definitions
as outlined in the preceding subsections.

NOTE: The path to the library file is assumed to be relative to the execution directory, but absolute
pathnames are permissible. The entire file name, including its “extension” must be specified. There is no
assumed default extension.

5.3.3. Model Library Configuration using .LIB

An alternative technique for organizing model libraries employs the .LIB command. With .LIB, a library
file can contain multiple versions of a model and specific versions may be selected at the top level using a
keyword on the .LIB line.

There are two different uses for the .LIB command. In the main netlist, .LIB functions in a similar manner
to .INCLUDE: it reads in a file. Inside that file, .LIB and .ENDL are used to specify blocks of model code
that may be included independently of other parts of the same file.

As an example, if you had two different 2N2222 transistor models extracted at different TNOM values, you
could define them in a model library inside .LIB/.ENDL pairs:

* transistors.lib file
.lib roomtemp
.MODEL Q2N2222 NPN (TNOM=27 Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=5 Ne=1.307
+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
.endl

.lib hightemp

.MODEL Q2N2222 NPN (TNOM=55 [...parameters omitted for brevity...])

.endl

Note that both models are given identical names, but are enclosed within .LIB/.ENDL pairs with different
names. When this file is used in a netlist, a specific model can be used by specifying it on the .LIB line in
the main netlist.

*This netlist uses only the high temperature model from the library
.lib transistors.lib hightemp
Q1 collector base emitter Q2N2222
[...]

The exact format and usage of the .LIB command is documented in the Xyce Reference Guide [3].
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5.4. Subcircuit Multiplier M

Similar to many device models, subcircuits support a scalar multiplier, M on the instance line. The usage
syntax is similar to that of subcircuit parameters, except that it is implicitly applied to all devices (see
table 4-3) in the subcircuit instance which support multipliers. If the devices in a subcircuit already have
multiplier parameters specified, the value is multiplied by the subcircuit instance value. This is applied
recursively for nested subcircuits.

Note that it is not necessary to specify it as a parameter on the .subckt line. Also, the multiplier is not
considered to be a normal user-defined parameter that can be used in expressions.

A very simple example of a subcircuit instance multiplier usage is given in figure 5-5. In this example, a
multiplier, M=5, is given on the subcircuit line, Xtest. This multiplier is automatically applied to the
resistor R1 inside the Xtest instance, so the effective multiplier on Xtest:R1 is M=5.

Xtest 2 3 testA M=5
.subckt testB A B
R1 A B 0.5
.ends

Figure 5-5. Example subcircuit using a multiplier.

An example of nested subcircuits using instance multipliers is given in figure 5-6. In this example,
multipliers are specified at each level of the hierarchy, including on the resistor, R1. As each multiplier is
applied multiplicatively, the effective multiplier on Xtest1:Xtest:R1 is M=4*3*5=60.

Xtest1 2 3 testA M=5

.subckt testA A B
Xtest A B testB M=3
.ends

.subckt testB A B
R1 A B 0.5 M=4
.ends

Figure 5-6. Example nested subcircuits using a multiplier.

A slightly more complicated example of nested subcircuits, which also makes use of expressions, is given
in figure 5-7. In this example the effective multiplier on Xtest1:Xtest:R1 will be M=4*0.5*2*15=60.
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Xtest1 2 3 testA M=15

.subckt testA A B

.param fred=2
Xtest A B testB M=’0.5*fred’
.ends

.subckt testB A B
R1 A B 0.5 M=4
.ends

Figure 5-7. Example nested subcircuits using a multiplier, where a multiplier is set
with an expression.

As noted above, the M subcircuit instance multiplier is not considered to be a parameter available to
expressions. So, attempting to use it in an expression will not work, resulting in a fatal error. However, it is
allowed to declare a parameter named M, and use it in combination with multlipliers. For example of such
usage, see figure 5-8.

Xtest1 2 3 testA M=15

.subckt testA A B
Xtest A B testB M=2
.ends

.subckt testB A B M=3
R1 A B 0.5 M=’4*M’
.ends

Figure 5-8. Example of M being used as a subcircuit multiplier and a user-defined
parameter.

In this case, M is being declared as a user-defined parameter of value M=3 inside the subcircuit testB, and
this parameter is used inside the right-hand-side expression of M=’4*M’. The expression 4*M will evaluate
to 12. The other M keywords in this netlist are multipliers on the subcircuit instance lines, and they are
applied in the usual way. As a result, the final multiplier on Xtest1:Xtest:R1 is M=12*2*15=360.
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6. ANALOG BEHAVIORAL MODELING

Chapter Overview
This chapter describes analog behavioral modeling in Xyce. Sections include:

• Section 6.1,Overview of Analog Behavioral Modeling

• Section 6.2, Specifying ABM Devices

• Section 6.3, Guidance for ABM Use
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6.1. Overview of Analog Behavioral Modeling (ABM)

The analog behavioral modeling capability of Xyce provides for flexible descriptions of electronic
components or subsystems in terms of a transfer function or lookup table. In other words, a mathematical
relationship is used to model a circuit segment thereby removing the need for component-by-component
design information for those components or subsystems.

The B device, or nonlinear dependent source, is the primary device used for analog behavioral modeling in
Xyce. A B device can serve as either a voltage or current source, and by using expressions dependent on
voltages and currents elsewhere in the circuit the user can produce a wide range of behaviors.

6.2. Specifying ABM Devices

ABM devices (B devices) are specified in a netlist the same way as other devices. Customizing the
operational behavior of the device is achieved by defining an ABM expression describing how inputs are
transformed into outputs.

For example, the following pair of lines would provide exactly the same behavior as a 10K resistor between
nodes 1 and 2, and is written to be a current source with current specified using Ohm’s law and the constant
resistance value of 10K Ω.

.PARAM Res1=10K
Blinearres 1 2 I={(V(2)-V(1))/Res1}

A nonlinear resistor could be specified similarly:

.PARAM R1=0.15

.PARAM R2=6

.PARAM E2 = {2*E1}

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}

.FUNC Rreg1(a,b,c,d) {a +(b-a)*c/d}

.param Rreg2(a,b,c,d,f)={a+sqrt(2-b*(2*c-d)**2)*f}

Bnlr 4 2 V = {I(Vmon) * IF(
+ V(101) < E1, Rreg1(R0,R1,V(101),E1),
+ IF(
+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2
+ )
+ )}

In this example, Bnlr provides a voltage between nodes 4 and 2, determined using Ohm’s law with a
resistance that is a function of the voltage on node 101 and a number of parameters. These two examples
demonstrate how the B source can be used either as a voltage source (by specifying V={expression}) or
as a current source (with I={expression}).
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NOTE: Unlike expressions used in parameters or function declarations, expressions in the nonlinear
dependent source may contain voltages and currents from other parts of the circuit, or even explicit
time-dependent functions. Xyce evaluates these expressions when the current or voltage through the ABM
source is needed. In contrast, expressions used in parameters or function declarations are evaluated only
once, prior to the start of the circuit simulation.

6.2.1. Additional constructs for use in ABM expressions

ABM expressions follow the same rules as other expressions in a netlist, with the additional ability to
specify signals (node voltages and voltage source currents) and explicitly time-dependent functions in the
expression. In ABM expressions, refer to signals by name. Xyce recognizes the following constructs in
ABM expressions:

• V(<node name>)

• V(<node name>,<node name>) (the voltage difference between the first and second nodes)

• I(<voltage source name>)

• Reserved simulator variables, such as TIME, TEMP, VT, FREQ and GMIN

• The constants, PI and EXP, which equal 𝜋 and 𝑒, respectively.

• Lookup tables, which may be a function of time and other inputs

• User-defined functions via .func or .param

• User-defined .param and .global_param parameters.

• Random operators such as AGAUSS.

In a hierarchical circuit (a circuit with possibly nested levels of subcircuits), voltage source names in an
ABM expression must be the name of a voltage source in the same subcircuit as the ABM device, or in a
subcircuit instantiated by that subcircuit. Similarly, node names in an ABM expression must be the node
names of one or more devices in the same subcircuit as the ABM device, or in a subcircuit instantiated by
that subcircuit.

6.2.2. Examples of Analog Behavioral Modeling

A variety of examples of legal usage of analog behavioral modeling is probably the most effective means of
demonstrating what is allowed. The following netlist fragment shows the range of simple items allowed in
ABM expressions:

* Current through B1 given as expression of voltage drop between
* nodes 2 and 3 plus current through voltage source Vr4mon
B1 1 0 I={V(2,3) + I(Vr4mon)}
R4 2 0 10K
Vr4mon 2a 2 0V
* Voltage across device Em given as time-dependent expression
Em 3 2a VALUE={PAR3+1000*time}
* Voltage across device B2 set to current through device Em
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B2 2a 0 V={I(Em)}
M3 Drain 6 0 NMOD
VdrainM3 DrainPrime Drain 0v
* Voltage across B3 is function of voltage on node two and
* current through device VdrainM3
B3 6 4 V={I(VdrainM3)+V(2)}
* Voltage across device B4 is function of an internal node
* named "5" of subcircuit instance X1
X1 1 3 mysubcircuit
B4 4 5 V={V(X1:5)}
* Current through device B5 taken from current through
* internal device V4 of subcircuit instance X1
B5 4 5 I={I(X1:V4)}

The range of items that can be used in the current and voltage parameters of a B (or E, F, G, or H) source is
far greater than what is allowed for expressions in other contexts. In particular, the use of solution values
(V(*), V(*,*), I(V*)) are prohibited in all other expressions because they lead to unstable behavior if used
elsewhere beside ABM. Time-dependent expressions are allowed for some device parameters, but this
feature should be used with caution, as the behavior of a non-ABM device cannot be guaranteed to be
correct when its device parameters are not constant throughout a simulation run. Frequency-dependent
expressions are not supported for the current and voltage parameters of a B (or E, F, G, or H) source.

6.2.2.1. Behavioral modeling with tables

Lookup tables and splines provide a means of specifying a interpolated data in an expression. A table
expression is specified with the keyword TABLE followed by an expression that is evaluated as the
independent variable of the function, followed by a list of pairs of independent variable/dependent variable
values. For example:

Example: B1 1 0 V={TABLE {time} = (0, 0) (1, 2) (2, 4) (3, 6)}

An equivalent example uses the table function, which has a simpler syntax, but may be hard to read for long
tables:

Example: B1 1 0 V={TABLE(time, 0, 0, 1, 2, 2, 4, 3, 6)}

The previous two examples will produce a voltage source (B1) whose voltage is a simple linear function of
time. At 𝑡 = 0 the voltage is 0 volts and at time 𝑡 = 1𝑠 the voltage is 2 volts. Similarly, the voltage will be 4
volts at 𝑡 = 2𝑠 and 6 volts at 𝑡 = 3𝑠. Linear interpolation is used at times in between those tabulated values.
Note that time-dependent data can be specified out of order, and the expression code in Xyce will
automatically sort it.

It is also possible to create ABM sources from files of time-value pairs by providing the name of the file
containing the pairs between quotation marks:

Example: Bfile 1 0 V=tablefile(“myfile”)

Example: Bfile 1 0 V={tablefile(“myfile”)}
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Example: Bfile 1 0 V={table(“myfile”)}

The file provided must have one time-voltage pair per line, separated by spaces. Comma-separated files are
not supported, and will not be parsed correctly. If the file “myfile” contains the following data:

0 0
1 2
2 4
3 6

then the “Bfile” example above will be identical to either of the “B1” examples given above. The quoted-file
sytax is in fact converted internally to precisely the same TABLE format as the first B1 example, with an
independent variable of TIME and the given time-value pairs inserted.1

The independent variable of the table source does not have to be a simple expression. In the example shown
below, the independent variable is a function of voltages and currents throughout the circuit.

Example: Bcomplicated 1 0 V={TABLE {V(5)-V(3)/4+I(V6)*Res1} = (0, 0) (1, 2) (2, 4) (3, 6)}

There is also a version of the table capability which can run significantly faster for really large tables. That
capability is the fasttable capability, which is available in the Xyce expression library. It has the same
format as table, and behaves very similarly. However, whereas table will apply time integration
breakpoints at every entry in the table, the fasttable capability will only apply breakpoints at the first and
last time point in the table.

6.2.2.2. Behavioral modeling with splines

An alternative to table is to use one of the more advanced interpolator functions that are available in the
Xyce expression library. All of these methods use higher-order interpolation methods and (in theory) will
produce a smoother result. As they tend to be very smooth, the interpolators do not produce any time
integration breakpoints, except for the first and last time point. In this regard (breakpoints) they behave the
same as fasttable. The spline options include spline, cubic, akima [8], and wodicka [9]. Another
high-order interpolator is BLI, which is for Barycentric Lagrange Interpolation [10]. All of these
interpolators use the same syntax as the table function in the expression library. For example:

Example: Bfile 1 0 V={spline(“myfile”)}

Example: Bfile 1 0 V={bli(“myfile”)}

Higher orders of interpolation is primarily useful for data that represents a smooth function. If the data has
intentionally sharp discontinuities (such as a square wave input), then higher orders of interpolation (and
the removal of breakpoints) are a bad choice. Discontinuties due to noisy measurement data may be another
matter. Assuming noise isn’t a desirable aspect, using splines will naturally smooth away noise.

1The use of a B source in this manner is similar to using the FILE option to the piecewise linear (PWL) voltage source as documented
in the Xyce Reference Guide [3], but unlike the PWL source, the file-based table function does NOT support reading comma-
separated files.
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6.2.2.3. Automatically sparsifying tabular data

Interpolated ABM models, based on tabular data can optionally have the size of their dataset reduced using
the sparsification option. To enable this feature, the TABLE or SPLINE operator requires an additional
argument specifying the number of points. To use a log scale for the gradient based table refinement, a third
argument can be set to “true”. Sparsification can only be used for tables specified from a file.

Example: Bfile 1 0 V={table(“myfile”,100)}

Example: Bfile 1 0 V={spline(“myfile”,100)}

Example: Bfile 1 0 V={table(“myfile”,100, true)}; use log scale for gradients

In the above examples, the number of points used internally for the Bfile device is automatically reduced
to 100. This reduction is a gradient-based reduction, so the resulting dataset will cluster larger numbers of
points in regions of high gradients and small numbers of points where the dataset is nearly flat.

The reduction requires an internal spline interprolation. The internal spline interpolation is used, no matter
which interpolation option is later used by the Bsrc. So, for example, even though
{table(“myfile”,100)} specifies a piecewise-linear interpolation, the internal sparsification will use a
spline.

The motivation for using this feature is to improve simulation performance. Piecewise linear sources in
Xyce apply time integration breakpoints at every point in the dataset. For large datasets with finely spaced
time points, Xyce may take a lot of very small time steps. This can result in very slow simulation times.
Sparsifying the data will mitigate this issue.

Table sparsification is only useful for data pulses that resemble smooth functions. If the data has a lot of
sharp discontinuities (such as a square wave), this feature is not recommended. Also, this feature will tend
to remove noise from a dataset.

6.2.3. Alternate behavioral modeling sources

In addition to the primary nonlinear dependent source, the B source, Xyce also supports the PSpice
extensions to the standard Spice voltage- and current-controlled sources, the E, F, G, and H sources. Xyce
provides these sources for PSpice compatibility, and converts them internally into equivalent B sources. The
Xyce Reference Guide [3] netlist reference chapter provides the syntax of these compatibility devices.

6.3. Guidance for ABM Use

6.3.1. ABM devices add equations to the system of equations used by the solver

As Xyce solves a complex nonlinear set of equations at each time step, it is important to remember this
system of equations is solved iteratively to obtain a converged solution. Specifying an ABM device in a
Xyce netlist adds one or more equations to the nonlinear problem that Xyce must solve.
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When the nonlinear solver has converged, the expression given in the ABM device will be satisfied to
within a solver tolerance. However, during the course of the iterative solve, the unconverged values of nodal
voltages and currents, which are often inputs and outputs of ABM devices, are not guaranteed to be
solutions to the system of equations.

During this preconverged phase, solution variables are not guaranteed to have physically reasonable values.
They could, for example, temporarily have the wrong sign. Only at the end of a successful nonlinear
iterative solve are the solution variables consistent, legal values. This convergence behavior motivates the
caveats on ABM usage given in the next subsection.

6.3.2. Expressions used in ABM devices must be valid for any possible input

While ABM devices look temptingly like calculators, it is potentially dangerous to use them as such. The
previous subsection stated that during the nonlinear solution of each timestep equations, nodal voltages and
currents are usually not solutions to the full set of equations, and often violate Kirchhoff’s laws. Only at the
end of the nonlinear solution are all the constraints on voltages and currents satisfied. This has some
important consequences to the user of ABM devices.

All expressions involving nodal voltages and currents used in ABM devices should be valid for any possible
value they might see — even those that appear to be physically meaningless and those that a knowledgeable
user might never expect to see in the real circuit. This is particularly important when using square roots or
exponentiating to a fractional power. For example, consider the following netlist fragment:

*...other parts of more complex circuit deleted...
* potentially bad usage of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B1 2 0 V={sqrt(v(1))}
r1 2 0 10k
*...other parts of more complex circuit deleted...

This example demonstrates a potentially dangerous usage. It is assumed, because node 1 is connected to a
5V DC source, that the argument of the square root function is always positive. However, it could be the
case that during the nonlinear solution of the full circuit that an unconverged value of node 1 might be
negative. Tracking down mistakes such as this can be difficult, as on most platforms B1 will result in a “Not
a Number” value for the nodal voltage of node 2 but the program will not crash. This frequently results in
inexplicable “timestep too small” errors.

Although such things can be avoided by protecting the arguments of functions with a limited domain, care
must be taken when doing this. One obvious way to protect the example circuit fragment would be to take
the absolute value of V(1) before calling the square root (sqrt) function:

*...other parts of more complex circuit deleted...
* safer usage of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B1 2 0 V={sqrt(abs(v(1)))}
r1 2 0 10k
*...other parts of more complex circuit deleted...
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There are many other ways to protect the square root function from negative arguments, such as by using
the maximum of zero and V(1). Some alternatives might be more appropriate than others in different
contexts.

Note, though, that it would be a mistake to attempt to generate the absolute value as shown here:

*...other parts of more complex circuit deleted...
* really bad misuse of ABM device
Vexample 1 0 5V
d1 1 0 diode_model
B2 3 0 V={abs(v(1))} ; watch out!
B1 2 0 V={sqrt(v(3))}; just as bad as first example!
r1 2 0 10k
*...other parts of more complex circuit deleted...

There are two things wrong with this example — first, node 3 is floating and this alone could lead to
convergence problems. Second, by adding the second ABM device one has merely created an equation
whose solution is that node 3 contains the absolute value of the voltage on node 1. However, until
convergence is reached there is no guarantee node 3 will be precisely the absolute value of V(3), nor is it
guaranteed that node 3 will have a positive voltage. To re-iterate, nodes have values that are solutions to the
set of equations created by the netlist only at convergence.

6.3.3. Infinite slope transitions can cause convergence problems

It is possible for a user to specify expressions that could have infinite-slope transitions with B-, E-, F-, G-
and H-sources. This can lead to “timestep too small” errors when Xyce reaches the transition point. For
example, inclusion of the following B-source expression in a circuit can cause the simulation to fail when
V(IN)=3.5:

Bcrtl OUTA 0 V={ IF( (V(IN) > 3.5), 5, 0 ) }

Infinite-slope transitions in expressions dependent only on the time variable are a special case, because
Xyce can detect that they are going to happen, and set a “breakpoint” to capture them. Infinite-slope
transitions depending on other solution variables, however, cannot be predicted in advance, and will cause
the time integrator to scale back the timestep repeatedly in an attempt to capture the feature until the
timestep is too small to continue. One solution to this problem is to modify the expression to allow a
continuous transition. For example, the above expression could be modified to:

Bcrtl OUTA 0 V={IF( (V(IN) > 3.4), IF( (V(IN) > 3.5), 5, 50*(V(IN)-3.4) ), 0 )}

However, this can become complicated with multiple inputs. The other solution is to specify device options
or instance parameters to allow smooth transitions. The parameter smoothbsrc enables the smooth
transitions. This is done by adding a RC network to the output of B sources. For example,

Bcrtl OUTA 0 V={ IF( (V(IN) > 3.5), 5, 0 ) } smoothbsrc=1

.options device smoothbsrc=1
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The smoothness of the transition can be controlled by specifying the rc constant of the RC network. For
example,

Bcrtl OUTA 0 V={ IF( (V(IN) > 3.5), 5, 0 ) } smoothbsrc=1
+ rcconst = 1e-10

.options device smoothbsrc=1 rcconst = 1e-10

Note that this smoothed ABM only applies to voltage sources, such as voltage B sources and E sources. The
voltage behavioral source supports two instance parameters smoothbsrc and rcconst. Parameters may be
provided as space separated <parameter>=<value> specifications as needed. The default value for
smoothbsrc is 0 and the default for rcconst is 1e-9.

If the device options are specified, they apply to all voltage ABM devices in the circuit. If the device
instance parameters are specified, they apply to that device. When both the device options and instance
parameters are specified, the device instance parameters take precedence over the device options.

6.3.4. ABM devices should not be used purely for output postprocessing

Users sometimes use ABM devices to provide output postprocessing. For example, if a user was interested
in the absolute value, or the log of an output voltage, then that user might create an ABM circuit element to
calculate the desired output value.

Using ABM sources in this manner is bad practice though. By creating a circuit element whose only
purpose is postprocessing, Xyce is forced to include it and the corresponding nonlinear solve in the circuit,
which can cause unnecessary solver problems. If postprocessing is the goal, it is much better to use
expressions directly on the .PRINT line.

An example of a “bad use” of ABM sources can be found in the following code fragment:

* Bad example
B1 test1 0 V = {(abs(I(VMON)))*1.0e-10}
VIN 1 0 DC 5V
R1 1 2 2K
D1 3 0 DMOD
VMON 2 3 0
.MODEL DMOD D (IS=100FA)
.DC VIN 5 5 1
.PRINT DC I(VMON) V(3) V(test1)

Although the source B1 provides a postprocessing output, it doesn’t play a functional role in the circuit and
Xyce would still be forced to include B1 in the problem it is attempting to solve.

A better solution to the previous problem is given here, where the post-processing is done on a .PRINT
line:
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* Good example
VIN 1 0 DC 5V
R1 1 2 2K
D1 3 0 DMOD
VMON 2 3 0
.MODEL DMOD D (IS=100FA)
.DC VIN 5 5 1
.PRINT DC I(VMON) V(3) {(abs(I(VMON)))*1.0e-10}

Section 9.1 and the Xyce Reference Guide [3]provide a more detailed explanation of how to use expressions
in the .PRINT line.

6.3.5. ABM devices in frequency domain analysis

ABM devices can be used in both types of frequency domain analysis, AC and HB. However, there is one
important limitation. They can only be used in this type of analysis if the source is not an independent
source. In other words, they cannot be time-dependent. ABM sources that only depend on circuit solution
variables (such as voltage node values) will work in both AC and HB.
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7. ANALYSIS TYPES

Chapter Overview
This chapter describes the different analysis types available in Xyce. It includes the following sections:

• Section 7.1, Introduction

• Section 7.2, DC Analysis

• Section 7.3, Transient Analysis

• Section 7.4, STEP Parametric Analysis

• Section 7.5, Sampling Analysis

• Section 7.6, Polynomial Chaos Expansion Analysis

• Section 7.7, Harmonic Balance Analysis

• Section 7.8, AC Analysis

• Section 7.9, Noise Analysis

• Section 7.10, Sensitivity Analysis

• Section 7.11, S-parameter Analysis
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7.1. Introduction

Xyce supports several simulation analysis options, including DC bias point (.DC, section 7.2), transient
(.TRAN, section 7.3), AC (.AC, section 7.8), Noise (.NOISE, section 7.9), harmonic balance (.HB, section
7.7), and sensitivity (.SENS, section 7.10) analysis.

Using .STEP(section 7.4), Xyce can also apply an outer parametric loop to any type of analysis. This allows
one (for example) to sweep a model parameter and perform a transient simulation for each parameter
value.

Using .SAMPLING or .EMBEDDEDSAMPLING (section 7.5), Xyce can apply random sampling loop to any
type of analysis. This will compute statistical moments for various circuit outputs.

Alternatively, one can use several types of Polynomial Chaos Expansion (PCE) methods in Xyce to
propagate uncertainty thru a calculation (section 7.6). Similar to the sampling methods, these methods can
also be used to compute statistical moments for various circuit outputs.

There are some analysis types typically found in SPICE-style simulators that are still a work in progress for
Xyce. Operating point analysis (.OP, section 7.2.3) is partially supported in Xyce.

7.2. Steady-State (.DC) Analysis

The DC sweep analysis capability in Xyce computes the DC bias point of a circuit for a range of values of
input sources. DC sweep is supported for a source or device parameter, through a range of specified values.
As the sweep proceeds, Xyce computes the bias point for each value in the specified range of the sweep.

If the variable to be swept is a voltage or current source, a DC source must be used and its value set in the
netlist (see Xyce Reference Guide [3]). In simulating the DC response of an analog circuit, Xyce eliminates
time dependence from the circuit by treating capacitor elements as open circuits and inductor elements as
short circuits, while using only the DC values of voltage and current sources.

7.2.1. .DC Statement

To specify a .DC analysis, include a .DC line in the netlist. Some examples of typical .DC lines are:

Example:
.DC V1 7m 5m -1m
.DC I1 5u 10u 1u
.DC M1:L 7u 5u -1u
.DC OCT V0 0.125 64 2
.DC DEC R1 100 10000 3
.DC TEMP LIST 10.0 15.0 18.0 27.0 33.0
.DC data=table
.param init=7m, final=5m, step=-1m
.DC V1 {init} {final} {step}
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The examples include several types of sweep — linear, octave, decade, list and data. They also demonstrate
sweeping over voltage and current sources as well as device parameters. The Xyce Reference Guide [3]
provides a complete description of each.

7.2.2. Setting Up and Running a DC Sweep

Following the example given in section 3.2, figure 7-1 shows the diode clipper circuit netlist with a DC
sweep analysis specified. Here, the voltage source Vin is swept from -10 to 15 in 1-volt increments,
resulting in 26 DC operating point calculations.

NOTE: Xyce ignores the default setting for Vin during these calculations. All other source values use the
specified values (in this case, VCC = 5V).

Running Xyce on this netlist produces an output results file named clipper.cir.prn. Obtaining this file
requires specifying the .PRINT DC line. Plotting this data produces the graph shown in figure 7-2.

Diode Clipper Circuit
** Voltage Sources
VCC 1 0 5V
VIN 3 0 0V
* Analysis Command
.DC VIN -10 15 1
* Output
.PRINT DC V(3) V(2) V(4)
* Diodes
D1 2 1 D1N3940 D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
.MODEL D1N3940 D(
+ IS=4E-10 RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9
+ BV=600 IBV=1E-4)
.END

Figure 7-1. Diode clipper circuit netlist for DC sweep analysis.

7.2.3. OP Analysis

Xyce also supports .OP analysis statements. In Xyce, consider .OP as a shorthand for a single-step DC
sweep, in which all the default operating point values are used. One may also consider .OP analysis to be
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Figure 7-2. DC sweep voltages at Vin, node 2 and Vout.

the operating point calculation that would occur as the initial step to a transient calculation, without the
subsequent time steps.

This capability was mainly added to enable the code to handle legacy netlists using this analysis statement
type. In most versions of SPICE, using .OP results in extra output not available from a DC sweep. Xyce will
also output some of this extra information about devices, but the capability is not fully implemented.

7.2.4. Output

During analysis a number of output files may be generated. The selection of which files are created depends
on a variety of factors, most obvious of which is the .PRINT command. Table 7-1 lists the format options
and files created. The column labeled “Additional Columns” lists the additional data that is written, though
not specified on the .PRINT line.

74



Table 7-1. Output generated for DC analysis

Command Files Additional Columns

.PRINT DC circuit-file.prn INDEX TIME

.PRINT DC FORMAT=NOINDEX circuit-file.prn TIME

.PRINT DC FORMAT=CSV circuit-file.csv TIME

.PRINT DC FORMAT=RAW circuit-file.raw TIME

.PRINT DC FORMAT=TECPLOT circuit-file.dat TIME

.PRINT DC FORMAT=PROBE circuit-file.csd TIME

Xyce -r raw-file-name raw-file-name All circuit variables
printed

Xyce -r raw-file-name -a raw-file-name All circuit variables
printed

.OP log-file Operating point
information
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7.3. Transient Analysis

The transient response analysis simulates the response of the circuit from TIME=0 to a specified time.
Throughout a transient analysis, any or all of the independent sources may have time-dependent values.

In Xyce (and most other circuit simulators), the transient analysis begins by performing its own bias point
calculation at the beginning of the run, using the same method as used for DC sweep. This is required to set
the initial conditions for the transient solution as the initial values of the sources may differ from their DC
values.

7.3.1. .TRAN Statement

To run a transient simulation, the circuit netlist file must contain a .TRAN command.

Example:
.TRAN 100us 300ms
.TRAN 100p 12.05u 9.95u

Example:
.param tstep=100us, final=300ms
.TRAN {tstep} {final}

The Xyce Reference Guide [3] provides a detailed explanation of the .TRAN statement. The netlist must also
contain one of the following:

• Independent, transient source (see table 7-2),

• Initial condition on a reactive element, or

• Time-dependent analog behavioral modeling source (see chapter 6)

7.3.2. Defining a Time-Dependent (transient) Source

7.3.2.1. Overview of Source Elements

Source elements, either voltage or current, are entered in the netlist file as described in the Xyce Reference
Guide [3]. Table 7-2 lists the time-dependent sources available in Xyce for either voltage or current. For
voltage sources, the name is preceded by V while current sources are preceded by I.

To use time-dependent or transient sources, place the source element line in the netlist and characterize the
transient behavior using the appropriate parameters. Each transient source element has a separate set of
parameters dependent on its transient behavior. In this way, the user can create analog sources that produce
sine wave, square pulse, exponential pulse, single-frequency FM, and piecewise linear (PWL) waveforms.
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Table 7-2. Summary of Xyce-supported time-dependent sources

Source Element Name Description

EXP Exponential Waveform

PAT Pattern Waveform

PULSE Pulse Waveform

PWL Piecewise Linear Waveform

SFFM Frequency-modulated Waveform

SIN Sinusoidal Waveform

7.3.2.2. Defining Transient Sources

To define a transient source, select one of the supported sources: independent voltage or current, choose a
transient source type from table 7-2, and provide the transient parameters (refer to the Xyce Reference
Guide [3] to fully define the source).

The following example of an independent sinusoidal voltage source in a circuit netlist creates a voltage
source between nodes 1 and 5 that oscillates sinusoidally between -5V and +5V with a frequency of 50
KHz. The arguments specify an offset of -5V, a 10V amplitude, and a 50KHz frequency, in that order.

Example: Vexample 1 5 SIN(-5V 10V 50K)

7.3.3. Transient Time Steps

During the simulation, Xyce uses a calculated time step that is continuously adjusted for accuracy and
efficiency (see [11] and [12]). Calculation time step increases during periods of circuit idleness, and
decreases during dynamic portions of the waveform. Users may control the maximum internal step size by
specifying the step’s ceiling value in the .TRAN command (see the Xyce Reference Guide [3]).

The internal calculation time steps used might not be consistent with the user-requested output time steps.
By default, Xyce outputs solution results at every time step it calculates. If the user selects output timesteps
via the .OPTIONS OUTPUT statement (see chapter 9), then Xyce will output results at the interval requested,
interpolating solution variables to desired output times if necessary.

7.3.4. Time Integration Methods

For a transient analysis, several time integration methods can be selected to solve the circuit model’s
differential algebraic equations. The following algorithms are available:

• Variable order Trapezoidal (combines Trapezoidal and Backward Euler)

• Gear method, orders 1-2.
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You can set the method, maxord and minord parameters to select the time integration methods via a
.OPTIONS line. The following table shows the possible settings for those three parameters. (Note: Consult
the Xyce Reference Guide [3]for the exact syntax of the .OPTIONS line for each time integration method.)
The default time integration method in Xyce is Trap, which is the same as SPICE, PSpice and HSPICE.

Table 7-3. Summary of Xyce-supported time integration methods

Integration Methods Option Settings Comments

Backward-Euler method=trap maxord=1 Backward-Euler only

Trap method=trap combines Trapezoidal and
Backward Euler (default)

Trap only method=trap minord=2 Trapezoidal only

Gear method=gear combines Backward Euler and
2nd order Gear

Gear2 only method=gear minord=2 2nd order Gear only

The Trapezoidal method is often the preferred method because it is accurate and fast. However, this method
can exhibit artificial point-to-point ringing, which can be controlled by using tighter tolerances. If a circuit
fails to converge with the Trapezoidal method then you can re-run the transient analysis using the Gear
method.

The Gear method may help convergence for some circuits. The 2nd order Gear method is typically more
accurate than the Backward-Euler method (1st order Gear). However, both of these methods are overly
stable methods, and they can damp the actual circuit behavior when simulating high-Q resonators such as
oscillators. The Backward-Euler method has more damping effect than the 2nd order Gear method. This
effect can be alleviated by using tighter tolerances in the simulations. However, it is suggested to use the
pure Trapezoidal method for oscillators.

7.3.5. Error Controls

There are two basic time-step error control methods in Xyce — Local Truncation Error (LTE) based and
non-LTE based.

7.3.5.1. Local Truncation Error (LTE) Strategy

All time integration methods use the LTE-based strategy by default. The accuracy of the simulation can be
controlled by specifying appropriate relative and absolute error tolerances (RELTOL and ABSTOL).

Example:
.OPTIONS TIMEINT RELTOL=1e-4 ABSTOL=1e-8

The total tolerance of LTE is
𝑇𝑜𝑙𝐿𝑇𝐸 = abstol + reltol*ref

The parameter ref is the reference value that the relative error is compared to. It can be controlled by
setting newlte option.

78



Example:
.OPTIONS TIMEINT NEWLTE=1

The choices for newlte option are:

• 0. The reference value is the current value on each node. This is the most conservative and least used.

• 1. The reference value is the maximum of all the signals at the current time. This is the default value.

• 2. The reference value is the maximum of all the signals over all past time. This is the loosest
criterion. It normally produces the best performance and should be used if the overall size of the
signals is roughly the same on all nodes.

• 3. The reference value is the maximum value on each signal over all past time. This should be used if
the scale of signals varies widely in a system.

The Trapezoid integrator algorithm introduces no numerical dissipation. So, a strong ringing (artificially
introduced by the numerical algorithm) will occur when sources or models introduce discontinuities. This
can result in a large local truncation error estimate, ultimately leading to a “time-step too small” error. In
this case, using the Gear method or a non-LTE strategy may help.

7.3.5.2. Non-LTE Strategy

The non-LTE strategy used in Xyce is based on success of the nonlinear solve, and is enabled by setting
ERROPTION=1. Since the step-size selection is based only upon nonlinear iteration statistics rather than
accuracy, it is highly suggested that DELMAX be specified, in a circuit-specific manner, for all three time
integrators. The purpose of DELMAX is to limit the largest time step taken.

Example:
.OPTIONS TIMEINT ERROPTION=1 DELMAX=1.0e-4

For the Trapezoid and Gear integrators, the options are slightly more refined. If the number of nonlinear
iterations is below NLMIN, then the step size is doubled. If the number of nonlinear iterations is above
NLMAX then the step size is cut by one eighth. In between, the step size is not changed. An example using
Trap (METHOD=7) is given below.

Example:
.OPTIONS TIMEINT METHOD=7 ERROPTION=1 NLMIN=3 NLMAX=8 DELMAX=1.0e-4

If the number of Newton iterations is bigger than NLmax and TIMESTEPSREVERSAL is not set, then
Xyce will cut the next step. If the number of Newton iterations is bigger than NLmax and
TIMESTEPSREVERSAL is set, then Xyce will reject the current step and also cut the current step.

Example:
.OPTIONS TIMEINT METHOD=7 ERROPTION=1 DELMAX=1.0e-4 TIMESTEPSREVERSAL=1
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7.3.6. Breakpoints

It is often necessary or desirable for the time integrator to be forced to land on a specific time point and
restart integration from that point. The most common scenario for which this is necessary is when an device
(such as a PULSE or a PWL source) produces a discontinuity. If a discontinuity is present, and no breakpoint
is set, then the LTE analysis will force the time integrator to take really small time steps, and this can
possibly impact the robustness of the calculation.

Fortunately, Xyce handles most device-based discontinuities automatically, so it is not necessary for the
user to worry about them. However, it can be desirable for the user to manually set breakpoints from the
netlist. In a Xyce netlist, these are specified using the BREAKPOINTS parameter with a comma-separated
list in the following .OPTIONS TIMEINT statement.

Example:
.OPTIONS TIMEINT BREAKPOINTS=1ms,2ms,3ms

7.3.7. Checkpointing and Restarting

Xyce was designed to simulate large, complex circuits over long simulation runs. Because complex
simulations can take many hours (or even days) to complete, it can sometimes be helpful to use
“checkpointing.” When checkpointing is used, Xyce periodically saves its complete simulation state. The
saved state can be used to restart Xyce from one of these “checkpoints.” In the event of a computer crash,
power outage, or should the simulation need to be interrupted for some other reason, checkpointing allows
the user to restart a long simulation in the middle of a run without having to start over.

Xyce uses the .OPTIONS RESTART netlist command to control all checkpoint output and restarting.

7.3.7.1. Checkpointing Command Format

• .OPTIONS RESTART [PACK=<0|1>] JOB=<job name> INITIAL_INTERVAL=<interval>
[[<t0> <i0> [<t1> <i1>...]]]

PACK=<0|1> indicates whether restart data files will contain byte-packed (binary) data(PACK=1, the
default) or unpacked (ASCII)(PACK=0). JOB=<job name> identifies the prefix for restart files. The
actual restart files will be the job name appended with the current simulation time (e.g., name1e-05
for JOB=name and simulation time 1e-05 seconds). Furthermore, the
INITIAL_INTERVAL=<interval> identifies the initial interval time used for restart output; this
parameter must be given. The <tx ix> intervals identify times (tx) at which the output interval (ix)
will change. This functionality is identical to that described for the .OPTIONS OUTPUT command
(section 9.1).

• Example — Generate checkpoints every 0.1 𝜇𝑠:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us

• Example — Generate unpacked checkpoints every 0.1 𝜇𝑠:

.OPTIONS RESTART PACK=0 JOB=checkpt INITIAL_INTERVAL=0.1us
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• Example — Initial interval of 0.1 𝜇𝑠, at 1 𝜇𝑠 in the simulation, change to interval of 0.5 𝜇𝑠, and at 10
𝜇𝑠 change to an interval of 0.1 𝜇𝑠:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.1us 1us 0.5us
+ 10us 0.1us

7.3.7.2. Restarting Command Format

• .OPTIONS RESTART <FILE=<filename> | JOB=<job name> START_TIME=<time>>
+ [INITIAL_INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]]

To restart from an existing restart file, specify the file by using either the
FILE=<filename> parameter to explicitly request a file or
JOB=<job name> START_TIME=<time> to specify a file prefix and a specific time. The time must exactly
match an output file time for the simulator to correctly load the file.

To continue checkpointing the simulation in a restarted run, append INITIAL_INTERVAL=<interval> and
the following intervals to the command in the same format as previously described. Without these additional
parameters, the simulation will restart as requested, but will not generate further checkpoint files.

