
DISCLAIMER 

This report was prepared as an account of work sponsored by an 

agency of the United States Government. Neither the United States 

Government nor any agency thereof, nor any of their employees, 

makes any warranty, express or implied, or assumes any legal liability 

or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights. Reference 

herein to any specific commercial product, process, or service by 

trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or any agency thereof. The 

views and opinions of authors expressed herein do not necessarily 

state or reflect those of the United States Government or any agency 

thereof.  Reference herein to any social initiative (including but not 

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits 

Plans (CBP); Justice 40; etc.) is made by the Author independent of 

any current requirement by the United States Government and does 

not constitute or imply endorsement, recommendation, or support by 

the United States Government or any agency thereof. 



SANDIA REPORT
SAND2025-06635
Printed June 2025

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Modal Field Reconstruction in Resonant
Cavities in the Fundamental and
Undermoded Frequency Regimes
Jon Wallace and Chandler Smith

SAND2025-06635



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



ABSTRACT
Theory, simulations, and experiments are presented that demonstrate reconstruction of electro-
magnetic fields in a cavity from sparse probe measurements. Such techniques are often referred
to as virtual sensing, allowing fields at unobserved locations to be predicted. These methods are
appropriate for the fundamental and undermoded regimes, providing the ability to estimate fields
(and shielding effectiveness) throughout an arbitrarily shaped cavity from a few judiciously spaced
probes. A modal simulation method is implemented that allows the response of arbitrarily shaped
cavities to be rapidly computed with respect to varying probe locations and slot parameters, en-
abling statistical analysis of probe placement on reconstruction performance. A cylindrical vessel
with numerous probe holes is developed for experiments, referred to as Perforated Vessel 2 (PV2).
Experiments are performed on the vessel with and without a steel box inside, where transmit power
is delivered into the vessel either through probes (probe injection) or through slots using an external
antenna (slot excitation). Simulations and experiments illustrate that when the number of probes
is minimal (equal to the number of mode coefficients to be estimated at each frequency), probe
placement is critical to avoid missed peaks and to have acceptable reconstruction error. Probe
placement becomes less important as the number of probes is increased, but care is still required to
avoid probe locations giving poor performance.
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1. INTRODUCTION

An understanding of resonant fields in metal enclosures is important in automotive, aerospace, and
military applications due to the need to protect sensitive electronic systems from harmful elec-
tromagnetic interference (EMI). Full-wave simulation tools allow an analyst to study penetration
and resonance of fields in metal enclosures, but such models are often hampered by model uncer-
tainty. Sources of modeling error include enclosure dimensions, positioning of contents, material
properties, and points of entry (POEs) parameters. POEs are gaps, slots, and apertures where
electromagnetic (EM) energy penetrates into the enclosure.

Direct measurement of fields inside of an enclosure is possible using suitable EM probes. However,
due to cost, limitations of measurement equipment, and spatial constraints of the enclosure, only a
few sensors can typically be accommodated, providing an incomplete picture of cavity fields. For
this reason, measurements are often used to calibrate a numerical model of the cavity, allowing the
model to be used as a surrogate for exhaustive measurement campaigns.

The Optimal Experiment Design (OED) Laboratory Directed Research and Development (LDRD)
project has as one of its goals the design of EM experiments to maximize information collected from
such campaigns. These efforts seek to minimize the required number of sensors and experimental
trials, as well as extracting as much information as possible from limited measurements. A key
feature of this work is the leveraging of modal descriptions of EM fields in cavities. Modal descrip-
tions represent a very compact basis for fields that may be present, providing many advantages for
experiment design and analysis:

• Knowing the modal basis allows optimal sensor locations for experiments to be chosen to
maximize information provided by the experiment.

• Once the modal basis is known, the cavity response to EM energy coupled through POEs
can be computed very rapidly (in a few seconds), compared to lengthy full-wave simulations.
This technique is described in Chapter 2.

• Fields throughout the cavity can be reconstructed from the field sampled at a few locations.
This allows three-dimensional (3D) cavity fields to be reconstructed from a measurement
with sparse probes. The theory behind this is described in Chapter 3.