• Example — Restart from checkpoint file at 0.133 𝜇𝑠:

.OPTIONS RESTART JOB=checkpt START_TIME=0.133us

• Example — Restart from checkpoint file at 0.133 𝜇𝑠 :

.OPTIONS RESTART FILE=checkpt0.000000133

• Example — Restart from 0.133 𝜇𝑠 and continue checkpointing at 0.1 𝜇𝑠 intervals:

.OPTIONS RESTART FILE=checkpt0.000000133 JOB=checkpt_again
+ INITIAL_INTERVAL=0.1us

7.3.8. Output

During analysis a number of output files may be generated. The selection of which files are created depends
on a variety of factors, most obvious of which is the .PRINT command. Table 7-4 lists the format options
and files created. The column labeled “Additional Columns” lists the additional data that is written, though
not specified on the .PRINT line.
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Table 7-4. Output generated for Transient analysis

Command Files Additional Columns

.PRINT TRAN circuit-file.prn INDEX TIME

.PRINT TRAN FORMAT=NOINDEX circuit-file.prn TIME

.PRINT TRAN FORMAT=CSV circuit-file.csv TIME

.PRINT TRAN FORMAT=RAW circuit-file.raw TIME

.PRINT TRAN FORMAT=TECPLOT circuit-file.dat TIME

.PRINT TRAN FORMAT=PROBE circuit-file.csd TIME

Xyce -r raw-file-name raw-file-name All circuit variables
printed

Xyce -r raw-file-name -a raw-file-name All circuit variables
printed

.OP log-file Operating point
information
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7.4. STEP Parametric Analysis

The .STEP command performs a parametric sweep for all the analyses of the circuit. When the .STEP
command is invoked, typical analyses, such as .DC, .AC, and .TRAN are performed for each value of the
stepped parameter.

This capability is very similar, but not identical, to the STEP capability in PSpice [4]. Xyce can use .STEP
to sweep over any device instance or device model parameter, as well as the circuit temperature. It can also
be used to sweep over any user-defined parameter (either .GLOBAL_PARAM or .PARAM ) , as long as that
parameter is defined in the global scope.

7.4.1. .STEP Statement

A .STEP analysis may be specified by simply adding a .STEP line to a netlist. Unlike .DC, .STEP by itself
is not an adequate analysis specification, as it merely specifies an outer loop around the normal analysis. A
standard analysis line, either specifying .TRAN, .AC and .DC analysis, is still required.

Some examples of typical .STEP lines are:

Example:
.STEP M1:L 7u 5u -1u
.STEP OCT V0 0.125 64 2
.STEP DEC R1 100 10000 3
.STEP TEMP LIST 10.0 15.0 18.0 27.0 33.0
.STEP data=table

.STEP has a format similar to that of the .DC format specification. In the first example, M1:L is the name of
the parameter (in this instance, the length parameter of the MOSFET M1), 7u is the initial value of the
parameter, 5u is the final value of the parameter, and -1u is the step size. Like .DC, .STEP in Xyce can also
handle sweeps by decade, octave, a specified lists of values, or multivariate parameter values from a table.
Consult the Xyce Reference Guide [3] for complete explanations of each sweep type.

7.4.2. Sweeping over a Device Instance Parameter

The first example uses M1:L as the parameter, but it could have used any model or instance parameter
existing in the circuit. Internally, Xyce handles the parameters for all device models and device instances in
the same way. Users can uniquely identify any parameter by specifying the device instance name, followed
by a colon (:), followed by the specific parameter name. For example, all the MOSFET models have an
instance parameter for the channel length, L. For a MOSFET instance specified in a netlist, named M1, the
full name for the M1 channel length parameter is M1:L.

Figure 7-3 provides a simple application of .STEP to a device instance. This is the same diode clipper
circuit as was used in the transient analysis chapter, except that a single line (in red) has been added. This
.STEP line will cause Xyce to sweep the resistance of the resistor, R4, from 3.0 KOhms to 15.0 KOhms, in
2.0 KOhms increments, meaning seven transient simulations will be performed, each one with a different
value for R4.
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As the circuit is executed multiple times, the resulting output file is a little more sophisticated. The .PRINT
statement is still used in much the same way as before. However, the .prn output file contains the
concatenated output of each .STEP increment. The end of this section provides more details of how .STEP
changes output files.

Transient Diode Clipper Circuit with Step Analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statement
.STEP R4:R 3.0K 15.0K 2.0K
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
.MODEL D1N3940 D(
+ IS=4E-10 RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9
+ BV=600 IBV=1E-4)
.END

Figure 7-3. Diode clipper circuit netlist for step transient analysis

7.4.3. Sweeping over a Device Model Parameter

Sweeping a model parameter can be done in an identical manner to an instance parameter. Figure 7-4
contains the same circuit as in figure 7-3, but with additional .STEP line referring to a model parameter,
D1N3940:IS.

NOTE: .STEP line syntax differs from .DC line syntax in that multiple parameters require separate .STEP
lines. Each parameter needs a separate line.
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Transient Diode Clipper Circuit with Step Analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statements
.STEP R4:R 3.0K 15.0K 2.0K
.STEP D1N3940:IS 2.0e-10 6.0e-10 2.0e-10
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
.MODEL D1N3940 D(
+ IS=4E-10 RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9
+ BV=600 IBV=1E-4)
.END

Figure 7-4. Diode clipper circuit netlist for 2-step transient analysis
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7.4.4. Sweeping over Temperature

It is also possible to sweep over temperature. To do so, simply specify temp as the parameter name. It will
work in the same manner as .STEP when applied to model and instance parameters.

7.4.5. Special cases: Sweeping Independent Sources, Resistors, Capacitors and
Inductors

For some devices, there is generally only one parameter that one would want to sweep. For example, a
linear resistor’s only parameter of interest is resistance, R. Similarly, for a DC voltage or current source, one
is usually only interested in the magnitude of the source, DCV0. Finally, linear capacitors generally only
have capacitance, C, as a parameter of interest, while inductors generally only have inductance, L, as a
parameter of interest.

For these simple devices, it is not necessary to specify both the parameter and device on the .STEP line:
only the device name is strictly required, as these devices have default parameters that are assumed if no
parameter name is given explicitly.

Examples of usage are given below. The first two lines are equivalent — in the first line, the resistance
parameter of R4 is named explicitly, and in the second line the resistance parameter is implicit. A similar
example is then shown for the DC voltage of the voltage source VCC. In the remaining lines, parameter
names are all implicit, and the default parameters of the associated devices are used.

Example:
.STEP R4:R 3.0K 15.0K 2.0K
.STEP R4 3.0K 15.0K 2.0K
.STEP VCC:DCV0 4.0 6.0 1.0
.STEP VCC 4.0 6.0 1.0
.STEP ICC 4.0 6.0 1.0
.STEP C1 0.45u 0.50u 0.1u
.STEP L1 0.5m 1.0m 0.5m

Independent sources require further explanation. Their default parameter, DCV0, only applies to .DC
analyses. They do not have default parameters for their transient forms, such as SIN or PULSE.

7.4.6. Output files

Users can think of .STEP simulations as several distinct executions of the same circuit netlist. The output
data, as specified by a .PRINT line, however, goes to a single (*.prn) file. For convenience, Xyce also
creates a second auxilliary file with the *.res suffix.

Figure 7-3 shows an example file named clip.cir, which when run will produce files clip.cir.res and
clip.cir.prn. The file clip.cir.res contains one line for each step, showing what parameter value
was used on that step. clip.cir.prn is the familiar output format, but the INDEX field recycles to zero
each time a new step begins. As the default behavior distinguishes each step’s output only by recycling the
INDEX field to zero, it can be beneficial to add the sweep parameters to the .PRINT line. For the default file
format (format=std), Xyce will not automatically include these sweep parameters, so for plotting it is
usually best to specify them by hand.
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If using the default .prn file format (format=std), the resulting .STEP simulation output file will be a
simple concatenation of each step’s underlying analysis output. If using format=probe, the data for each
execution of the circuit will be in distinct sections of the file, and it should be easy to plot the results using
PROBE. If using format=tecplot, the results of each .STEP simulation will be in a distinct Tecplot zone.
Finally, format=raw will place the results for each .STEP simulation in a distinct “plot” region.
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7.5. Random Sampling Analysis

Xyce supports two different styles of random sampling analysis. One is specified with the .SAMPLING
command, and the other is specified with the .EMBEDDEDSAMPLING commmand. These are relatively new
capabilities and are still under development.

The .SAMPLING command causes Xyce to execute the primary analysis (.DC, .AC, .TRAN, etc.) inside a
loop over randomly distributed parameters. The user specifies a list of random parameters, their
distributions, distribution parameters (such as mean and standard deviation), and the total number of
sample points. The primary analysis is then executed sequentially for each sample point. The .SAMPLING
capability uses a lot of the same code base as .STEP, so most of the guidance for .STEP, including legal
parameters, output file formats, supported analyses types, etc., also applies to .SAMPLING.

The .EMBEDDEDSAMPLING command also causes Xyce to create a loop over randomly distributed
parameters, but unlike .SAMPLING, this loop is implemented inside the solver loop rather than outside of it.
As such, it creates a block linear system, in which each matrix block has the structure of the original matrix,
and the number of blocks is equal to the number of sample points. As such, all the parameters are
propagated simultaneously, rather than sequentially. Unlike .SAMPLING, which can be applied to all types
of Xyce analysis, .EMBEDDEDSAMPLING can only be applied to .DC and .TRAN.

Both types of sampling methods can be applied to a variety of inputs and outputs. For inputs, Xyce can use
.SAMPLING or .EMBEDDEDSAMPLING to modify any device instance or device model parameter, as well as
the circuit temperature. It can also be used to sweep over any user-defined parameter (either
.GLOBAL_PARAM or .PARAM ), as long as that parameter is defined in the global scope.

For outputs, both .SAMPLING and .EMBEDDEDSAMPLING can apply statistical analysis (computing moments
such as mean and standard deviation) to most outputs that appear on the .PRINT line. However, the two
analysis types have some differences. .SAMPLING will only apply statistical analysis at the end of the
calculation, while .EMBEDDEDSAMPLING can apply statistical analysis at each time step. Relatedly,
.SAMPLING can also be applied to any .MEASURE, but .EMBEDDEDSAMPLING lacks this capability.

7.5.1. .SAMPLING and .EMBEDDEDSAMPLING Statements

Sampling analysis may be specified by simply adding a .SAMPLING or a .EMBEDDEDSAMPLING line to a
netlist. The format for the two commands is nearly identical.

Sampling analysis such as .SAMPLING or .EMBEDDEDSAMPLING is not considered a “primary” analysis
type. This means that such a command by itself is not an adequate analysis specification, as it merely
specifies an additional parametric loop to augment the primary analysis. A standard analysis line,
specifying .TRAN, .AC, .HB, and .DC analysis, is still required.

Examples of typical .SAMPLING lines:

Example:

.SAMPLING
+ param=M1:L, M1:W
+ type=uniform,uniform
+ lower_bounds=5u,5u
+ upper_bounds=7u,7u

88



.SAMPLING
+ param=R1,c1
+ type=normal,normal
+ means=3K,1uF
+ std_deviations=1K,0.2uF

In the first example, M1:L and M1:W are the names of the parameters (in this instance, the length and width
parameters of the MOSFET M1), 5u is the minimum value of both parameters and 7u is the maximum value
of both parameters. For both parameters, the distribution (specified by type) is uniform. In the second
example, the two parameters are R1 and c1. In this case, it isn’t necessary to specify the specific parameter
of R1 or c1 as resistors and capacitors have simple default parameters (see section 7.5.3.5). The
distributions of both parameters are normal, and the means and standard deviations are specified for both in
comma-separated lists.

For any list of parameters, all the required fields must be provided in comma-separated lists. Xyce will
throw an error if the length of any of the lists is different than that of the parameter list.

7.5.2. .options SAMPLES and EMBEDDEDSAMPLES Statements

To specify the number of samples, use the netlist command .options SAMPLES numsamples=<value>.
For sampling analysis to work correctly, this parameter is required. Other sampling details, including the
sampling type, the covariance matrix, the statistical outputs and the random seed can be specified using the
same .options SAMPLES netlist command. Some examples of this command are:

Example:

.options samples numsamples=1000

.options samples numsamples=30
+ covmatrix=1e6,1.0e-3,1.0e-3,4e-14
+ OUTPUTS=R1:R,C1:C
+ MEASURES=maxSine
+ SAMPLE_TYPE=LHS
+ SEED=743190581

The random seed can be set either in the .options SAMPLES statement, or it can be set from the command
line using the -randseed option. If it is not set either way, then the random seed is generated internally.

In the example there are two different types of outputs specified. One is using the keyword OUTPUTS, and
this is used to specify a comma-separated list of outputs corresponding to typical .PRINT line outputs.
Solution variables, user defined parameters, and expressions depending on both are typical.

The other type of output is specified using the keyword MEASURES, and this is used to specify a
comma-separated list of netlist .MEASURE commands. This type of output is only available to .SAMPLING
and not to .EMBEDDEDSAMPLING.

The example sets the SAMPLE_TYPE=LHS, for Latin Hypercube Sampling [13]. The other options is
SAMPLE_TYPE=MC for Monte Carlo [14]. LHS is the default option for this parameter, and will generally be
a better choice.
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7.5.3. Specifying Uncertain Inputs

7.5.3.1. Sampling a Device Instance Parameter

Figure 7-5 provides a simple application of .SAMPLING to a device instance parameter. The circuit is a
simple voltage divider driven by a oscillating voltage source. The randomly sampled parameter is the
resistance of R1, which is given a normal distribution with a specified mean and standard deviation.

As the circuit is executed multiple times, an output file is generated based on the .PRINT command. The
.PRINT statement is still used in the same way that it would be in a non-sampling analysis. However, the
output file contains the concatenated output of each .SAMPLING step. Section 7.5.4 provides more details of
how .SAMPLING changes .PRINT output files.

Xyce computes statistical outputs for quantities specified by OUTPUTS and MEASURES on the .options
SAMPLES line. For these outputs, moments such as mean and variance are computed and sent to standard
output. More details of this type of output, as well as examples, are given in section 7.5.5.

Voltage Divider with sampling
R2 1 0 7k
R1 1 2 3k
VS1 2 0 SIN(0 1.0e3 1KHZ 0 0)

.tran 0.1ms 1ms

.meas tran maxSine max V(1)

.SAMPLING param=R1:R
+ type=normal means=1K std_deviations=0.1K

.options SAMPLES numsamples=1000 OUTPUTS={R1:R}
+ MEASURES=maxSine SAMPLE_TYPE=MC stdoutput=true

Figure 7-5. Voltage divider circuit netlist with sampling of a device instance
parameter. Sampling commands are in red.

7.5.3.2. Sampling a Device Model Parameter

Sampling a model parameter can be done in an identical manner to an instance parameter. Figure 7-6
provides a simple application of .SAMPLING to a device model and a device instance. This is the same
diode clipper circuit as was used in the Transient Analysis section (see section 3.3), except that several lines
of sampling commands (in red) have been added.

The sampling commands will cause Xyce to sample the model parameter, D1N3940:IS as well as the
resistance of the resistor, R4. Both of the parameters are randomly sampled using uniform distributions
with specified lower and upper bounds.

7.5.3.3. Sampling a User-Defined Parameter

Sampling can be applied to user-defined parameters, as long as they are declared in the top level netlist
(global scope). It cannot be applied to user-defined parameters which are defined in a subcircuit. An
example of such usage, with a global parameter, is given in figure 7-7. This circuit identical to the circuit in
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Transient Diode Clipper with Sampling Analysis

* Primary Analysis Command
.tran 2ns 0.5ms
* Output
.print tran format=tecplot V(3) V(2) V(4)
.meas tran maxSine max V(4)

* Sampling statements
.SAMPLING
+ param=R4:R,D1N3940:IS
+ type=uniform,uniform
+ lower_bounds=3.0k,2.0e-10
+ upper_bounds=15.0k,6.0e-10

.options SAMPLES numsamples=10 SAMPLE_TYPE=LHS
+ OUTPUTS=R4:R,D1N3940:IS MEASURES=maxSine stdoutput=true
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
* Diodes
D1 2 1 D1N3940
D2 0 2 D1N3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
C1 2 4 0.47u
.MODEL D1N3940 D(
+ IS=4E-10 RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9 BV=600 IBV=1E-4)
.END

Figure 7-6. Diode clipper circuit netlist with sampling analysis. This example uses a
model parameter as one of the sampling parameters. Sampling commands are in

red.
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figure 7-5, except that it uses global parameters. If the global parameters in this netlist are changed to
normal parameters (.PARAM), this circuit will also work.

Voltage Divider, sampling global params
.global_param Vmax=1000.0
.global_param testNorm=1.5k
.global_param R1value={testNorm*2.0}

R2 1 0 7k
R1 1 2 {R1value}
VS1 2 0 SIN(0 {Vmax} 1KHZ 0 0)
.tran 0.1ms 1ms
.meas tran maxSine max V(1)

.SAMPLING param=testNorm
+ type=normal means=0.5K std_deviations=0.05K

.options SAMPLES numsamples=1000 SAMPLE_TYPE=MC
+ OUTPUTS={R1:R} MEASURES=maxSine

Figure 7-7. Voltage divider circuit netlist with sampling of a global parameter.
Sampling commands are in red. This circuit will also work if the .global_param

statements are changed to .param.

7.5.3.4. Sampling over Temperature

It is also possible to sample temperature. To do so, simply specify temp as the parameter name. It will work
in the same manner as .SAMPLING when applied to model and instance parameters.

7.5.3.5. Special cases: Sampling Independent Sources, Resistors, Capacitors and Inductors

For some devices, there is generally only one parameter that one would want to sample. For example, a
linear resistor’s only parameter of interest is resistance, R. Similarly, for a DC voltage or current source, one
is usually only interested in the magnitude of the source, DCV0. Finally, linear capacitors generally only
have capacitance, C, as a parameter of interest, while inductors generally only have inductance, L, as a
parameter of interest.

For these simple devices, it is not necessary to specify both the parameter and device on the .SAMPLING
line: only the device name is strictly required, as these devices have default parameters that are assumed if
no parameter name is given explicitly.

Examples of usage are given below. The first two lines are equivalent — in the first line, the resistance
parameter of R4 is named explicitly, and in the second line the resistance parameter is implicit. A similar
example is then shown for the DC voltage of the voltage source VCC. In the remaining lines, parameter
names are all implicit, and the default parameters of the associated devices are used.

Example:
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.SAMPLING param=R4:R,C1:C type=normal,normal means=3k,1u std_deviations=1k,0.1u

.SAMPLING param=R4,C1 type=normal,normal means=3k,1u std_deviations=1k,0.1u

.SAMPLING VCC:DCV0 type=uniform means=6.0 std_deviations=1.0

.SAMPLING VCC type=uniform means=6.0 std_deviations=1.0

.SAMPLING param=C1 type=normal means=0.5u std_deviations=0.05u

.SAMPLING param=L1 type=normal means=0.5m std_deviations=0.01m

Independent sources require further explanation. Their default parameter, DCV0, only applies to .DC
analyses. They do not have default parameters for their transient forms, such as SIN or PULSE.

7.5.3.6. Sampling using random operators from expressions

The Xyce expression library supports random operators in expressions, including AGAUSS, GAUSS, AUNIF,
UNIF and RAND. Xyce .SAMPLING and .EMBEDDEDSAMPLING analyses are able to use these, but they are not
connected by default. In order to use random expression operators with .SAMPLING, the following
commend must be present in the netlist:

Example:

.SAMPLING useExpr=true

This capability is potentially very powerful, as the random operators can act as operators within complex
expressions. As expressions can be applied to .param, .global_param, device instance parameters and
device model parameters, this capability naturally can be applied to any of these types of input parameters.
A simple example of this feature, applied to several instance parameters, can be seen in figure 7-8. Other
examples of this capability can be found in the netlists given in figures 7-11, 7-13 and 7-18.

This feature cannot be used in the same netlist as the specification described in section 7.5.1. If
useExpr=true, Xyce will ignore the comma-separated lists such as param. Likewise, if useExpr=false
(the default), then Xyce will not randomly sample any random operators present in the circuit. It will only
sample the parameters listed by comma-separated lists.

sampling example with random expression operators
R4 b 0 {agauss(4k,0.4k,1)}
R3 a b {agauss(1k,0.1k,1)}
R2 1 a {agauss(2k,0.2k,1)}
R1 1 2 {agauss(3k,0.1k,1)}
v1 2 0 10V

.dc v1 10 10 1

.print dc v(1)

.SAMPLING
+ useExpr=true

.options SAMPLES numsamples=10
+ outputs={v(1)}
+ sample_type=lhs
+ stdoutput=true
.end

Figure 7-8. Voltage divider circuit netlist using random expression operators.
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7.5.3.7. Local and global variation

Similar to other simulators, Xyce uses the following convention for local and global variations sampling and
other uncertainty quantification methods. This is based on how many layers of .param indirection sit
between a device parameter and the random operator. If there is only a single layer, then the random
operator is treated as a local variation, and every affected device parameter will receive a unique random
number at each sample point. If there is more than one layer, then it is instead treated as global, meaning
that each affected device parameter will receive the same random number from the operator.

For example, the following netlist fragment will result in local variation, where the resistors 𝑟1, 𝑟2 and 𝑟3
each get unique random numbers.

Example:

.param resval=aunif(1000,400)
r1 1 2 resval
r2 2 3 resval
r3 3 4 resval

In contrast, the following netlist fragment will result in global variation, where the resistors will all get the
same random number.

Example:

.param globalval=aunif(1000,400)

.param resval=globalval
r1 1 2 resval
r2 2 3 resval
r3 3 4 resval

7.5.4. Output files

The two types of sampling produce different types of output files. This is related to the fact that for
.SAMPLING the calculations for each sample point are performed sequentially, while for
.EMBEDDEDSAMPLING the calculations for each sample point are performed simultaneously. As such, for
.SAMPLING statistical moments can only be computed at the end of the calculation, once all the sample
points are avaible. In contrast, for .EMBEDDEDSAMPLING, statistical moments can be computed throughout
the calculation, as all the sample points are available for each step.

7.5.4.1. .SAMPLING output files

Users can think of .SAMPLING simulations as being very similar to .STEP and thus comprised of a
sequential set of distinct executions of the same circuit netlist. The main difference is the source of the
specific sample points.

Similar to .STEP, the output data can be requested by a standard .PRINT command, for the underlying
primary analsis. For example, if applying .SAMPLING to a transient analysis, then the appropriate .PRINT
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command will be .PRINT TRAN. The output data will go to a single file, with each sample point in a
different section of the output file. If using the default .prn file format (format=std), the resulting
.SAMPLING simulation output file will be a simple concatenation of each step’s underlying analysis output.
If using format=probe, the data for each execution of the circuit will be in distinct sections of the file, and
it should be easy to plot the results using PROBE. If using format=tecplot, the results of each
.SAMPLING simulation will be in a distinct Tecplot zone. Finally, format=raw will place the results for each
.SAMPLING simulation in a distinct “plot” region.

Another similarity to .STEP is that Xyce creates a second auxilliary file with the *.res suffix, which
contains the parameter values. This can be useful for seeing the exact sampling parameter values in a
compact file.

Statistical outputs can also be produced (see section 7.5.5) for .SAMPLING in the form of moments, but
these can only be computed at the end of the calculation once all the samples are available. These statistical
outputs will not be present in the .PRINT specified output file, since it is output on-the-fly.

Figure 7-6 shows an example file named clip.cir, which when run will produce files clip.cir.res and
clip.cir.prn. The file clip.cir.res contains one line for each step, showing what parameter value
was used on that step. clip.cir.prn is the familiar output format, but the INDEX field recycles to zero
each time a new step begins. As the default behavior distinguishes each step’s output only by recycling the
INDEX field to zero, it can be beneficial to add the sampling parameters to the .PRINT line. For the default
file format (format=std), Xyce will not automatically include these sampling parameters, so for plotting it
is usually best to specify them by hand.

Note that for sampling calculations involving a really large number of sample points, the single output file
can become prohibitively large. Be careful when using .PRINT if the number of samples is large. If the
number is really large (thousands) consider excluding any .PRINT output statements and just rely on
statistical outputs, described next in section 7.5.5. Similarly, the generation of the measure output can be
suppressed with .OPTIONS MEASURE MEASPRINT.

7.5.4.2. .EMBEDDEDSAMPLING output files

As .EMBEDDEDSAMPLING computes all the sample points simultaneously, outputs for all sample points are
also available simulataneously. For transient simulations, this means that all samples are available at every
time step, and all statistical outputs are available at every time step. This is very useful if the interest is in
seeing statistical moments with respect to time

The output command used to produce this kind of output is .PRINT ES, where ES stands for “embedded
sampling”. The .PRINT ES command will automatically output several moments of the specified PCE
outputs without any additional arguments on the .PRINT ES line. Also, the .PRINT ES statement will
result in a file that has “ES” as part of the file name suffix. Otherwise, .PRINT ES behaves very similarly to
any other type of .PRINT command, and supports all of the same file formats and options. For a full
description see the Xyce Reference Guide.

7.5.5. Statistical Outputs

When performing uncertainty quantification analysis, the outputs of interest are often statistical moments of
different circuit metrics. Xyce will compute these at the end of a sampling calculation upon request. The
requested statistical outputs are specified on the .options SAMPLING line in the netlist. For an example
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see the OUTPUTS and MEASURES fields in section 7.5.2. Both OUTPUTS and MEASURES are specified as
comma-separated lists. The list of OUTPUTS must contain valid expressions that can be processed by the
Xyce expression library. The list of MEASURES must consist valid .MEASURE statement names, which are
present elsewhere in the netlist.

The example netlist given by figure 7-5 will produce the result given by figure 7-9. The example netlist
given by figure 7-6 will produce the result given by figure 7-10. In both examples, the number of samples is
relatively small, so the exact quantities computed will vary somewhat from run to run.

MC sampling mean of R1:R = 1009.58
MC sampling stddev of R1:R = 100.131
MC sampling variance of R1:R = 10026.3
MC sampling skew of R1:R = -0.0208347
MC sampling kurtosis of R1:R = 2.79565
MC sampling max of R1:R = 1308.03
MC sampling min of R1:R = 656.039

MC sampling mean of maxSine = 874.063
MC sampling stddev of maxSine = 10.9115
MC sampling variance of maxSine = 119.061
MC sampling skew of maxSine = 0.08628
MC sampling kurtosis of maxSine = 2.83029
MC sampling max of maxSine = 914.274
MC sampling min of maxSine = 842.547

Figure 7-9. Typical statistical outputs for figure 7-5

LHS sampling mean of R4:R = 9198
LHS sampling stddev of R4:R = 4293.89
LHS sampling variance of R4:R = 1.84375e+07
LHS sampling skew of R4:R = -0.0939244
LHS sampling kurtosis of R4:R = 1.39595
LHS sampling max of R4:R = 14996
LHS sampling min of R4:R = 3315.6

LHS sampling mean of D1N3940:IS = 4.2571e-10
LHS sampling stddev of D1N3940:IS = 9.10744e-11
LHS sampling variance of D1N3940:IS = 8.29455e-21
LHS sampling skew of D1N3940:IS = 0.0486504
LHS sampling kurtosis of D1N3940:IS = 2.05108
LHS sampling max of D1N3940:IS = 5.78543e-10
LHS sampling min of D1N3940:IS = 2.85753e-10

LHS sampling mean of maxSine = 4.46494
LHS sampling stddev of maxSine = 0.0901329
LHS sampling variance of maxSine = 0.00812394
LHS sampling skew of maxSine = -0.682188
LHS sampling kurtosis of maxSine = 2.07339
LHS sampling max of maxSine = 4.5536
LHS sampling min of maxSine = 4.28396

Figure 7-10. Typical statistical outputs for figure 7-696



7.5.6. Random Sampling and Running in Parallel

It is well known that sampling is a good opportunity to apply parallelism, as zero communication is
required between sample points. However, it has only been applied to a limited degree to random sampling
in Xyce. This is mostly because sampling methods are a relatively new feature to Xyce. To get the full
benefit of parallel sampling, where each sample can be launched and executed on a different unique
processor, it is recommended that Xyce users instead use the Dakota library [15], [16]. However, despite the
limitations of Xyce sampling in parallel, note that:

• Sampling in Xyce does have some available parallelism, just not applied on a sample basis.

• The cost of sampling can be significantly mitigated using non-intrusive Polynomial Chaos Expansion
(PCE) methods, described in section 7.6

• Xyce sampling is performed entirely internal to the Xyce binary. So unlike the black-box form of
Dakota, it does not involve any file I/O. Also it does not require any scripting, which can be
error-prone. Finally, the netlist parsing and setup only happens once, rather than for every sample
point, and this mitigates some of the computational cost.

7.5.6.1. .SAMPLING in Parallel

The .SAMPLING analysis will execute the underlying analysis sequentially, once for each sample point. If
using parallel Xyce, then each of these sequential calculations will have the same parallel methods applied
to them as would be applied to a single forward calculation. For example, if running a calculation of 100
samples on a large parallel transient calculation, Xyce would perform the first transient simulation in
parallel, followed by the second transient simulation in parallel, etc, until all 100 samples were complete.
This means that if the underlying analysis is large enough to get a benefit from parallel, then the .SAMPLING
analysis will get this same benefit. The parallel scaling for the underlying analysis is unlikely to be perfect,
as there are communication costs involved in the forward calculation. However, one of the main parallel
bottlenecks, the parsing and setup phase, is substantially reduced as it only happens one time.

7.5.6.2. .EMBEDDEDSAMPLING in Parallel

The .EMBEDDEDSAMPLING algorithm sets up a large block matrix system, where each block represents a
different sample point. This means that for each step of the calcalculation, all the samples are computed
simultaneously. This block system can be solved in parallel. However, as this method is less mature in Xyce,
more refinements to the algorithm are needed for this .EMBEDDEDSAMPLING to fully benefit from running in
parallel.
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7.6. Polynomial Chaos Expansion (PCE) methods

Xyce supports several styles of Polynomial Chaos expansion (PCE) methods, which are stochastic
expansion methods that approximate the functional dependence of a simulation response on uncertain
model parameters by expansion in a polynomial basis [17, 18]. In Xyce the Stokhos library [19] has been
used to implement generalized PCE methods using the Wiener-Askey scheme[17].

To propagate input uncertainty through a model using PCE, Xyce performs the following steps: (1) input
uncertainties are transformed to a set of uncorrelated random variables, (2) a basis such as Hermite
polynomials is selected, and (3) the parameters of the functional approximation are determined. The
general PCE for a response 𝑂 has the form:

𝑂 (𝑝) ≈ 𝑂̂ (𝑝) =
𝑃∑︁
𝑖=0

𝛼𝑖𝛹 𝑖 (𝑝), (7.1)

where each multivariate basis polynomial𝛹 𝑖 (𝑝) involves products of univariate polynomials that are
tailored to the individual random variables. More details about these methods and their Xyce
implementation can be found in reference [20] and the references therein.

Xyce supports three versions of polynomial chaos. They mainly differ in how the coefficients 𝛼 in
equation 7.1 are computed. These three methods are:

• Non-intrusive regression polynomial chaos (section 7.6.1)

• Non-intrusive spectral projection (NISP) (section 7.6.2)

• Fully intrusive spectral projection (section 7.6.3)

The first two versions are non-intrusive, meaning that they don’t directly modify the forward problem being
solved. Instead, they are augmentations to the .SAMPLING and .EMBEDDEDSAMPLING analysis methods.
The fully intrusive method is a separate analysis type, and is invoked using the .PCE command.

98



7.6.1. Regression-based Polynomial Chaos

Regression-based PCE is briefly described in this section. Regression-based PCE approaches aim to find
the best fit for the linear system:

𝜳𝜶 ≈ 𝑹 (7.2)

for a set of PCE coefficients 𝜶 that best reproduce a set of response values 𝑹. The orthogonal polynomials
used in the PCE approximation are represented by the matrix𝛹 . This matrix is usually a rectangular
matrix.

The regression approach finds a set of PCE coefficients 𝛼𝑖 which best fit a set of response values obtained
from a sampling study on the density function of the uncertain parameters [21]. One advantage of
regression-based methods is that they are very flexible with respect to the exact sample points used to
evaluate the responses, and can readily be used with standard sampling methods such as Monte Carlo and
Latin Hypercube Sampling. The method that has been implemented in Xyce for solving Eq. (7.2) is least
squares regression.

Regression-based PCE can be applied as a post-process step to .SAMPLING and .EMBEDDEDSAMPLING. It is
invoked by adding regression_pce=true to the .options SAMPLES or .options EMBEDDEDSAMPLES
command lines.

Regression PCE will use the samples selected by the sampling algorithm (Monte Carlo or Latin Hypercube).
The regression PCE algorithm will not estimate the optimal number of samples to use, and so this must be
set by the user. For regression PCE, the number of samples needed for an accurate answer can be smaller
than the number that would have been required by conventional sampling. For regression problems, to get
an accurate answer it is considered good practice to oversample the basis size by at least a factor of 2.

An example netlist, which uses regression PCE with .SAMPLING is given in figure 7-11. Results from this
calculation, which are sent to terminal output are given in figure 7-12. In this calculation, the polynomial
order has been set to 5, the output which is subject to the PCE analysis is v(1), the type of sampling used is
Latin Hypercube Sampling (LHS), and the results of the analysis are sent to terminal output. For this
example, the uncertain parameter is testNorm, which is set by the .param testNorm={aunif(2k,1k)}
statement. On the .SAMPLING line, the command useExpr=true instructs the sampling method to rely on
expression-based random expressions. Without this line, the sampling algorithm would ignore testNorm.

The parameter resample=true is a PCE-specific command. Once the PCE approximation has been
completed, the resulting polynomial can be thought of as a surrogate model, and this surrogate can then be
sampled, much like the original forward problem. When the surrogate is sampled, it uses 1000 samples.
Since this calculation is sampling a polynomial, it can do a really large number of evaluations without
incurring much computational expense. The result of this resampling is (in the example) also sent to the
console, as can be seen at the bottom of figure 7-12.
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Regression PCE example
.param testNorm={aunif(2k,1k)}
.param R1value={testNorm*2.0}
R2 1 0 6K
R1 1 2 {R1value}
v1 2 0 1000V

.dc v1 1000 1000 1

.print dc format=tecplot v(1)
*
.SAMPLING useExpr=true

.options SAMPLES numsamples=12
+ regression_pce=true
+ order=5
+ outputs={v(1)}
+ sample_type=lhs
+ stdoutput=true
+ resample=true
.end

Figure 7-11. Voltage divider regression PCE netlist. The sampling-related commands
are in red.

***** Beginning Latin Hypercube Sampling simulation....

***** Regression PCE enabled. Number of sample points = 12

***** PCE Basis size = 6

Seeding random number generator with 2412823737

LHS sampling mean of V(1) = 614.666
LHS sampling stddev of V(1) = 71.4563
LHS sampling variance of V(1) = 5106
LHS sampling skew of V(1) = 0.299928
LHS sampling kurtosis of V(1) = 2.07869
LHS sampling max of V(1) = 733.936
LHS sampling min of V(1) = 503.315

(traditional sampling) regression PCE mean of V(1) = 608.197
(traditional sampling) regression PCE stddev of V(1) = 71.3831

Statistics from re-sampling regression PCE approximation of V(1):
mean = 608.071
stddev = 70.8532
variance = 5020.18
skew = 0.298245
kurtosis = 1.93151
max = 749.652
min = 500.054

Figure 7-12. Voltage divider regression PCE result. There are 3 sets of statistics in
this ouptut. The first set is computed from the 12 LHS sample points. As this is a

PCE calculation, the number of points is small and so the statistics based on them
are probably not very accurate. The second set is computed from the PCE

approximation, which are purely analytical. The third set is from running 1000
samples on the PCE approximation. This output is enabled by resample=true.
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7.6.2. Non-Intrusive Spectral Projection (NISP)

The spectral projection PCE approach projects the response against each basis function Ψ 𝑗 (𝑝) using inner
products and employs the polynomial orthogonality properties to extract each coefficient. Each inner
product involves a multidimensional integral over the support range of the weighting function, which can be
evaluated numerically using sampling, tensor-product quadrature, Smolyak sparse grid [22], or cubature
[23] approaches. For the Xyce implementation this means evaluating the following equation for each
coefficient using quadrature rules:

𝛼𝑖 =
⟨𝑂𝛹 𝑖⟩
⟨(𝛹 𝑖)2⟩

=
1

⟨(𝛹 𝑖)2⟩

∫
𝛤

𝑂 (𝑝; 𝑦)𝛹 𝑖 (𝑦)𝜌(𝑦)𝑑𝑦 = 0, 𝑖 = 0, . . . , 𝑃. (7.3)

In this equation 𝜌 is the joint density function, with respect to which the polynomials𝛹 𝑖 are orthogonal.
Evaluating this equation requires solving the integral on the right hand side. While many methods for
solving this integral could be used, for the NISP algorithm the integral is solved using Gaussian Quadrature
and related methods. For this reason, these methods are sometimes referred to as “quadrature PCE”
methods. Stokhos supports several quadrature methods, and supplies the necessary quadrature points to
Xyce for the specified details.

To solve the integral using quadrature, Xyce has to evaluate the forward problem at the various quadrature
points. In this reguard, this is similar to the regression methods described in section 7.6.1, which has to do
forward evaluations at randomly sampled points. Since NISP uses quadrature points, the points are
completely deterministic, and there are no random numbers involved. The number of quadrature points can
increase exponentially for larger numbers of uncertain parameters, but this can be mitigated by using sparse
grid techniques.

Non-intrusive spectral projection PCE can be applied as a post-process step to .SAMPLING and
.EMBEDDEDSAMPLING. It is invoked by adding projection_pce=true to the .options SAMPLES or
.options EMBEDDEDSAMPLES command lines.

As noted, when using NISP it is not necessary to specify the number of sample points, as they will be set by
the quadrature algorithm. To enable quadrature on a sparse grid, set the option sparse_grid=true on the
.options EMBEDDEDSAMPLES command line.

An example netlist, which uses NISP with .EMBEDDEDSAMPLING is given in figure 7-13. Results from this
calculation, which are output using the .PRINT ES command are given in figure 7-14. The .PRINT ES
command will automatically output several moments of the specified PCE outputs (in this case V(drain)
and V(gate)) without any additional arguments on the .PRINT ES line. In the example, additional
information is requested using the OUTPUT_PCE_COEFFS=TRUE command, which will result in all of the
PCE coefficients (the various 𝛼𝑖 given by equation 7.3).

A .SAMPLING version of the netlist given in figure 7-13 can also be constructed, by simply replacing
.EMBEDDEDSAMPLING with .SAMPLING and replacing .options EMBEDDEDSAMPLES with .SAMPLES.
However, the behavior of .SAMPLING analysis will be a bit different. As .SAMPLING performs the
calculation for each quadrature point sequentially, rather than simultaneously, there is no equivalent of
.PRINT ES for conventional sampling. All of the .SAMPLING output is handled by the .PRINT TRAN
command.

Additionally, since the PCE analysis cannot be performed until the end of a .SAMPLING analysis, it is more
useful to have the analysis applied to .MEASURE commands which produce metrics for the entire simulation.
Applying the PCE analysis to voltage node values in this case is less useful, as it will simply use the final
values for each voltage node (which will be mostly invariant in this example).
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* embedded sampling with NISP, CMOS inverter
.param inFreq=1e6, inPer={1/inFreq}
.param td={inPer/2-inPer/10}
.param tr={inPer/10}, tf={inPer/10}
.param pw={inPer/2-inPer/10}, per={inPer}

VS_VDD vdd 0 DC 1.0
Vin gate 0 pulse( 0.0 1.0 {td} {tr} {tf} {pw} {per} )
M1 drain gate 0 0 NMOS w=0.18e-6 l=0.18e-6
M2 drain gate vdd vdd PMOS w =0.54e-6

.model nmos nmos (level=9 tnom=27 nch=2.3549e17 vth0={aunif(0.55,0.15)}
+ uc=5.105195e-11 ags=0.4044483 keta=-2.730673e-3 rdsw=105 wr=1
+ dwg=-3.773529e-9 dwb=5.239518e-9 cit=0 cdscb=0 dsub=0.0167866
+ pdiblc2=3.38377e-3 pscbe1=8e10 delta=0.01 prt=0 kt1l=0 ub1=-7.61e-18
+ wl=0 wwn=1 lln=1 lwl=0 cgdo=7.9e-10 cj=9.539798e-4
+ cjsw=2.53972e-10 cjswg=3.3e-10 cf=0 pk2=-4.42044e-4 pu0=10.8203648
+ pvsat=1.388017e3 tox=4.1e-9 k2=1.63871e-3 w0=1e-7 dvt1w=0
+ dvt1=0.3683763 ua=-1.504141e-9 vsat=9.896282e4 b0=-4.706134e-8
+ a1=5.916677e-4 prwg=0.5 wint=0 voff=-0.0883818 cdsc=2.4e-4
+ eta0=2.470369e-3 pclm=0.7326932 pdiblcb=-0.1 pscbe2=1.254966e-9
+ rsh=6.5 ute=-1.5 kt2=0.022 uc1=-5.6e-11 wln=1 wwl=0 lw=0
+ capmod=2 cgso=7.9e-10 pb=0.8 pbsw=0.8 pbswg=0.8 pvth0=7.505753e-4
+ wketa=3.100384e-3 pua=2.896652e-11 peta0=8.758549e-5 toxm=4.1e-9
+ xj=1e-7 k1=0.6064385 k3b=2.763267 dvt0w=0 dvt0=1.3330881 u0=258.9066683
+ nlx=1.71872e-7 dvt2w=0 dvt2=0.0540199 ub=2.428646e-18 a0=1.8904342
+ k3=1e-3 b1=1.294942e-6 a2=0.9069159 prwb=-0.2 lint=1.69494e-8
+ nfactor=2.1821266 cdscd=0 etab=1.047744e-5 pdiblc1=0.1823102
+ drout=0.7469045 pvag=0 mobmod=1 kt1=-0.11 ua1=4.31e-9 at=3.3e4
+ ww=0 ll=0 lwn=1 xpart=0.5 cgbo=1e-12 mj=0.380768 mjsw=0.1061193
+ mjswg=0.1061193 prdsw=-2.7650517 lketa=-0.0104103
+ pub=1.684125e-23 pketa=1.549791e-3)

.model pmos pmos (level=9 tnom=27 nch=4.1589e17 vth0={-aunif(0.55,0.15)}
+ k2=0.0258663 w0=1e-6 dvt1w=0 dvt0=0.6117215 u0=106.5280265 uc=-1e-10
+ ags=0.3667554 keta=0.0237092 rdsw=304.9893888 wr=1 dwg=-2.44019e-8
+ dwb=-9.06003e-10 cit=0 cdscb=0 dsub=1.0998181 pdiblc2=0.0420477
+ pscbe1=1.073111e10 delta=0.01 prt=0 kt1l=0 ub1=-7.61e-18
+ wl=0 wwn=1 lln=1 lwl=0 cgdo=6.41e-10 cj=1.200422e-3
+ cjsw=2.001802e-10 cjswg=4.22e-10 cf=0 pk2=1.799383e-3 pu0=-1.3399122
+ pvsat=-50 l=0.18e-6 tox=4.1e-9 k3=0 nlx=1.20187e-7
+ dvt2w=0 dvt1=0.2286816 ua=1.125454e-9 vsat=1.593712e5 b0=5.263128e-7
+ a1=0.2276342 prwg=0.5 wint=0 voff=-0.0878287 cdsc=2.4e-4 eta0=0.1672562
+ pclm=2.2249148 pdiblcb=-1e-3 pscbe2=3.099395e-9 rsh=7.4 ute=-1.5
+ kt2=0.022 uc1=-5.6e-11 wln=1 wwl=0 lw=0 capmod=2 cgso=6.41e-10
+ pb=0.8478616 pbsw=0.8483594 pbswg=0.8483594 pvth0=2.098588e-3
+ wketa=0.0295614 pua=-5.27759e-11 peta0=1.003159e-4 toxm=4.1e-9
+ xj=1e-7 k1=0.59111 k3b=7.9143108 dvt0w=0 dvt2=0.1 ub=1e-21 a0=1.6904754
+ b1=1.496707e-6 a2=0.6915706 prwb=0.2553725 lint=3.217673e-8
+ nfactor=1.8560303 cdscd=0 etab=-0.1249603 pdiblc1=8.275696e-4
+ drout=0 pvag=15 mobmod=1 kt1=-0.11 ua1=4.31e-9 at=3.3e4 ww=0 ll=0
+ lwn=1 xpart=0.5 cgbo=1e-12 mj=0.4105254 mjsw=0.3400571
+ mjswg=0.3400571 prdsw=4.4771801 lketa=-1.935751e-3
+ pub=1e-21 pketa=-3.434535e-3)

.EMBEDDEDSAMPLING useExpr=true

.options EMBEDDEDSAMPLES outputs={v(drain)},{V(gate)} projection_pce=true

.PRINT ES OUTPUT_PCE_COEFFS=TRUE FORMAT=tecplot

.tran 1ns 0.75e-6

.PRINT TRAN v(drain) V(gate)

.END

Figure 7-13. CMOS Inverter Non-intrusive Spectral Projection (NISP) netlist. The
NISP-related commands are in red.
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Figure 7-14. CMOS Inverter NISP Output
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7.6.3. Fully Intrusive Spectral Projection

The fully intrusive form of PCE involves solving a system of equations which is constructed by applying the
orthogonal polynomial expansion defined by Eq. (7.1) to all the terms of the differential-algebraic system of
equations solved by Xyce. The details of this construction are given in reference [20]. This method is
primarily experimental at this point, and is inherently more expensive, so it is not the best choice of PCE
method in Xyce. Most .PCE use cases of interest can be computed much more cheaply and robustly using
.EMBEDDEDSAMPLING combined with one of the non-intrusive PCE methods (regression PCE or NISP).
Similar to .EMBEDDEDSAMPLING based calculations, .PCE computes PCE coefficients at every stage of the
calculation.

An example netlist, for a diode clipper circuit which uses intrusive PCE, is given in figure 7-15. For this
type of analysis, it is not necessary to specify projection_pce=true. The result for this circuit is given in
figure 7-16.

Transient Diode Clipper with intrusive PCE analysis

.tran 2ns 2.0ms

.PCE useExpr=true

.options PCES
+ OUTPUTS=R4:R,D1N3940:IS outputs={V(4)}
.print pce format=tecplot

VCC 1 0 5V
VIN 3 0 SIN(0V 10V 1kHz)
D1 2 1 D1N3940
D2 0 2 D1N3940
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 {aunif(9.0k,6.0k)}
C1 2 4 0.47u

.MODEL D1N3940 D(
+ IS={aunif(4.0e-10,2.0e-10)}
+ RS=.105 N=1.48 TT=8E-7
+ CJO=1.95E-11 VJ=.4 M=.38 EG=1.36
+ XTI=-8 KF=0 AF=1 FC=.9 BV=600 IBV=1E-4)
.END

Figure 7-15. Diode clipper fully intrusive PCE netlist. The PCE-related commands are
in red.
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Figure 7-16. Diode clipper fully intrusive PCE Output
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7.6.4. Comparing PCE methods: Gilbert Cell Mixer PCE example

A Gilbert cell mixer circuit is given in figure 7-17 [24]. A corresponding netlist is given in Fig. 7-18. In this
circuit, the LO voltage is given by v(6,2) and v(15,10) is the input. The output is the difference between
collector voltages of Q4/Q6 and Q3/Q5 (V(5,3)), and should be the approximate product of the LO and
input voltages. In this example, all eight resistors are given uncertain resistances, distributed with the
following normal distributions: R1 and R2 are N(10,1), R5 and R6 are N(100,5), and R3, R4, R7, and R8
are N(1500,50). These large standard deviations of the resistances are not realistic, but are chosen for
demonstration purposes.
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Figure 7-17. Gilbert cell mixer schematic.

Ensemble and PCE results for the Gilbert cell mixer are shown in figure 7-19. As this calculation was
concerned with the transient behavior, only .EMBEDDEDSAMPLING and .PCE are used in this example. For
.EMBEDDEDSAMPLING, both types of non-intrusive PCE are used. The light grey lines in Fig. 7-19 are for all
the sample points of an embedded LHS study with 1000 samples. The red lines (which are obscured by
other results) show the mean and the mean +/- twice the standard deviation for the 1000 sample study. This
can be considered the “gold” standard for this simulation. The other solid lines show the moments from the
various PCE calculations, and they lie on top of the 1000 LHS sample moments.

This version of the netlistgiven in Fig. 7-18 is using non-intrusive projection PCE as an augmentation to
.EMBEDDEDSAMPLING. To convert this netlist to use the fully intrusive method, change
.EMBEDDEDSAMPLING to .PCE, and change .options EMBEDDEDSAMPLES to .options PCES.
Otherwise, the commands are completely the same. As the number of uncertain parameters is a little bit
larger (8), for the projection-based methods a Smolyak sparse grid [22] method is used. This is set with the
sparse_grid=true parameter. Using the sparse grid, the number of required quadrature points for this
problem is 129. Using the non-sparse Gaussian quadrature would have required 6561 quadrature points.
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This would have rendered the method much less efficient than sampling, and basically not usable, especially
for the .PCE method.

To change the netlist to use non-intrusive regression PCE, change projection_pce=true to
regression_pce=true. Delete the sparse_grid=true parameter, as it isn’t relevant to regression
PCE.

As noted, for regression PCE the number of parameters needs to be set. Unlike projection-based methods,
regression PCE does not have a rigid requirement for the number of samples. For this problem the size of
the polynomial basis is 45, and for regression problems it is considered good practice to oversample by at
least a factor of 2, which implies that a good choice for this circuit is 90 sample points. To set this, add
numsamples=90 on the .options EMBEDDEDSAMPLES line. It appears that 90 sampling points was
adequate for the regression form of PCE, as the all the statistical moments match well throughout the
transient.

NISP is used in conjunction with embedded sampling, and as noted requires 129 sample points if using
sparse grid quadrature. Fully intrusive PCE, which uses all the same machinery as NISP also requires 129
quadrature points.
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* Gilbert cell mixer
R5 1 2 {agauss(100,5,1)}
Q3 3 2 4 QB2T2222
Q4 5 6 4 QB2T2222
Q5 3 6 8 QB2T2222
Q6 5 2 8 QB2T2222
R6 2 1 {agauss(100,5,1)}
*the local oscillator
VLO 6 2 DC 0 SIN(0 .05V 4e7 0 0)
Q1 4 10 11 QB2T2222
R1 11 12 {agauss(10,1,1)}
R2 12 13 {agauss(10,1,1)}
* input bias current
I1 12 0 DC 1.8mA
Q2 8 15 13 QB2T2222
R4 15 16 {agauss(1500,50,1)}
R3 16 10 {agauss(1500,50,1)}
V1 16 0 DC 1.8V
*the input voltage to be mixed with the LO
V5 15 10 DC 0 sin(0 .05V 3e6 0 0)
R7 5 17 {agauss(1500,50,1)}
R8 3 17 {agauss(1500,50,1)}
V3 17 0 DC 8V
V2 1 0 DC 6V

.MODEL QB2T2222 NPN (
+ IS=3.136905E-14 BF=189 NF=0.9977664 VAF=29.7280913
+ IKF=0.7405619 ISE=8.49314E-15 NE=1.3186316 BR=38.9531224
+ NR=0.9833179 VAR=28.5119855 IKR=4.632395E-3 ISC=4.624043E-14
+ NC=1.225899 RB=2.0158781 IRB=0.0227681 RBM=0.9730261
+ RE=0.0501513 RC=0.6333 CJE=2.369655E-11 VJE=0.6884357
+ MJE=0.3054743 TF=5.3E-10 XTF=48.5321578 VTF=5.3020062
+ ITF=1.1 PTF=14.6099207 CJC=8.602583E-12 VJC=0.4708887
+ MJC=0.3063885 XCJC=1 TR=74E-9 CJS=1e-12 VJS=.75
+ MJS=0 XTB=0.87435 EG=1.11 XTI=5.825
+ KF=0 AF=1 FC=0.5)

.TRAN 1ns 3e-7

.PRINT TRAN format=tecplot v(6,2) v(15,10) v(5,3)

.options timeint reltol=1.0e-5

.EMBEDDEDSAMPLING useExpr=true

.options EMBEDDEDSAMPLES projection_pce=true
+ outputs=v(5,3) order=2 sparse_grid=true
.end

Figure 7-18. Gilbert Cell Non-Instrusive Spectral Project (NISP) netlist. UQ
commands are in red, and NISP is specified using the projection_pce parameter.
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Figure 7-19. Gilbert Cell Mixer Output for several Xyce embedded UQ methods. The
mean and standard deviations for all the methods (Embedded LHS sampling, NISP,

Regression PCE and fully intrusive PCE) all match very well.
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7.7. Harmonic Balance Analysis

Harmonic balance (HB) is a technique that solves for the steady state solution of nonlinear circuits in the
frequency domain. In harmonic balance simulation, voltages and currents in a nonlinear circuit are
represented by truncated Fourier series. HB directly computes the frequency spectrum of voltages and
currents at the steady state solution. This can be more efficient than transient analysis in applications where
a transient analysis may take a long time to reach the steady state solution. In particular, HB is well suited
for simulating analog RF and microwave circuits.

HB supports an unlimited number of independent input tones for driven circuits in both serial and parallel
builds of Xyce. The output of HB analysis is the real and imaginary components of voltages and currents in
the frequency domain. Xyce also provides time domain responses of a circuit. By default, the numbers of
samples in both time and frequency domain outputs are the same. However, the number of time domain
samples can be much larger than the number of frequency domain samples by setting numtpts in
.options hbint. This enables the users to use a small number of harmonics for each tone and produce
well-resolved results in time domain.

For HB analysis, an initial guess of the solution is required. Often, a good initial guess is necessary for HB
to converge. By default, Xyce uses transient analysis to determine the initial guess, often called “Transient
Assisted HB”. This option is controlled by the parameter, TAHB, which is enabled if TAHB=1 and disabled if
TAHB=0 in .options hbint. If enabled, the starting time of the transient analysis can be modified by
specifying the parameter STARTUPPERIODS in .options hbint. The Xyce Reference Guide [3] provides a
detailed explanation of the HB options.

7.7.1. .HB Statement

To run a HB simulation, the circuit netlist file must contain a .HB command.

Example:
.HB 1e4
.HB 1e4 2e2

The parameters following .HB are the fundamental frequencies and must be specified by the user. The Xyce
Reference Guide [3] provides a detailed explanation of the .HB statement.

7.7.2. HB Options

Key parameters for .HB simulation can be specified by .options hbint.

Example:
.options hbint numfreq=5,3 STARTUPPERIODS=2 tahb=1 intmodmax=3 numtpts=100
.HB 1e4 2e2

As shown in the example, numfreq specifies the number of harmonics to be calculated for each tone. It
must have the same number of entries as the fundamental frequencies in the .HB statement. This example
shows the options for a two tone HB analysis. The .HB statement is .HB 𝑓1 𝑓2 . For the first tone 𝑓1, 5
harmonics are used and for the second tone 𝑓2, 3 harmonics are used.
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The intmodmax option is the maximum intermodulation product order used in the spectrum.

As stated above, TAHB is the Transient Assisted HB option. In the case of multi-tone HB analysis, the initial
guess is generated by a single tone transient simulation. The single tone that is used is the first tone in the
.HB statement. So, when ordering the fundamental frequencies in the .HB statement, the first tone should be
the frequency that produces the most nonlinear response by the circuit.

As stated above, the STARTUPPERIODS option specifies the number of time periods that Xyce will integrate
through using normal transient analysis before generating the initial conditions for HB analysis. For this
example, Xyce will integrate through two periods before computing the initial conditions, which requires an
additional period. Thus, Xyce will integrate through a total of three periods to compute the initial guess for
HB analysis.

The numtpts option specifies the number of time points in the output. The number of samples in the time
domain output is an odd number. If an even number is specified, the number of time points will be numtpts
plus one. For this example, the time domain output has 101 samples.

Example:
.options hbint numfreq=20 STARTUPPERIODS=2

For the single tone example given above, this statement will return 20 negative and 20 positive harmonics
plus the DC component.

The Xyce Reference Guide [3] provides a detailed explanation of the .options hbint.

7.7.2.1. Nonlinear Solver Options

The HB analysis uses a different set of default nonlinear solver parameters than that of transient and DC
analysis. Nonlinear solver parameters for HB analysis can be specified by using .options nonlin-hb.

Example:
.options nonlin-hb abstol=1e-6

The Xyce Reference Guide [3] provides a detailed explanation of the .options nonlin-hb statement.

7.7.2.2. Linear Solver Options

The HB analysis provided by Xyce can employ both iterative and direct solvers. If iterative solvers are used,
then the HB Jacobian matrix is not assembled and only HB-specific preconditioners can be used for this
matrix-free approach. If direct solvers are used, then the HB Jacobian is assembled and the complex-valued
matrix is solved using the selected method. Direct solvers are memory intensive and computationally
expensive, so it is suggested that they are only used when iterative methods fail during HB analysis. You
can set iterative solver and preconditioner options using the .options linsol-hb statement.

Example:
.options linsol-hb type=aztecoo prec_type=block_jacobi AZ_tol=1e-9

In this example, type specifies the iterative solver to use in the HB analysis and AZ_tol is the relative
tolerance for the iterative solver. Any of the iterative solver options in section 11.4 are valid. However,
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prec_type specifies which HB-specific preconditioner to use. The choices for this option are none and
block_jacobi (default).

7.7.3. Output

HB analysis can generate a variety of output files. The selection of which files are generated most often
depends on what is specified for the .PRINT HB command. Table 7-5 lists the format options and files
created. The column labeled “Additional Columns” lists the additional data that is written, though not
specified on the .PRINT HB line.

Table 7-5. Output generated for HB analysis

Command Files Additional Columns

.PRINT HB circuit-file.HB.TD.prn
circuit-file.HB.FD.prn

INDEX TIME
INDEX FREQUENCY

.PRINT HB_TD FORMAT=NOINDEX

.PRINT HB_FD FORMAT=NOINDEX

circuit-file.HB.TD.prn
circuit-file.HB.FD.prn

TIME
FREQUENCY

.PRINT HB_TD FORMAT=CSV

.PRINT HB_FD FORMAT=CSV

circuit-file.HB.TD.csv
circuit-file.HB.FD.csv

TIME
FREQUENCY

.PRINT HB_TD FORMAT=TECPLOT

.PRINT HB_FD FORMAT=TECPLOT

circuit-file.HB.TD.dat
circuit-file.HB.FD.dat

TIME
FREQUENCY

.options hbint STARTUPPERIODS=n Falls back to .PRINT HB variables

.PRINT HB_STARTUP

.options hbint STARTUPPERIODS=n
circuit-file.startup.prn INDEX TIME

.PRINT HB_STARTUP FORMAT=CSV

.options hbint STARTUPPERIODS=n
circuit-file.startup.csv TIME

.PRINT HB_STARTUP FORMAT=TECPLOT

.options hbint STARTUPPERIODS=n
circuit-file.startup.dat TIME

.options hbint SAVEICDATA=1 Falls back to .PRINT HB variables

.PRINT HB_IC

.options hbint SAVEICDATA=1
circuit-file.hb_ic.prn INDEX TIME

.PRINT HB_IC FORMAT=CSV

.options hbint SAVEICDATA=1
circuit-file.hb_ic.csv TIME

.PRINT HB_IC FORMAT=TECPLOT

.options hbint SAVEICDATA=1
circuit-file.hb_ic.dat TIME

.OP log-file Operating point
information
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7.7.4. User Guidance

One of the most common errors in the HB simulation setup is the use of too few harmonic frequencies (i.e.,
numfreq is too small). One way to determine the optimum number of harmonic frequencies is to first
simulate the circuit with a small numfreq, then increase the numfreq until the solution stops changing
within a significant bound. Requesting too many harmonic frequencies is wasteful of memory and
simulation time, so it is not practical to request a very high numfreq either.

7.8. AC Analysis

The AC small-signal analysis of Xyce computes AC output variables as a function of frequency. The
program first computes the DC operating point of the circuit and linearizes the circuit. The resultant linear
circuit is then analyzed over a user-specified range of frequencies. The desired output of an AC small-signal
analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit has one AC input, it
is convenient to set that input to unity and zero phase so output variables have the same value as the transfer
function of the output variable with respect to input.

7.8.1. .AC Statement

One may specify .AC analyses by adding a .AC line in the netlist. Some examples of typical .AC lines
include:

Example:
.AC DEC 10 1K 100MEG
.AC DEC 10 1 10K
.AC LIN 100 1 100HZ
.AC DATA=table
.param init=10, final=1K, step=100MEG
.AC DEC {init} {final} {step}

These examples include some types of sweep (linear, decade and data). The Xyce Reference Guide [3]
provides a complete description of all types of sweep. Note that DATA is a special case, which will allow
sweeping of frequency, magnitude, phase and linear model parameters simultaneously.

7.8.2. AC Voltage and Current Sources

Xyce assumes the AC source to be a cosine waveform at a specified phase angle. Its frequency must be
defined in a separate “.AC” command defining the frequency for all the sources in the circuit. The unique
information for the individual source is the name (which must start with “V” or “I”), the node numbers, the
magnitude of the source, and its phase angle. Some examples are as follows:

Example:
Vac 4 1 AC 120V 30
Vin 1 0 1.44 ac .1
Iin 1 0 1.44e-5 ac 0.1e-5 sin(0 1 1e+5 0 0)
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NOTE: The type, AC, must be specified because the default is DC. If not specified, Xyce assumes the phase
angle to be zero degrees. The units of the phase angle are in degrees.

7.8.3. Example

An example AC analysis netlist is given in figure 7-20. This particular example uses a .data statement to
specify a more complicated sweep. Each line of the data table corresponds to a different sweep point, so
there are 3 points evaluated, and there is a different magnitude, phase, frequency and resistance for each
point.

* AC Analysis example
.param mag=1
.param phase=0.1
.param cmplxParam1={log(-1)} ; example complex parameter
.param cmplxParam2={2.0+3.0J} ; example complex parameter

Isrc 1 0 AC {mag} {phase}
R1 1 0 1e3
C1 1 0 2e-6

.data table
+ mag phase freq r1
+ 1.0 0.1 1.0e0 1e3
+ 2.0 0.2 1.0e1 2e3
+ 3.0 0.3 1.0e2 3e3
.enddata

* AC commands
.AC data=table

* AC file output
.print ac {mag} {phase} {Isrc:acmag} {Isrc:acphase}
+ {r1:r} v(1)
+ {cmplxParam1 * V(1)}
+ {cmplxParam2 * V(1)}

.end

Figure 7-20. AC Example Netlist. This example uses a .data statement to
simultaneously set frequency, magnitude, phase and the resistance of r1.

7.8.3.1. Linear Solver Options

The AC analysis provided by Xyce can employ both iterative and direct solvers. You can set direct, iterative
solver, and preconditioner options using the .options linsol-ac statement.
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Example:
.options linsol-ac type=ksparse

In this example, type specifies a non-default direct solver to use in the AC analysis. Any of the direct and
iterative solver options in section 11.4 are valid.

7.8.4. Output

During analysis a number of output files may be generated. The selection of which files are created depends
on a variety of factors, most obvious of which is the .PRINT command. Table 7-6 lists the format options
and files created. The column labeled “Additional Columns” lists the additional data that is written, though
not specified on the .PRINT line.

Table 7-6. Output generated for AC analysis

Command Files Additional Columns

.PRINT AC circuit-file.FD.prn INDEX FREQUENCY

.PRINT AC FORMAT=NOINDEX circuit-file.FD.prn INDEX FREQUENCY

.PRINT AC FORMAT=CSV circuit-file.FD.csv FREQUENCY

.PRINT AC FORMAT=RAW circuit-file.raw FREQUENCY

.PRINT AC FORMAT=TECPLOT circuit-file.FD.dat TIME

.PRINT AC FORMAT=PROBE circuit-file.csd TIME

Xyce -r raw-file-name raw-file-name All circuit variables
printed

Xyce -r raw-file-name -a raw-file-name All circuit variables
printed

.OP falls back to .PRINT AC Operating point
information

.PRINT AC_IC FORMAT=NOINDEX circuit-file.TD.prn TIME

.PRINT AC_IC FORMAT=CSV circuit-file.TD.csv TIME

.PRINT AC_IC FORMAT=RAW circuit-file.raw TIME

.PRINT AC_IC FORMAT=TECPLOT circuit-file.TD.dat TIME

.PRINT AC_IC FORMAT=PROBE circuit-file.TD.csd TIME

.OPTIONS NONLIN
CONTINUATION=<method>...

falls back to AC

.PRINT HOMOTOPY FORMAT=NOINDEX circuit-
file.HOMOTOPY.prn INDEX TIME

Running Xyce on AC analysis produces an output results file named .cir.FD.prn. Obtaining this file
requires that the .PRINT AC line be specified.

115



Xyce supports printing the real and imaginary parts of phasor values (complex numbers) for AC analysis
output as voltages or currents. For instance, specify “V(1)” to print the real part and imaginary part of a
voltage at node 1. Additional output variable formats are also available:

• VR(<circuit node>) output the real component of the voltage response

• VI(<circuit node>) output the imaginary component of voltage response

• VM(<circuit node>) output the magnitude of voltage response

• VDB(<circuit node>) output the magnitude of voltage response in decibels

• VP(<circuit node>) output the phase of voltage response, in degrees

Also, Xyce supports printing the real and imaginary parts of complex expressions. The user can specify the
real or imaginary parts of an expression using the Re() and Img() operators within the expression.
However, it usually isn’t necessary to do this, as Xyce will automatically output both the real and imaginary
parts, if the expression produces a complex result. If an expression produces a purely real result (even if the
inputs are complex), then Xyce will only output the real part.

Some examples are as follows:

Example:
.print AC V(3)
.print AC VI(15)
.print AC VP(OUTPUT)
.print AC {Re(V(OUTPUT))}
.print AC {Img(V(OUTPUT))}
.print AC { V(OUTPUT)*2.0 }

As shown in the examples, the expression library can handle both real and complex valued solution
variables. See the Xyce Reference Guide [3] for more details.

7.9. NOISE Analysis

Xyce supports small-signal noise analysis, which is closely related to AC analysis. For noise analysis, input
and output noise is computed for a specified output node, relative to an input source, as a function of
frequency.

The program first computes the DC operating point of the circuit and linearizes the circuit. Next, at each
frequency, an AC calculation is performed to obtain the AC gain. This gain is used later to compute the
equivalent input noise from the output noise. After the AC gain is computed, the noise calculation is
performed at the current frequency using the adjoint method. This involves solving the transpose of the AC
matrix.

If the circuit has one NOISE input, it is convenient to set that input to unity and zero phase so output
variables have the same value as the transfer function of the output variable with respect to the input.
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7.9.1. .NOISE Statement

One may specify .NOISE analyses by adding a .NOISE line in the netlist. Some examples of typical .NOISE
lines include:

Example:
.NOISE V(5) VIN LIN 101 100Hz 200Hz
.NOISE V(5,3) V1 OCT 10 1kHz 16kHz
.NOISE V(4) V2 DEC 20 1MEG 100MEG
.NOISE V(4) V2 DATA=table

The .NOISE command can specify a linear sweep, decade logarithmic sweep, octave logarithmic sweep, or
a data table of multivariate values. See the Xyce Reference Guide [3] for details.

7.9.2. NOISE Voltage and Current Sources

Noise analysis requires a reference AC source. Xyce assumes the AC source to be a cosine waveform at a
specified phase angle. Its frequency must be defined in a separate “.NOISE” command defining the
frequency for all the sources in the circuit. The unique information for the individual source is the name
(which must start with “V” or “I”), the node numbers, the magnitude of the source, and its phase angle.
Some examples are as follows:

Example:
Vac 4 1 AC 120V 30
Vin 1 0 1.44 ac .1
Iin 1 0 1.44e-5 ac 0.1e-5 sin(0 1 1e+5 0 0)

NOTE: The type, AC, must be specified because the default is DC. If not specified, Xyce assumes the phase
angle to be zero degrees. The units of the phase angle are in degrees.

7.9.3. Examples

Example noise analysis netlists are given in figures 7-21 and 7-22. In those two examples, the only noise
source is the resistor, rlp1. The input source is v1 and the output node is v(4). A decade sweep is used in
the first example, while a .DATA statement is used in the second example.

7.9.4. Output

During analysis a number of output files may be generated. The selection of which files are created depends
on a variety of factors, most obvious of which is the .PRINT command. Table 7-7 lists the format options
and files created. The column labeled “Additional Columns” lists the additional data that is written, though
not specified on the .PRINT line.

Running Xyce NOISE analysis produces an output results file named .cir.NOISE.prn. Obtaining this file
requires that the .PRINT NOISE line be specified. Using the .PRINT line, Xyce supports printing the total
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* Noise Analysis example
v1 1 0 DC 5.0 AC 1.0
r1 1 2 100K
r2 2 0 100K

eamp 3 0 2 0 1
rlp1 3 4 100
clp1 4 0 1.59nf

* Noise commands
.noise v(4) v1 dec 5 100 100meg 1

* Noise file output
.print noise inoise onoise

.end

Figure 7-21. Noise Example Netlist With Decade Sweep

* Noise Analysis example
.global_param mag=1
.global_param phase=0.1

v1 1 0 DC 5.0 AC {mag} {phase}
r1 1 2 100K
r2 2 0 100K

eamp 3 0 2 0 1
rlp1 3 4 100
clp1 4 0 1.59nf

.data table
+ mag phase freq rlp1
+ 1.0 0.1 1.0e6 1e2
+ 2.0 0.2 1.0e7 2e2
+ 3.0 0.3 1.0e8 3e2

* Noise commands
.noise v(4) v1 data=table

* Noise file output
.print noise inoise onoise

.end

Figure 7-22. Noise Example Netlist. This example uses a .data statement to
simultaneously set frequency, magnitude, phase and the resistance of rlp1.
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Table 7-7. Output generated for NOISE analysis

Command Files Additional Columns

.PRINT NOISE circuit-file.NOISE.prn INDEX FREQUENCY

.PRINT NOISE FORMAT=NOINDEX circuit-file.NOISE.prn FREQUENCY

.PRINT NOISE FORMAT=CSV circuit-file.NOISE.csv FREQUENCY

.PRINT NOISE FORMAT=TECPLOT circuit-file.NOISE.dat FREQUENCY

noise spectral density curves. The output units for spectral densities are 𝑉2/Hz and 𝐴2/Hz. Some examples
are as follows:

Example:
.print noise inoise onoise
.print noise log(inoise) log(onoise)
.print noise inoise onoise V(4) VR(1)

Xyce will also compute the total integrated output noise, and the total integrated input noise for the
specified output node. This information is sent to standard output, or to the user-specified log file. A typical
output (which in this case was generated by the netlist given in figure 7-21) will look like this:

Example:
Total Output Noise = 1.28592e-09
Total Input Noise = 5.22876e-07

If .STEP is used with a noise analysis then the Xyce standard output will contain the values of the stepped
parameters, along with the values for the total integrated output noise and the total integrated input noise for
the specified output node.

Nodal voltages may be requested with a .PRINT NOISE line, and the values are the AC solution for the
circuit. All of the voltage operators in Table 9-5 are supported for this case.

The DC values of voltage sources (e.g., V1) that are changed with a .STEP line during a NOISE analysis
can be printed out via the following syntax. Alternately, if a .OP line is included in the netlist then the
output from the -r command line option will contain the DC Operating Point (DCOP) values for all of the
nodal voltages. (Note: Without the .OP line, only the AC solution will be included in the -r output for a
NOISE analysis.)

Example:
.print noise V1:DCV0

7.9.5. Device Model Support

Note that stationary noise is not supported in every Xyce device. A list of Xyce devices, and which of them
support stationary noise, is given in the Xyce Reference Guide [3].
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The DNI and DNO operators can print out the individual input and output noise contributions for each noise
source within a device via .PRINT NOISE lines. Figure 7-23 provides an example.

The -noise_names_file command line option can generate a listing of the noise source names for each
device in a netlist. The output of that command for the netlist given in figure 7-23 is shown in figure 7-24.
In this example, DNI(M1) would output the input noise contribution for all noise sources in MOSFET M1,
while DNI(Q1,FN) would only output the input flicker-noise contribution from MOSFET M1.

* Noise Analysis: DNI and DNO Usage
* A Simple MOSFET Gain Stage.

M1 3 2 0 0 nmos w=4u l=1u
.model nmos nmos level=1 tox=1e-7

Rsource 1 2 100k
Rload 3 vdd 25k

Vdd1 vdd 0 5
Vin 1 0 1.44 ac .1 sin(0 1 1e+5 0 0)

* Noise commands
.noise v(3) Vin dec 10 100 1000Meg 1

* Noise file output
.print noise inoise onoise
+ DNI(rsource) DNI(rload) DNI(M1)
+ DNI(M1,RD) DNI(M1,RS) DNI(M1,ID) DNI(M1,FN)
+ DNO(rsource) DNO(rload) DNO(M1)
+ DNO(M1,RD) DNO(M1,RS) DNO(M1,ID) DNO(M1,FN)

.end

Figure 7-23. Noise Example: Use of DNI and DNO Operators
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Valid DNO() and DNI() operators for this netlist.
Format is DNO(deviceName) for the total output noise for
a device or DNO(deviceName, noiseSource) for an individual
output noise contribution. If a device (e.g., R1) only
has one noise source then use DNO(R1) to get the total
output noise.

deviceName noiseType
RLOAD
M1
M1 fn
M1 id
M1 rd
M1 rs
RSOURCE

Figure 7-24. Example Output for -noise_names_file Command Line Option
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7.10. Sensitivity Analysis

The .SENS command instructs Xyce to calculate the sensitivities of an output expression with respect to a
specified list of circuit parameters. This capability works for steady-state (.DC), transient (.TRAN) and
small-signal (.AC) analysis.

General Format:

.SENS objfunc={<output expression(s)>} param=<circuit parameter(s)>

.options SENSITIVITY [direct=<1 or 0>] [adjoint=<1 or 0>]

At least one objective function parameter, objfunc, is required. It is possible to specify a comma-separated
list of objective functions. The list of circuit parameters must have at least one entry as well. If there is more
than one, the parameters are specified as a comma-separated list. Xyce will not assume any particular
parameter list. Unlike the Spice version of .SENS, Xyce will not automatically compute the sensitivity of
every parameter; only the parameters the user requested.

7.10.1. Steady-State (DC) sensitivities

For DC analysis, Xyce can compute a direct sensitivity, an adjoint sensitivity, or both. In general, adjoint
sensitivities are much more efficient when computing the derivatives with respect to really large numbers of
parameters, but a small number of objective functions. Direct sensitivities are most efficient for small
numbers of parameters, but large numbers of objective functions. Xyce allows the user to specify multiple
objective functions, as well as multiple parameters, so either scenario could apply.

An example of using .SENS on a DC problem is shown in the following netlist: The output to stdout, which

Example Circuit using sensitivity analysis
R1 A B 10.0
R2 B 0 10.0
Va A 0 5

.dc Va 5 5 1

.print dc v(A) v(B)

.print sens

.SENS objfunc={0.5*(V(B)-3.0)**2.0} param=R1:R,R2:R

.options SENSITIVITY direct=1 adjoint=1 stdoutput=1

.END

Figure 7-25. Steady-State Sensitivity Example Netlist

was requested by setting stdoutput=1, for this example is:

Direct Sensitivities of objective function:{0.5*(V(B)-3.0)**2.0}
Name Value Sensitivity Normalized
R1:R 1.0000e+01 6.2500e-02 6.2500e-03
R2:R 1.0000e+01 -6.2500e-02 -6.2500e-03
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Adjoint Sensitivities of objective function:{0.5*(V(B)-3.0)**2.0}
Name Value Sensitivity Normalized
R1:R 1.0000e+01 6.2500e-02 6.2500e-03
R2:R 1.0000e+01 -6.2500e-02 -6.2500e-03

In the above example, both adjoint and direct sensitivities are computed. This is a linear problem, so it is
easy to compare them to the analytic solution.

7.10.2. Transient sensitivities

Sensitivities can also be computed for transient analysis. As with steady-state (DC) analysis, both direct and
adjoint sensitivities are supported.

7.10.2.1. Transient Direct Sensitivities

Transient direct sensitivities are a good choice if the number of parameters is modest. Also, if the output of
interest is a full waveform sensitivity, they will usually outperform adjoint sensitivities, as from the
perspective of adjoint calculations, each time point constitutes a separate objective function, requiring a
separate integration.

Set direct=1 adjoint=0 to specify transient direct simulations. The transient direct forumulation in
Xyce is based on the one described by Hocevar [25]. An example netlist for a transient sensitivity
calculation is given in figure 7-26. This is a simple linear problem (RC decay), so it has an analytic solution.
Results for the transient example are given in figure 7-27. The analytic sensitivity solution is given by the

* Transient sensitivity example
.param cap=1u
.param res=1K
c1 1 0 cap
R1 1 0 res
.IC V(1)=1.0
* Transient commands
.tran 0 5ms uic
.options timeint reltol=1e-6 abstol=1e-6

* Conventional file output
.print tran format=tecplot v(1)
* Sensitivity file output.
.print sens format=tecplot
+ exp(-time/(res*cap)) ; analytic solution (V(1))
+ {(time/(res*res*cap))*exp(-time/(res*cap))}; analytic dV(1)/dR
+ {(time/(res*cap*cap))*exp(-time/(res*cap))}; analytic dV(1)/dC
* Sensitivity commands
.SENS objfunc={V(1)} param=R1:R,C1:C
.options SENSITIVITY direct=1 adjoint=0
.end

Figure 7-26. Direct Transient Sensitivity Example Netlist
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Figure 7-27. Transient direct sensitivity result.

solid line and the computed numerical sensitivity is given by the dashed line. The results match very well in
this case, with the two lines right on top of each other.
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7.10.2.2. Transient Adjoint Sensitivities

Transient adjoint sensitivities are a good choice for really large numbers of parameters, and when the
number of objective functions is modest. For transient calculations, each time point is considered a separate
objective function, so it is best to use adjoints when the sensitivity of interest concerns only one or a
handful of time points.

Set direct=0 adjoint=1 to specify transient adjoint simulations. The transient adjoint forumulation in
Xyce has similarities to the ones described by Liu [26] and Meir [27]. An example netlist for a transient
adjoint sensitivity calculation is given in figure 7-28. This is a simple linear problem (RC driven by a
sinewave), so it has an analytic solution. Results for the transient adjoint example are given in figure 7-29.

*Test of transient adjoint sensitivities
.param cap=1e-6
.param res=1e3

V1 1 0 0.0 sin (0.0 1.0 200 0.0 0.0 0.0 )
R1 1 2 res
C1 2 0 cap

.tran 1.0e-6 0.5e-2

.print tran format=tecplot V(1) V(2)

.print TRANADJOINT format=tecplot

.options timeint method=gear reltol=1.0e-6 abstol=1e-6

* Sensitivity commands
.SENS objfunc={V(2)} param=R1:R,C1:C
.options SENSITIVITY direct=0 adjoint=1
.end

Figure 7-28. Adjoint Transient Sensitivity Example Netlist

The analytic sensitivity solution is given by the dashed line and the computed numerical sensitivity is given
by the solid line. The results match very well in this case, with the two lines right on top of each other.

Guidance for running transient adjoint analysis Transient adjoint sensitivities need to perform a
backward time integration, after the original transient forward problem has completed. So, generally, when
running a transient adjoint netlist, the user may notice a pause in the calculation at the very end. This is
normal.

It is also important to understand that if using a point objective, the transient adjoint algorithm will consider
every time step to be a unique, separate objective, and will need to perform a backward integration for each
one. So, it will usually be important to restrict this to a limited number of time steps, or ideally a single time
point.

To perform the adjoint calculation on a range of times, this can be set using the .OPTIONS SENSITIVITY
commands ADJOINTBEGINTIME and ADJOINTFINALTIME. Each of these must be set equal to a floating
point number in units of seconds. To perform the adjoint calculation on a discrete set of time points (or a
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Figure 7-29. Transient adjoint sensitivity result.

single time point), this can be set using using the .OPTIONS SENSITIVITY command
ADJOINTTIMEPOINTS followed by a comma-separated list of times in units of seconds. An example netlist,
which uses this capability is shown in figure 7-30. It is identical to the netlist shown in figure 7-28 except
that this command has been added.
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*Test of transient adjoint sensitivities
.param cap=1e-6
.param res=1e3

V1 1 0 0.0 sin (0.0 1.0 200 0.0 0.0 0.0 )
R1 1 2 res
C1 2 0 cap

.tran 1.0e-6 0.5e-2

.print tran format=tecplot V(1) V(2)

.print TRANADJOINT format=tecplot

.options timeint method=gear reltol=1.0e-6 abstol=1e-6

* Sensitivity commands
.SENS objfunc={V(2)} param=R1:R,C1:C
.options SENSITIVITY direct=0 adjoint=1
+ adjointTimePoints=0.1e-2, 0.2e-2, 0.3e-2, 0.4e-2
.end

Figure 7-30. Adjoint Transient Sensitivity Example Netlist for list of time points
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7.10.3. AC Sensitivities

Sensitivities can also be computed for small-signal AC analysis. As with steady-state (DC) and transient
analysis, both direct and adjoint sensitivities are supported.