The purpose of this SAND report is to document theory, simulations, and experiments that illus-
trate the use of modal analysis techniques to reconstruct cavity fields in arbitrarily shaped metal
enclosures. In addition to the theory described in Chapters 2 and 3, subsequent chapters illustrate
the use of the theory through detailed simulations and experiments with a cylindrical cavity:

• Chapter 4 describes bench-top probe-injection simulations and experiments of an empty
vessel, illustrating modal reconstruction techniques and the effect of probe placement with
closed-form modes.
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• Chapter 5 extends the probe-injection investigations to the case of a rectangular box inside of
the cylindrical enclosure. This chapter illustrates finding numerical modes for the structure
using an eigenfrequency solver. The effect of probe placement is again studied for this
geometry.

• Chapter 6 applies the theory to a more practical scenario, where the cylindrical vessel with the
rectangular box is placed inside an anechoic chamber, and thin slots on the vessel are excited
with an external antenna. The results confirm the ability to reconstruct field at unknown
locations in the vessel from sparse probes, as well as the utility of modal simulations in
rapidly predicting reconstruction performance.

The report concludes in Chapter 7, providing a summary and future outlook of this work.
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2. EFFICIENT MODAL SIMULATION METHODS

This chapter describes techniques for rapidly computing the response of an arbitrarily shaped cavity
when excited through probe injection or through POEs in the cavity walls. In both cases, the modal
weights must be found for the known excitation on the boundary or in the vessel interior. In the
case of probe injection, the impedance matrix of the cavity may be found which links the voltage at
outputs to current injected at inputs. The impedance matrix may then be converted to S-parameters
[4], which are typically used in microwave measurement and analysis.

These techniques rely on having a modal basis for the cavity of interest. For simple cavity shapes,
such as a cylinder (Appendix B) or a rectangular box, modes may be found using closed-form
expressions. For cavities with arbitrary shapes, a numerical eigenfrequency solver is required.
However, even when modes must be found numerically, the modes only need to be found once for
a structure of interest, and the response for arbitrary injection probes, POEs, angles of incidence,
and sensor locations can be rapidly computed thereafter.

Electric field in a resonant cavity can be written as

𝐸 (𝑟) =
∑︁
𝑛

𝑒𝑛𝐸𝑛 (𝑟), (2.1)

where 𝑟 is a spatial coordinate, 𝑛 is the index for the mode, 𝐸𝑛 (𝑟) is the 𝑛th spatial function from
the modal basis, and 𝑒𝑛 is the 𝑛th mode coefficient.

2.1. Probe Injection

Given that the cavity is excited with electric currents (like the monopole probes considered in this
work), we have from [1] that

𝑒𝑛 = − 𝑗
𝑘𝜂

𝑘2
𝑛 − 𝑘2

(
1 − 1− 𝑗

𝑄𝑛

) 𝑞𝑛, (2.2)

where 𝑘 = 𝜔
√
𝜇𝜖 is the wave number, 𝜔 = 2𝜋 𝑓 is the circular excitation frequency, 𝜂 =

√︁
𝜇/𝜖 ,

𝑘𝑛 = 𝜔𝑛
√
𝜇𝜖 is the wavenumber at the 𝑛th circular modal frequency 𝜔𝑛 = 2𝜋 𝑓𝑛, 𝑄𝑛 is the quality

factor of the 𝑛th mode, and

𝑞𝑛 =

∫
𝑉
𝐽 (𝑟) · 𝐸𝑛 (𝑟)𝑑𝑉∫

𝑉
𝐸𝑛 (𝑟) · 𝐸𝑛 (𝑟)𝑑𝑉

, (2.3)

where 𝐽 (𝑟) is a volumetric electric current density. Note that unlike the expressions in [1], the
expressions here do not require the modal basis to be previously normalized.
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( )

Figure 2-1. A single monopole probe in a coordinate system local to the probe. Note that 𝑛̂TX and 𝑟TX are
the orientation and base coordinate of the probe in global coordinates.

Fig. 2-1 shows a single cylindrical monopole probe in a local coordinate system, where 𝑧 is along
the axis of the probe, 𝜌0 is the radius of the probe, and ℓ is the length of the probe. In global
coordinates, we will let 𝑛̂TX be along the axis of the probe and 𝑟TX be the coordinate of the base of
the probe. For monopole probes that are small with respect to the wavelength, we model the current
as residing only on the surface of the probe, remaining constant with respect to 𝜙, and varying
linearly with respect to 𝑧. Mathematically, the current density of the probe in local coordinates is

𝐽 (𝑟) = 𝐼TX
2𝜋𝜌0

𝛿(𝜌 − 𝜌0) 𝑓triangle(ℓ, 𝑧) 𝑧, (2.4)

where
𝑓triangle(ℓ, 𝑧) =

{
1 − 𝑧/ℓ, 0 ≤ 𝑧 ≤ ℓ,

0, otherwise, (2.5)

and 𝐼TX is the input current at the base of the transmit probe. A probe length of ℓ =1 cm was used
throughout this work, for both simulations and experiments.