General Format:

.SENS acobjfunc={<output expression(s)>}
objvars=<voltage node name(s)>
param=<circuit parameter(s)>
.options SENSITIVITY [direct=<1 or 0>] [adjoint=<1 or 0>]

Two example netlists which exercise the capability is shown in figures 7-31 and 7-33. The netlist commands
for AC sensitivities are very similar to those for DC, but with some small exceptions.

Setting the AC sensitivity ojbective function For AC sensitivities, objective functions can be set in
two ways. One option is to specify outputs using objvars followed by a list of node names. An example
which uses this method is given in figure 7-31. The other option is to specify the objective function as an
expression, with the acobjfunc parameter. An example which uses this method is given in figure 7-33. It is
also possible to specify both types of objectives in the same netlist.

AC Sensitivities have four objectives per output For each specified output, there are four separate
objective functions for which sensitivities will be computed; magnitude and phase for the polar
representation, as well as real and imaginary for the cartesian representation of the solution. These will be
computed with respect to the every parameter in the list of sensitivity parameters.

Example console output results are shown for the netlists in figures 7-31 and 7-33 in figures 7-32 and 7-34,
respectively. The console output shown is what one gets if stdoutput=1 is set in the netlist on the
.options sensitivity line. For file-based output, see section 7.10.5.

Output of Δ𝑃 For AC sensitivities, it is likely that a numerical derivative will be needed as part of the
calculation. This is because, unlike DC and transient sensitivities, the AC calculation often requires a
matrix derivative. The Xyce source code has not been set up to compute analytical matrix derivatives, so
these must always be computed numerically. While the numerical derivatives are accurate, some
information about them has been added to the AC sensitivity console output.

In the console outputs shown in figures 7-32 and 7-34, the two right-most columns pertain to numerical
finite differences. The “Delta P” column gives the delta used by the sensitivity calculation if a numerical
derivative was needed. The “FD used” or “FD not used” column indicates if finite differences were used in
part of the calculation.
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*Lowpass filter test for AC sensitivities
v1 1 0 ac 10.0
r1 1 2 4.7k
c1 2 0 47n

.ac dec 10 1 10k

.print ac vm(1) vp(1) vm(2) vp(2)

.print sens

* Sensitivity commands
.sens objvars=2 param=r1:r,c1:c
.options sensitivity direct=1 adjoint=0 stdoutput=1
.end

Figure 7-31. AC Sensitivity Example Netlist

Direct Sensitivities for node V(2):
VR(2) = 1.0000e+01 VI(2) = -1.3880e-02
VM(2) = 1.0000e+01 VP(2) = -1.3880e-03

Name Value Sens_Re Sens_Im Sens_Mag Sens_Phase Delta P
R1:R 4.7000e+03 -8.1975e-09 -2.9531e-06 -4.0988e-09 -2.9531e-07 7.0035e-05 FD not used
C1:C 4.7000e-08 -8.1975e+02 -2.9531e+05 -4.0988e+02 -2.9531e+04 7.0035e-16 FD not used
V1:ACMAG 1.0000e+01 1.0000e+00 -1.3880e-03 1.0000e+00 -2.7105e-20 1.4901e-07 FD not used

Figure 7-32. AC Sensitivity Example Result. This result corresponds to the first
objective in the netlist given by figure 7-31.
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* Operational Amplifier
.param m6w=2u
.param m6l=1u
*Operational Amplifier
M1 bias1 1 cm cm nmos w=10u l=1u
M2 bias2 in2 cm cm nmos w=10u l=1u
M3 vdd bias1 bias1 vdd pmos w=2u l=1u
M4 bias2 bias1 vdd vdd pmos w=2u l=1u
m5 cm bias vss vss nmos w=2u l=1u
mbias bias bias vss vss nmos w=2u l=1u
rbias 0 bias 195k
m6 8 bias vss vss nmos w={m6w} l={m6l}
m7 8 bias2 vdd out nmos w=2u l=1u
Cfb bias2 8 2p
Vid 1 c 0 ac 0.1
eid in2 c 1 c -1
vic c 0 dc 0
vss1 vss 0 -5
Vdd1 vdd 0 5

*AC analysis
.ac dec 10 100 100Meg
.print ac v(8)
* Sensitivity commands
.sens acobjfunc={v(8)} param=m6:w,m6:l
.options sensitivity direct=1 adjoint=0 stdoutput=1
.print sens

.model nmos nmos level=9 version=3.2.2

.model pmos pmos level=9 version=3.2.2

.end

Figure 7-33. AC Sensitivity Example Netlist, using expression-based objective
function

Direct Sensitivities for {v(8)}
Re({v(8)}) = 1.7365e+01 Img({v(8)}) = 3.5597e-04
M({v(8)}) = 1.7365e+01 Ph({v(8)}) = 6.7295e-02

Name Value Sens_Re Sens_Im Sens_Mag Sens_Phase Delta P
M6:W 2.0000e-06 -2.2615e+05 -1.4915e+02 -2.2615e+05 -4.7680e+02 2.9802e-14 FD used
M6:L 1.0000e-06 8.6598e+05 1.9292e+02 8.6598e+05 5.7798e+02 1.4901e-14 FD used

Figure 7-34. AC Sensitivity Example Result. This result is the first sensitivity output
produced for the first objective in the netlist given by figure 7-33.
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7.10.4. Notes about .SENS accuracy and formulation

The formulation for Xyce sensitivity analysis is briefly described. For more details, see references [28, 29].
The sensitivity calculation in Xyce is based on a chain rule calculation, which will produce the sensitivity
𝑑𝑂/𝑑𝑝, where 𝑂 is a user-specified scalar objective function, and 𝑝 is a user-specified scalar parameter.
𝑑𝑂/𝑑𝑝 is equal to:

𝑑𝑂

𝑑𝑝
=

𝜕𝑂

𝜕𝑥

𝜕𝑥

𝜕𝑝
+ 𝜕𝑂

𝜕𝑝
(7.4)

where 𝑥 is a solution vector and 𝜕𝑥/𝜕𝑝 is the sensitivity of that solution vector with respect to the
parameter. For DC and Transient, the system of equations solved by Xyce is given as a differential algebraic
system, given by:

𝐹 (𝑥, 𝑡, 𝑝) = ¤𝑞(𝑥(𝑡, 𝑝), 𝑝) + 𝑗 (𝑥(𝑡, 𝑝), 𝑝) − 𝑏(𝑡, 𝑝) = 0, (7.5)

where the vector 𝐹 is the Xyce residual. The derivative of 𝐹 with respect to the solution 𝑥 (𝜕𝐹/𝜕𝑥) is the
Jacobian matrix. The terms 𝑞, 𝑗 and 𝑏 vectors are all standard components of a DAE, and are provided by
the various device models. 𝑞 represents quantities that must be differentiated with respect to time (such as
capacitor charge), and 𝑗 represents algebraic terms that depend on the solution 𝑥 (such as DC currents), and
𝑏 are independent sources that only depend on time. Equation 7.5 is solved to obtain the solution, 𝑥.

Equation 7.4 can then be expanded as:

𝑑𝑂

𝑑𝑝
= −𝜕𝑂

𝜕𝑥

(
𝜕𝐹

𝜕𝑥

)−1
𝜕𝐹

𝜕𝑝
+ 𝜕𝑂

𝜕𝑝
, (7.6)

All of the terms in equation 7.6 are available in Xyce, which makes it possible to compute 𝑑𝑂/𝑑𝑝. Also,
most terms in 7.6 purely analytical, which helps ensure accuracy. The order in which the right-hand-side of
equation 7.6 is evaluated (left-to-right or right-to-left) determines if the method is a direct sensitivty or an
adjoint sensitivity.

7.10.4.1. Direct Sensivity

To obtain direct sensitivities, one must differentiate equation 7.5 with respect to a parameter, 𝑝.

𝑑𝐹 (𝑥, 𝑡, 𝑝)
𝑑𝑝

=
𝑑

𝑑𝑝

[
𝑑𝑞(𝑥(𝑡), 𝑝)

𝑑𝑡
+ 𝑗 (𝑥(𝑡), 𝑝) − 𝑏(𝑡, 𝑝)

]
= 0 (7.7)

In steady-state (DC), equation 7.7 simplifies to:

𝑑𝐹 (𝑥, 𝑡, 𝑝)
𝑑𝑝

=
𝑑

𝑑𝑝
[ 𝑗 (𝑥(𝑡), 𝑝) − 𝑏(𝑡, 𝑝)] = 0 (7.8)

As 𝑗 is dependent upon 𝑥, the 𝑑𝑗/𝑑𝑝 term be expanded via chain rule as 𝑑 𝑗

𝑑𝑝
=

𝜕 𝑗

𝜕𝑥
𝜕𝑥
𝜕𝑝

+ 𝜕 𝑗

𝜕𝑝
, where 𝜕 𝑗

𝜕𝑥
is the

DC Jacobian matrix, and the resulting equation must be re-arranged to set up a matrix equation that can be
solved to obtain 𝜕𝑥

𝜕𝑝
:

𝜕 𝑗

𝜕𝑥

𝜕𝑥

𝜕𝑝
= − 𝜕 𝑗

𝜕𝑝
+ 𝑑𝑏

𝑑𝑝
. (7.9)

This linear equation is evaluated by the linear solver at the end of the steady-state solve, using the same LU
factors as were used by the final Newton step.
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For transient, a similar linear system is solved, which depends on the specific time integration method used.
For Backward-Euler the linear system is:[

1
ℎ

𝜕𝑞

𝜕𝑥
+ 𝜕 𝑗

𝜕𝑥

]
𝜕𝑥

𝜕𝑝 𝑛+1
= −1

ℎ

[
𝜕𝑞

𝜕𝑝 𝑛+1
− 𝜕𝑞

𝜕𝑝 𝑛

]
− 𝜕 𝑗

𝜕𝑝
+ 𝑑𝑏

𝑑𝑝
+ 1
ℎ

[
𝜕𝑞

𝜕𝑥

]
𝜕𝑥

𝜕𝑝 𝑛

(7.10)

Where ℎ is the time step size. As with 7.9, the left hand side of the equation contains the original Jacobian
matrix. Similar to the steady-state case, this equation is solved at the end of each converged time step, using
the matrix solver with the same LU factors as were used for the final Newton step. For both steady state and
transient, the final objective sensitivity is obtained by taking the dot product of 𝜕𝑂/𝜕𝑥 and 𝜕𝑥/𝜕𝑝.

7.10.4.2. Adjoint Sensivity

The description of adjoint sensitivies is beyond the scope of this document, but the issues affecting
accuracy are largely the same. For a description of the formulation, see references [28, 29].

7.10.4.3. Analytical vs Numerical derivatives

As mentioned above, most of the terms in the sensitivity equations are analytical. The possible exception is
with the terms 𝜕𝑞/𝜕𝑝, 𝜕 𝑗/𝜕𝑝 and 𝜕𝑏/𝜕𝑝, which depend on device model implementation. Most devices in
Xyce are instrumented to provide these sensitivities analytically, either with hand-written derivatives or via
automatic differentiation. But there are exceptions to this, so some devices do not. For these devices, a
numerical derivative is computed instead. A list of Xyce devices, and which of them support analytic
sensitivities, is given in the Xyce Reference Guide [3]. When numerical derivatives are used, Xyce
automatically selects a small delta just large enough to avoid machine precision, following the procedure
suggested by Dennis and Schnabel [30].

7.10.4.4. Time integration error

For transient, note that the transient direct calculation uses the same time steps that are used for the original
circuit analysis. It does not impose any additional error control that is specific to the accuracy of 𝜕𝑥/𝜕𝑝.
The adjoint calculation (not described here), is a discrete form of transient adjoints, and thus uses the same
time steps as the forward calculation.

7.10.4.5. AC Sensitivities

While many of the accuracy issues pertaining to AC sensitivities are the same as for DC sensitivities, the
formulation is different enough to introduce an additional issue. AC sensitivities will nearly always use
some numerical derivatives in their evaluation. AC sensitivies are based on small-signal analysis, so the
analysis solves for the response of a circuit to a small sinusoidal signal. It first solves the DC operating
point, and then approximates the AC response using a Taylor series expansion. This exansion approximates
a small change in the solution as a function of a small change in the AC stimulus. The original AC equation
is given by:

𝐽 · Δ𝑥 = Δ𝑏 (7.11)

where 𝐽 is the AC Jacobian matrix, Δ𝑥 is the AC change to the solution vector and Δ𝑏 is the AC change to
the source vector. Equation 7.11 assumes a phasor representation, so Δ𝑥 = 𝑋𝑒𝑖𝜔𝑡±𝜙 and Δ𝑏 = 𝐵𝑒𝑖𝜔𝑡±𝜙,
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where 𝜔 is the frequency and 𝜙 is the phase. The AC Jacobian is determined from the DC Jacobian
matrices for 𝑓 and 𝑞 as 𝐽 = (𝜕 𝑓 /𝜕𝑥 + 𝑖𝜔𝜕𝑞/𝜕𝑥).

For AC sensitivities, we want to compute Δ𝑥′ = 𝜕 (Δ𝑥)/𝜕𝑝, where 𝑝 is the sensitivity parameter. To obtain
this, one takes derivative of equation 7.11 with respect to a parameter, 𝑝. This gives the direct sensitivity
equation

𝐽 · Δ𝑥′ = Δ𝑏′ − 𝐽′ · Δ𝑥, (7.12)

where the apostrophe indicates a parameter derivative. The linear system in equation 7.12 must be solved to
obtain Δ𝑥′, the sensitivity of Δ𝑥 with respect to a parameter. This is the equation for the direct method, but a
related equation can be obtained for the adjoint method. To solve equation 7.12, the terms on the right hand
side must be provided by Xyce. The Δ𝑥 term is the AC solution, which must be computed prior to
sensitivity analysis. The term Δ𝑏′ is trivial to provide analytically, as it is generally from ideal independent
source models. The matrix derivative 𝐽′, however, is more complicated so it usually contains numerical
derivatives. To see why, consider that when 𝐽′ is fully expanded it is given as:

𝐽′ =
𝜕𝐽

𝜕𝑝
+ 𝜕𝐽

𝜕𝑥
· 𝜕𝑥
𝜕𝑝

. (7.13)

The right hand side terms 𝜕𝐽/𝜕𝑝 and 𝜕𝐽/𝜕𝑥 of 7.13 are matrix derivatives, and Xyce is not instrumented to
provide these using the usual method of automatic differentiation. For complex device models,
implementing matrix derivatives manually is prohibitive. Therefore, with the exception of simple linear
devices, the terms in equation 7.13 are evaluated numerically.
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7.10.5. Output

For a full list and explanation of options related to .SENS output see the Xyce Reference Guide [3].

Sensitivity output can be sent to standard output, or to a user-specified log file. The format for this output is
similar to that generated by the circuit given in figure 7-25. This feature is mainly made available in Xyce so
as to be similar to the sensitivity analysis of older circuit simulators. However, for most uses it isn’t the most
practical output, so it is disabled by default. To enable standard output, one should set the following:

.options SENSITIVITY STDOUTPUT=1

In addition to the screen output, Xyce can also produce a plottable file containing all the requested
sensitivities. This file can be requested by adding either a .PRINT SENS or a .PRINT TRANADJOINT
command to the input file. Steady-state sensitivities (adjoint or direct) and transient direct sensitivities will
be handled by the .PRINT SENS command. Transient adjoint, on the other hand, is handled by the .PRINT
TRANADJOINT command.

Unlike the traditional .PRINT line, both .PRINT SENS and .PRINT TRANADJOINT will assume that the
user wants all the sensitivities specified on the .SENS line. As such it is not necessary (or possible) to
specify specific sensitivities on the .PRINT SENS line. If the line exists, that is sufficient to produce the file,
and it will contain a column for every objective function and every derivative. The file name is the same as
the one produced with .PRINT, but with “.SENS” included just before the suffix. Similarly, for transient
adjoint, the output file name has the string “.TRADJ” included before the suffix. Note also, that most of the
same output formats (std, tecplot, etc.) are available for .PRINT SENS and.PRINT TRANADJOINT as
they are for conventional .PRINT. The available formats are listed in table 7-8, 7-9and 7-10. As noted,

Table 7-8. Output generated for SENS analysis for .TRAN

Command Files Additional Columns

.PRINT SENS circuit-file.SENS.prn INDEX TIME

.PRINT SENS FORMAT=GNUPLOT circuit-file.SENS.prn INDEX TIME

.PRINT SENS FORMAT=SPLOT circuit-file.SENS.prn INDEX TIME

.PRINT SENS FORMAT=NOINDEX circuit-file.SENS.prn INDEX TIME

.PRINT SENS FORMAT=CSV circuit-file.SENS.csv TIME

.PRINT SENS FORMAT=TECPLOT circuit-file.SENS.dat TIME

transient adjoints are specified separately from .PRINT SENS. This is because the transient adjoint
calculation is performed as a post-process, after the original forward calculation has been completed, and
Xyce’s forward outputters are no longer active. To specify transient adjoint output, one must use .PRINT
TRANADJOINT instead. As it is possible to perform both a transient direct and a transient adjoint calculation
as part of the same computation, and most of Xyce’s output files are in column format, there wasn’t an easy
way to have them use the same outputter.
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Table 7-9. Output generated for SENS analysis for .AC

Command Files Additional Columns

.PRINT SENS circuit-file.FD.SENS.prn INDEX FREQ

.PRINT SENS FORMAT=GNUPLOT circuit-file.FD.SENS.prn INDEX FREQ

.PRINT SENS FORMAT=SPLOT circuit-file.FD.SENS.prn INDEX FREQ

.PRINT SENS FORMAT=NOINDEX circuit-file.FD.SENS.prn INDEX FREQ

.PRINT SENS FORMAT=CSV circuit-file.FD.SENS.csv FREQ

.PRINT SENS FORMAT=TECPLOT circuit-file.FD.SENS.dat FREQ

Table 7-10. Output generated for transient adjoint SENS analysis

Command Files Additional Columns

.PRINT TRANADJOINT circuit-file.TRADJ.prn INDEX TIME

.PRINT TRANADJOINT FORMAT=NOINDEX circuit-file.TRADJ.prn INDEX TIME

.PRINT TRANADJOINT FORMAT=CSV circuit-file.TRADJ.csv TIME

.PRINT TRANADJOINT FORMAT=TECPLOT circuit-file.TRADJ.dat TIME
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7.11. S-parameter Analysis

The S-parameter small-signal analysis of Xyce computes linear transfer parameters as a function of
frequency for a general multi-port network. The program first computes the DC operating point of the
circuit and then linearizes the circuit. The resultant linear circuit is then analyzed over a user-specified
range of frequencies. The output of a S-parameter analysis is multi-port scattering (S) parameters. The
S-parameters represent the ratio of incident and scattered normalized voltage waves. The analysis results
can also be output as Y-parameter or Z-parameter values.

7.11.1. .LIN Statement

One may specify S-parameter analyses by using a .LIN command with a .AC command in the netlist. Here
is an example of typical .AC and .LIN lines:

Example:
.AC DEC 10 1K 100MEG
.LIN sparcalc=1 format=touchstone

The .LIN analysis is similar to a basic small signal .AC analysis, but it also calculates small signal transfer
parameters between terminals identified using port (P) devices. The Xyce Reference Guide [3] provides a
complete description of .LIN analysis and the P device. To output Y-parameter or Z-parameter values
instead the LINTYPE=Y or LINTYPE=Z argument can be used on the .LIN line.

7.11.2. Port Devices

The .LIN analysis computes the S-parameters based on the location of the port (P) devices and the values
of their reference impedances. The port devices identify the ports used in .LIN analysis. The Xyce
Reference Guide [3] provides a complete description of the port devices. Some examples are as follows:

Example:
P1 1 0 port = 1
P2 12 0 port= 2 z0=100

NOTE: Each port requires a unique port number. If a circuit has N ports, the netlist must contain the
sequential set of port numbers, 1 to N.

7.11.3. Example

An example S-parameter analysis netlist is given in figure 7-35. This example uses 2 ports. The S
parameters are output to a file in Touchstone 1 format [31]. Touchstone 2 format is also supported. Note that
SPARCALC=1 is specified on the .LIN line. If SPARCALC=0 is specified instead then a .AC analysis will be
done.
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* S-parameter Analysis example
P1 1 0 port= 1
~
C1 2 0 1e-2
Rgs 1 2 0.02

.subckt RCBlock IN OUT GND
R1 IN OUT 20
C1 IN OUT 1p
Cg1 OUT GND 1p
.ends

X1 2 3 0 RCBlock
X2 3 4 0 RCBlock
X3 4 5 0 RCBlock
X4 5 6 0 RCBlock
X5 6 7 0 RCBlock
X6 7 8 0 RCBlock
X7 8 9 0 RCBlock
X8 9 10 0 RCBlock
X9 10 11 0 RCBlock
X10 11 12 0 RCBlock

.AC DEC 10 10 1e5

.LIN FORMAT=TOUCHSTONE sparcalc=1

P2 12 0 port=2 z0=100

.END

Figure 7-35. S-parameter Example Netlist.
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7.11.4. Output

For S-parameter analysis, the output is controlled by the .LIN command when SPARCALC=1 on that line.
Any information on .PRINT AC lines will be ignored in that case. Table 7-11 lists the format options and
files created. If SPARCALC=0 then a .AC analysis is done instead.

All three data formats defined in the Touchstone standard, which are real-imaginary (RI),
magnitude-angle(MA) and magnitude(db)-angle (DB), are supported. The default is RI. Other options can
be selected via the inclusion of the DATAFORMAT=<val> argument on the .LIN line. Per the Touchstone
standard, all angle values are output in degrees.

The default filename for both Touchstone formats is <netlistName>.sNp where N is the number of
“ports” (P devices) specified in the netlist. The output can be redirected to another file with the -o
command line option or by using a FILE=<filename> argument on the .LIN line.

The default output is S-parameters. The LINTYPE=<S|Y|Z> argument can be used on the .LIN line to
select Y-parameter or Z-parameter output instead. (Note: The default filename is still <netlistName>.sNp
even if the output file contains Y-parameter or Z-parameter output rather than S-parameter output.) The
Xyce Reference Guide [3] has a complete listing of which arguments, typically used on a .PRINT line also
work on a .LIN line.

When a .LIN analysis is done then additional output variable formats are available via the .PRINT AC line,
where <index1> and <index2> must both be greater than 0 and also both less than or equal to the number
of ports in the netlist:

• SR(<index1>,<index2>) to output the real component of an S-parameter

• SI(<index1>,<index2>) to output the imaginary component of an S-parameter

• SM(<index1>,<index2>) to output the magnitude of an S-parameter

• SP(<index1>,<index2>) to output the phase of an S-parameter in degrees

• SDB(<index1>,<index2>) to output the magnitude of an S-parameter in decibels.

• YR(<index1>,<index2>) to output the real component of a Y-parameter

• YI(<index1>,<index2>) to output the imaginary component of a Y-parameter

• YM(<index1>,<index2>) to output the magnitude of a Y-parameter

• YP(<index1>,<index2>) to output the phase of a Y-parameter in degrees

• YDB(<index1>,<index2>) to output the magnitude of a Y-parameter in decibels.

• ZR(<index1>,<index2>) to output the real component of a Z-parameter

• ZI(<index1>,<index2>) to output the imaginary component of a Z-parameter

• ZM(<index1>,<index2>) to output the magnitude of a Z-parameter

• ZP(<index1>,<index2>) to output the phase of a Z-parameter in degrees

• ZDB(<index1>,<index2>) to output the magnitude of a Z-parameter in decibels.

Example:
.print AC SR(1,1) YI(1,2) ZM(2,1)
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Table 7-11. Output generated for .LIN analysis

Command Files Format

.LIN circuit-file.sNp
S-parameter data in
Touchstone 2 format. Data
format is RI.

.LIN FORMAT=TOUCHSTONE circuit-file.sNp
S-parameter data in
Touchstone 1 format. Data
format is RI.

.LIN FORMAT=TOUCHSTONE2 circuit-file.sNp
S-parameter data in
Touchstone 2 format. Data
format is RI.

.LIN DATAFORMAT=MA circuit-file.sNp
S-parameter data in
Touchstone 2 format. Data
format is MA.

.LIN DATAFORMAT=DB circuit-file.sNp
S-parameter data in
Touchstone 2 format. Data
format is DB.

.LIN LINTYPE=Y circuit-file.sNp
Y-parameter data in
Touchstone 2 format. Data
format is RI.

.LIN LINTYPE=Z circuit-file.sNp
Z-parameter data in
Touchstone 2 format. Data
format is RI.

Xyce -r raw-file-name NA This will produce a
parsing error.

Xyce -r raw-file-name -a NA This will produce a
parsing error.
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8. HOMOTOPY AND CONTINUATION METHODS

Chapter Overview
This chapter includes the following sections:

• Section 8.1, Continuation Algorithms Overview

• Section 8.2, Natural Parameter Continuation

• Section 8.3, Natural Multiparameter Continuation

• Section 8.4, GMIN Stepping Continuation

• Section 8.5, Source Stepping Continuation

• Section 8.6, MOSFET Continuation

• Section 8.7, Pseudo Transient

• Section 8.8, Arc Length Continuation
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8.1. Continuation Algorithms Overview

Often, circuit convergence problems are most prominent during the DC operating point calculation. Unlike
transient solves, DC operating point analysis cannot rely on a good initial guess from a previous step, and
cannot simply reduce the step size when the solver fails. Additionally, operating points often have multiple
solutions, with no capability to interpret the user’s intent. Multiple solutions can, even for converged circuit
problems, result in a standard Newton solve being unreliable. For example, the operating point solution to a
Schmidt trigger circuit has been observed to change with the computational platform.

Continuation methods can often provide solutions to difficult nonlinear problems, including circuit analysis,
even when conventional methods (e.g., Newton’s method) fail [32] [33]. This chapter gives an introduction
to using continuation algorithms (sometimes called homotopy algorithms) in Xyce. The Xyce Reference
Guide [3] provides a more complete description of solver options.

The underlying numerical library used by Xyce to support continuation methods is LOCA (Library of
Continuation Algorithms) [34, 35]. For a description of the numerical details see the LOCA theory and
implementation manual [36].

8.1.1. Continuation Algorithms Available in Xyce

Xyce invokes a well-known SPICE method, “GMIN stepping,” automatically when a DC operating point
fails to converge without it. It is a special case where the parameter being swept is artificial. GMIN stepping
can also be invoked with .options nonlin continuation=3 or .options nonlin
continuation=gmin. See Section 8.4 for more information and an example of GMIN stepping.

Xyce also invokes the SPICE “source stepping” method automatically when a DC operating point
calculation fails both normal Newton’s method and the automatic GMIN stepping attempt. This is an
example of natural parameter continuation that steps through a scale factor that is applied to all sources in
the circuit. It is described in Section 8.5.

Another basic type of continuation in Xyce is accessed by setting .options nonlin continuation=1.
This allows the user to sweep existing device parameters (models and instances), as well as a few reserved
artificial parameter cases. The most obvious natural parameter to use is the magnitude(s) of independent
voltage or current sources, the choice of which is equivalent to “source stepping” in SPICE. Section 8.2
provides a Xyce source-stepping example. For some circuits (as in the aforementioned Schmidt trigger),
source stepping leads to turning points in the continuation.

A special type of continuation, an algorithm designed specifically for MOSFET circuits [37], involves two
internal MOSFET model parameters—one for the MOSFET gain, and the other for the nonlinearity of the
current-voltage relationship. This algorithm is invoked with .options nonlin continuation=2, and
has proven to be effective in some large MOSFET circuits. Section 8.6 provides a detailed example.
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8.2. Natural Parameter Continuation

Figure 8-1 shows a natural parameter continuation netlist with parameters pertinent to the continuation
algorithm highlighted in red. For this example, the parameter being swept is the DC value of the voltage
source VDDdev. This example demonstrates a version of “source stepping” that is similar to SPICE, but
only applied to the single voltage source VDDdev rather than to all voltage sources. For an example of
source stepping in which every source in simultaneously swept, see sections 8.2.2 and 8.5.

Using continuation on the magnitudes of independent voltage and current sources is a fairly obvious
technique when a DC operating point calculation fails to converge. However, a naïve application of natural
parameter continuation to single voltage and current sources does not often enable convergence in practice.
Xyce will apply source stepping automatically during the DC operating point calculation if both the
standard Newton’s method and GMIN stepping fail. So, normally, this technique of manually forcing
stepping of a single source is unnecessary.

MOS level 1 model CMOS inverter
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3
* Continuation Options

.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=1
+ conparam=VDDdev
+ initialvalue=0.0 minvalue=-1.0 maxvalue=5.0
+ initialstepsize=0.2 minstepsize=1.0e-4
+ maxstepsize=5.0 aggressiveness=1.0
+ maxsteps=100 maxnliters=200

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8-1. Example natural parameter continuation netlist. This example of source
stepping shows a circuit that does not require continuation to run. Most circuits

complex enough to require continuation would not fit on a single page.

8.2.1. Explanation of Parameters, Best Practice

Figure 8-1 also illustrates the following “best practice” rules:
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• .options nonlin continuation=1. Sets the algorithm to use natural parameter continuation.

• .options loca conparam=VDDdev. If using natural parameter continuation, it is necessary
include a setting for conparam. It sets which input parameter to use to perform continuation. The
parameter name is subject to the same rules as parameter used by the .STEP capability.
(Section 7.4.2). In this case, the parameter is the magnitude of the DC voltage source, VDDdev. For
this type of voltage source, it was possible to use the default device parameter (Section 7.4.5)

• .options loca initialvalue=0.0. This is required.

• .options loca maxvalue=5.0. This is required.

• .options loca stepcontrol=1 or .options loca stepcontrol=adaptive. This specifies
the continuation steps to be adaptive, rather than constant. This is recommended.

• .options loca maxsteps=100. This sets the maximum number of continuation steps for each
parameter.

• .options loca maxnliters=200. This is the maximum number of nonlinear iterations, and has
precedence over the similar number that can be set on the .options nonlin line.

• .options loca aggressiveness=1.0. This refers to the step size control algorithm, and the
value of this parameter can be anything from 0.0 to 1.0. 1.0 is the most aggressive. In practice, try
starting with this set to 1.0. If the solver fails, then reset to a smaller number.

8.2.2. Source Scaling Continuation

Figure 8-2 shows a natural parameter continuation netlist with parameters pertinent to the continuation
algorithm highlighted in red. For this example, a special parameter VSRCSCALE is being swept from zero to
one. This parameter is applied as a scaling factor for all DC and transient sources in the netlist. As a result,
this example demonstrates an explicit invocation of “source stepping” like the one that both Xyce and
SPICE apply automatically as part of their DC operating point solution strategies if Newton’s method and
GMIN stepping both fail.

Note that while the special parameter has the name VSRCSCALE, it would be applied in the same manner to
current sources if they were present in the circuit. The name is an artifact of an earlier implementation.

Note also that a more convenient method to accomplish source stepping is described in section 8.5.
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*Simple netlist demonstrating source-stepping
*This source will be swept with .DC
V1 1 0 DC 1
R1 1 0 100
*This source will be not swept with .DC
V2 2 0 DC 8
R2 2 0 100
.DC V1 1 8 1
.print DC V(1) V(2)
.print HOMOTOPY V(1) V(2)
* Continuation Options
.options nonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=0
+ conparam=vsrcscale
+ initialvalue=0.0 minvalue=-1.0 maxvalue=1.0
+ initialstepsize=0.2 minstepsize=1.0e-4
+ maxstepsize=0.2
+ aggressiveness=1.0
+ maxsteps=5000 maxnliters=200

.END

Figure 8-2. Example natural parameter continuation netlist implementing source
stepping over all voltage sources. This particular example of source stepping shows

a circuit that does not require continuation to run.
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8.3. Natural Multiparameter Continuation

It is possible to use the natural parameter continuation specification to have Xyce sweep multiple
parameters in sequential order. This requires specifying many of the parameters in the .options loca
statement as vectors, delineated by commas, rather than as single parameters.

This is a usage example — the circuit itself does not require continuation to run. Most circuits complex
enough to require continuation would not fit on a single page.

8.3.1. Explanation of Parameters, Best Practice

The solver parameters set in figure 8-3 are the same as those from figure 8-1, but many of them are in vector
form. Specify any parameters specific to the continuation variable as a vector, including conparam,
initialvalue, minvalue, maxvalue, initialstepsize, minstepsize, maxstepsize, and
aggressiveness. Otherwise, the specification is identical.

MOS level 1 model CMOS inverter
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3
* Continuation Options
.options nonlin continuation=1
.options loca stepper=0 predictor=0 stepcontrol=adaptive
+ conparam=mosfet:gainscale,mosfet:nltermscale
+ initialvalue=0.0,0.0
+ minvalue=-1.0,-1.0
+ maxvalue=1.0,1.0
+ initialstepsize=0.2,0.2
+ minstepsize=1.0e-4,1.0e-4
+ maxstepsize=5.0,5.0
+ aggressiveness=1.0,1.0

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8-3. Example multiparameter continuation netlist. This netlist reproduces
MOSFET continuation with a manual specification.
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8.4. GMIN Stepping

GMIN stepping is a type of continuation commonly available in circuit simulators. Like SPICE, Xyce
automatically attempts GMIN stepping if the initial operating point fails, and if the attempt at GMIN
stepping fails, it will subsequently attempt source stepping 8.5. As such, it is not typically necessary to
manually specify GMIN stepping in a Xyce netlist.

However, GMIN stepping may be manually specified by setting continuation=3 or more conveniently,
continuation=gmin. If it is manually specified, Xyce will not attempt to find a DC operating point using
any other method; it will attempt GMIN stepping, and if that fails it will exit with error, not attempting any
other method. Figure 8-4 provides a netlist example of GMIN stepping, in which the method has been
explicitly requested.

Simple GMIN stepping example.
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3

* Continuation Options
.options nonlin continuation=gmin

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8-4. Example GMIN stepping netlist. The continuation parameter is gmin. It
can also be specified using continuation=3.

The name ”GMIN stepping” can be somewhat confusing, as ”GMIN” is also a user-specified device
package parameter (unrelated to this algorithm) that one may set. In the device context, “GMIN” refers to a
minimum conductance applied to many device models to enhance convergence. In the continuation context,
it refers to the conductance of resistors attached from every circuit node to ground.

The conductance, which is the continuation parameter, is initially very large, and is iteratively reduced until
the artificial resistors have a very high resistance. At the end of the continuation, the resistors are removed
from the problem. At this point, assuming the continuation has been successful, the original user-specified
problem has been solved.
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8.5. Source Stepping

Source stepping is a type of continuation commonly available in circuit simulators. Like SPICE, Xyce
automatically attempts source stepping if the initial operating point fails, and if the subsequent attempt at
GMIN stepping 8.4 also fails. As such, it is not typically necessary to manually specify source stepping in a
Xyce netlist.

Xyce provides two different source stepping approaches: simultaneous and sequential. Simultaneous source
stepping includes all the sources at the same time during the continuation and is used by default in the DC
operating point strategy. Sequential source stepping performs continuation on one source at a time until all
sources achieve their DC value. Sequential source stepping can provide a robust alternative when circuits
fail to converge to a DC operating point with simultaneous source stepping.

Source stepping may be manually specified by setting continuation=34 or continuation=35 for
simultaneous or sequential source stepping, respectively. Alternatively, it may also be specified by setting
continuation=sourcestep or continuation=sourcestep2 for simultaneous or sequential source
stepping, respectively. If it is manually specified,Xyce will not attempt to find a DC operating point using
any other method; it will attempt source stepping, and if that fails it will exit with error, not attempting any
other method. Figure 8-5 provides a netlist example of simultaneous source stepping.

Note that a less convenient method to accomplish simultaneous source stepping is described in
section 8.2.2.

Note also that any, or all of the DC, AC and transient values can be specified in voltage and current sources.
Simultaneous and sequential source stepping apply to all sources. The DC and transient values are related
to the DC operating point calculation. The value that is scaled during source stepping depends on analysis
type. For example, for transient analysis, the initial value of the transient specification is always used in DC
operating point calculation and source stepping. For AC analysis, the DC value is used during source
stepping. If a source only has transient specification, the initial transient value is used.

Simple test of explicit source stepping
*****************************************
R1 1 0 1K
V1 1 0 5V

.OP

.PRINT DC V(1) I(V1)

.PRINT HOMOTOPY V(1) I(V1)
* Continuation Options
.options nonlin continuation=sourcestep

.END

Figure 8-5. Example source stepping netlist.
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8.6. MOSFET Continuation

Figure 8-6 contains a MOSFET continuation example netlist, and is the same circuit as was used in
figure 8-6, except some of the parameters are different. As before, the lines pertinent to the continuation
algorithm are highlighted in red.

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us 0 5ns
.PRINT tran v(vout) v(in) v(1)
.options timeint reltol=5e-3 abstol=1e-3

* Continuation Options
.options nonlin continuation=mos

VDDdev VDD 0 5V
RIN IN 1 1K
VIN1 1 0 5V PULSE (5V 0V 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
MN1 VOUT IN 0 0 CD4012_NMOS L=5u W=175u
MP1 VOUT IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL cd4012_pmos PMOS
.MODEL cd4012_nmos NMOS
.END

Figure 8-6. MOSFET continuation netlist example. This is a usage example — the
circuit itself does not require continuation to run. Most circuits complex enough to

require continuation would not fit on a single page.

8.6.1. Explanation of Parameters, Best Practice

There are a few differences between the netlist in figures 8-1 and 8-6. This example shows one set of
options, but there are numerous options of working combinations.

MOSFET continuation requires only .options nonlin continuation=2 or .options nonlin
continuation=mos parameters, which specifies use of the special MOSFET continuation. This is a
two-pass continuation, in which first a parameter concerning gain is swept from 0 to 1, and then a parameter
relating to the nonlinearity of the transfer curve is swept from 0 to 1. The default parameters will work for a
variety of MOSFET circuits, so it often will be unneccessary to override them using an .options loca
line. However, it is possible to override the default parameters using the same .options loca parameters
described in Section 8.2.1.
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8.7. Pseudo Transient

Pseudo transient continuation is very similar to GMIN stepping, in that both algorithms involve placing
large artificial terms on the Jacobian matrix diagonal, and progressively making these terms smaller until
the original circuit problem is recovered. One difference is, rather than doing a series of Newton solves,
pseudo transient does a single nonlinear solve while progressively modifying the pseudo transient
parameter. Figure 8-7 provides an example of pseudo transient continuation options.

* Continuation Options
.options nonlin continuation=9

.options loca
+ stepper=natural
+ predictor=constant
+ stepcontrol=adaptive
+ initialvalue=0.0
+ minvalue=0.0
+ maxvalue=1.0e12
+ initialstepsize=1.0e-6
+ minstepsize=1.0e-6
+ maxstepsize=1.0e6
+ aggressiveness=0.1
+ maxsteps=200
+ maxnliters=200
+ voltagescalefactor=1.0

Figure 8-7. Pseudo transient solver options example. The continuation parameter is
set to 9.

8.7.1. Explanation of Parameters, Best Practice

Pseudo transient has not been observed to be as successful as MOSFET-continuation for large MOSFET
circuits. However, it may be a good candidate for difficult non-MOSFET circuits as it tends to be faster
because the total number of matrix solves is smaller.
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8.8. Arc Length Continuation

Most of the forms of continuation described in this chapter are low-order, and thus cannot be used to track
turning points in the solution. However, the ability to track turning points is a capability that can be enabled
in Xyce. A simple example netlist, which is based on a third order polynomial (which thus has multiple
DCOP solutions) is given in figure 8-8. The solution, which exhibits this turning point behavior is given in
figure 8-9.

Test for turning points using arclength continuation
* polynomial coefficients:
.param A=3.0
.param B=-2.0
.param C=1.0
.param I=1.0

Vtest 1 0 5.0
Btest 1 0 V=A*(I(Vtest)-I)**3 + B*(I(Vtest)-I) + C
.DC Vtest 1 1 1

* natural parameter continuation options (via loca)
.options nonlin continuation=1

* stepper sets what order of continuation this is.
* stepper=0 or stepper=NAT is natural continuation
* stepper=1 or stepper=ARC is arclength continuation
*
* predictor must be set to secant to see turning points
* predictor=0 tangent
* predictor=1 secant
* predictor=2 random
* predictor=3 constant
.options loca stepper=1
+ predictor=1 stepcontrol=1
+ conparam=Vtest
+ initialvalue=0.0 minvalue=0.0 maxvalue=2.0
+ initialstepsize=0.01 minstepsize=1.0e-8 maxstepsize=0.1
+ aggressiveness=0.1
.print homotopy I(Vtest)

Figure 8-8. Arclength continuation example. An explanation of some of the important
parameters is given in the comments.

8.8.1. Explanation of Parameters, Best Practice

Most of the parameters specified in the netlist 8-8 are the same as the ones described in the natural
parameter section 8.2.1. However, two of them must be specified to non-default values to enable an
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Figure 8-9. Arclength continuation example result. This result was generated using
Xyce with the netlist in figure 8-8.

arclength calculation. Specifically, the stepper parameter must be set to 1 or ARC, and the predictor
parameter must be set to 1 or SECANT.
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9. RESULTS OUTPUT AND EVALUATION OPTIONS

Chapter Overview
This chapter illustrates how to output simulation results to data or output files and includes the following
sections:

• Section 9.1, Control of Results Output

• Section 9.1.2, Additional Output Options

• Section 9.2, Output Analysis

• Section 9.3, Graphical Display of Solution Results
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9.1. Control of Results Output

Xyce supports one solution output command, .PRINT, which is quite flexible, and supports several output
formats.

9.1.1. .PRINT Command

The .PRINT command sends the analysis results to an output file. Xyce supports several options on the
.PRINT line of netlists that control the format of the output.

Multiple .PRINT lines may be present in the netlist. Only .PRINT lines appropriate for the analysis being
executed are activated. Each analysis type has a set of analysis print types. These analysis print types are
used to specify the variables desired for each of the different output files which may be generated by an
analysis type. If an additional analysis print type is activated and no .PRINT for that analysis print type is
present, the variable list and options fall back to the .PRINT of that analysis type.

General Format:

.PRINT <print type> [options] <output variable> [<output variable>]*

Table 9-1 lists the available print types for the analyses.

Table 9-2 gives the various options available to the .PRINT command.

Table 9-3 gives the various output formats available to the .PRINT command.

Table 9-4 gives the various output delimiters available to the .PRINT command. The DELIMITER parameter
will modify formats consisting of simple column data, including the STD, NOINDEX, GNUPLOT and CSV
formats.

The <output variable> parameter can be a variety of requested outputs, including nodal voltages,
V(...), or device currents, I(...), and power, P(...) or W(...), as given by

• V(<node name>)

• V(<node name>,<node name>) (the voltage difference between the first and second nodes)

• I(<two-terminal device>)

• Ik(<three-or-more-terminal device>) (the k indicates the device node from which to acquire
the value, which is device specific; see the Xyce Reference Guide [3] for details)

• P(two-terminal device)

• W(two-terminal device)

At this time, power calculations are only supported for .DC and .TRAN analysis types. Power calculations
may also not be supported for all Xyce devices yet. Consult the Xyce Reference Guide [3] for more details.
As an example, the power supplied or dissipated by the voltage source V is calculated as 𝐼 · Δ𝑉 where the
voltage drop is calculated as (𝑉+ −𝑉−) and positive current flows from 𝑉+ to 𝑉−. Dissipated power has a
positive sign, while supplied power has a negative sign. An important note is that the power calculations are
a post-processing step, which places a limit on the accuracy of circuit-wide “energy conservation”
calculations (e.g., total power supplied by sources - total power dissipated in non-source devices) in Xyce.
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Table 9-1. .PRINT Print Types
Analysis Print Type Description

.AC AC
Sets default variable list and formats
for print subtypes

.AC AC_IC
Overrides variable list and format for
AC initial conditions

.DC DC

.EMBDEDDEDSAMPLING ES

.HB HB

.HB HB_FD
Overrides variable list and format for
HB frequency domain

.HB HB_IC
Overrides variable list and format for
HB initial conditions

.HB HB_STARTUP
Overrides variable list and format for
HB start up

.HB HB_TD
Overrides variable list and format for
HB time domain

.NOISE Noise Outputs Noise spectral density curves

.TRAN TRAN

Specialized Output Commands

Homotopy HOMOTOPY
Sets variable list and format for ho-
motopy

.SENS SENS
Sets variable list and format for sen-
sitivity

The accuracy of the inputs (V and I) to the power calculations is limited by the nonlinear solver tolerances,
and the error in the power calculations is upper-bounded by the sum of the product-terms of V*(error in
I) and I*(error in V).

Voltage variables specified in the frequency domain have special processing to handle complex results. For
file formats which have a complex output capability, the complex value is written. However, for file formats,
such as STD and CSV, the complex value is written as two columns of data, the real part followed by the
imaginary part. Pseudo names may also be used to compute scalar values from a complex voltage variable.
These are given in Table 9-5.

For .AC and .NOISE analyses, current variables (see Table 9-5) are only supported for devices that have
“branch currents” that are part of the solution vector. This includes the V, E, H and L devices. It also
includes the voltage-form of the B device.

In addition to the above, internal device variables can be specified as an <output variable>. These take
the form, N(device variable). The format of the device variable called by N is device-specific, and
exact forms can be found in the Xyce Reference Guide [3].

It is also possible to output a device or model parameter directly, such as the resistance of a resistor R5,
specified as R5:R on the .PRINT line. It is necessary to specify both the device name and parameter name,
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Table 9-2. .PRINT command options.

Option. . . Action. . .

FORMAT=<format>
Controls the output file format. See Table 9-3 for a
comprehensive list. The default is STD.

FILE=<filename>

Output filename. The default is the netlist filename
with “.prn” appended.
foo.cir.prn, where foo.cir is the input netlist
filename. The suffix depends on the format. The
default suffixes for
FORMAT=STD|PROBE|TECPLOT|RAW|CSV are
“.prn”, “.csd”, “.dat”, “.raw”, and “.csv”,
respectively.

WIDTH=<field-width> Column width for the output data

PRECISION=
<floating-point-precision>

Number of significant digits past the decimal point

FILTER=<floor-value>
Absolute value below which output variables will
be printed as 0.0

DELIMITER=<delimiter>

Alternate delimiter between columns of output in
the STD, NOINDEX, GNUPLOT or CSV output
formats. The default for STD, NOINDEX and
GNUPLOT is spaces. The default for CSV is
commas. See table 9-4 for a comprehensive list.

Table 9-3. .PRINT FORMAT options.

Format. . . Action. . .

STD Outputs data in standard columns

NOINDEX
Outputs the same as the STD except the index
column is omitted.

PROBE
Output is formatted to be compatible with the
PSpice Probe plotting utility.

RAW
Output conforms to the Spice binary rawfile. Use
the -a command line option to produce an ASCII
rawfile.

TECPLOT Output for use in the TecPlot graphics package.

CSV Produces a comma-separated value format.

GNUPLOT
Output data in standard columns, with improved
Gnuplot compatibility for .STEP data.

separated by a colon.
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Table 9-4. .PRINT DELIMITER options.

Format. . . Action. . .

TAB Tab delimiter.

COMMA Comma delimiter.

SEMICOLON Semicolon delimiter.

COLON Colon delimiter.

“string”
Quoted string, where string is used as the
delimiter. This string must be enclosed in quotes.

Finally, an expression may also be specified as an <output variable>. To do so, enclose the expression
within curly braces ({}). See Section 4.3 for a description of expressions.

Example:
.PRINT TRAN FILE=Output.prn V(3) I(R3) ID(M5) V(4)
.PRINT DC FORMAT=TECPLOT FILE=Output.dat V(2) {I(C3)+abs(V(4))*5.0}
.PRINT HB RA:R V(Vsrc) VM(Vsrc)
.PRINT HB_TD RA:R V(Vsrc)
.PRINT TRAN FORMAT=CSV R1:R R1:TEMP I(R1) R2:R R2:TEMP
.PRINT AC v(3) .PRINT AC FILE=AUX.FD.prn v(1) .OP
.PRINT AC_IC v(1) v(2)
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Table 9-5. Pseudo Variables for Complex Output

Variable Definitions

VR(𝑛𝑜𝑑𝑒) Voltage Real Component

VI(𝑛𝑜𝑑𝑒) Voltage Imaginary Component

VM(𝑛𝑜𝑑𝑒) Voltage Magnitude

VP(𝑛𝑜𝑑𝑒) Voltage Phase, Degrees

VDB(𝑛𝑜𝑑𝑒) Voltage Magnitude, Decibels

VR(𝑛𝑜𝑑𝑒1,𝑛𝑜𝑑𝑒2) Difference of Voltage Real Component

VI(𝑛𝑜𝑑𝑒1,𝑛𝑜𝑑𝑒2) Difference of Voltage Imaginary Component

VM(𝑛𝑜𝑑𝑒1,𝑛𝑜𝑑𝑒21) Difference of Voltage Magnitude

VP(𝑛𝑜𝑑𝑒1,𝑛𝑜𝑑𝑒2) Difference of Voltage Phase, Degrees

VDB(𝑛𝑜𝑑𝑒1,𝑛𝑜𝑑𝑒2) Difference of Voltage Magnitude, Decibels

IR(𝑑𝑒𝑣𝑖𝑐𝑒) Current Real Component

II(𝑑𝑒𝑣𝑖𝑐𝑒) Current Imaginary Component

IM(𝑑𝑒𝑣𝑖𝑐𝑒) Current Magnitude

IP(𝑑𝑒𝑣𝑖𝑐𝑒) Current Phase, Degrees

IDB(𝑑𝑒𝑣𝑖𝑐𝑒) Current Magnitude, Decibels

SR(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) S-Parameter Real Component

SI(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) S-Parameter Imaginary Component

SM(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) S-Parameter Magnitude

SP(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) S-Parameter Phase, Degrees

SDB(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) S-Parameter Magnitude, Decibels

YR(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Y-Parameter Real Component

YI(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Y-Parameter Imaginary Component

YM(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Y-Parameter Magnitude

YP(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Y-Parameter Phase, Degrees

YDB(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Y-Parameter Magnitude, Decibels

ZR(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Z-Parameter Real Component

ZI(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Z-Parameter Imaginary Component

ZM(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Z-Parameter Magnitude

ZP(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Z-Parameter Phase, Degrees

ZDB(𝑖𝑛𝑑𝑒𝑥1,𝑖𝑛𝑑𝑒𝑥2) Z-Parameter Magnitude, Decibels
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9.1.2. Additional Output Options

Additional control of .PRINT line output can be set using the .OPTIONS OUTPUT specification.

9.1.2.1. Output Intervals

An important feature of the .OPTIONS OUTPUT command is to provide control of the interval at which
transient data is written to files specified by .PRINT TRAN commands. This can be especially useful in
controlling the size of the results file for simulations that require a large number of time steps. The default
behavior is for Xyce to output results at every time step, so using this feature to reduce output frequency
will result in improved performance.

General Format:

.OPTIONS OUTPUT INITIAL_INTERVAL=<interval> [<t0> <i0> [<t1> <i1> ...]]

INITIAL_INTERVAL=<interval> specifies the starting interval time for output and <tx ix> specifies
later simulation times (tx) where the output interval will change to (ix).

The following example shows the output being requested (via the netlist .OPTIONS OUTPUT command)
every .1𝜇𝑠 for the first 10𝜇𝑠, every 1𝜇𝑠 for the next 10𝜇𝑠, and every 5𝜇𝑠 for the remainder of the
simulation:

Example: .OPTIONS OUTPUT INITIAL_INTERVAL=.1us 10us 1us 20us 5us

9.1.2.2. Suppressing output file header and footer

It can be convenient to have an output file that contains only numerical data with minimal formatting. There
are two options, PRINTHEADER and PRINTFOOTER available on the .OPTIONS OUTPUT line to facilitate
this. The format is given by:

General Format:

.OPTIONS OUTPUT PRINTHEADER=<boolean> PRINTFOOTER=<boolean>

So, to produce an output file that has no header and no footer, simply set:

Example: .OPTIONS OUTPUT PRINTHEADER=false PRINTFOOTER=false

Note that PRINTHEADER is only supported for .PRINT FORMAT=<STD|GNUPLOT|SPLOT>, while
PRINTFOOTER is only supported for .PRINT FORMAT=<STD|GNUPLOT|SPLOT|TECPLOT>.
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9.1.2.3. Outputting all solution variables to file

It can be convenient to have all the solution variables output to file during a transient run without specifying
all of them on a .PRINT TRAN line. This can be accomplished with the SNAPSHOTS option available on the
.OPTIONS OUTPUT line. The format is given by:

General Format:

.OPTIONS OUTPUT SNAPSHOTS=<boolean>

So, to produce an output file that has all the solution variables, simply set:

Example:

.OPTIONS OUTPUT SNAPSHOTS=true

Note that setting SNAPSHOTS will result in the parser ignoring any solution nodes specified in the .PRINT
TRAN line.

9.1.3. Output File Redirection

There are three ways to re-direct the output of a Xyce simulation run to a file other than the default file.
They are the -r and -o command line options and the FILE= qualifier on individual .PRINT lines. This
subsection provides an overview of them, and how they work with each other.

9.1.3.1. -r Output

The -r <fileName> command line option will output all of the variables in the solution vector to the
binary rawfile <fileName>. The command line -r <fileName> -a will output a human-readable
(ASCII) rawfile instead. The -r command line option is supported for the .AC, .DC, .NOISE and .TRAN
analysis types.

If the -r and -o command line options are both specified then the -r command line option only applies to
the output to the binary rawfile <fileName>. The -o command line option still applies to the other outputs,
such as from .MEASURE lines, as described below. Finally, Xyce does not permit the -r output to overwrite
the netlist file (<netlistName>). Instead, the output will be placed into the file <netlistName>.raw.

If -r output is requested for a netlist that has .PRINT SENS or .PRINT HOMOTOPY lines in it then the
sensitivity and homotopy output will use the instructions given by those .PRINT lines (or by the -o
command line). This approach was taken because those two analysis types do not support rawfile output.
However, an attempt to re-direct the sensitivity and homotopy output, with a FILE= qualifier on their
.PRINT lines, to the same file as requested with the -r <fileName> command line option will be a fatal
parsing error.
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9.1.3.2. -o Output

The -o command line option is supported for compatibility with other circuit simulators such as Spice3f5.
As mentioned above, if the -r and -o command line options are both specified then the -r command line
option only applies to the binary rawfile <fileName>. Xyce does not permit the -o output, from any of the
.PRINT lines in the netlist, to overwrite the netlist file (<netlistName>).

The -o <fileName> command line option is supported for all analysis types. The output file(s) from the
netlist’s .PRINT lines will be in FORMAT=STD with spaces as the delimiter between columns. So, the -delim
command line option and any DELIMITER=, FILE= and FORMAT= qualifiers on the relevant .PRINT lines
will be silently ignored. Those output(s) will be placed into a set of files with the “basename” <fileName>.
So, for a .TRAN analysis, this command line would produce the output file <results>.prn:

Xyce -o results <netlistName>

The results from any .MEASURE TRAN, .MEASURE TRAN_CONT, .FFT and/or .FOUR lines in the netlist
would be placed into the files <results>.mt0, <results>_measurename.mt0, <results>.fft0, and
<results>.four0, respectively. For a .STEP analysis, the results file <results>.res would also be
made.

For a .AC analysis, that also has a .OP statement in the netlist, the previous command line would produce
output files with the correct default extensions, which are <results>.FD.prn and <results>.TD.prn in
this case. Similar rules apply for the .PRINT output for .ES, .HB, .NOISE and .PCE analyses.

For backward compatibility with Xyce 7.3, and earlier, these two command lines are equivalent. The
“default print extension” of .prn on the file name requested with -o is ignored.

Xyce -o results.prn <netlistName>
Xyce -o results <netlistName>

There are two limitations on -o output. First, the dashoFilename can not be a directory name. Second, if
the dashoFilename contains a directory path (e.g., <path>/filename) then <path> must already exist.
Xyce will not create new directories. (Note: These two limitations also exist for the -r, -l, -namesfile
and -rsf command line options.)

9.1.3.3. FILE= Qualifier on .PRINT Lines

The FILE=<fileName> qualifier on individual .PRINT lines is often a preferred option to the -o command
line option for output file redirection, since it is more flexible. However, as noted above, the -r and -o
command line options do take precedence if either of them are specified.

The combination of FILE= and FORMAT= qualifiers on the .PRINT lines in a netlist allows fine-grained
control of the output formats, output file names and variable lists in each file. As a simple example, this
combination of .PRINT lines would produce output files in both PROBE (<netlistName.csd>) and CSV
(<netlistName.csv>) formats without having to do multiple simulation runs.

.PRINT TRAN FORMAT=CSV V(1) V(2)

.PRINT TRAN FORMAT=PROBE V(1) V(2)
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Finally, Xyce does not permit the FILE= qualifier to overwrite the netlist file (<netlistName>). Instead, the
output will be placed into the file <netlistName>.<defaultExtension>, where the default extension is
set by the FORMAT= qualifier on that .PRINT line and the analysis type specified in the netlist.

9.1.3.4. Multi-File Output for AC and HB Analysis

The .AC and .HB analysis types can produce multiple output files. This can occur in two ways. For example,
a netlist may have explicit .PRINT HB_FD and .PRINT HB_TD lines. In that case, the frequency domain
and time domain outputs for that netlist’s .HB analysis will use the explicit variable lists, FILE= qualifiers,
and FORMAT= qualifiers from each line. As a convenience, Xyce can also generate “fallback print lines”. For
example, a .PRINT HB will automatically generate the output from equivalent .PRINT HB_FD and .PRINT
HB_TD lines using its variable list, FILE= qualifier, and FORMAT= qualifier.

The interactions and precedence between these types of output are as follows. First, a more explicit line
(e.g., .PRINT HB_FD or .PRINT AC_IC) takes precedence over a less explicit line (e.g., .PRINT HB or
.PRINT AC), if both appear in the netlist. Second, if a FILE=hbFile qualifier appears on a .PRINT HB
line, that is using FORMAT=STD, then its four possible output files will be hbFile.HB.FD.prn,
hbFile.HB.TD.prn, hbFile.hc_ic.prn and hbFile.startup.prn. Finally, if a FILE=acFile
qualifier appears on a .PRINT AC line, that is using FORMAT=STD, then its two possible output files will be
acFile and acFile.TD.prn.

9.2. Output Analysis

9.2.1. .MEASURE

Xyce supports analysis of the data from a simulation through the .MEASURE command. Using .MEASURE
one can locate extrema in a voltage or current node, calculate integrals, derivatives, Fourier transforms, and
locate transient events. (Note: .MEAS is an allowed synonym for .MEASURE in Xyce.)

General Format:

.MEASURE <analysis type> <measure name> <measure type> <simulation variable>
+ [qualifiers]

<analysis type> is the analysis under which the measure should be calculated. Currently, transient
(.TRAN), dc (.DC), ac (.AC) and noise (.NOISE) analyses are supported, and .MEASURE can be used with
.STEP in all four cases. The specified measure is referenced by <measure name>. That name is used in the
summary output at the end of the simulation to report the value of that measure, and can also be used in
.PRINT statements. The <measure type> is the type of calculation to be done. For .TRAN analyses, the
supported measure types are:

• AVG: Computes the arithmetic mean.

• DERIV: Computes the derivative of a simulation variable, either at a user-specified time or when the
simulation variable hits a user-specified value.

• DUTY: Fraction of time that a given simulation variable is greater than ON and does not fall below OFF
(ON and OFF are defined later in this section).
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• EQN: Calculates the value of a Xyce expression during the simulation.

• ERR, ERR1 and ERR2: Calculate the error between simulation variables.

• ERROR: Calculates the norm between the measured waveform and a “comparison waveform”
specified in a file. The supported norms are L1, L2 and INFNORM. The default norm is the L2 norm.
The descriptive output for each ERROR measure, that is printed to standard output, will explicitly
state which norm was used for each ERROR measure.

• FIND-AT: Returns the value of a solution variable when the independent variable (time, frequency or
DC sweep value) reaches the value specified in the AT clause. If the conditions specified in the AT
clause are not found during the simulation then the measure will return the default value of 0 (or the
user-specified default value).

• FIND-WHEN: Returns the value of a solution variable when the solution variable specified in the WHEN
clause reaches a specified fixed value or is equal to another solution variable. If the conditions
specified for finding the value specified in the WHEN clause are not found during the simulation then
the measure will return the default value of 0 (or the user-specified default value).

• FOUR: Calculates the Fourier transform of the solution variable for the .TRAN analysis type using the
fundamental frequency AT. By default, the DC component and first nine harmonics are computed;
more can be reported by setting NUMFREQ to the desired value. More interpolation points can be used
in the Fourier analysis by setting GRIDSIZE, which is 200 by default. For this measure, the phase data
is output in degrees.

• FREQ: An estimate of the frequency of a solution variable found by cycle counting during the
simulation. Thresholds are defined through the values of ON and OFF.

• INTEG: Calculates the integral of a solution variable through second order numerical integration.

• MAX: Returns the maximum value of a solution variable.

• MIN: Returns the minimum value of a solution variable.

• OFF_TIME: Returns the time that a solution variable is below OFF, and not greater than ON for the
simulation, normalized by the number of cycles of the waveform during the simulation.

• ON_TIME: Returns the time that a solution variable is above ON, and not less than OFF for the
simulation, normalized by the number of cycles of the waveform during the simulation.

• PP: Returns the difference between the maximum value and the minimum value of a solution variable
during the simulation.

• RMS: Computes the root-mean-squared value of a solution variable.

• TRIG-TARG: Measures the time between a trigger event and a target event.

• WHEN: Returns the time when a solution variable reaches a specified fixed value or is equal to another
solution variable. If the conditions specified for finding the value specified in the WHEN clause are not
found during the simulation then the measure will return the default value of 0 (or a user-specified
default value).
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The AVG, DERIV, EQN, ERR, ERR1, ERR2, FIND-AT, FIND-WHEN, INTEG, MIN, MAX, PP, RMS, TRIG-TARG and
WHEN measures are supported for all four “measure modes” (TRAN, DC, AC and NOISE).

The ERROR measure is Xyce-specific, and is supported for all four “measure modes” (TRAN, DC, AC and
NOISE). The DUTY, FREQ, FOUR, OFF_TIME and ON_TIME measures are also Xyce-specific, and are only
supported for TRAN measure mode.

Xyce also supports “continuous” measures, that can return more than one value, for .TRAN, .DC, .AC and
.NOISE analyses. The corresponding measure modes are TRAN_CONT, DC_CONT, AC_CONT and
NOISE_CONT. The supported measure types for continuous measures are DERIV-AT, DERIV-WHEN,
FIND-AT, FIND-WHEN, WHEN and TRIG-TARG measures.

For transient analyses, that also have .FFT analysis statements, Xyce also supports FFT measure mode. In
that case, the following additional measure types can be associated with those .FFT lines. In addition, FFT
mode measures, such as FIND-AT measures, can be used in EQN measures to create more customized
metrics from the .FFT results.

• ENOB: computes the Effective Number of Bits.

• FIND-AT: returns the requested FFT cofficient at the requested frequency, which is rounded to the
nearest harmonic.

• SFDR: computes the Spurious Free Dynamic Range.

• SNDR: computes the Signal to Noise-plus-Distortion Ratio.

• SNR: computes the Signal to Noise Ratio.

• THD: computes the Total Harmonic Distortion.

The <simulation variable> specifies a voltage or current node that will be used in this measure, such
as V(a). The measure WHEN is different from the other measures in that it can take one or two solution
variables. For example, WHEN v(a)=5 returns the time when V(a) equals 5. Or, if WHEN V(a) = V(b) is
specified, the time when V(a) equals V(b) is returned.

The .MEASURE command can also take optional [qualifiers] that limit the time window (or frequency
window or DC sweep values) when .MEASURE is applied. The [qualifiers] also place numeric limits on
what state a value is considered to be in (e.g., ON and OFF), and provide numeric qualification on
comparisons of values (e.g., MINVAL). A partial list of the supported qualifiers is as follows. See the Xyce
Reference Guide [3] for more details on these qualifiers, and for the complete list of supported qualifiers for
each combination of analysis type and measure type.

• FROM=value A time (or frequency or DC sweep value) after which the measurement calculation will
start.

• TO=value A time (or frequency or DC sweep value) after which the measurement calculation will
end.

• TD=value A time delay before which the measurement should be taken or checked.

• RISE=r|LAST The number of rises after which the measurement should be checked. If LAST is
specified, then the last rise found in the simulation will be used.

• FALL=f|LAST The number of falls after which the measurement should be checked. If LAST is
specified, then the last fall found in the simulation will be used.
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• CROSS=c|LAST The number of zero crossings after which the measurement should be checked. If
LAST is specified, then the last zero crossing found in the simulation will be used.

• MINVALUE=value An allowed absolute difference between the simulation variable and the variable
to which it is being compared. This has a default value of 1.0e-12. One may need to specify a larger
value to avoid missing the test condition in a transient run.

• ON=value The value at which a signal is considered to be on for frequency, duty and on time
calculations

• OFF=value The value at which a signal is considered to be off for frequency, duty and off time
calculations.

An example of using .measure during a transient analysis is shown in the following netlist:

VS 1 0 SIN(0 1.0 1KHZ 0 0)
VP 2 0 PULSE( 0 1 0.2ms 0.2ms 0.2ms 1ms 2ms )

R1 1 0 100
R2 2 0 100

.TRAN 0 10ms

.PRINT TRAN FORMAT=NOINDEX V(1) V(2)

.MEASURE TRAN avg1 AVG V(1)

.MEASURE TRAN avg2 AVG V(2)

.MEASURE TRAN duty1 DUTY V(1) ON=0.75 OFF=0.25

The measure avg1 returns the average of v(1), and avg2 returns the average of v(2). Additionally, duty1
computes the fraction of time that v(1) is above 0.75 V, without falling below 0.25 V.

The next netlist provides an example of using the when measure during a transient analysis:

VS 1 0 SIN(0 1.0 1KHZ 0 0)
VP 2 0 PULSE( 0 100 0.2ms 0.2ms 0.2ms 1ms 2ms )

R1 1 0 100
R2 2 0 100

.TRAN 0 10ms 0 1.0e-5

.PRINT TRAN FORMAT=NOINDEX V(1) V(2)

.MEASURE TRAN hit1_75 WHEN V(1)=0.75 MINVAL=0.02

.MEASURE TRAN hit2_75 WHEN V(1)=0.75 MINVAL=0.08 RISE=2

165



In the above netlist, the measure called hit1_75 will return the simulation time where v(1) reaches a
value of 0.75, while hit2_75 returns the second time that v(1) reaches a value of 0.75. The MINVAL option
acts at an absolute tolerance in this case. So, the above measure statements are more exactly interpreted as
hit1_75 is the simulation time when v(1) reaches a value of 0.75 ± 0.02 and hit2_75 is the simulation
time when v(1) reaches a value of 0.75 ± 0.08 on its second rise.

Measured results are reported to the output and log file. Additionally, for TRAN measures, the results are
stored in files called circuitFileName.mt#, where the suffixed number (#) starts at 0 and increases for
multiple iterations (.STEP iterations) of a given simulation. Each line of this file will contain the
measurement name, followed by its value for that run and/or step iteration. For DC measures, the results are
stored in the files circuitFileName.ms#, while AC and NOISE measures use the files
circuitFileName.ma#.

Xyce also supports an ability to re-measure results from a prior run of Xyce. In this mode, one can modify
.MEASURE and/or .FFT statements and have Xyce recalculate the results based on existing simulation data.
This can be useful if the original simulation takes some time to complete. (Note: remeasure works for both
transient and dc analyses. However, it may be most useful for transient analyses. It is not currently
supported for ac or noise analyses.) The syntax in the netlist is the same and the only thing that changes is
how one invokes Xyce. For example, if the netlist is called myNetlist.cir and the existing output file is
called myNetlist.cir.prn, then remeasure is accomplished with:

Xyce -remeasure myNetlist.cir.prn myNetlist.cir

There are some important limitations to remeasure. First, the data used by the .MEASURE and/or .FFT
commands must be present in the output file because, in this mode, Xyce is not recalculating the full
solution. Second,.prn, .csv and .csd files are supported, but remeasure may only work for .csv and
.csd files generated by Xyce.

9.2.2. .FOUR

Fourier analysis can be performed as a part of the transient analysis using the .FOUR command.

General Format:

.FOUR freq ov1 <ovn>*

freq is the fundamental frequency used for Fourier analysis. The ov1 parameter is the desired solution
output to be analyzed, specifically:

• V(<node name>)

• V(<node name>,<node name>) (the voltage difference between the first and second nodes)

• I(<two-terminal device>)

• Ik(<three-or-more-terminal device>) (see the .PRINT section, 9.1.1, for more detail)

• N(device variable) (see the .PRINT section, 9.1.1, for more detail)

• SENS Transient direct sensitivities specified by the .SENS command (see the sensitivity analysis
section, 7.10 for more detail)
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• The pseudo-variables given in Table 9-5 for complex output handling

At least one solution variable must be specified, but Fourier analysis can be performed on several solution
variables for each fundamental frequency, freq. Multiple .FOUR lines may be used in a netlist. All results
from Fourier analysis will be returned to the user in a file with the same name as the netlist file suffixed with
.four#, where the suffixed number (#) starts at 0 and increases for multiple iterations (.STEP iterations) of
a given simulation. For this analysis, the phase data is output in degrees.

If SENS is specified as the output, then all the direct sensitivities specified by the .SENS command will be
processed, as it is difficult to manually specify the full name of a sensitivity variable. So, if one wants to use
sensitivities as the output, do the following:

.FOUR 20MEG SENS

Fourier analysis is performed over the last period (1/freq) of the transient simulation. The dc component
and the first nine harmonics are calculated. The number of harmonics computed by .FOUR is static. So, the
main difference between .FOUR and the Fourier analysis in .MEASURE is that the latter allows the user to
select the number of harmonics. The default options for the Fourier analysis in .MEASURE is the same as
.FOUR. For instance, these two lines will result in the same Fourier analysis:

.FOUR 20MEG V(2)

.MEASURE TRAN FOURV2 FOUR V(2) AT=20MEG

The Fourier analysis in .MEASURE will allow for more harmonics to be computed using the NUMFREQ option
and more interpolation points to be used in the Fourier analysis with GRIDSIZE. For instance, to compute
twenty harmonics (including the dc component), the previous .MEASURE line can be amended to:

.MEASURE TRAN FOURV2 FOUR V(2) AT=20MEG NUMFREQ=20

To increase the number of interpolation points from 200, which is the default, to 500, the line can be
amended to:

.MEASURE TRAN FOURV2 FOUR V(2) AT=20MEG NUMFREQ=20 GRIDSIZE=500

For maximum accuracy of the Fourier analysis, it is recommended that the time integration option DELMAX
should be set to period/100. This is the preferred approach to improving the accuracy of the Fourier
analysis versus increasing the number of interpolation points.
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9.2.3. .FFT

A Fast Fourier Transform (FFT) analysis can be performed as a part of the transient analysis using the .FFT
command. The simplest invocation would be:

General Format:

.FFT <ov>

where the ov1 parameter is the desired solution output to be analyzed, specifically:

• V(<node name>)

• V(<node name>,<node name>) (the voltage difference between the first and second nodes)

• I(<two-terminal device>)

• Ik(<three-or-more-terminal device>) (see the .PRINT section, 9.1.1, for more detail)

• N(device variable) (see the .PRINT section, 9.1.1, for more detail)

Other useful optional parameters include the following:

• NP=value The number of points in the FFT. This value must be a power of 2. The default value is
1024.

• WINDOW=value The windowing function that will be applied to the sampled waveform values. The
allowed values are as follows:

– RECT = rectangular window (default)

– BART = Bartlett (triangular) window

– HANN = Hanning window

– HAMM = Hamming window

– BLACK = Blackman window

– HARRIS = Blackman-Harris window

• START=value The start time for the FFT analysis. The default value is the start time for the transient
analysis.

• STOP=value The end time for the FFT analysis. The default value is the end time for the transient
analysis.

The Xyce Reference Guide [3] provides more details on these optional parameters, as well as additional
ones.

For maximum accuracy of the FFT analysis, it is recommended that the default setting of .OPTIONS FFT
FFT_ACCURATE=1 be used. This setting instructs Xyce to insert breakpoints at the sample times requested
by the collection of .FFT statements in the netlist.

By default, the results from each of the .FFT lines in the netlist are sent to the <netlistName>.fft0 file.
In addition, metrics for each .FFT line can be sent to both stdout and the <netlistName>.fft0 file by
setting .OPTIONS FFT FFTOUT=1. In that case, a sorted list of the 30 largest harmonics for each .FFT line
will be also sent to the stdout. Those additional metrics include the Effective Number of Bits (ENOB),
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Spurious Free Dynamic Range (SFDR), Signal to Noise Ratio (SNR), Signal to Noise-and-Distortion Ratio
(SNDR) and Total Harmonic Distorion (THD). The Xyce Reference Guide [3] provides detailed definitions
for these metrics. It also discusses the compatibility of various .OPTIONS OUTPUT and .OPTIONS FFT
settings.

Xyce also supports an ability to re-measure results from a prior run of Xyce. In this mode, one can modify
.MEASURE and/or .FFT statements and have Xyce recalculate the results based on existing simulation data.
Section 9.2.1 and the Xyce Reference Guide [3] provides more details on this capability.

9.3. Graphical Display of Solution Results

Although Xyce does not provide integrated graphical display options, it produces output in a form that may
readily be used with commonly available graphical tools, including TecPlot, gnuplot, and MS Excel (see
figure 9-1 for an example plot using TecPlot, http://www.amtec.com). The standard Xyce print format
(FORMAT=STD or FORMAT=NOINDEX) is well suited for use with gnuplot. However, FORMAT=GNUPLOT may
be useful when plotting .STEP data in gnuplot, as it automatically inserts two blank lines between the
blocks of step-data that are otherwise in standard format. Comma separated variable (FORMAT=CSV) is the
best choice for import into Excel. FORMAT=TECPLOT produces output specifically targeted at the TecPlot
tool. The FORMAT=PROBE option to the .PRINT command produces output .csd files that can be read by
the PSpice Probe utility. See the PSpice Users Guide [4] for instructions on using the Probe tool, and the
Xyce Reference Guide [3] for more details on the .PRINT command options.

Figure 9-1. TecPlot plot of diode clipper circuit transient response from Xyce .prn
file.
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10. CIRCUIT DIAGNOSTICS AND TROUBLESHOOTING

Chapter Overview
This chapter provides guidance on using Xyce’s diagnostic output to understand simulation performance
and aid in correcting circuit problems.

• Section 10.1, Diagnostic Output
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10.1. Diagnostic Output

10.1.1. Introduction

To aid in understanding circuit simulation performance, Xyce has a diagnostic output mode where
additional data can be sent to an external file for the user to study. The data can include information about
GMIN stepping and source stepping during the DC operating point calculation as well as times and values
of currents and voltages that are either extreme or over some user defined limit. Additionally, there is a
capability to output solution nodes that appear to be discontinuous within a user specified limit. The data is
sent to a separate file to avoid it being lost in the normal simulation output. The following sections will
present examples of using diagnostic output in a circuit.

10.1.2. Enabling Diagnostic Output

To enable diagnostic output in a simulation add the line

.options diagnostic <diagnostic mode>
+ diagfilename=<output file name>

Figure 10-1. Basic diagnostic option line

where <diagnostic mode> can be any of the following modes

• EXTREMALIMIT=<value> Output the single most extreme solution value whose absolute value is
greater than value.

• CURRENTLIMIT=<value> Output all of the branch currents and lead currents whose absolute value is
greater than value.

• VOLTAGELIMIT=<value> Output all of the solution voltages whose absolute value is greater than
value

• DISCLIMIT=<value> Output all solution variables where the absolute value of the difference
between the predictor and corrector is greater than value

Multiple modes can be specified and the results will be grouped by diagnostic mode for each step within the
diagnostic output file.

Finally, the .options diagnostic diagfilename is optional. If it is not given then the diagnostic
output will be saved in a file called [input file name].dia. No matter whether it is set, or left at its
default value, Xyce will overwrite any existing file with new output each time Xyce is run.

The next sections will give examples for each of the diagnostic modes listed above.

172



10.1.3. DC Operating Point Information

When Xyce attempts to calculate the DC operating point of a circuit, if the initial Newton solver approach
doesn’t converge then Xyce will automatically attempt GMIN stepping and then source stepping to find a
solution. Information about the DC Operating point calculation and if GMIN or source stepping are used
will be sent to the diagnostic output file. For example this is the output one might see if both GMIN and
source stepping are needed:

Xyce Dagnostic Output
Analysis event INITIALIZE DC
Analysis event STEP_STARTED DC
Analysis event DC_OP_STARTED DC
Analysis event STEP_FAILED DC
Analysis event DC_OP_GMIN_STEPPING DC
Analysis event DC_OP_GMIN_STEPPING_FAILED DC smallest gmin = 1.057478e-03
Analysis event DC_OP_SOURCE_STEPPING DC
Analysis event STEP_SUCCESSFUL DC

In this example the default DC OP calculation is started and fails as reported with:

Analysis event DC_OP_STARTED DC
Analysis event STEP_FAILED DC

Then GMIN stepping is tried and it fails at a GMIN of around 1e-3.

Analysis event DC_OP_GMIN_STEPPING DC
Analysis event DC_OP_GMIN_STEPPING_FAILED DC smallest gmin = 1.057478e-03

Then source stepping is attempted and that is successful.

Analysis event DC_OP_SOURCE_STEPPING DC
Analysis event STEP_SUCCESSFUL DC

Understanding how Xyce obtained or failed to obtain a DC Operating point can be helpful in diagnosing a
circuit topology or initial condition problem.

10.1.4. Extrema Output

To obtain the solution node name and value that has the largest absolute value over some limit, use the
EXTREMALIMIT option.

In this simple Xyce input netlist, EXTREMALIMIT is used to output values over 6.0 Volts
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* 4049 Circuit

X2 node3 node8 node2 0 CD4049UB
V1 node2 0 5
C1 node8 node5 1.088N
R1 node3 node5 46.5K
R2 node1 node5 98.6K
X1 node1 node3 node2 0 CD4049UB

.tran .05U 500U NOOP

.options timeint method=gear abstol=1.0e-7
+ reltol=1.0e-6

.options diagnostic EXTREMALIMIT=6.0
+ diagfilename=ExtremaCheck1.dia

.print tran V(node8) v(node5) V(node1) V(node3)

* Subcircuit and Model Definitions
.SUBCKT CD4049UB 1 2 3 4
*HEX BUFFER IN OUT VCC VSS
M1 2 1 3 3 CD4049P
M2 2 1 4 4 CD4049N
.MODEL CD4049P PMOS (LEVEL=1 VTO=-2.9 KP=2M
+ GAMMA=3.97U PHI=.75 LAMBDA=1.87M RD=28.2
+ RS=45.2 IS=31.2F PB=.8 MJ=.46 CBD=148P
+ CBS=177P CGSO=218N CGDO=182N CGBO=299N)
.MODEL CD4049N NMOS (LEVEL=1 VTO=2.1 KP=5M
+ GAMMA=3.97U PHI=.75 LAMBDA=1.87M RD=4.2
+ RS=4.2 IS=31.2F PB=.8 MJ=.46 CBD=105P
+ CBS=127P CGSO=156N CGDO=130N CGBO=214N)
.ENDS

.END

Figure 10-2. Sample use of the diagnostic EXTREMALIMIT

Running this netlist in Xyce will produce a diagnostic output file with

Xyce Diagnostic Output
Solution Extrema output requested with extremalimit = 6
Extreme value found in TRAN analysis at STEP_STARTED time=0.000174793

V(NODE5)=6.0347
Extreme value found in TRAN analysis at STEP_SUCCESSFUL time=0.000174793

V(NODE5)=6.0347
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The output shows what type of diagnostic was requested, the diagnostic limit imposed and then points at
when the limit was reached in the solution. In this case, the voltage node NODE5 exceeded the limit of 6 with
a value of 6.0347 at the simulation time of 0.000174793 seconds.