Assuming modal fields do not change appreciably over the length of the short probe, we have

𝑞𝑛 = 𝐴−1
𝑛

∫
𝑉

𝐽 (𝑟) · 𝐸𝑛 (𝑟)𝑑𝑉 (2.6)

≈ 𝐴−1
𝑛 𝐼TX (ℓ/2) [𝑛̂TX · 𝐸𝑛 (𝑟TX)], (2.7)

where
𝐴𝑛 =

∫
𝑉

𝐸𝑛 (𝑟) · 𝐸𝑛 (𝑟)𝑑𝑉. (2.8)

The expressions above allow the field to be computed everywhere in the cavity at an arbitrary
circular frequency 𝜔 in response to an input current of 𝐼TX. The open-circuit voltage at a receive
probe is then given by

𝑉RX,oc = −(ℓ/2)𝐸 (𝑟RX) · 𝑛̂RX, (2.9)
where 𝑟RX and 𝑛̂RX are the global coordinate and orientation of the receive probe.

2.2. Impedance and Scattering Matrix Computation

For a set of multiple probes, we can use the the previously developed expressions to compute
off-diagonal elements of the impedance matrix. The computation is performed as

𝑍𝑚𝑛 =
𝑉RX,oc,𝑚

𝐼TX,𝑛

����
𝐼TX,𝑖=0,∀𝑖≠𝑛

, (2.10)
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Figure 2-2. Model of a probe that handles both the transmit and receive operation of a driven element.

where 𝑉RX,oc,𝑚 is the receive open-circuit voltage on the 𝑚th probe, and 𝐼TX,𝑛 is the input transmit
current on the 𝑛th probe. The meaning of this expression is that we set one probe current at a time
to be nonzero and compute the open-circuit voltages seen at all the other probes. This expression
is only correct for the case of 𝑚 ≠ 𝑛.

For the diagonal elements of the impedance matrix, we need to find the total voltage (not open-
circuit voltage) at each probe for a nonzero input current into the probe. This can be accomplished
considering the model in Figure 2-2. The impedance 𝑍𝐴 is the input impedance of the monopole
probe over an infinite ground plane, which is the impedance seen looking into the probe when
𝑉𝐴 = 0. In the cavity, reflections from the walls will cause 𝑉𝐴 ≠ 0. Driving a current 𝐼TX on probe
𝑚 with other currents set to zero, we can compute cavity fields as before, and the open-circuit
voltage that would be present at element 𝑚 for that field is

𝑉𝐴 = 𝑉RX,oc,𝑚 = −(ℓ/2)𝐸 (𝑟RX,𝑚) · 𝑛̂RX,𝑚 . (2.11)

The total voltage at the probe depends on 𝑍𝐴 according to

𝑉RX,𝑚 = 𝑉𝐴 + 𝑍𝐴,𝑚 𝐼TX,𝑚, (2.12)

where 𝑍𝐴,𝑚 is the input impedance of the 𝑚th probe over an infinite ground plane. The impedance
looking into the driven element is therefore

𝑍𝑚𝑚 =
𝑉RX,𝑚

𝐼TX,𝑚

����
𝐼TX,𝑖=0,∀𝑖≠𝑚

= 𝑍𝐴,𝑚 + 𝑉RX,oc,𝑚

𝐼TX,𝑚

����
𝐼TX,𝑖=0,∀𝑖≠𝑚

. (2.13)

We can then unify (2.10) and (2.13) into the single expression

𝑍𝑚𝑛 = 𝛿𝑚𝑛𝑍𝐴,𝑚 + 𝑉RX,oc,𝑚

𝐼TX,𝑛

����
𝐼TX,𝑖=0,∀𝑖≠𝑛

, (2.14)

where 𝛿𝑚𝑛 is the Kronecker delta function. This expression is now correct for all impedance matrix
elements.

Scattering parameters (S-parameters) may be computed from the impedance matrix using

S = (Z + 𝑍0I)−1(Z − 𝑍0I), (2.15)

where I is the identity matrix, and 𝑍0 is the normalizing impedance, which is assumed to be the
same here for all ports.
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Figure 2-3. Model of a slot that can be used to drive cavity modes. Note that 𝑛̂ points into the cavity.

2.3. Slot Excitation

We finally consider the case when the cavity is excited from apertures or slots, which coupling can
be modeled using equivalent magnetic currents. If the electric field distribution at a slot or aperture
is known, it can be replaced with an effective magnetic current according to

𝑀 = −𝑛̂ × 𝐸ap, (2.16)

where 𝐸ap is the field at the aperture. Consider the thin slot shown in Figure 2-3. On the ℓth
segment of the slot, the voltage across the slot is related to the field in the slot according to

𝐸slot(ℓ) = −𝑉 (ℓ)
ℎ

𝑡, (2.17)

where 𝑉 (ℓ) is voltage, ℎ is the height of the slot, and 𝑡 is the tangential direction along the height
dimension. We can compute the effective magnetic current as

𝑀 = −𝑛̂ ×
(
−𝑉 (ℓ)

ℎ

)
𝑡 (2.18)

= −ℓ̂𝑉 (ℓ)
ℎ

, (2.19)

where ℓ̂ is the unit vector along the length of the slot.

The coupling of the slot fields (magnetic currents) to cavity modes is given by [1]

𝑒𝑛 = ℎ𝑛 = − 𝑗
𝑘/𝜂

𝑘2
𝑛 − 𝑘2

(
1 − 1− 𝑗

𝑄𝑛

) 𝑞𝑛, (2.20)

where

𝑞𝑛 =

∫
𝑉
𝑀 (𝑟) · 𝐻𝑛 (𝑟)𝑑𝑉∫

𝑉
𝐻𝑛 (𝑟) · 𝐻𝑛 (𝑟)𝑑𝑉

. (2.21)

Note that in our development the coefficient for magnetic field ℎ𝑛 is the same as that of the electric
field 𝑒𝑛, since modes are found as pairs of 𝐸𝑛 and 𝐻𝑛 with the proper relative scaling, rather than
individually normalizing 𝐸𝑛 and 𝐻𝑛 as is done in [1].

For the thin slot model, considering only the ℓth slot element we have

𝑞𝑛 = 𝐵−1
𝑛

∫
𝑉

𝑀 (𝑟) · 𝐻𝑛 (𝑟)𝑑𝑉 (2.22)

≈ −𝐵−1
𝑛 𝐻𝑛 (𝑟slot,ℓ) · ℓ̂ Δℓ 𝑉 (ℓ), (2.23)
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Figure 2-4. CST model with probes placed at the heuristic locations. The small numbers near each port
represent CST assigned port numbers, while the large labels use the grid system from Appendix A.

where 𝑟slot,ℓ is the coordinate at the center of the ℓth slot element, Δℓ is the length of the slot
element, and

𝐵𝑛 =

∫
𝑉

𝐻𝑛 (𝑟) · 𝐻𝑛 (𝑟)𝑑𝑉. (2.24)

To compute 𝑞𝑛 due to all slot elements, we sum their contributions from (2.22).

2.4. Example 1: Probe-injection Response of Empty PV2

This section validates the theory in Section 2.1 by analyzing the empty PV2, which has a simple
cylindrical cavity shape. The theory is first applied to the case when closed-form modes are used,
computed using expressions in Appendix B. The theory is then tested for numerical modes of the
same structure, where the COMSOL workflow described in Appendix C was used. Responses
computed with the efficient modal simulation theory are compared with full-wave CST Microwave
Studio simulations of the same structure.

2.4.1. Full-wave CST Simulation

Fig. 2-4 shows the CST model of PV2 with injection probes placed at locations 4E and 12A,
corresponding to CST Ports 1 and 2, respectively. Receive probes are placed at the nine locations
1A, 3I, 5Q, 7E, 12M, 18U, 3W, 9G, 17Q, comprising Ports 3 to 11, respectively. These probe
locations correspond to those in the heuristic probe set described in Chapter 4. Only the two
injection probes were excited in the CST simulation to save simulation time, which allows the
S-parameters 𝑆𝑚𝑛 to be computed for 𝑛 = 1, 2 and 𝑚 = 1, . . . , 11.
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The mesh of the cylinder interior required 95k tetrahedra. For a sweep from 500 MHz to 2 GHz,
the adaptive sweep in CST used 1905 frequency points, and the simulation time was 13 hours using
16 cores on an Intel Xeon Platinum 8176 CPU at 2.10 GHz.