The extrema output diagnostic can be useful to determine the largest values encountered during a
simulation. Once the extrema are known it can be useful to focus on when voltages or currents exceed a set
value. That will be examined in the next section.

10.1.5. Voltage and Current Output

Similar to EXTREMALIMIT, the diagnostic output options, VOLTAGELIMIT and CURRENTLIMIT allow
reporting on voltages and currents at different limits. Additionally, unlike EXTREMALIMIT, VOLTAGELIMIT
and CURRENTLIMIT report all voltages and currents that are over a given limit at each step.

Thus, the line

.options diagnostic VOLTAGELIMIT=5.0 CURRENTLIMIT=3e-2 diagfilename=VICheck1.dia

will report voltage variables that have absolute values greater than 5.0 and currents with absolute values
greater than 3.0e-2. If used in the oscillator circuit from Figure 10-2, the diagnostic output will look like:

Xyce Diagnostic Output
Node voltage output requested with voltagelimit = 5
Lead current output requested with currentlimit = 0.03
...
Voltage over limit value found in TRAN analysis at STEP_STARTED time=7.18202e-05

V(M:X2:1_drainprime)=5.00228
V(M:X2:1_sourceprime)=5.00023
V(NODE8)=5.00232
V(M:X2:2_drainprime)=5.00233

...
Current over limit value found in TRAN analysis at STEP_STARTED time=0.000102911

solution I(L3_branch)=0.0300498
solution I(V2_branch)=-0.0300498
lead I(L3:BRANCH_D)=0.0300498
lead I(R5:BRANCH_D)=0.0300469
lead I(V2:BRANCH_D)=-0.0300498

Note that unlike the extrema diagnostic, the voltage and current diagnostic report all solution values and
branch currents whose absolute values exceed the limits. This can be useful in understanding the
operational ranges of currents and voltages within a circuit.
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10.1.6. Discontinuity Output

Discontinuous behavior in a solution variable can cause problems for step progression in transient analysis
as the time integrator will try to minimize dramatic changes in the solution. The time integrator does this by
comparing the predicted solution that is based on the trajectory of the prior solution points with the actual
solution, i.e. corrector, found by the nonlinear solver. If the difference between the predicted solution and
the corrector is greater than some tolerance, then the time integrator will reject that step and try a smaller
time step. When the circuit has a true discontinuity in it, smaller time steps will not make the discontinuity
smaller and time integration may ultimately fail.

The following example circuit has discontinuous behavior in the output from the device bsrc which
changes from 0 to 1 when the voltage on node 1 goes above 1. Normally this would cause the transient
simulation to fail, but this netlist also instructs the time integrator to ignore predictor-corrector error and
just accept steps where the nonlinear solver converges. This option is not recommended, but used just for
illustrative purposes.

*
* circuit with an intentional discontinuity
*

Vin 1 0 pulse 0 5 1e-7 1e-6 1e-6 1e-3 2e-3

rload 1 0 10

bsrc 3 0 v = {if(v(1)>1, 1,0)}
rload3 3 0 100

.options timeint erroption=1

.options diagnostic DISCLIMIT=1e-2
+ diagfilename=DisconCheck2.dia

.print tran v(1) v(3)

.tran 0 1e-2

.end

Figure 10-3. Example circuit with an intentional discontinuity

When this circuit is run in Xyce, the diagnostic output will look like:

Xyce Diagnostic Output
Discontinuity output requested with disclimit = 0.01
...
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Discontinuity over limit value found in TRAN analysis at STEP_STARTED time=4.27e-07
V(3)=1 xPredictor = 0 qPredictor = 0 |diff| = 1

The output shows what type of diagnostic was requested, the diagnostic limit imposed and then points at
when node 3 had a discontinuity of 1 at the simulation time where node 1 triggered the step change in
output. If we used Xyce’s standard time integration options and removed the .options timeint
erroption=1 line from the above netlist then Xyce would fail with a time-step-too-small error. The
diagnostic output would show:

Xyce Diagnostic Output
Discontinuity output requested with disclimit = 0.01
...
Discontinuity over limit value found in TRAN analysis at STEP_STARTED time=3.01602e-07

V(1)=0.990008 xPredictor = 1.06201 qPredictor = 0 |diff| = 0.072
Discontinuity over limit value found in TRAN analysis at STEP_FAILED time=3.01602e-07

V(1)=0.990008 xPredictor = 1.00801 qPredictor = 0 |diff| = 0.018

At the start of a transient step V(1)=0.990008 and the predicted value for V(1) the end of that step would
be 1.06201. That would trigger V(3) to jump from 0 to 1 and thus the step fails. When running the time
integration with the default step-error control, the actual discontinuity at node 3 is harder to see because its
effect is limiting the change on node 1. However, given that the simulation is having problems when node 1
is trying to cross the voltage threshold 1.0, it provides useful insight into where the problem is. Thus, for
best use of discontinuity output, it may be necessary to try turning step error control on and off in a set of
simulations.

Finally, it is recommended to not set DISCLIMIT too small, i.e. below the time integrator ABSTOL, as this
will cause most of the solution variables to be reported as discontinuous.
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11. GUIDANCE FOR RUNNING XYCE IN PARALLEL

Chapter Overview
This chapter provides guidance for running a parallel version of Xyce, and includes the following
sections:

• Section 11.1, Introduction

• Section 11.2, Processor Affinity on Linux systems

• Section 11.3, Problem Size

• Section 11.4, Linear Solver Options

• Section 11.5, Transformation Options

• Section 11.6, Device Distribution Options
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11.1. Introduction

Xyce is designed from the ground up to be distributed-memory parallel, supported by the message-passing
interface (MPI) standard. Although many of the issues pertinent to running in parallel are still being
researched, Xyce is mature enough that some general principles have emerged for efficiently running
problems in a parallel environment. In addition to the information in this chapter, reference [38] provides
supplemental information about Xyce parallel performance.

Parallel simulations must be run from the command line. Section 2.2.1 provides information about the
parallel execution syntax for Xyce.

11.2. Processor Affinity on Linux systems

Beginning with release 1.8 of OpenMPI, the default behavior on Linux systems is for OpenMPI to apply
“processor affinity” to runs invoked with mpirun. This is intended to improve performance of parallel runs
by preventing the processes from moving around the system, possibly degrading memory access efficiency.
Since most users of OpenMPI are trying to maximize the performance of their systems, this is generally a
good change.

Prior to that release, the default behavior was to allow MPI processes to be moved from processor to
processor by the Linux system as needed.

If you are the only person running MPI jobs on a system, and you are only running one job, this change will
have no impact on you, but if you are running more than one MPI job at a time, or more than one user on
your system is running MPI jobs and the system is not using a resource manager such as slurm, then this
change has a profound impact that must be understood and adapted to with mpirun options.

11.2.1. Default OpenMPI Behavior with Processor Affinity Support

At the time of this writing, OpenMPI’s mpirun will, by default, bind processes to a core if the number of
processors requested is 2 or less. If the number of processes requested is greater than 2, it will bind
processes to a socket.

What this means is that once your run starts, each process of your parallel job will be locked onto the
processor (core or socket) on which it started.

11.2.2. Why You Have to Know About This

Unfortunately, OpenMPI by default allocates processors to processes in a round-robin fashion starting from
the lowest numbered processor on the system, and each mpirun makes this determination without any
access to what other mpirun invocations have done.

The effect of this is that if you start five identical 2-processor parallel runs of Xyce simultaneously on a
16-core system and don’t add extra mpirun options, each of these five jobs will be locked to the same two
processors (processors 0 and 1) on the system.

Rather than getting five jobs run in the time it takes to run one, each will only get 20% of the two
processors and take at least five times longer to run than a single job would have.

180



The same thing would be true if five different users each ran one 2-processor Xyce job. All jobs would be
running on processors 0 and 1 of this 16-processor system.

Therefore, unless you are the only person on your system and you are only running one job, you must be
aware if OpenMPI is using processor affinity on your system, and take appropriate steps to avoid
oversubscribing cores.

11.2.3. Affected Systems

At the time of this writing, OpenMPI supports processor affinity only on Linux systems, and so the issues
of this section apply only to Linux. The OS X kernel does not support jobs setting their own processor
affinity. Some other systems have processor affinity support in their kernels, but it is not yet supported by
OpenMPI on those systems.

Systems that are running a resource manager such as slurm (which includes all of Sandia’s high
performance computing systems) are not impacted by this issue, because slurm will allocate a specific set
of CPUs to be exclusive to your job, and no other jobs of yours or other users can run on these CPUs.

11.2.4. mpirun Command Line Options to Change Default Behavior

If squeezing maximum performance out of the hardware is not important, then the simplest way to avoid the
oversubscription issue described above is to use the –bind-to none option to mpirun. This was the default
behavior of mpirun prior to release 1.8 of OpenMPI and the default behavior of OpenMPI on every system
other than Linux. While the –bind-to none option will potentially allow your mpi processes to move
around the system and have degraded memory performance, it will NOT accidentally stack multiple jobs
onto the same small set of processors. Any number of mpirun jobs may be run with this option, and they
will not compete for resources unless the Linux task scheduler makes them do so.

If you do not want to do without the benefits that processor affinity can bring, you can manually specify the
set of CPUs that OpenMPI will use for your job by using the -cpu-set option to mpirun, chosing as your
CPU set some numbered processors that you know are not being used by other MPI jobs. For example,
mpirun -np 2 -cpu-set 2-3 will run your 2 processor job with the jobs locked to processors 2 and 3
instead of to processors 0 and 1. You will have to make sure to use a different CPU set for each job, and
make sure that you are not using the same CPU set as some other user on the system.

There are other options for modifying OpenMPI’s processor binding behavior, so consult OpenMPI
documentation if you wish to understand them better.

Finally, if you really want to solve the problem correctly, reaping both the benefits of processor affinity and
the simplicity of using mpirun’s defaults, you can install and configure a resource manager on your system.
This is a topic that is far outside the scope of Xyce documentation. See http://slurm.schedmd.com/ for
documentation on one such resource manager.
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11.3. Problem Size

Running Xyce in parallel is often useful for circuits with thousands of devices or more. However, due to the
overhead of interprocessor communication, there is an optimal number of processors that will achieve the
best performance. This number is dependent upon many factors, including the number and type of devices,
the topology of the circuit, and the characteristics of the computing architecture. It is difficult to know a
priori what this optimal number of processors is. However, it is apparent when that optimal number is
exceeded because, as the number of processors is increased, the total simulation time will also increase.
This is due to the increasing amount of required communication and decreasing amount of work per
processor. In other words, the benefit of distributing the problem is outweighed by the communication
overhead, so increasing the processor count beyond this optimal point is counterproductive.

11.3.1. Ideal Problem Size

In general, a circuit needs to be relatively large to take full advantage of the parallel capability of Xyce.
However, parallelism is achieved in two distinct phases of the code: the device evaluation and the linear
solve. The device evaluation is, as the name implies, the evaluation of all the device equations in order to
compute the residual vector and Jacobian entries for Newton’s method. Xyce distributes the number of
devices over the number of processors in parallel, so their evaluation enables speedups in the total
simulation time even for thousands of devices.

The linear solve phase is more computationally complex. The Jacobian matrix generated by most circuits is
sparse and has heterogeneous structure, in that there is not a regular sparsity pattern in the matrix nonzeros.
Sparse, direct linear solvers have proven to be efficient on these types of linear systems up into the tens to
hundreds of thousands of unknowns. They become less efficient for linear systems in the hundreds of
thousands of unknowns. This is where iterative linear solvers can provide scalable performance because of
their inherent parallelism. Unfortunately, the effectiveness of iterative linear solvers is dependent upon
preconditioning the linear system (see Section 11.4.6). The benefit of direct over iterative linear solvers is
that they rarely fail to compute a solution, so direct linear solvers are the more robust option for enabling
simulations to complete.

In general, there are three modes in which Xyce can be executed: “Serial load, serial solve”, “Parallel load,
serial solve”, and “Parallel load, parallel solve”. Each of these modes optimizes the amount of available
parallelism for a given linear system size, as summarized in Table 11-1. The “load” refers to the device
evaluation phase combined with the assembly of the Jacobian matrix and residual vector, while the “solve”
refers to the linear solve phase. “Serial load, serial solve” is the only mode of computation that a serial
version of Xyce will perform, but it can also be obtained in a parallel version of Xyce by using only one
MPI processor. Both of the “Parallel load” simulation modes require a parallel build of Xyce, where the
linear solver method can be a direct method (“serial solve”) or an iterative method (“parallel solve”) using
the options discussed in Section 11.4. Hybrid linear solvers, which combine the best attributes of both
direct and iterative methods, provide a robust and scalable option. They are not reflected in Table 11-1, but
more information about these types of linear solvers will be discussed in Section 11.4.7.

11.3.2. Smallest Possible Problem Size

Circuits consist of a discrete set of components (voltage nodes, devices, etc.). For parallel simulation, it is
preferable that Xyce be able to put at least one discrete component of the problem on each processor. In
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Table 11-1. Xyce simulation modes.

Mode Linear System Size Reason
“Serial load, serial solve” 100 - 103 MPI overhead cannot speed up device evalua-

tion or linear solve.
“Parallel load, serial solve” 103 - 104 Distributed device evaluations can speed up

the simulation, but iterative linear solvers are
not more efficient than direct methods.

“Parallel load, parallel solve” 104 or more Distributed device evaluations can speed up
the simulation and so can iterative linear
solvers, if an efficient preconditioner is avail-
able.

practice, this means the circuit should be distributed across fewer processors than the number of nodes and
devices it contains.

11.4. Linear Solver Options

The different linear solvers available in Xyce are:

• KLU

• KSparse

• SuperLU and SuperLU DIST (optional)

• The AztecOO iterative solver library

• The Belos iterative solver library

• The ShyLU hybrid solver library (optional)

AztecOO and Belos are the parallel iterative solvers and KLU, KSparse, and SuperLU (optional) are the
serial direct solvers that are available for both serial and parallel builds of Xyce. If KLU, KSparse, or
SuperLU is used with a parallel version of Xyce, the devices are evaluated and linear problem is assembled
in parallel, but the linear system is solved in serial on one processor. This can be quite effective for circuits
with tens of thousands of devices or fewer (see Table 11-1). The ShyLU hybrid linear solver, which
combines the robustness of a direct solver with the scalability of an iterative solver, will be discussed in
Section 11.4.7.

The user can specify the solver through the .OPTIONS LINSOL control line in the netlist. The default linear
solver used by Xyce is described in Table 11-2. By default, a parallel version of Xyce uses AztecOO as the
linear solver when the linear system is larger than ten thousand unknowns. For any linear system smaller
than ten thousand unknowns, Xyce uses KLU as the linear solver. A serial version of Xyce uses KLU as its
default linear solver. To use a solver other than the default the user needs to add the option
“TYPE=<solver>” to the .OPTIONS LINSOL control line in the netlist, where <solver> is ‘KLU,’
‘KSPARSE,’ ‘SUPERLU,’ ‘SUPERLUDIST,’ ‘AZTECOO,’ ‘BELOS,’ or ‘SHYLU.’
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Table 11-2. Xyce default linear solver.
Solver Version Linear System Size
KLU Serial all
KLU Parallel < 104 unknowns
AztecOO Parallel ≥ 104 unknowns

11.4.1. KLU

KLU is a serial, sparse direct solver native to the Amesos package in Trilinos [39] and is the default solver
for serial builds of Xyce. KLU is the default solver for small circuits in parallel builds of Xyce as well, but
this requires the linear system to be solved on one processor and the solution communicated back to all
processors. As long as the linear system can fit on one processor, KLU is often a superior approach to using
an iterative linear solver. So, if a parallel build of Xyce is run in serial on a circuit that generates a linear
system larger than ten thousand unknowns and the simulation fails to converge, then specifying KLU as the
linear solver may fix that problem.

Some of the solver parameters for KLU can be altered through the ‘.OPTIONS LINSOL’ control line in the
netlist. Table 11-3 lists solver parameters and their default values for KLU.

Table 11-3. KLU linear solver options.
Option Description Default Value
KLU_repivot Recompute pivot order each solve 1 (true)
output_ls Write out linear systems solved by KLU to file every #

solves
0 (no output)

output_base_ls Write out linear systems before any transformations to file
every # solves

0 (no output)

output_failed_ls Write out linear systems KLU failed to solve to file 0 (no output)

11.4.2. KSparse

KSparse is a serial, sparse direct solver based on Ken Kundert’s sparse solver, Sparse 1.3. Kundert’s sparse
solver was developed as part of the SPICE circuit simulation code. KSparse is built, by default, in Xyce.
Similar to KLU, KSparse can be used in a parallel version of Xyce, but the linear system is solved on one
processor.

11.4.3. SuperLU and SuperLU DIST

SuperLU is a serial, sparse direct solver and SuperLU DIST is a parallel, sparse direct solver with an
interface in the Amesos package. SuperLU and SuperLU DIST support are optionally built in Xyce, so they
are not available by default in any Xyce build or provided binary. Furthermore, to enable SuperLU and
SuperLU DIST support in Xyce, it is necessary to build SuperLU and SuperLU DIST support in
Amesos/Trilinos. Similar to KLU, SuperLU can be used in a parallel version of Xyce, but the linear system
is solved on one processor. SuperLU DIST can only be used in a parallel version of Xyce, the Amesos
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interface handles the redistribution of the matrix into the format required by SuperLU DIST. Xyce does not
allow modifications to SuperLU and SuperLU DIST solver parameters.

11.4.4. AztecOO

AztecOO is a package in Trilinos [39] that offers an assortment of iterative linear solver algorithms. Xyce
uses the Generalized Minimal Residual (GMRES) method [40] from this suite of iterative solvers. Some of
the solver parameters for GMRES can be altered through the ‘.OPTIONS LINSOL’ control line in the
netlist. Table 11-4 provides a list of solver parameters for AztecOO and their default values.

Table 11-4. AztecOO linear solver options.
Option Description Default Value
AZ_max_iter Maximum allowed iterations 200
AZ_tol Iterative solver (relative residual) tolerance 1.0e-9
AZ_kspace Krylov subspace size 50
output_ls Write out linear systems solved by AztecOO to file every #

solves
0 (no output)

output_base_ls Write out linear systems before any transformations to file
every # solves

0 (no output)

11.4.4.1. Common AztecOO Warnings

If Xyce is built with the verbosity enabled for the linear algebra package, it is not uncommon to see
warnings from AztecOO usually indicating the solver returned unconverged due to a numerical issue.

NOTE: AztecOO warnings do not indicate the entire simulation has failed, Xyce uses
a hierarchy of solvers so if the iterative linear solver fails, the nonlinear solver or time
integrator will usually make adjustments and attempt the step again; so the warnings can
often be ignored. If the entire simulation eventually fails (i.e., gets a “time-step-too-small”
error), then the AztecOO warnings might contain clues as to what went wrong.

The simplest reason for AztecOO to return unconverged would be when the maximum number of iterations
is reached, resulting in the following warning:

***************************************************************
Warning: maximum number of iterations exceeded without convergence
***************************************************************

Another reason AztecOO may return unconverged is when the GMRES Hessenberg matrix is
ill-conditioned, which is usually a sign that the matrix and/or preconditioner is nearly singular, resulting in
the following warning:
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***************************************************************
Warning: the GMRES Hessenberg matrix is ill-conditioned. This may
indicate that the application matrix is singular. In this case, GMRES
may have a least-squares solution.
***************************************************************

It is also common to lose accuracy when either the matrix or preconditioner, or both, are nearly singular.
GMRES relies on an estimate of the residual norm, called the recursive residual, to determine convergence.
Xyce uses the recursive residual instead of the actual residual for computational efficiency. However,
numerical issues can cause the recursive residual to differ from the actual residual. When AztecOO detects
but cannot rectify this situation, it outputs the following warning:

***************************************************************
Warning: recursive residual indicates convergence
though the true residual is too large.

Sometimes this occurs when storage is overwritten (e.g. the
solution vector was not dimensioned large enough to hold
external variables). Other times, this is due to roundoff. In
this case, the solution has either converged to the accuracy
of the machine or intermediate roundoff errors occurred
preventing full convergence. In the latter case, try solving
again using the new solution as an initial guess.
***************************************************************

11.4.5. Belos

Belos is a package in Trilinos [39] that offers an assortment of iterative linear solver algorithms. Many of
the algorithms available in Belos can also be found in AztecOO. However, Belos offers a few computational
advantages because its solvers are implemented using templated C++. In particular, AztecOO can solve
linear systems only in double-precision arithmetic, while Belos can solve linear systems that are
complex-valued or in extended-precision arithmetic. At this time, Xyce is using a subset of Belos
capabilities, the default method is GMRES, and the interface to Belos will recognize most of the AztecOO
linear solver options, as shown in Table 11-5.

Table 11-5. Belos linear solver options.
Option Description Default Value
AZ_max_iter Maximum allowed iterations 200
AZ_tol Iterative solver (relative residual) tolerance 1.0e-9
AZ_kspace Krylov subspace size 50
output_ls Write out linear systems solved by Belos to file every #

solves
0 (no output)

output_base_ls Write out linear systems before any transformations to file
every # solves

0 (no output)
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11.4.6. Preconditioning Options

Iterative linear solvers often require the assistance of a preconditioner to efficiently compute a solution of
the linear system

𝐴𝑥 = 𝑏 (11.1)

to the requested accuracy. A preconditioner, 𝑀 , is an approximation to the original matrix 𝐴 that is
inexpensive to solve. Then (11.1) can be rewritten to include this (right) preconditioner as

𝐴𝑀−1𝑦 = 𝑏, (11.2)

where 𝑥 = 𝑀−1𝑦 is the solution to the original linear system. If 𝑀 = 𝐴, then the solution to the linear
system is found in one iteration. In practice, 𝑀 is a good approximation to 𝐴, then it will take few iterations
to compute the solution of the linear system to the requested accuracy. By default, Xyce uses a
non-overlapped additive Schwarz preconditioner with an incomplete LU factorization on each
subdomain [41]. The parameters of the incomplete LU factorization are found in Table 11-6. This is a
simple preconditioner that always works, but is not always the most effective, so other preconditioning
options will be presented in this section.

Xyce provides access to preconditioning packages in Trilinos [39], such as Ifpack, through an expanded
preconditioning interface. If modifications to the preconditioner are necessary, the user may specify the
preconditioner through the ‘.OPTIONS LINSOL’ control line in the netlist. Table 11-6 provides a list of
preconditioner parameters and their default values.

Table 11-6. Preconditioner options.
Option Description Default Value
prec_type Preconditioner Ifpack
AZ_ilut_fill ILU fill level 2.0
AZ_drop ILU drop tolerance 1.0e-3
AZ_overlap ILU subdomain overlap 0
AZ_athresh ILU absolute threshold 0.0001
AZ_rthresh ILU relative threshold 1.0001
use_aztec_precond Use native ILU from AztecOO package 0 (false)
use_ifpack_factory Use Ifpack factory to create preconditioner 0 (false)
ifpack_type Control which preconditioner Ifpack factory creates

(ILU, ILUT, Amesos)
Amesos

In practice, the choice of an effective preconditioner is highly problem dependent. By default, Xyce
provides a preconditioner that works for most circuits, but is not the best preconditioner for all circuits. One
simple modification to the default preconditioner that often makes it more effective is the use of a sparse
direct solver on each subdomain, instead of an inexact factorization:

.OPTIONS LINSOL USE_IFPACK_FACTORY=1

This preconditioner will fail if there is a singular subdomain matrix because the KLU solver on that
subdomain will fail. If numerical difficulties are not encountered during the simulation, this preconditioner
is superior to inexact factorizations. A more advanced preconditioner that has been effective for certain
types of circuits uses the block triangular form (BTF) permutation of the original matrix before generating
the additive Schwarz preconditioner. This preconditioner, which is published in [42], will be presented in
Section 11.5.4.
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11.4.7. ShyLU

ShyLU is a package in Trilinos [39] that provides a hybrid linear solver designed to be a black-box algebraic
solver [43]. ShyLU support is optionally built in Xyce, so it is not available by default in any Xyce build or
provided binary. Furthermore, to enable ShyLU support in Xyce, it is necessary to build the ShyLU package
in Trilinos.

ShyLU is hybrid in both the parallel programming sense - using MPI and threads - and in the mathematical
sense - using features from direct and iterative methods. Xyce uses ShyLU as a global Schur complement
solver [41]. This solver can be expensive, but also has proven to be a robust and scalable approach for some
circuit matrices [44].

ShyLU is under active development and testing in Xyce, so a minimum number of options are provided to
the user for controlling this solver. The solution approach is static, the diagonal blocks of the partitioned
matrix are solved using KLU, while the Schur complement is solved using an iterative method (AztecOO’s
GMRES specifically). The matrix partitioning is generated using a wide separator, which is a conventional
vertex separator where all the vertices that are adjacent to the separator in one of the subgraphs are added
in. The only options that can be modified are shown in Table 11-7. This includes the maximum number of
iterations and solver tolerance used by GMRES and the dropping threshold that ShyLU uses to generate a
preconditioner for GMRES.

Table 11-7. ShyLU linear solver options.
Option Description Default Value
AZ_max_iter Maximum allowed iterations 30
AZ_tol Iterative solver (relative residual) tolerance 1.0e-12
ShyLU_rthresh Relative dropping threshold for Schur complement precon-

ditioner
1.0e-3

output_ls Write out linear systems solved by ShyLU to file every #
solves

0 (no output)

output_base_ls Write out linear systems before any transformations to file
every # solves

0 (no output)

11.5. Transformation Options

Transformations are often used to permute the original linear system to one that is easier or more efficient
for direct or iterative linear solvers. Xyce has many different permutations that can be applied to remove
dense rows and columns from a matrix, reduce fill-in, find a block triangular form, or partition the linear
system for improved parallel performance.

11.5.1. Removing Dense Rows and Columns

The transformation that reduces the linear system through removal of all rows and columns with single
non-zero entries in the matrix is called singleton filtering. The values associated with these removed entries
can be resolved in a pre- or post-processing phase with the linear solve. A by-product of this transformation
is a more tractable and sparse linear system for the load balancing and linear solver algorithms. This
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functionality can be turned on by adding ‘TR_SINGLETON_FILTER=1’ to the ‘.OPTIONS LINSOL’ control
line in the netlist. This option is enabled by default whenever iterative solvers are used in Xyce.

11.5.2. Reordering the Linear System

Approximate Minimum Degree (AMD) ordering is a symmetric permutation that reduces the fill-in for
direct factorizations. If given a nonsymmetric matrix 𝐴, the transformation computes the AMD ordering of
𝐴 + 𝐴𝑇 . This functionality may be turned on by adding ‘TR_AMD=1’ to the ‘.OPTIONS LINSOL’ control
line in the netlist. For parallel builds of Xyce, AMD ordering is enabled by default whenever iterative
solvers are used. In parallel, the AMD ordering is performed only on the local graph for each processor, not
the global graph. This is to reduce the fill-in for the incomplete LU factorization used by the additive
Schwarz preconditioner, see Section 11.4.6.

11.5.3. Partitioning the Linear System

Partitioning subdivides the linear system and then distributes it to the available processors. A good partition
can have a dramatic effect on the parallel performance of a circuit simulation tool. There are two key
components to a good partition:

• Effective load balance

• Minimizing communication overhead.

An effective load balance ensures the computational load of the calculation is equally distributed among
available processors. Minimizing communication overhead seeks to distribute the problem in a way to
reduce impacts of underlying message passing during the simulation run. For runs with a small number of
devices per processor the communication overhead becomes the critical issue, while for runs with larger
numbers of devices per processor the load balancing becomes more important.

Xyce provides hypergraph partitioning via the Zoltan library of parallel partitioning heuristics integrated
into Xyce. The Isorropia package in Trilinos provides access to Zoltan and can be controlled through the
‘.OPTIONS LINSOL’ control line in the netlist. Table 11-8 provides the partitioning options and their
default parameters. For parallel builds of Xyce, when iterative solvers are used, Isorropia is enabled by
default to use hypergraph partitioning. The linear system is statically load balanced at the beginning of the
simulation based on the graph of the Jacobian matrix.

Table 11-8. Partitioning options.
Option Description Default Value
TR_PARTITION Partitioning package 0 (none), serial,

1 (Isorropia), parallel
TR_PARTITION_TYPE Isorropia partitioner type HYPERGRAPH

Xyce includes an expanded partitioning interface to allow the user to access multiple partitioners through
Isorropia. Users may change the partitioner provided by adding ‘TR_PARTITION_TYPE’ to the ‘.OPTIONS
LINSOL’ control line in the netlist. There are two options for partitioning: hypergraph
(‘TR_PARTITION_TYPE=HYPERGRAPH’) and, optionally, graph (‘TR_PARTITION_TYPE=GRAPH’)
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partitioning through ParMETIS. Occasionally it is desirable to turn off the partitioning option, even for
parallel simulations. To do so, users can add the ‘TR_PARTITION=0’ to the ‘.OPTIONS LINSOL’ control
line.

These techniques can be very effective for improving the efficiency of the iterative linear solvers. See the
Zoltan User Guide [45] for more details.

11.5.4. Permuting the Linear System to Block Triangular Form

The block triangular form (BTF) permutation is often useful for direct and iterative solvers, enabling a more
efficient computation of the linear system solution. In particular, the BTF permutation has shown promise
when it is combined with an additive Schwarz preconditioner (see Section 11.4.6) in the simulation of
circuits with unidirectional flow.

The global BTF transformation computes the permutation of the linear system to block triangular form, and
uses the block structure to partition the linear system. The partitioning can be a simple linear distribution of
block rows, ‘TR_GLOBAL_BTF=1’, or a hypergraph partitioning of block rows, ‘TR_GLOBAL_BTF=2.’ As the
global BTF transformation includes elements of other tranformations, it is imperative to turn off other linear
solver options. To use the global BTF, the linear solver control line in the netlist should contain:

.OPTIONS LINSOL TR_GLOBAL_BTF=<1,2> TR_SINGLETON_FILTER=1
+ TR_AMD=0 TR_PARTITION=0

This transformation is only useful in parallel when using a preconditioned iterative solver. It is often more
effective when combined with the exact factorization of each subdomain, given by the
‘USE_IFPACK_FACTORY=1’ option. In practice, the structure that this transformation takes advantage of is
found in CMOS memory circuits [42].

11.6. Device Distribution Options

Xyce uses different parallel distributions for the objects that evaluate the device models and the linear
system. As discussed in Section 11.5.3, a good parallel partition of the linear system can improve load
balance and minimize communication. The same is true for the parallel distribution of devices, since they
have widely varying computational cost and the circuit connectivity graph is often irregular. Furthermore, a
more efficient device distribution strategy can overlap netlist processing with the simulation setup, enabling
scalable parsing for larger netlists.

Table 11-9. Distribution options.
Option Description Default Value
STRATEGY Distribution strategy 0

Xyce provides three different device distribution strategies that can be controlled through the .OPTIONS
DIST control line in the netlist, see Table 11-9. The default strategy (STRATEGY=0) that Xyce uses for
parallel device distribution is a first-come-first-served approach, in that the total number of devices in a
circuit is divided evenly over the number of parallel processors in the order of parsing. This is the simplest
distribution strategy, but it does not take into account the connectivity of a circuit or balance device model
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computation. Therefore, this strategy can exhibit parallel imbalance for post-layout circuits that have a
substantial portion of parasitic devices.

Xyce provides two other distribution strategies that enable scalable parsing for flattened circuits or
distribute devices in a more balanced manner. The "flat round robin" strategy (STRATEGY=1) will generate
the same device distribution as the default strategy, but every parallel processor will participate in reading
their portion of the netlist. In that way, this strategy provides a more scalable setup than the default strategy,
but can only be applied to flattened (non-hierarchical) netlists. The "device balanced" strategy
(STRATEGY=2) will evenly divide each of the device types over the number of parallel processors, so each
processor will have a balanced number of each model type. This allieviates the parallel imbalance in the
device model computation that can be experienced with post-layout circuits. However, it does not take into
account the circuit connectivity, so the communication will not be minimized by this strategy.
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12. HANDLING POWER NODE PARASITICS

Chapter Overview
This chapter includes the following sections:

• Section 12.1, Power Node Parasitics

• Section 12.2, Two Level Algorithms Overview

• Section 12.3, Examples

• Section 12.4, Restart
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12.1. Power Node Parasitics

Parasitic elements (R, L, C) are frequently required for circuit simulations to capture important circuit
behavior. Most parasitic elements (interconnects, etc.) can be added to netlists without causing any
difficulties for the Xyce solvers. Small circuits in particular are very robust to the addition of parasitic
elements. Larger circuits, however, that must be simulated in parallel will in general tend to have more
solver difficulties with the addition of parasitic devices. Of particular note are parasitic elements attached to
the power and/or ground nodes of large digital circuits. An example of this is shown in figure 12-1. As these
nodes tend to be highly connected, they can potentially have a very high impact on solver difficulties.

One of the parallel algorithms used by Xyce is called singleton removal [42], which is applied at the linear
solver level and is crucial for getting many large circuits to run in parallel. This algorithm takes advantage
of the fact that, in circuit simulation, some solution values are available explicitly, rather than being a
quantity that needs to be calculated as the solution to a particular equation. In circuit simulation, such
quantities are usually the values of independent sources. For instance, the presence of an independent
voltage source at a particular node in a circuit fixes the voltage at that node to be the value of the
independent source; therefore, equations reflecting the value of the voltage at that particular node do not
have to be added to the set of linear equations used (in part) to determine the voltages at all the nodes in the
circuit. The technique of fixing such node voltages without including them in the rest of the linear solve can
be handled in a preprocessing phase referred to as the singleton removal phase.

When simulating in parallel, singleton removal is crucial as some voltage sources (especially power
supplies in digital circuits) are connected to hundreds or thousands of circuit nodes. This presents a big
problem in parallel because having numerous connections can often mean a communication bottleneck
during the linear solve. Using singleton removal eliminates that bottleneck.

While singleton removal can result in a great improvement for circuits with ideal power supplies, for
circuits with nonideal power supplies, the communication bottleneck remains. Once parasitic elements are
placed between the power supply and the rest of the circuit, it is only the voltage at the circuit node directly
connected to the independent source that can be removed via singleton removal. Other nodes connected to
this independent source through parasitic elements have voltages that must now be solved for directly.

12.2. Two Level Algorithms Overview

Fortunately, Xyce [38] provides a workaround that allows power node parasitics to be included in large
circuits without breaking singleton removal. The workaround requires the use of a two-level Newton solve,

Figure 12-1. Power node parasitics example. NOTE: An RLC network sits between
the VDD, VSS sources and the main circuit, so these highly connected nodes cannot

be removed with a singleton filter.
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in which the problem is divided into two very separate pieces, each for the most part treated as an entirely
separate circuit with minimal coupling terms linking the pieces together.

For power-node problems, two-level users will typically split the netlist into ”top” and ”inner” netlists. The
top netlist contains the power node parasitics and the ideal voltage sources, and very little else. The inner
circuit should contain the rest of the circuit. Xyce couples the two circuits through an ”EXT” (external)
device in the top circuit, and two or more independent voltage sources on the inner circuit. The values on
the inner voltages are imposed from the top circuit, and the currents and conductances of the EXT device
come from the inner circuit. An example is given below.

Xyce will construct a different linear system for each circuit. As such, the inner circuit will appear to have
independent sources, allowing the singleton removal algorithm to work.

Since at least the 1980s, literature has included the two-level Newton algorithm, although mostly as it
applied to circuit-device simulation. [46] and [47] provide a mathematical description, while [38] provides
more information about the Xyce implementation.

12.3. Examples

THIS CIRCUIT IS THE TOP PART OF A TWO LEVEL EXAMPLE.
* compTop.cir - BSIM3 Transient Analysis

YEXT y1 DD1 SS1 externcode=xyce netlist=compInner.cir
Vdd DDorig 0 5.0
Vss SSorig 0 0.0

.options linsol type=klu

.options timeint abstol=1.0e-6 reltol=1.0e-3

* PARASITICS
l_Lwirevdd DDorig Ny .50n
l_Lwirevss SSorig Nx .50n
R_Rbw Ny DD1 50m
R_Rwi Nx SS1 50m

.tran 0.01ns 60ns

.print tran v(DD1) v(SS1) i(Vdd)

.END

Figure 12-2. Two-level top netlist example.

12.3.1. Explanation and Guidance

Figures 12-2 and 12-3 provide an example of a circuit that uses the two level algorithm. The top circuit
(compTop.cir) (figure 12-2) invokes the inner circuit (compInner.cir) with the extern device, y1. To run this
circuit, the user will only specify the top circuit on the command line:
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THIS CIRCUIT IS THE INNER PART OF A TWO LEVEL EXAMPLE.
* compInner.cir - BSIM3 Transient Analysis
M1 Anot A DD1 DD1 PMOS w=3.6u l=1.2u
M2 Anot A SS1 SS1 NMOS w=1.8u l=1.2u
M3 Bnot B DD1 DD1 PMOS w=3.6u l=1.2u
M4 Bnot B SS1 SS1 NMOS w=1.8u l=1.2u
M5 AorBnot SS1 DD1 DD1 PMOS w=1.8u l=3.6u
M6 AorBnot B 1 SS1 NMOS w=1.8u l=1.2u
M7 1 Anot SS1 SS1 NMOS w=1.8u l=1.2u
M8 Lnot SS1 DD1 DD1 PMOS w=1.8u l=3.6u
M9 Lnot Bnot 2 SS1 NMOS w=1.8u l=1.2u
M10 2 A SS1 SS1 NMOS w=1.8u l=1.2u
M11 Qnot SS1 DD1 DD1 PMOS w=3.6u l=3.6u
M12 Qnot AorBnot 3 SS1 NMOS w=1.8u l=1.2u
M13 3 Lnot SS1 SS1 NMOS w=1.8u l=1.2u
MQLO 8 Qnot DD1 DD1 PMOS w=3.6u l=1.2u
MQL1 8 Qnot SS1 SS1 NMOS w=1.8u l=1.2u
MLTO 9 Lnot DD1 DD1 PMOS w=3.6u l=1.2u
MLT1 9 Lnot SS1 SS1 NMOS w=1.8u l=1.2u
CQ Qnot 0 30f
CL Lnot 0 10f

Vconnect0000 DD1 0 0
Vconnect0001 SS1 0 0

Va A 0 pulse(0 5 10ns .1ns .1ns 15ns 30ns)
Vb B 0 0

.model nmos nmos (level=9)

.model pmos pmos (level=9)

.options linsol type=klu

.options timeint abstol=1.0e-6 reltol=1.0e-3

.tran 0.01ns 60ns

.print tran v(a) v(b) 1.0+v(9) 1.0+v(8)

.END

Figure 12-3. Two-level inner netlist example.
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Xyce compTop.cir <return>

The extern device (YEXT y1 sits between the contents of compTop.cir and compInner.cir and is connected
to two nodes in the top-level circuit, DD1 and SS1. From the perspective of compTop.cir, the YEXT y1
device looks like a nonlinear two-terminal resistor, which is the equivalent of the entire inner circuit.

In the inner circuit, Xyce applies nodes DD1 and SS1 though the independent sources Vconnect0000 and
Vconnect0001. By convention, the inner circuit must contain an independent voltage source for each node
to which the EXT device is connected. The default naming convention requires that these sources be named
vconnectxxxx, with xxxx being a four-digit integer starting at 0000.

NOTE: The .tran statement on the inner circuit must match the .tran statement on the top circuit. The
same is true for the .DC analysis statements. Also, as both circuit files have their own .print statements,
both will produce *.prn output files.

The coupling between the top and inner layers requires extra linear solves, so when using this algorithm the
code will run more slowly. In general, one can expect a factor-of-two slowdown, for circuits that can be run
either as conventional or two-level simulations. So, in practice this algorithm should only be applied when
it is really needed (i.e., when conventional simulations fail).

Finally, when using this two-level method, one must take particular care with file names. In practice, a Xyce
user may frequently change netlist file names to reflect new details about the run. When this happens, the
name of the netlist invoked on the YEXT y1 line must be changed. Failure to do so may result in using the
wrong file for the inner simulation.

12.4. Restart

Restart works with the two-level algorithm. However, as the two-level algorithm involves two separate
netlist input files, a two-level restart requires a separate restart file for each phase of the problem. So, the
two files (e.g., compTop.cir and compInner.cir) require .options restart statements, and the
statements in the two files must be consistent with each other. The user must enforce this, because the Xyce
code does not check consistency between the top and inner file ”.options restart” statements.
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13. SPECIFYING INITIAL CONDITIONS

Chapter Overview
This chapter includes the following sections:

• Section 13.1, Initial Conditions Overview

• Section 13.2, Device Level IC= Specification

• Section 13.3, .IC and .DCVOLT Initial Condition Statements

• Section 13.4, .NODESET Initial Condition Statements

• Section 13.5, .SAVE Statements

• Section 13.6, UIC and NOOP
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13.1. Initial Conditions Overview

Xyce provides several different options for users to set an initial condition. Reasons for setting initial
conditions include, but are not limited to:

• Improving the robustness of the DCOP solution

• Optimizing performance by reusing a DCOP solution of a previous run to start new transient runs

• Setting an initial state for a digital circuit

• Initiating an oscillator circuit.

As noted, setting initial conditions can be particularly useful for multistate digital circuits. Figure 13-1
provides an example result demonstrating how initial conditions can be used to set the state of a digital
circuit. In this case, obtaining the state purely through transient simulation can be time-consuming and
often is not practical..

Figure 13-1. Example result with (left) and without (right) an IC on the output. NOTE:
The preset example, with an IC, starts in the initial state directly out of the DCOP

calculation, while the non-preset example requires a long transient to equilibrate.
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13.2. Device Level IC= Specification

Many devices in Xyce support setting initial junction voltage conditions on the device instance line with the
IC= keyword. This is frequently used to set the state of digital circuits. Figure 13-2 presents a simple
inverter example demonstrating the use of IC= on a BSIMSOI device. In this example, the two initial
conditions are specified as a vector, which is the preferred syntax. The initial conditions can also be
specified separately (e.g., IC1=2 IC2=0).

While many circuit simulators have a similar IC= capability, Xyce implementation differs in some
important respects. For any device with an IC= statement, Xyce enforces the junction drop during the
operating point computation by inserting a voltage source in parallel with the device junction. Xyce then
applies the parallel voltage source through the DCOP calculation, and then removes it prior to the
beginning of the transient. This strongly enforces the requested junction drop, meaning that if the DCOP
converges, the requested voltage drop will be in the solution and the entire circuit solution will be consistent
with that voltage drop. Many other circuit codes apply IC= as a weaker constraint, with the intent of
improving DCOP calculation robustness.

IC= can be applied to the following devices: BSIM3, BSIM4, BSIMSOI, Capacitor, Inductor and Digital
Behavioral Devices (U and Y).

In the case of the capacitor, initial conditions specified via an IC= parameter are also applied as an initial
condition for transients in the case that the user has used a NOOP or UIC option on a transient line, bypassing
the operating point calculation. In this case only, the initial condition is not enforced by the addition of a
voltage source, but rather by a weaker constraint similar to the method used by other SPICE-type
simulators.

MOS LEVEL=10 INVERTER WITH IC=

.subckt INV IN OUT VDD GND
MN1 OUT IN GND GND GND NMOS w=4u l=0.15u IC=2,0
MP1 OUT IN VDD GND VDD PMOS w=10u l=0.15u
.ends

.tran 20ns 30us

.print tran v(vout) v(in)+1.0 v(1)

VDDdev VDD 0 2V
RIN IN 1 1K
VIN1 1 0 2V PULSE (2V 0V 1.5us 5ns 5ns 1.5us 3.01us)
R1 VOUT 0 10K
C2 VOUT 0 0.1p
XINV1 IN VOUT VDD 0 INV
.MODEL NMOS NMOS ( LEVEL = 10 )
.MODEL PMOS PMOS ( LEVEL = 10 )

.END

Figure 13-2. Example netlist with device-level IC=.
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13.3. .IC and .DCVOLT Initial Condition Statements

.IC and .DCVOLT are equivalent methods for specifying initial conditions. How Xyce applies them,
however, depends on whether the UIC parameter, discussed in a following subsection, is present on the
.TRAN line. If UIC is not specified, then Xyce applies the conditions specified by .IC and .DCVOLT
statements throughout the DCOP phase, ensuring the specified values will be the solved values at the end of
the DCOP calculation. Xyce allows unspecified variables to find their computed values, consistent with the
imposed voltages.

RC circuit
.ic v(1)=1.0
c1 1 0 1uF
R1 1 2 1K
v1 2 0 0V
.print tran v(1)
.tran 0 5ms
.options timeint reltol=1e-6 abstol=1e-6
.end

Figure 13-3. Example netlist with .IC. NOTE: Without the .IC statement, the
capacitor is not given an initial charge, and the transient signals are flat. With the
.IC statement, it has an initial charge, which then decays in transient. Without the
.IC statement, the capacitor is not given an initial charge, and the signals in

transient are all flat. With the .IC statement, it has an initial change which then
decays in transient.

If UIC is specified on the .TRAN line, then Xyce skips the DCOP calculation altogether, and uses the values
specified on .IC and .DCVOLT lines as the initial values for the transient calculation. Unspecified values are
set to zero.

For the UIC and non-UIC cases, Xyce ignores specified values that do not correspond to existing circuit
variables.

Finally, the .IC capability can only set voltage values, not current values.

13.3.1. Syntax

.IC V(node1) = val1 <V(node2) = val2> ...

.DCVOLT V(node1) = val1 <V(node2) = val2> ...

where: val1, val2, ... specify nodal voltages and node1, node2, ... specify node numbers.

13.3.2. Example

.IC V(1) = 2.0 V(A) = 4.5

.DCVOLT 1 2.0 A 4.5

Fig. 13-3 provides a more complete example (showing a full netlist).
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13.4. .NODESET Initial Condition Statements

.NODESET is similar to .IC, except that Xyce enforces the specified conditions less strongly. For .NODESET
simulations, Xyce performs two nonlinear solves for the DCOP condition. For the first solve, Xyce enforces
the .NODESET values throughout the solve, similar to .IC. For the second solve, Xyce uses the result of the
first solve as an initial guess, and allows all the values to float and eventually obtain their unconstrained,
self-consistent values. As such, the computed values will not necessarily match the specified values.

If used with UIC or NOOP 13.6, .NODESET behaves the same as .IC and .DCVOLT.

13.4.1. Syntax

.NODESET V(node1) = val1 <V(node2) = val2> ...

.NODESET node1 val1 <node2 val2>

where: val1, val2, ... specify nodal voltages and node1, node2, ... specify node numbers.

13.4.2. Example

.NODESET V(1) = 2.0 V(A) = 4.5

.NODESET 1 2.0 A 4.5
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13.5. .SAVE Statements

Xyce stores operating point information using .SAVE statements, and can then reuse that information to start
subsequent transient simulations. Using .SAVE results in solution data being stored in a text file, comprised
of .NODESET or .IC statements. This file can be applied to other simulations using .INCLUDE.

The .SAVE syntax is as follows:

.SAVE [TYPE=<IC|NODESET>] [FILE=<filename>] [LEVEL=<all|none>]
+ [TIME=<save_time>]

where:

The TYPE can be set to NODESET or IC. By default, it will be NODESET.

The FILE is the user-specified output file name for the output file. If this is not specified, Xyce uses
netlist.cir.ic.

The LEVEL is an HSPICE compatibility parameter. Xyce supports ALL and NONE. If NONE is specified,
then no save file is created. The default LEVEL is ALL.

TIME is an HSPICE compatibility parameter. This is unsupported in Xyce. Xyce outputs the save file only
at time=0.0.
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13.6. UIC and NOOP

As noted earlier, the UIC key word on the TRAN line will disable the DCOP calculation, and result in Xyce
immediately going to transient. If the user specifies .IC or .NODESET, then the transient calculation will
use the specified initial values as the initial starting point. The NOOP keyword works exactly the same way as
UIC.

pierce oscillator
c1 1 0 100e-12
c2 3 0 100e-12
c3 2 3 99.5e-15
c4 1 3 25e-12
l1 2 4 2.55e-3
r1 1 3 1e5
r2 3 5 2.2e3
r3 1 4 6.4
v1 5 0 12
Q1 3 1 0 NBJT
.MODEL NBJT NPN (BF=100)
.print tran v(2) v(3)

.tran 1ns 1us UIC

.ic v(2)=-10000.0 v(5)=12.0

Figure 13-4. Example netlist with UIC. NOTE: This circuit is a pierce oscillator, which
only oscillates if the operating point calculation is skipped. If the .IC statement is

not included, the oscillator will take a long time to achieve its steady-state
amplitude. By including the .IC statement, the amplitude of node 2 is preset to a
value close to its final steady-state amplitude. The transient in this example only

runs for 10 cycles as a demonstration. In general, the time scales for this oscillator
are much longer and require millions of cycles.

13.6.1. Example

.tran 1ns 1us UIC

.tran 1ns 1us NOOP

Some circuits, particularly oscillator circuits, will only function properly if the operating point calculation
is skipped, as they need an inconsistent initial state to oscillate. Figure 13-4 presents a Pierce oscillator
example.
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14. WORKING WITH .PREPROCESS COMMANDS

Chapter Overview
This chapter includes the following sections:

• Section 14.1, Introduction

• Section 14.2, Ground Synonym Replacement

• Section 14.3, Removal of Unused Components

• Section 14.4, Adding Resistors to Dangling Nodes
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14.1. Introduction

In an effort to make Xyce more compatible with other commercial circuit simulators (e.g., HSPICE), some
optional tools have been added to increase the netlist processing capabilities of Xyce. These options, which
occur toward the beginning of a simulation, have been incorporated not only to make Xyce more compatible
with different (i.e. non-Xyce) netlist syntaxes, but also to help detect and remove certain singular netlist
configurations that can often cause a Xyce simulation to fail. Because all of the commands described in this
section occur as a precursory step to setting up a Xyce simulation, they are all invoked in a netlist file via the
keyword .PREPROCESS. This chapter describes each of the different functionalities that can be invoked via
a .PREPROCESS statement in detail and provides examples to illustrate their use.

14.2. Ground Synonym Replacement

In certain versions of SPICE, keywords such as GROUND, GND, and GND! can be used as node names in a
netlist file to represent the ground node of a circuit. Xyce, however, only recognizes node 0 as an official
name for ground. Hence, if any of the prior node names is encountered in a netlist file, Xyce will treat these
as different nodes from ground. To illustrate this point, consider the netlist of figure 14-1. When the node
Gnd is encountered in the definition of resistor R3, Xyce instantiates this as a new node. The schematic
diagram corresponding to this netlist (figure 14-2) shows that the resistor R3 is “floating” between node 2
and a node with only a single device connection, node Gnd. When Xyce executes the netlist of figure 14-1,
the voltage V(2) will evaluate to 0.5V.

Circuit with "floating" resistor R3

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 Gnd 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 14-1. Example netlist where Gnd is treated as being different from node 0.

If one would rather treat Gnd the same as node 0 in the above example, use the figure 14-3 netlist instead.
When the statement .PREPROCESS REPLACEGROUND TRUE is present in a netlist, Xyce will treat any nodes
named GND, GND!, GROUND, or any capital/lowercase variant of these keywords (e.g., gROunD) as synonyms
for node 0. Hence, according to Xyce, the figure 14-3 netlist corresponds to figure 14-4 schematic diagram,
and the voltage V(2) will evaluate to 0.33V.

NOTE: Only one .PREPROCESS REPLACEGROUND statement is allowed per netlist file. This constraint
prevents the user from setting REPLACEGROUND to TRUE on one line and then to FALSE on another line.
Also, there is no way to differentiate between different keywords. So, for example, it is not possible to treat
GROUND as a synonym for node 0 while allowing GND to represent an independent node). If
REPLACEGROUND is set to TRUE, Xyce will treat both of these keywords as node 0.
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Figure 14-2. Circuit diagram corresponding to the netlist of figure 14-1 where node
Gnd is treated as being different from node 0.

Circuit where resistor R3 does *not* float

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 Gnd 1

.PREPROCESS REPLACEGROUND TRUE

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 14-3. Example netlist where Gnd is treated as a synonym for node 0.
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Figure 14-4. Circuit diagram corresponding to figure 14-3 where node Gnd is treated
as a synonym for node 0.
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14.3. Removal of Unused Components

Consider a slight variant of the circuit in figure 14-3 with the netlist given in figure 14-5. Here, the resistor
R3 is connected in a peculiar configuration: both terminals of the resistor are tied to the same circuit node,
as is illustrated in figure 14-6. Clearly, the presence of this resistor has no effect on the other voltages and
currents in the circuit since, by the very nature of its configuration, it has no voltage across it and, hence,
does not draw any current. Therefore, in some sense, the component can be considered as “unused.” The
presence of a resistor such as R3 is rarely or never introduced by design, rather the presence of such
components is the result of either human or automated error during netlist creation.

Circuit with an unused resistor R3

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 2 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 14-5. Netlist with a resistor R3 whose device terminals are both the same node
(node 2).

While the presence of the resistor R3 in figure 14-3 does not change the behavior of the circuit, it adds an
additional component to the netlist Xyce must include when solving for the voltages and currents in the
circuit. If the number of such components in a given netlist is large, it is potentially desirable to remove
them from the netlist to ease the burden on Xyce’s solver engines. This, in turn, can help to avoid possible
convergence issues. For example, even though the netlist in figure 14-5 will run properly in Xyce, the netlist
of figure 14-7 will abort. The voltage source V2 attempts to place a 1V difference between its two device
terminals; however, as both nodes of the voltage source are the same, the voltage source is effectively
shorted.

Xyce includes the following command to prevent similar situations:

.PREPROCESS REMOVEUNUSED <component list>

.........................................................................................................................................................
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Figure 14-6. Circuit of figure 14-5 containing a resistor R3 whose terminals are tied to
the same node (node 2).
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Circuit with improperly connected voltage source V2

V1 1 0 1
R1 1 2 1
R2 2 0 1
V2 2 2 1

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 14-7. Circuit with an improperly connected voltage source V2.

where <component list> is a list of device types separated by commas. For each device type specified in
the list, Xyce checks for instances of that device type for which all of the device’s terminals are connected to
the same node. If such a device is found, Xyce removes that device from the netlist. For instance, when
executing the netlist of figure 14-8, Xyce will seek out such devices and remove them from the netlist. This
causes the resistor R3 to be removed from the netlist. Figure 14-9 presents the schematic of the resulting
Xyce-simulated circuit. NOTE: The presence of “C” in the REMOVEUNUSED statement does not cause Xyce
to abort even though there are no capacitors in the netlist. Also, as in the case of a REPLACEGROUND
statement, only one .PREPROCESS REMOVEUNUSED line may be present in a netlist, or Xyce will abort.

Table 14-1 lists devices that can be removed via a REMOVEUNUSED statement. In the case of MOSFETs and
BJTs, three device terminals must be the same (the gate, source, and drain in the case of a MOSFET; the
base, collector, and emitter in the case of a BJT) to remove either device from the netlist.

Circuit with improperly connected voltage source V2

V1 1 0 1
R1 1 2 1
R2 2 0 1
R3 2 2 1

.PREPROCESS REMOVEUNUSED R,C

.DC V1 1 1 0.1

.PRINT DC V(2)

.END

Figure 14-8. Circuit with an “unused” resistor R3 removed from the netlist.

Table 14-1. List of keywords and device types which can be used in a .PREPROCESS
REMOVEUNUSED statement.

Keyword Device Type
C Capacitor
D Diode
I Independent Current Source
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Table 14-1. List of keywords and device types which can be used in a .PREPROCESS
REMOVEUNUSED statement.

Keyword Device Type
L Inductor
M MOSFET
Q BJT
R Resistor
V Independent Voltage Source

14.4. Adding Resistors to Dangling Nodes

Consider the netlist of figure 14-10 and the corresponding schematic of figure 14-11. Nodes 3 and 4 of the
netlist are what we will henceforth refer to as dangling nodes. We say that node 4 dangles because it is only
connected to the terminal of a single device, while we say that node 3 dangles because it has no DC path to
ground. The first of these situations—connection to a single device terminal only—can arise, for example,
in a netlist which contains nodes representing output pins that are not connected to a load device. For
instance, the resistance R2 in figure 14-10 could represent the resistance of an output pin of a package that
is meant to drive resistive loads. Hence, an actual physical implementation of the circuit of figure 14-11
would normally include a resistor between node 4 and ground, but, in creating the netlist, the presence of
such an output load has been (either intentionally or unintentionally) left out.

The second situation—where a node has no DC path to ground—is sometimes an effect that is purposely
incorporated into a design (e.g., the design of switched capacitor integrators (e.g., see [48], chapter 10), but
oftentimes it is also the result of some form of error in the process of creating the netlist. For instance, when
graphical user interfaces (GUIs) are used to create circuit schematics that are then translated into netlists
via software, one very common unintentional error is to fail to connect two nodes that are intended to be
connected. To illustrate this point, consider the schematic of figure 14-12. The schematic seems to indicate
that the lower terminal of resistor R2 should be connected to node 3. This is not the case as there is a small
gap between node 3 and the line intended to connect node 3 to the resistor. Such an error can often go
unnoticed when creating a schematic of the netlist in a GUI. Thus, when the schematic is translated into a
netlist file, the resulting netlist would not connect the resistor to node 3 and would instead create a new
node at the bottom of the resistor, resulting in the circuit depicted in figure 14-11.

While neither of the previous situations is necessarily threatening (Xyce will run the figure 14-10 netlist
successfully to completion), there are times when it is desirable to somehow make a dangling node not
dangle. For instance, returning to the example in which the resistor R2 represents the resistance of an output
pin, one may want to simulate the circuit when a 1K load is attached between node 4 and ground in figure
14-11. In the case where a node has no DC path to ground, the situation is slightly more dangerous if, for
instance, the node in question is also connected to a high-gain device such as the gate of a MOSFET. As the
DC gate bias has a great impact on the DC current traveling through the drain and source of the transistor,
not having a well-defined DC gate voltage can greatly degrade the simulated performance of the circuit.

In both prior examples, the only true way to “fix” each of these issues is to find all dangling nodes in a
particular netlist file and augment the netlist at/near these nodes to obtain the desired behavior. If, however,
the number of components in a circuit is very large (say on the order of hundreds of thousands of
components), manually augmenting the netlist file for each dangling node becomes a practical impossibility
if the number of such nodes is large.
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Figure 14-9. Circuit of figure 14-8 where resistor R3 has been removed via the
.PREPROCESS REMOVEUNUSED statement.

Circuit with two dangling nodes, nodes 3 and 4

V1 1 0 1
R1 1 2 1
C1 2 3 1
C2 3 0 1
R2 2 4 1

.DC V1 0 1 0.1

.PRINT DC V(2)

.END

Figure 14-10. Netlist of circuit with two dangling nodes, nodes 3 and 4.

Hence, it is desirable for Xyce to be capabable of automatically augmenting netlist files so as to help remove
dangling nodes from a given netlist. The command .PREPROCESS ADDRESISTORS is designed to do just
this. Assuming the netlist of figure 14-13 is stored in the file filename, the .PREPROCESS ADDRESISTORS
statements will cause Xyce to create a new netlist file called filename_xyce.cir (depicted in figure
14-14). The line .PREPROCESS ADDRESISTORS NODCPATH 1G instructs Xyce to create a copy of the
netlist file containing a set of resistors of value 1 GΩ that are connected between ground and the nodes that
did not have a DC path to ground. Similarly, the line .PREPROCESS ADDRESISTORS ONETERMINAL 1M
instructs Xyce to add to the same netlist file a set of resistors of value 1 MΩ that are connected between
ground and devices that are connected to only one terminal. The resistor RNODCPATH1 in figure 14-14
achieves the first of these goals while RONETERM1 achieves the second. Figure 14-15 shows a schematic of
the resulting circuit represented by the netlist in figure 14-14.

Some general comments regarding the use of .PREPROCESS ADDRESISTOR statements include:

• Xyce does not terminate immediately after the netlist file is created. In other words, if Xyce is run on
the filename of figure 14-13 netlist, it will attempt to execute this netlist as given (i.e., it tries to
simulate the circuit of figure 14-11) and generates the file filename_xyce.cir as a byproduct. It is
important to point out that the resistors that are added at the bottom of the netlist file
filename_xyce.cir do not get added to the original netlist when Xyce is running on the file
filename. If one wishes to simulate Xyce with these resistors in place, one must run Xyce on
filename_xyce.cir explicitly.

• The naming convention for resistors which connect to ground nodes which do not have a DC path to
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Figure 14-11. Schematic of netlist in figure 14-10.
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Figure 14-12. Schematic of a circuit with an incomplete connection between the
resistor R2 and node 3.

ground is RNODCPATH<i>, where i is an integer greater than 0; the naming convention is similar for
nodes which are connected to only one device terminal (i.e., of the form RONETERM<i>). Xyce will not
change this naming convention if a resistor with one of the above names already exists in the netlist.

Hence, if a resistor named RNODCPATH1 exists in netlist file filename, and Xyce detects there is a
node in this netlist file that has no DC path to ground, Xyce will add another resistor with name
RNODCPATH1 to the netlist file filename_xyce.cir (assuming that either .PREPROCESS
ADDRESISTORS NODCPATH or .PREPROCESS ADDRESISTORS ONETERMINAL are present in
filename). If Xyce is subsequently run on filename_xyce.cir, it will exit in error due to the
presence of two resistors with the same name.

• Commands .PREPROCESS ADDRESISTORS NODCPATH and .PREPROCESS
ADDRESISTORS ONETERMINAL do not have to be simultaneously present in a netlist file. The
presence of either command will generate a file filename_xyce.cir, and the presence of both will
not generate two separate files. As with other .PREPROCESS commands, however, a netlist file is
allowed to contain only one NODCPATH and one ONETERMINAL command each. If multiple NODCPATH
and/or ONETERMINAL lines are found in a single netlist file, Xyce will exit in error.

• It is possible that a single node can have no DC path to ground and be connected to only one device
terminal. If a NODCPATH and ONETERMINAL command are present in a given netlist file, only the
resistor corresponding to the ONETERMINAL command is added to the netlist file
filename_xyce.cir and the resistor corresponding to the NODCPATH command is omitted. If a
NODCPATH command is present but a ONETERMINAL command is not, then Xyce will add a resistor
corresponding to the NODCPATH command to the netlist, as usual.
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Circuit with two dangling nodes, nodes 3 and 4

V1 1 0 1
R1 1 2 1
C1 2 3 1
C2 3 0 1
R2 2 4 1

.PREPROCESS ADDRESISTORS NODCPATH 1G

.PREPROCESS ADDRESISTORS ONETERMINAL 1M

.DC V1 0 1 0.1

.PRINT DC V(2)

.END

Figure 14-13. Netlist of circuit with two dangling nodes, nodes 3 and 4, with
.PREPROCESS ADDRESISTORS statements.

• In generating the file filename_xyce.cir, the original .PREPROCESS ADDRESISTOR statements
are commented out with a warning message. This is to prevent Xyce from creating the file
filename_xyce.cir_xyce.cir when the file filename_xyce.cir is run.

NOTE: This feature avoids generating redundant files. While filename_xyce.cir_xyce.cir
would be slightly different from filename_xyce.cir (e.g., a different date and time stamp), both
files would functionally implement the same netlist.
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XYCE-generated Netlist file copy: TIME=’07:32:31 AM’
* DATE=’Dec 19, 2007’
*Original Netlist Title:

*Circuit with two dangling nodes, nodes 3 and 4.

V1 1 0 1
R1 1 2 1
C1 2 3 1
C2 3 0 1
R2 2 4 1

*.PREPROCESS ADDRESISTORS NODCPATH 1G
*Xyce: ".PREPROCESS ADDRESISTORS" statement
* automatically commented out in netlist copy.
*.PREPROCESS ADDRESISTORS ONETERMINAL 1M
*Xyce: ".PREPROCESS ADDRESISTORS" statement
* automatically commented out in netlist copy.

.DC V1 0 1 0.1

.PRINT DC V(2)

*XYCE-GENERATED OUTPUT: Adding resistors between ground
* and nodes connected to only 1 device terminal:

RONETERM1 4 0 1M

*XYCE-GENERATED OUTPUT: Adding resistors between ground
* and nodes with no DC path to ground:

RNODCPATH1 3 0 1G

.END

Figure 14-14. Output file filename_xyce.cir which results from the .PREPROCESS
ADDRESISTOR statements for the netlist of figure 14-12 (with assumed file name

filename).
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Figure 14-15. Schematic corresponding to the Xyce-generated netlist of figure 14-14.
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15. TCAD (PDE DEVICE) SIMULATION WITH XYCE

Chapter Overview
This chapter provides guidance for using the mesh-based device simulation capability of Xyce. It includes
the following sections:

• Section 15.1, Introduction

• Section 15.2, One-Dimensional Example

• Section 15.3, Two-Dimensional Example

• Section 15.4, Doping Profile

• Section 15.5, Electrodes

• Section 15.6, Meshing

• Section 15.8, Mobility Models

• Section 15.9, Bulk Materials

• Section 15.10, Output and Visualization
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15.1. Introduction

This chapter describes how to use the mesh-based device simulation functionality of Xyce, which is based
on the solution a coupled set of partial differential equations (PDEs), discretized on a mesh. Such devices
are often referred to as Technology Computer-Aided Design (TCAD) devices. While the rest of Xyce is
intended to be similar to analog circuit simulators such as SPICE, the TCAD device capability is intended
to be similar to commercial device simulators, such as PISCES [49] and DaVinci [50].

Xyce offers two different TCAD devices—a one-dimensional device and a two-dimensional device—and
enables both to be invoked in the same way as a conventional lumped parameter circuit device. Generally,
this capability is intended for very detailed simulation of semiconductor devices, such as diodes, bipolar
transistors, and MOSFETs. As the Xyce TCAD devices can be invoked from the netlist, they can be
embedded in a circuit as part of a mixed-mode simulation.

15.1.1. Equations

Kramer [51] and Selberherr [52], among others, describe device simulation equations. The most common
formulation and the one used in Xyce, is the drift-diffusion (DD) formulation, which consists of three
coupled PDEs (a single Poisson equation for electrostatic potential and two continuity equations; one each
for electrons and holes).

15.1.1.1. Poisson equation

The electrostatic potential 𝜙 satisfies Poisson’s equation:

−∇ · (𝜖∇𝜙(𝑥)) = 𝜌(𝑥) (15.1)

where 𝜌 is the charge density and 𝜖 is the permittivity of the material. For semiconductor devices, local
carrier densities and local doping determine charge density;

𝜌(𝑥) = 𝑞(𝑝(𝑥) − 𝑛(𝑥) + 𝐶 (𝑥)) (15.2)

Here, 𝑝(𝑥) is the spatially dependent concentration of holes; 𝑛(𝑥), the concentration of electrons; and 𝑞, the
magnitude of the charge on an electron. 𝐶 (𝑥) is the total doping concentration, which can also be
represented as 𝐶 (𝑥) = 𝑁+

𝐷
(𝑥) − 𝑁−

𝐴
(𝑥), where 𝑁+

𝐷
the concentration of positively ionized donors, 𝑁−

𝐴
the

concentration of negatively ionized acceptors.

15.1.1.2. Species continuity equations

Continuity equations relate the convective derivative of the species concentrations to the creation and
destruction of particles (“recombination/generation”).

𝜕𝑛(𝑥)
𝜕𝑡

+ ∇ · Γ𝑛 = −𝑅(𝑥) (15.3)

𝜕𝑝(𝑥)
𝜕𝑡

+ ∇ · Γ𝑝 = −𝑅(𝑥) (15.4)
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Here 𝑛 is the electron concentration and 𝑝 is the hole concentration. 𝑅 is the recombination rate for both
species. Γ𝑛 and Γ𝑝 are particle fluxes for electrons and holes, respectively. 𝑅 is the recombination rate for
both species, and the right hand sides are equal since creation and destruction of carriers occurs in pairs.
The quantities Γ𝑛 and Γ𝑝 are electron and hole fluxes, and are determined from the following expressions:

Γ𝑛 = 𝑛(𝑥)𝜇𝑛𝐸 (𝑥) + 𝐷𝑛∇𝑛(𝑥) (15.5)
Γ𝑝 = 𝑝(𝑥)𝜇𝑝𝐸 (𝑥) + 𝐷 𝑝∇𝑝(𝑥) (15.6)

𝜇𝑛, 𝜇𝑝 are mobilities for electrons and holes, and 𝐷𝑛, 𝐷 𝑝 are diffusion constants. 𝐸 (𝑥) is the electric field,
which is given by the gradient of the potential, or −𝜕𝜙/𝜕𝑥.

15.1.2. Discretization

Xyce uses a box-integration discretization, with the Scharfetter-Gummel method, to model the flux of
charged species. For a more-detailed description of this method, refer to [51] [52] [53].

15.2. One Dimensional Example

While one-dimensional device simulation has limits on its usefulness, the simulation much faster than 2D,
and it can provide reasonable physical predictions in many situations. Two-terminal diodes are a good
candidate for one dimensional simulation, because they allow for assumptions that simplify the
specification and shorten the parameter list of the device.

Figure 15-1 provides an example netlist for a simulation of a one-dimensional diode, while figure 15-2
shows its corresponding schematic. This regulator circuit is based on the principle that connecting one or
more diodes in series with a resistor and a power supply will produce a relatively constant voltage. The
input voltage (node 2) is a sine wave, with a frequency of 50 Hz and an amplitude of 1 V. The expected
output (node 3) signal should be (mostly) flat.

15.2.1. Netlist Explanation

The model line for PDE devices serves only to set the level. The default level is 1, for a one-dimensional
device. Setting level=2 will invoke two-dimensional devices. In this example, the level is not explicitly
set, and so Xyce uses the default value which is 1.

The instance line is where most of the specific parameters are set for a TCAD device. In this example, the
line appears as:

YPDE Z1 3 4 DIODE na=1.0e17 nd=1.0e17 graded=1 l=5.0e-4 nx=101

Doping parameters na and nd represent the majority carrier doping levels on the N- and the P-sides of the
junction, respectively. graded=1 is also a doping parameter, and specifies that the junction is a graded
junction, rather than an abrupt step-function junction. l=5.0e-4 specifies the length of the device, in cm.
nx=101 specifies that there are 101 mesh points, including the two endpoints. For the one-dimensional
device, the mesh is always uniform, so the size of each mesh cell, Δ𝑥 will be:

Δ𝑥 =
𝑙

𝑛𝑥 − 1
=

5.0e-4 cm
100

= 5.0e-6 cm (15.7)
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PDE Diode Regulator Circuit
VP 1 0 PULSE(0 5 0.0 2.0e-2 0.0 1.0e+20 1.2e+20)
VF 2 1 SIN(0 1 50 2.0e-2)
VT1 4 0 0V
R1 2 3 1k

* TCAD/PDE Device
YPDE Z1 3 4 DIODE na=1.0e17 nd=1.0e17 graded=1
+ l=5.0e-4 nx=101
.MODEL DIODE ZOD

.TRAN 1.0e-3 12.0e-2

.print TRAN format=tecplot
+ v(1) v(2) v(3) v(4) I(VF) I(VT1)

.options NONLIN maxstep=100 maxsearchstep=3
+ searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.END

Figure 15-1. Voltage regulator circuit, using a one-dimensional TCAD diode.
Figure 15-3 illustrates the result of this netlist. The PDE device instance line is in

red, and the PDE device model line is in blue.

Figure 15-2. Voltage regulator schematic The diode, Z1, is the PDE device in this
example.
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The mesh points 𝑖 = 0 − 100 will have the following locations, 𝑥𝑖:

𝑥𝑖 = 𝑖Δ𝑥

𝑥𝑜 = 0.0 cm
𝑥1 = 5.0e-6 cm
𝑥2 = 10.0e-6 cm

...

𝑥100 = 5.0e-4 cm

15.2.2. Boundary Conditions and Doping Profile

The cited netlist example relies mostly on default parameters; therefore, it specifies nothing about
electrodes, or boundary conditions, and has a minimal doping specification. A one-dimensional device can
have only two electrodes connected to the circuit. The electrodes are at opposite ends of the domain, one at
the first mesh point (x=0.0 cm, i=0) and the other at the opposite end of the domain, at the last mesh point
(x=5.0e-4 cm, i=101).

The electrode associated with the first mesh point (x=0.0 cm) is connected to the second circuit node on
the instance line, while the electrode associated with the last mesh point (x=l) is connected to the first
circuit node on the instance line. For the doping used in this example, the junction is in the exact center of
the device (x=l/2), and the n-side is the region defined by x<l/2, and the p-side is the region defined by
x>l/2. This default doping, along with the electrode-circuit connectivity, results in a one-dimensional
device that behaves like a traditional SPICE-style diode. For a complete discussion of how to specify a
doping profile see section 15.4.1. For a complete discussion of how to specify electrodes (including
boundary conditions), see section 15.5.

15.2.3. Results

Figure 15-3 shows the transient behavior of this circuit. The voltage drop across the diode (V(3)) is nearly
the same for a wide range of currents, and is nearly constant. The voltage drop (V(2)-V(3)) across the series
resistor, R1, is much more sensitive, and so most of the voltage variation of the input sine wave is accounted
for by R1.

15.3. Two-Dimensional Example

Figure 15-4 presents an example netlist for a simulation of a two-dimensional bipolar transistor. As before,
the PDE device instance line is in red, while the PDE device model line is in blue. In this case, note that the
model line specifies the level, which is set to 2. This is required for the two-dimensional device. This
particular example is a DC sweep of a bipolar transistor device. Figure 15-5 presents a schematic
illustrating this circuit.
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Figure 15-3. Results for voltage regulator. In the left plot, the transient output is
shown, in which the input voltage is blue and the output voltage is red. In the right
plot, the initial carrier densities are shown, with the electron density in red and the

hole density in blue.

15.3.1. Netlist Explanation

The two-dimensional device can have 2 to 4 electrodes. In this example there are three; nodes 5, 3, and 7,
corresponding to the three names on the “node” line, which appears as:

+ node = {name = collector, base, emitter}

This line specifies that node 5 is connected to an electrode named “collector,” node 3 is connected to an
electrode named “base,” and node 7 is connected to an electrode named “emitter”. Although this example
only contains the electrode names, the “node” specification can contain a lot of information. Section 15.5
provides a full explanation of the electrode parameters.

The next line contains parameters concerned with plotting the results, and appears as follows:

+ tecplotlevel=2 txtdatalevel=1

These are not related to the output specified by .PRINT, which outputs circuit data. The tecplotlevel
command enables files to be output readable by Tecplot, which can then be used to create contour plots of
quantities such as the electron density, electrostatic potential and the doping profile. Figures 15-6 and 15-7
contain examples of Tecplot-generated contour plots, which were generated from the results of this
example.

The txtdatalevel command enables a text file with volume averaged information to be output to a file.
Xyce will update both of these output files at each time step or DC sweep step.

The next line, mobmodel=arora, specifies which mobility model to use. Section 15.8 provides for more
detail on available mobility models.

The last two lines, specify the mesh of the device, and are given by:

+ l=2.0e-3 w=1.0e-3
+ nx=30 ny=15
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Two-Dimensional Example
VPOS 1 0 DC 5V
VBB 6 0 DC -2V
RE 1 2 2K
RB 3 4 190K

YPDE BJT 5 3 7 PDEBJT meshfile=internal.msh
+ node = {name = collector, base, emitter}
+ tecplotlevel=2 txtdatalevel=1
+ mobmodel=arora
+ l=2.0e-3 w=1.0e-3
+ nx=30 ny=15
.MODEL PDEBJT ZOD level=2

* Zero-volt sources acting as an ammeter to measure the
* base, collector, and emmitter currents, respectively
VMON1 4 6 0
VMON2 5 0 0
VMON3 2 7 0

.DC VPOS 0.0 12.0 0.5 VBB -2.0 -2.0 1.0

.options NONLIN maxstep=70 maxsearchstep=1
+ searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
+ firstdcopstep=0 lastdcopstep=1
.PRINT DC V(1) I(VMON1) I(VMON2) I(VMON3)
.END

Figure 15-4. Two-dimensional BJT netlist. Figures 15-6 and 15-7 provide some of the
results of this netlist.
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Figure 15-5. Two-dimensional BJT circuit schematic This schematic is for the circuit
described by the netlist in figure 15-4. The mesh in the large circle is the mesh used
in the example. The other mesh, which contains some mesh refinement, is included

in the figure as an example of what is possible with an external mesh generator.

This numbers are used in nearly the same way as the one-dimensional case used the l and nx parameters.
The mesh is Cartesian, and the spacing is uniform.

15.3.2. Doping Profile

As in the one-dimensional example, the two-dimensional example in figure 15-4 specifies nothing about
the doping profile, and thus relies on default settings. In this case there are three specified electrodes, which
by default results in the doping profile of the bipolar junction transistor (BJT). Section 15.4 provides a
complete description of how to specify a doping profile, and describes the various default impurity
profiles.

15.3.3. Boundary Conditions and Electrode Configuration

As in the one-dimensional example, the two-dimensional example in figure 15-4 specifies nothing about the
electrode configuration or the boundary conditions, and relies on default settings. To be consistent with the
default three-terminal doping, the device has terminals that correspond to that of a BJT. All three electrodes
(collector, base, emitter) are along the top of the device.

By default all electrodes are considered to be neutral contacts. The boundary conditions applied to the
electron density, hole density, and electrostatic potential are all Dirichlet conditions.

Section 15.5 discusses how to specify electrodes in detail (including boundary conditions).

226



Figure 15-6. Initial two-dimensional BJT result A Tecplot-generated contour plot of
the electrostatic potential at the first DC sweep step of the netlist in figure 15-4.

15.3.4. Results

Figures 15-6, 15-7 and 15-8 provide results for the two-dimensional example. The first two figures are
contour plots of the electrostatic potential. The first corresponds to the first DC sweep step, where VPOS is
set to 0.0 Volts. The second corresponds to the final DC sweep step, in which VPOS has a value of 12.0
volts. The voltage source, VPOS, applies a voltage to the emitter load resistor, RE, so some of the 12.0V is
dropped across RE, an the rest is applied to the BJT.

The third figure is an I-V curve of the dependence of the three terminal currents on the applied emitter
voltage. For the entire sweep, −2.0 V has been applied to the base load resistor and, as this transistor is a
PNP transistor, this results in the transistor being in an “on” state. The emitter-collector current varies
nearly linearly with the applied emitter voltage. Also, as can be expected because of current conservation,
the three currents sum to nearly zero.

Note that the mesh used to generate these results is visible in figure 15-6, and was generated using the
internal “uniform mesh”. This mesh will not produce a very accurate result, as it does not resolve the
depletion regions very well. Accuracy can often be improved using mesh refinement near the depletion
regions. However, such meshes must be read in from an external mesh generator, which currently has
limited support as a alpha-level capability.

15.4. Doping Profile

Xyce used default doping profiles in the two examples from the previous section, so no doping parameters
were specified. Default profiles are uniquely specified by the number of electrodes. In practice, especially
for two-dimensional simulations, the user will generally need to specify the doping profile manually.

15.4.1. Manually Specifying the Doping

Figure 15-9 shows a circuit netlist for a one-dimensional device with a detailed, manual specification of the
doping profile. Figure 15-11 illustrates a similar, two-dimensional version of this problem. For this
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Figure 15-7. Final two-dimensional BJT result. A Tecplot-generated contour plot of
the electrostatic potential at the last DC sweep step of the netlist in figure 15-4.

Figure 15-8. I-V two-dimensional BJT result for the netlist in figure 15-4. The three
plotted currents are through the three BJT electrodes, and as expected they add (if

corrected for sign) to zero. I(VMON1) is the base current, I(VMON2) the collector
current, and I(VMON3) the emitter current. V(1) is the voltage applied to the emitter

load resistor, RE.
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Doping and Electrode specification example
vscope 0 1 0.0
rscope 2 1 50.0
cid 3 0 1.0u
r1 4 3 1515.0
vid 4 0 5.00
YPDE Z1DIODE 2 3 PDEDIODE nx=301 l=26.0e-4
* DOPING REGIONS: region 1, region 2, region 3
+ region= {name = reg1, reg2, reg3
+ function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4.0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 24.5e-04, 9.0e-04
+ xwidth = 0.0 , 4.5e-04, 8.0e-04
+ flatx = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------
.MODEL PDEDIODE ZOD level=1
.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.DC vscope 0 0 1
.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)
.END

Figure 15-9. One-dimensional example, with detailed doping

discussion, the one-dimensional example will be referred to, but the information conveyed is equally
applicable to the two-dimensional case.

In both examples, the parameters associated with doping are in red text. The doping is specified with one or
more regions, which are summed together to obtain the total profile. Doping regions are specified in a
tabular format, with each column representing a different region.

In the one-dimensional example, there are three regions, which are illustrated in figure 15-10. Region 1 is a
uniform n-type doping, with a constant magnitude of 4.0e+12 donors per cubic cm. This magnitude is set
by the parameter nmax. As the doping in this region is spatially uniform, the only meaningful parameters
are function (which in this case specifies a spatially uniform distribution), type (ntype or ptype) and
nmax. The other parameters, nmin through flatx (1D) or flaty (2D), are ignored for a spatially uniform
region.

Region 2 is a more complicated region, in that the doping profile varies spatially. This region is doped with
p-type impurities, and the doping profile has a Gaussian shape. Semiconductor processing often consists of
an implant followed by an anneal, which results in a diffusive profile. The Gaussian function is a solution to
the diffusion problem, when it is assumed that the impurity exists in a fixed quantity.

The peak of the Region 2 doping profile is given by the parameter nmax, and is 1.0e+19 acceptors per
cubic cm. This peak has a location in the device specified by xloc=24.5e-04 cm. The parameters nmin
and xwidth are fitting parameters.

229



Figure 15-10. Doping profile, absolute value This corresponds to the doping
specified by the netlist in figure 15-9

Region 3 is also based on a Gaussian function, but unlike Region 2, it is flat on one side of the peak. This is
set by the flatx parameter. Table 15-1 lists conventions for “flat” parameters.

Table 15-1. Description of the flatx, flaty doping parameters

flatx or flaty value Description 1D Cross Section

0 Gaussian on both sides of the peak (xloc) location.

+1 Gaussian if x>xloc, flat (constant at the peak value) if x<xloc.

-1 Gaussian if x<xloc, flat (constant at the peak value) if x>xloc.
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15.4.2. Default Doping Profiles

Xyce has a few default doping profiles that are invoked when the user doesn’t specify detailed doping
information. The default doping profiles are an artifact of early TCAD device development in Xyce, but are
sometimes still useful. In particular, the simple step-junction diode is often a useful canonical problem. It is
convenient to invoke a step-junction doping without having to use the tabular specification for more
complex regions.

Most real devices will have doping profiles that do not exactly match the default profiles. When attempting
to simulate a realistic device, it will be necessary to skip the defaults and use the region tables described in
the previous section.

15.4.2.1. One-Dimensional Case

For the one-dimensional case, Xyce assumes that the doping profile is a simple junction diode, with the
junction location exactly in the middle. The acceptor and donor concentrations are given by the parameters
Na and Nd, respectively.

The use of Na and Nd, implicitly specifies a step junction doping profile, and is mutually exclusive with the
more complex “doping region” table specification, described in section 15.4.1. If a netlist is input to Xyce
with a “doping region” table and Na (or Nd), the code will immediately exit with an error.

15.4.2.2. Two-Dimensional Case

Doping level defaults in the two-dimensional case are somewhat more complicated than in the
one-dimensional case, because having two-dimensions allows for more configurations, and an arbitrary
number (2 to 4) of electrodes. During Xyce development, it was decided that the default doping profiles
would be determined uniquely by the number of electrodes present. Table 15-2 provides the three available
default dopings. In the case of the BJT and MOSFET dopings, it is possible to specify either n-type or
p-type using the type instance parameter. If the detailed, manual doping is used, then the type parameter
is ignored.

For a two-electrode device, the default doping is that of a simple diode. Xyce uses the acceptor and donor
doping parameters, Na and Nd, in the same manner as in the one-dimensional device—the junction is
assumed to be exactly in the middle of the domain.

For a three-electrode device (as shown in the example), the default doping is that of a bipolar junction
transistor (BJT). By default the transistor is a PNP, but by setting the instance parameter type=NPN, an NPN
transistor can be specified instead. The two-dimensional example in section 15.3 relies on this default.

For a four-terminal device, the default doping is that of a metal-oxide-semiconductor (MOSFET). The
maximum number of electrodes is four, and no default profiles are available for more than four electrodes.
By default this transistor is assumed to be NMOS, rather than PMOS.

Table 15-2. Default doping profiles for different numbers of electrodes

Number of Electrodes Doping Profile
2 Step Function Diode

231



Table 15-2. Default doping profiles for different numbers of electrodes

Number of Electrodes Doping Profile
3 Bipolar Junction Transistor (BJT)

4 Metal-Oxide Semiconductor Field-Effect
Transistor(MOSFET)
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15.5. Electrodes

Because minimal electrodes were specified in the two examples given above, Xyce used the defaults. In
practice, especially for two-dimensional simulations, the user must specify the electrodes in more detail.

15.5.1. Electrode Specification

A detailed electrode specification is specified in blue text in figure 15-11. As with the doping parameters,
the electrode parameters are specified in a tabular format, in which each table column specifies the different
electrode parameters. The name parameter is the only required parameter.

The number of specified electrodes must match the number of connected circuit nodes, and the order of the
electrode columns, from left to right, is in the same order as the circuit nodes, also from left to right. In the
figure 15-11 example, the first electrode column, which specifies an electrode named “anode,” is connected
to the circuit through circuit node 2. Respectively, the second column, for the “cathode” electrode, is
connected to the circuit via circuit node 3.

15.5.1.1. Boundary Conditions

In the example, the default bc parameter has been set to “Dirichlet” on all the electrodes. The bc parameter
sets the type of boundary condition applied to the density variables, the electron density and the hole
density. Dirichlet and Neumann are two possible settings for the bc parameter. If Dirichlet is specified, the
electron and hole densities are set to a specific value at the contact, and the applied values enforce charge
neutrality. (Note: The Xyce Reference Guide [3] provides the charge-neutral equation.) If Neumann is
specified, Xyce applies a zero-flux condition, which enforces that the current through the electrode will be
zero.

This parameter does not affect the electrostatic potential boundary condition. The boundary condition
applied to the potential is always Dirichlet, and is (in part) determined from the connected nodal voltage. To
apply a specific voltage to an electrode contact, a voltage source should be attached to it, such as VBB in
figure 15-5.

15.5.1.2. Electrode Material

Table 15-3 lists several different electrode materials that can be specified. The main effect of any metal
(nonneutral) material is that Xyce imposes a Schottky barrier at the contact, generally making numerical
solutions more difficult, so materials should be applied with caution.

The Xyce Reference Guide [3] provides a detailed description of Schottky barriers and how they are
imposed on contacts in Xyce. The guide also provides values for electron affinities of various bulk materials
and workfunction values for the various metal contacts.

Table 15-3. Electrode Material Options. NOTE: Neutral contacts are the default, and
pose the least problem to the solvers.

Material Symbol Comments

neutral neutral Default
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Table 15-3. Electrode Material Options. NOTE: Neutral contacts are the default, and
pose the least problem to the solvers.

Material Symbol Comments
aluminum al

p+-polysilicon ppoly

n+-polysilicon npoly

molybdenum mo

tungsten w

molybdenum disilicide modi

tungsten disilicide wdi

copper cu

platinum pt

gold au

There is also an oxideBndryFlag parameter, which if set to true (1), will model the contact as having an
oxide layer in between the metal contact and the bulk semiconductor. By default, oxideBndryFlag is false
(0).

15.5.1.3. Location Parameters

Each electrode has three location parameters: start, end, and side.

Xyce assumes the internal mesh to be rectangular, and the electrodes can be on any of the sides. The four
side possibilities are: top, bottom, right and left. These four sides are parallel to the mesh directions.
The start and end parameters are floating-point numbers that specify the starting and ending location of
an electrode, in centimeters.

The lower left hand corner of the mesh rectangle is located at the origin. A side=bottom electrode with
start=0.0 and end=1.0e-4 will originate at the lower left hand corner of the mesh (x=0.0, y=0.0) and
end at (x=1.0e-4, y=0.0).

Xyce will attempt to match the specified electrode to the specified mesh. However, if the user specifies a
mesh that is not consistent with the electrode locations then the electrodes will not be able to have the exact
length specified. For example, if the mesh spacing is Δ𝑥 = 1.0e-5, then the electrodes can only have a length
that is a multiple of 1.0e-5.

15.5.2. Electrode Defaults

Defaults exist for each electrode parameter other than names. In practice, the electrode locations are usually
explicitly specified using the electrode table. Default electrode locations were created to correspond with
the default dopings; they should only be used in that context.
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Doping and electrode specification example
vscope 1 0 0.0
rscope 2 1 50.0
cid 3 0 1.0u
r1 4 3 1515.0
vid 4 0 1.00
*------------- Diode PDE device ------------------
YPDE Z1DIODE 2 3 PDEDIODE
+ tecplotlevel=1 txtdatalevel=1 cyl=1
+ meshfile=internal.msh
+ nx=25 l=70.0e-4 ny=40 w=26.0e-4
* ELECTRODES: ckt node 2, ckt node 3
+ node = {name = anode, cathode
+ bc = dirichlet, dirichlet
+ start = 0.002, 0.002
+ end = 0.005, 0.005
+ side = top, bottom
+ material = neutral, neutral
+ oxideBndryFlag = 0, 0 }
* DOPING REGIONS: region 1, region 2, region 3
+ region= {name = reg1, reg2, reg3
+ function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4.0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 60.0e-04, 100.0
+ xwidth = 0.0 , 4.0e-04, 1.0
+ yloc = 0.0 , 24.5e-04, 9.0e-04
+ ywidth = 0.0 , 4.5e-04, 8.0e-04
+ flatx = 0 , -1 , -1
+ flaty = 0 , 0 , -1 }
*--------end of Diode PDE device ----------------
.MODEL PDEDIODE ZOD level=2
.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.DC vscope 0 0 1
.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)
.END

Figure 15-11. Two-dimensional example, with detailed doping and detailed
electrodes.
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15.5.2.1. Location Parameters

In practice, the electrode locations will usually be explicitly specified, but they have defaults to correspond
with the default dopings. The default electrode locations in one-dimensional devices are for a diode. One
electrode is located at x=xmin, while the other is located at x=xmax.

The default electrode locations in two-dimensional devices depend on the number of electrodes, similar to
the default dopings. Table 15-2 can be used to determine such configurations. For the two-terminal diode,
the two electrodes are along the y-axis, at the x=xmin and x=xmax extrema. For the three-terminal BJT, all
three electrodes are parallel to the x-axis, along the top, at y=ymax. For the four-terminal MOSFET, the
drain, gate, and source electrodes are also along the top, but the bulk electrode spans the entire length of the
bottom of the mesh, at y=ymin.

15.6. Meshes

One- and two-dimensional devices can create Cartesian meshes. For two-dimensional devices, users must
specify meshfile=internal.msh to invoke the Cartesian meshing capability (this is necessary for
historical reasons). Meshes generated in this manner are very simple as there are only two parameters per
dimension, and the resulting mesh is uniform. Figure 15-6 provides an example of such a mesh. Mesh
spacing is determined from the following expressions:

Δ𝑥 =
𝑙

𝑛𝑥 − 1
(15.8)

Δ𝑦 =
𝑤

𝑛𝑦 − 1
(15.9)

This mesh specification assumes the domain is a rectangle. Nonrectangular domains can only be described
using an external mesh program.

Externally generated meshes for 1D devices can be including using meshfile=<filename> in the PDE
device instance line. The file specified by <filename> must consist of two space-delimited columns of
numbers. The first column specifies the location of the mesh points. The second column is not currently
used, but it must exist, so it is suggested to make it a column of zeros.

15.7. Cylindrical meshes

For two-dimensional devices, the simulation area may be a cylinder slice. This capability is turned on by
the instance parameter cyl=1 It is assumed that the axis of the cylinder corresponds to the minimum radius
(or x-axis value) of the mesh, while the circumference corresponds to the maximum radius (or maximum
x-axis value).

15.8. Mobility Models

There are several mobility models available to the one- and two-dimensional devices, and they are listed in
Table 15-4. These models are fairly common, and can be found in most device simulators. [49] [50]. The
Xyce Reference Guide [3] descibes these models in more detail.

236



Table 15-4. Mobility models available for PDE devices

Mobility Name Description Reference
arora Basic mobility model Arora, et al. [54]

analytic or caughey-thomas Basic mobility model Caughy and Thomas [55]

carr
Includes carrier-carrier
interactions Dorkel and Leturq [56]

philips Philips model Klassen [57, 58]

Setting the mobmodel parameter to the name of the model (as provided in the first column of table 15-4)
specifies the mobility model from the netlist. The mobility model is specified as an instance parameter on
the device instance line, as (typically) mobmodel=arora. Figure 15-4 provides a more detailed example.

The default mobility is “arora”, which is a basic model lacking carrier or field dependence. Because it lacks
these dependencies, it generally is more numerically robust. The “carr” model include carrier-carrier
dependence, as does the “philips” model. For all of these models, field dependence can be optionally turned
on from the netlist, using the fielddep=true parameter.

15.9. Bulk Materials

The bulk material is specified using the bulkmaterial instance parameter. Xyce supports Silicon (si) as a
default bulk material. It can also simulate several III-V materials, including Gallium Arsenide (gaas),
Germanium (ge), Indium Aluminum Arsenide (inalas or alinas), Indium Galium Arsenide (ingaas or
gainas), Indium Phosphide(inp), and Indium Galium Phosphide (ingap); but these materials have not
been extensively tested. The mobility models described in the previous section each support most of these
materials.

15.10. Output and Visualization

15.10.1. Using the .PRINT Command

For simple plots (such as I-V curves), output results for Xyce can be generated with the .PRINT statement,
which is described in detail in section 9.1.1. Figures 15-3 and 15-8 are examples of the kind of data that is
produced with .PRINT statement netlist commands. These particular figures were plotted in Tecplot, but
many other plotting programs would also have worked, including XDAMP [59].

15.10.2. Multidimensional Plots

Device simulation has visualization needs which go beyond that of conventional circuit simulation.
Multidimensional perspective and/or contour plots are often desirable. Xyce is capable of outputting
multi-dimensional plot data in several formats, including Tecplot (available for purchase from
http://www.tecplot.com), gnuplot (available free from http://www.gnuplot.info), and SGPLOT. Currently,
the options for each of these formats can only enable or disable the output of files, and when enabled, a new
file (or a new append to an existing file) will happen at every time step or DC sweep step.
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For long simulations, this may produce a prohibitive number of files. There is no equivalent to the
.OPTIONS OUTPUT INITIAL_INTERVAL command, nor does the output of plot data use this command.
Plot files are either output at every step or not at all.

For each type of plot file, the file is placed in the execution directory. Each individual device instance is
given a unique file, or files, and the file names are derived from the name of the PDE device instance. The
instance names provides the prefix, and the file type (Tecplot, gnuplot, Sgplot) determines the suffix.

15.10.2.1. Tecplot Data

Tecplot is a commercial plotting program from Amtec Engineering, Inc., and is a good choice for creating
contour plots of spatially dependent data. All of the graphical examples in this chapter were created with
Tecplot. (See figures 15-6 and 15-7 for examples.) The output of Tecplot files is enabled using the instance
parameter, tecplotlevel=1. If set to zero, no Tecplot files are output. If set to one, Xyce outputs a
separate Tecplot file for each nonlinear solve. If set to two, Xyce creates a single Tecplot file containing data
for every nonlinear solve and appends the file at the end of each solve.

By default tecplotlevel is set to one, meaning the code will produce a separate Tecplot file for each time
step or DC sweep step. The suffix for a Tecplot (ASCII text) data file is *.dat.

15.10.2.2. Gnuplot Data

Gnuplot is an open source plotting program available on most Linux/Unix platforms. The parameter for this
type of output is gnuplotlevel=1. This type of output file is off (zero) by default, meaning no gnuplot
files will be output. The suffix for gnuplot files is *gnu.dat. Like Tecplot files, gnuplot files are also in
ASCII text format.

15.10.3. Additional Text Data

Xyce can also output additioanl information for each PDE device by setting the instance parameter,
txtdatalevel=1. It is on (1) by default, so this output will happen unless specifically disabled by setting
the parameter to zero. A typical output file (associated with the netlist given in figure 15-4) is shown in
figure 15-12.
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Global data for DC step 1:
Current Time = 0.0000e+00

Vmin = -8.6931e-06
Vmax = 5.4030e-01
NnMin = 0.0000e+00
NnMax = 1.0000e+16
NpMin = 3.9240e+03
NpMax = 1.0000e+19

Information for electrode: COLLECTOR
potential: 2.9795e-01
current: 8.5365e-06
charge: -6.6211e-15
dIdVckt: 3.7993e-02
dQdVckt: 0.0000e+00

Information for electrode: BASE
potential: 5.4030e-01
current: -8.5408e-06
charge: 1.5958e-14
dIdVckt: 1.0463e+01
dQdVckt: 0.0000e+00

Information for electrode: EMITTER
potential: -8.6931e-06
current: 4.3465e-09
charge: -2.3232e-13
dIdVckt: 7.2130e+01
dQdVckt: 0.0000e+00

Figure 15-12. Text output, from the circuit given in figure 15-4.
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APPENDIX A. Third Party Licenses

Xyce makes use of code developed by various third parties. The following text is provided to comply with
the licenses of the codes that require it.

The ksparse solver in Xyce contains code derived from SPICE 3f5 source code:

Copyright (c) 1985-1991 The Regents of the University of California.
All rights reserved.

Permission is hereby granted, without written agreement and without
license or royalty fees, to use, copy, modify, and distribute this
software and its documentation for any purpose, provided that the
above copyright notice and the following two paragraphs appear in all
copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Xyce’s linear solver makes use of the AMD library:

AMD, Copyright (c), 1996-2015, Timothy A. Davis,
Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved.
Used in Xyce under the LGPL v2.1 license.

Parallel builds of Xyce use the Open MPI library:

Most files in this release are marked with the copyrights of the
organizations who have edited them. The copyrights below are in no
particular order and generally reflect members of the Open MPI core
team who have contributed code to this release. The copyrights for
code used under license from other parties are included in the
corresponding files.
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Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana
University Research and Technology
Corporation. All rights reserved.

Copyright (c) 2004-2010 The University of Tennessee and The University
of Tennessee Research Foundation. All rights
reserved.

Copyright (c) 2004-2010 High Performance Computing Center Stuttgart,
University of Stuttgart. All rights reserved.

Copyright (c) 2004-2008 The Regents of the University of California.
All rights reserved.

Copyright (c) 2006-2010 Los Alamos National Security, LLC. All rights
reserved.

Copyright (c) 2006-2010 Cisco Systems, Inc. All rights reserved.
Copyright (c) 2006-2010 Voltaire, Inc. All rights reserved.
Copyright (c) 2006-2011 Sandia National Laboratories. All rights

reserved.
Copyright (c) 2006-2010 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.
Copyright (c) 2006-2010 The University of Houston. All rights

reserved.
Copyright (c) 2006-2009 Myricom, Inc. All rights reserved.
Copyright (c) 2007-2008 UT-Battelle, LLC. All rights reserved.
Copyright (c) 2007-2010 IBM Corporation. All rights reserved.
Copyright (c) 1998-2005 Forschungszentrum Juelich, Juelich

Supercomputing Centre, Federal Republic of
Germany

Copyright (c) 2005-2008 ZIH, TU Dresden, Federal Republic of Germany
Copyright (c) 2007 Evergrid, Inc. All rights reserved.
Copyright (c) 2008 Chelsio, Inc. All rights reserved.
Copyright (c) 2008-2009 Institut National de Recherche en

Informatique. All rights reserved.
Copyright (c) 2007 Lawrence Livermore National Security, LLC.

All rights reserved.
Copyright (c) 2007-2009 Mellanox Technologies. All rights reserved.
Copyright (c) 2006-2010 QLogic Corporation. All rights reserved.
Copyright (c) 2008-2010 Oak Ridge National Labs. All rights reserved.
Copyright (c) 2006-2010 Oracle and/or its affiliates. All rights

reserved.
Copyright (c) 2009 Bull SAS. All rights reserved.
Copyright (c) 2010 ARM ltd. All rights reserved.
Copyright (c) 2010-2011 Alex Brick <bricka@ccs.neu.edu>. All rights

reserved.
Copyright (c) 2013-2014 Intel, Inc. All rights reserved.
Copyright (c) 2011-2014 NVIDIA Corporation. All rights reserved.

Additional copyrights may follow
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Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.

- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

The copyright holders provide no reassurances that the source code
provided does not infringe any patent, copyright, or any other
intellectual property rights of third parties. The copyright holders
disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties
intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Xyce uses the Trilinos Solver Framework:

Trilinos: An Object-Oriented Solver Framework
Copyright (2001) Sandia Corporation

Copyright (2001) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000, there is a non-exclusive license for use of this
work by or on behalf of the U.S. Government. Export of this program
may require a license from the United States Government.

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
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2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Corporation nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NOTICE: The United States Government is granted for itself and others
acting on its behalf a paid-up, nonexclusive, irrevocable worldwide
license in this data to reproduce, prepare derivative works, and
perform publicly and display publicly. Beginning five (5) years from
July 25, 2001, the United States Government is granted for itself and
others acting on its behalf a paid-up, nonexclusive, irrevocable
worldwide license in this data to reproduce, prepare derivative works,
distribute copies to the public, perform publicly and display
publicly, and to permit others to do so.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES DEPARTMENT
OF ENERGY, NOR SANDIA CORPORATION, NOR ANY OF THEIR EMPLOYEES, MAKES
ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR
RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY
INFORMATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS
THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

Some versions of Xyce use the Intel Math Kernel Library:

Intel Simplified Software License (Version April 2018)

Copyright (c) 2018 Intel Corporation.

Use and Redistribution. You may use and redistribute the software (the
"Software"), without modification, provided the following conditions
are met:
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* Redistributions must reproduce the above copyright notice and the
following terms of use in the Software and in the documentation
and/or other materials provided with the distribution.

* Neither the name of Intel nor the names of its suppliers may be used
to endorse or promote products derived from this Software without
specific prior written permission.

* No reverse engineering, decompilation, or disassembly of this
Software is permitted.

Limited patent license. Intel grants you a world-wide, royalty-free,
non-exclusive license under patents it now or hereafter owns or
controls to make, have made, use, import, offer to sell and sell
("Utilize") this Software, but solely to the extent that any such
patent is necessary to Utilize the Software alone. The patent license
shall not apply to any combinations which include this software. No
hardware per se is licensed hereunder.

Third party and other Intel programs. "Third Party Programs" are the
files listed in the "third-party-programs.txt" text file that is
included with the Software and may include Intel programs under
separate license terms. Third Party Programs, even if included with
the distribution of the Materials, are governed by separate license
terms and those license terms solely govern your use of those
programs.

DISCLAIMER. THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT ARE DISCLAIMED. THIS SOFTWARE IS NOT INTENDED FOR USE
IN SYSTEMS OR APPLICATIONS WHERE FAILURE OF THE SOFTWARE MAY CAUSE
PERSONAL INJURY OR DEATH AND YOU AGREE THAT YOU ARE FULLY RESPONSIBLE
FOR ANY CLAIMS, COSTS, DAMAGES, EXPENSES, AND ATTORNEYS’ FEES ARISING
OUT OF ANY SUCH USE, EVEN IF ANY CLAIM ALLEGES THAT INTEL WAS
NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE MATERIALS.

LIMITATION OF LIABILITY. IN NO EVENT WILL INTEL BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. YOU AGREE TO INDEMNIFY AND
HOLD INTEL HARMLESS AGAINST ANY CLAIMS AND EXPENSES RESULTING FROM
YOUR USE OR UNAUTHORIZED USE OF THE SOFTWARE.
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No support. Intel may make changes to the Software, at any time
without notice, and is not obligated to support, update or provide
training for the Software.

Termination. Intel may terminate your right to use the Software in the
event of your breach of this Agreement and you fail to cure the breach
within a reasonable period of time.

Feedback. Should you provide Intel with comments, modifications,
corrections, enhancements or other input ("Feedback") related to the
Software Intel will be free to use, disclose, reproduce, license or
otherwise distribute or exploit the Feedback in its sole discretion
without any obligations or restrictions of any kind, including without
limitation, intellectual property rights or licensing obligations.

Compliance with laws. You agree to comply with all relevant laws and
regulations governing your use, transfer, import or export (or
prohibition thereof) of the Software.

Governing law. All disputes will be governed by the laws of the United
States of America and the State of Delaware without reference to
conflict of law principles and subject to the exclusive jurisdiction
of the state or federal courts sitting in the State of Delaware, and
each party agrees that it submits to the personal jurisdiction and
venue of those courts and waives any objections. The United Nations
Convention on Contracts for the International Sale of Goods (1980) is
specifically excluded and will not apply to the Software.

Xyce’s implementation of the Diode-CMC model, version 2.0.0, is derived from Verilog-A sources
provided under the following license:

Silicon Integration Initiative (Si2)
Compact Model Coalition In-Code Statement

Software is distributed as is, completely without warranty or service
support. NXP Semiconductors, Hiroshima University, and Silicon
Integration Initiative, Inc. (Si2), along with their employees are not
liable for the condition or performance of the software.

NXP Semiconductors, Hiroshima University, and Si2 own the copyright
and grant users a perpetual, irrevocable, worldwide, non-exclusive,
royalty-free license with respect to the software as set forth below.

NXP Semiconductors, Hiroshima University, and Si2 hereby disclaim all
implied warranties.

NXP Semiconductors, Hiroshima University, and Si2 grant the users the
right to modify, copy, and redistribute the software and
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documentation, both within the user’s organization and externally,
subject to the following restrictions

1. The users agree not to charge for the NXP Semiconductors,
Hiroshima University, and Si2 -developed code itself but may charge
for additions, extensions, or support.

2. In any product based on the software, the users agree to
acknowledge NXP Semiconductors, Hiroshima University, and Si2 that
developed the software. This acknowledgment shall appear in the
product documentation.

3. Redistributions to others of source code and documentation must
retain the copyright notice, disclaimer, and list of conditions.

4. Redistributions to others in binary form must reproduce the
copyright notice, disclaimer, and list of conditions in the
documentation and/or other materials provided with the distribution.

Xyce’s implementations of the L-UTSOI and EKV 2.6 models are derived from Verilog-A sources provided
under the ECL-2.0 license. The L-UTSOI is Copyright 2020 CEA-Leti.

The ECL-2.0 license text is as follows:

Licensed under Educational Community License, Version 2.0 (the
"License"); you may not use this file except in compliance with the
License. You may obtain a copy of the license at

http://opensource.org/licenses/ECL-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.

Xyce’s implementation of the MEXTRAM model, version 504.12.1, is derived from Verilog-A sources
provided under the following license:

Copyright (c) 2000-2007, NXP Semiconductors
Copyright (c) 2007-2014, Delft University of Technology
Copyright (c) 2015, Auburn University

INTELLECTUAL PROPERTY NOTICE, DISCLAIMER AND LICENSE

The Mextram model and documentation presented at this website, denoted
as the Model, has been developed by NXP Semiconductors until 2007,
Delft University of Technology from 2007 to 2014, and Auburn
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University since April 2015.

The Model is distributed as is, completely without any expressed or
implied warranty or service support. NXP Semiconductors, Delft
University of Technology, Auburn University and their employees are
not liable for the condition or performance of the Model.

NXP Semiconductors, Delft University of Technology, Auburn University
own the copyright and grant users a perpetual, irrevocable, worldwide,
non-exclusive, royalty-free license with respect to the Model as set
forth below.

NXP Semiconductors, Delft University of Technology, Auburn University
hereby disclaim all implied warranties.

NXP Semiconductors, Delft University of Technology, Auburn University
grant the users the right to modify, copy, and redistribute the Model
and documentation, both within the user’s organization and externally,
subject to the following restrictions

1. The users agree not to charge for the code itself but may charge
for additions, extensions, or support.

2. In any product based on the Model, the users agree to acknowledge
NXP Semiconductors, Delft University of Technology, Auburn
University that developed the Model. This acknowledgment shall
appear in the product documentation.

3. The users agree to obey all restrictions governing redistribution
or export of the Model.

4. The users agree to reproduce any copyright notice which appears on
the Model on any copy or modification of such made available to
others.

Xyce’s implementation of the HICUM/L0 model, version 1.32, is derived from Verilog-A sources provided
under the following license:

Software is distributed as is, completely without warranty or service
support. Michael Schroter and his team members are not liable for the
condition or performance of the software.

Michael Schroter owns the copyright and grants users a perpetual,
irrevocable, worldwide, non-exclusive, royalty-free license with
respect to the software as set forth below.

Michael Schroter hereby disclaims all implied warranties.
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Michael Schroter grants the users the right to modify, copy, and
redistribute the software and documentation, both within the user’s
organization and externally, subject to the following restrictions.

1. The users agree not to charge for the model owner’s code itself but
may charge for additions, extensions, or support.

2. In any product based on the software, the users agree to
acknowledge Michael Schroter who developed the model and software.
This acknowledgment shall appear in the product documentation.

3. Redistributions to others of source code and documentation must
retain the copyright notice, disclaimer, and list of conditions.

4. Redistributions to others in binary form must reproduce the
copyright notice, disclaimer, and list of conditions in the
documentation and/or other materials provided with the distribution

Xyce’s implementation of the HICUM/L2 model, version 2.34, is derived from Verilog-A sources provided
under the following license:

The Software is distributed as is, completely without expressed or
implied warranty or service support. Michael Schroter and his team
members are not liable for the condition or performance of the
software.

Michael Schroter owns the copyright and grants users a perpetual,
irrevocable, worldwide, non-exclusive, royalty-free license with
respect to the software as set forth below.

Michael Schroter hereby disclaims all implied warranties.

Michael Schroter grants the users the right to modify, copy, and
redistribute the software and documentation, both within the user’s
organization and externally, subject to the following restrictions.

1. The users agree not to charge for the model owner code itself but
may charge for additions, extensions, or support.

2. In any product based on the software, the users agree to
acknowledge Michael Schroter that developed the model and software.
This acknowledgment shall appear in the product documentation.

3. Users agree to obey all government restrictions governing
redistribution or export of the software.

4. The Users agree to reproduce any copyright notice which appears on
the software and documentation on any copy or modification of such
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made available to others.

Xyce’s implementations of the BSIM3 v.3.2.2, the BSIM4 v. 4.6.1, the BSIM4 v. 4.7.0, and the BSIM-SOI
v. 3.2, are based on the original code of those devices provided by University of California, Berkeley. They
all have the following license:

Software is distributed as is, completely without warranty or service
support. The University of California and its employees are not liable
for the condition or performance of the software.

The University owns the copyright but shall not be liable for any
infringement of copyright or other proprietary rights brought by third
parties against the users of the software.

The University of California hereby disclaims all implied warranties.

The University of California grants the users the right to modify,
copy, and redistribute the software and documentation, both within the
user’s organization and externally, subject to the following
restrictions

1. The users agree not to charge for the University of California code
itself but may charge for additions, extensions, or support.

2. In any product based on the software, the users agree to
acknowledge the UC Berkeley BSIM Research Group that developed the
software. This acknowledgment shall appear in the product
documentation.

3. The users agree to obey all U.S. Government restrictions governing
redistribution or export of the software.

4. The users agree to reproduce any copyright notice which appears on
the software on any copy or modification of such made available
to others.

Version 4.8.2 of the BSIM4 is licensed under the Educational Community License, Version 2.0:

Copyright 2020 University of California

Licensed under Educational Community License, Version 2.0 (the
"License"); you may not use this file except in compliance with the
License. You may obtain a copy of the license at

http://opensource.org/licenses/ECL-2.0

Unless required by applicable law or agreed to in writing, software
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distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.

Xyce’s implementation of the BSIM6 model, version 6.1.1, is derived from Verilog-A sources provided
under the following license:

Software is distributed as is, completely without warranty or service
support. The University of California and its employees are not liable
for the condition or performance of the software.

The University owns the copyright but shall not be liable for any
infringement of copyright or other proprietary rights brought by third
parties against the users of the software.

The University of California hereby disclaims all implied warranties.

The University of California grants the users the right to modify,
copy, and redistribute the software and documentation, both within the
user’s organization and externally, subject to the following
restrictions

1. The users agree not to charge for the University of California code
itself but may charge for additions, extensions, or support.

2. In any product based on the software, the users agree to
acknowledge the UC Berkeley BSIM Research Group that developed the
software. This acknowledgment shall appear in the product
documentation.

3. The users agree to obey all U.S. Government restrictions governing
redistribution or export of the software.

4. The users agree to reproduce any copyright notice which appears on
the software on any copy or modification of such made available
to others.

Xyce’s implementations of the BSIM-SOI model, versions 4.5 and 4.6.1, are derived from Verilog-A
sources provided under the following license:

The Regents of the University of California and Analog Devices, Inc.
("Authors") own the copyright but shall not be liable for any
infringement of copyright or other proprietary rights brought by third
parties against the users of the software.

The Authors jointly grant the users the right to modify, copy, and
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redistribute the software and documentation, both within the user’s
organization and externally, subject to the following conditions:

1. The users agree not to charge for the original source code itself
but may charge for additions, extensions, or support.

2. In any product based on the software, the users agree to acknowledge
the UC Berkeley BSIM Research Group that developed the software. This
acknowledgment shall appear in the product documentation.

3. The users agree to obey all U.S. Government restrictions governing
redistribution or export of the software.

4. Redistributions of source code must retain the above copyright
notices, this list of conditions and the following disclaimer.

5. Redistributions in binary form must reproduce the above copyright
notices, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

6. Users may not claim authorship of the original software. Modified
versions of the software must be plainly marked as such.

7. Users may not suggest any sponsorship or endorsement by the Authors
of users’ product.

THIS SOFTWARE IS PROVIDED BY AUTHORS AS IS AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Xyce’s implementations of the BSIM-CMG model, versions 107.0.0 and 110.0.0, are derived from
Verilog-A sources provided under the following license:

Software is distributed as is, completely without warranty or service
support. The University of California and its employees are not liable
for the condition or performance of the software.

The University owns the copyright but shall not be liable for any
infringement of copyright or other proprietary rights brought by third
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parties against the users of the software.

The University of California hereby disclaims all implied warranties.

The University of California grants the users the right to modify,
copy, and redistribute the software and documentation, both within the
user’s organization and externally, subject to the following
restrictions

1. The users agree not to charge for the University of California code
itself but may charge for additions, extensions, or support.

2. In any product based on the software, the users agree to
acknowledge the UC Berkeley BSIM Research Group that developed the
software. This acknowledgment shall appear in the product
documentation.

3. The users agree to obey all U.S. Government restrictions governing
redistribution or export of the software.

4. The users agree to reproduce any copyright notice which appears on
the software on any copy or modification of such made available
to others.

Xyce’s implementation of the MVS model, version 2.0.0, is derived from Verilog-A sources provided under
the following license:

Copyright @ 2013 Massachusetts Institute of Technology (MIT)

The terms under which the software and associated documentation (the
Software) is provided are as the following:

The Software is provided "as is", without warranty of any kind,
express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement.
In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in an action of contract,
tort or otherwise, arising from, out of or in connection with the
Software or the use or other dealings in the Software.

MIT grants, free of charge, to any users the right to modify, copy,
and redistribute the Software, both within the user’s organization and
externally, subject to the following restrictions:

1. The users agree not to charge for the MIT code itself but may
charge for additions, extensions, or support.

2. In any product based on the Software, the users agree to
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acknowledge the MIT VS Model Research Group that developed the
software. This acknowledgment shall appear in the product
documentation.

3. The users agree to obey all U.S. Government restrictions governing
redistribution or export of the software.

4. The users agree to reproduce any copyright notice which appears on
the software on any copy or modification of such made available to
others.

Xyce’s implementation of the PSP model, version 102.5.0, is derived from Verilog-A sources provided
under the following license:

INTELLECTUAL PROPERTY NOTICE, DISCLAIMER AND LICENSE

The compact model software and documentation presented at this website
form a whole that will henceforth be denoted as the "Model".

The Model presented at this website has been co-developed by NXP
Semiconductors and Arizona State University until and including 2011.
For this part of the Model, NXP Semiconductors claims undivided
ownership and copyrights.

Since 2012 until today the Model has been co-developed by
NXP Semiconductors and Delft University of Technology and
for this part each claim undivided ownership and copyrights.

DISCLAIMER

The owners are fully free to further develop, adapt and extend the
Model as they judge necessary or desirable.

The Model is distributed as is, completely without any express or
implied warranty, or service support. The owners and their employees
are not liable in any way for the condition or performance of the
Model. The owners hereby disclaim all implied warranties.

LICENSE

NXP Semiconductors and Delft University of Technology hereby grant
users a perpetual, irrevocable, worldwide, non-exclusive, royalty-free
license with respect to Versions of the Model which have been released
through this website http://psp.ewi.tudelft.nl.
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NXP Semiconductors and Delft University of Technology grant the users
the right to modify, copy and redistribute the Model, both within the
user’s organization and externally, subject to the following
restrictions.

RESTRICTIONS

1. The users agree not to charge for the Model itself but may
charge for additions, extensions, or support.

2. In any product based on the Model, the users agree to acknowledge
the owners as developers of the Model. This acknowledgment shall
appear in the product documentation.

3. The users agree to only use the name of CMC standard models to
identify implementations of the CMC standard models which produce
the same outputs as Standard code for the same inputs passing all
CMC QA tests.

4. The users agree to obey all government restrictions governing
redistribution or export of the software.

5. The users agree to reproduce any copyright notice which appears on
the software and documentation on any copy or modification of such
made available to others.

Xyce’s implementations of the PSP model, version 103.4.0, and the JUNCAP diode, are derived from
Verilog-A sources provided under the following license:

Software is distributed as is, completely without warranty or service
support. The Commissariat a l’energie atomique et aux energies
alternatives (CEA), NXP Semiconductors, and Delft University of
Technology, along with their employees are not liable for the
condition or performance of the software.

NXP Semiconductors, Delft University of Technology, and CEA own the
copyright and grant users a perpetual, irrevocable, worldwide,
non-exclusive, royalty-free license with respect to the software as
set forth below.

NXP Semiconductors, Delft University of Technology, and CEA hereby
disclaim all implied warranties.

NXP Semiconductors, Delft University of Technology, and CEA grant the
users the right to modify, copy, and redistribute the software and
documentation, both within the user’s organization and externally,
subject to the following restrictions:
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1. The users agree not to charge for the NXP Semiconductors, Delft
University of Technology, and CEA-developed code itself but may
charge for additions, extensions, or support.

2. In any product based on the software, the users agree to
acknowledge NXP Semiconductors, Delft University of Technology,
and CEA that developed the software. This acknowledgment shall
appear in the product documentation.

3. Redistributions to others of source code and documentation must
retain the copyright notice, disclaimer, and list of conditions.

4. Redistributions to others in binary form must reproduce the
copyright notice, disclaimer, and list of conditions in the
documentation and/or other materials provided with the
distribution.

Xyce’s implementation of the EKV 3.0 model is derived from Verilog-A sources developed by the EKV
Team of the Electronics Laboratory-TUC (Technical University of Crete). They are included in Xyce under
license from Technical University of Crete. The official web site of the EKV model is
http://ekv.epfl.ch/.

Due to licensing restrictions, the EKV MOSFETs are not available in open-source versions of Xyce.
The license for EKV3 authorizes Sandia National Laboratories to distribute EKV3 only in binary
versions of the code.
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