2.4.2. Modal Simulation with a Closed-form Basis

The modal framework described in this chapter was applied next, using modal frequencies and
mode shapes computed using closed-form expressions from Appendix B. A total of 134 modes
were identified from 500 MHz to 2 GHz, of which 18 were unobservable TE modes. Here
unobservable means modes that have no normal electric field component anywhere on the cavity
walls. Modal responses were computed from 500 MHz to 2 GHz using 16351 frequency points
(92-kHz step). The full 11×11 S-parameter matrix for the same probe locations analyzed previously
required only 1.3 seconds running in MATLAB on a single core.

A few of the S-parameters are plotted in Fig. 2-5. As can be seen, the dominant resonances and
overall response are well captured using the efficient modal simulation technique. There are some
discrepancies at low frequency at very low power, especially when a near zero occurs there. The
zero occurs when two or more modes cancel in between the resonances. We suspect that the reason
for the discrepancy is that one simulation tool is including a very weak pole at low frequency while
the other tool has not included it.

2.4.3. Modal Simulation with a Numerical Basis

The modal framework was applied again, except this time numerical modes were computed for the
cylinder using the COMSOL workflow described in Appendix C. The mesh was generated using
the default physics-controlled mesh, resulting in 19k tetrahedra. The COMSOL eigenfrequency
simulation required 7 minutes using 12 cores on an Intel Xeon Platinum 8176 CPU at 2.10 GHz.
Interestingly, COMSOL only finds 68 modes in the 500 to 2 GHz frequency range. Perhaps to find
weaker modes, the solution tolerance needs to be adjusted in COMSOL.

After post-processing COMSOL data, the numerical framework was used to compute probe-
injection S-parameters from 560 MHz to 2 GHz at 16351 points. The run time for the full 11×11
S-parameter computation in MATLAB at 16351 frequency points takes only 1.2 seconds.

A few of the S-parameters are plotted in Fig. 2-5. As can be seen, the dominant resonances and
overall response are well captured using the efficient modal simulation technique.

2.4.4. Peak Resolution

When comparing the resonant responses of the different solution methods, the amplitude of resonant
peaks can sometimes appear to be in error, when in fact the discrepancy is due to resolution of
the frequency sampling. Fig. 2-7 compares the peaks of the three methods employed in the empty
vessel example for 𝑆11,2 near the first resonance at 685 MHz. We have chosen this peak and port
combination since there is approximately 5 dB of error seen in the original data (92 kHz frequency
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Figure 2-5. Comparison of S-parameters computed with full-wave CST simulations and the fast
closed-form modal solution technique for probe injection of the PV2 model. Port numbers represent

those assigned by CST and are shown as small numbers in Fig. 2-4.
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Figure 2-6. Comparison of S-parameters computed with full-wave CST simulations and fast numerical
modal solutions for probe injection of the PV2 model.
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Figure 2-7. Comparison of 𝑆11,2 near the lowest resonance at 685 MHz for full-wave CST simulations, as
well as closed-form and numerical modal simulation.

step), as indicated with symbols in the plot. Performing rational interpolation near this peak at a
resolution of 1 kHz gives the smooth curves shown in the plot. The remaining error at the peak
after interpolation is only 0.4 dB.

2.5. Example 2: Slot Excitation of Empty PV2

In this section, we turn our attention to excitation of the empty PV2 using slots. We will validate
the slot excitation formulation in Section 2.3 by simulating the geometry shown in Fig. 2-8. The
computer assisted design (CAD) geometry was drawn in CUBIT with a thin 1 mm ring around the
center of the vessel, partitioned in 2◦ segments.

2.5.1. Full-wave COMSOL Simulation

This geometry was simulated in COMSOL, where a forced electric-field boundary condition was
used to impose 1 V/m on a single 2◦ patch of the ring. The full-wave simulation was run with a
frequency sweep from 500 MHz to 2 GHz with a fixed 10 MHz step (151 points). The physics-
controlled meshing generated a mesh size of 129k tetrahedra. Simulation required 4.5 hours to
complete using 16 cores on an Intel Xeon Platinum 8176 CPU at 2.10 GHz. Rational interpolation
was used afterwards to reduce the effective frequency step to 100 kHz. Near fields normal to the
cavity wall were sampled at the nine probe positions corresponding to the heuristic probe set and
measurement test ports (1A, 3I, 5Q, 7E, 12M, 18U, 3W, 9G, 17Q). These were converted to probe
voltages assuming an effective length of the probes of 1 cm/2 = 0.5 cm.

2.5.2. Modal Simulation with a Closed-form Basis

The slot-to-probe modal analysis technique from Section 2.3 was used with a closed-form modal
basis. Computation at 15001 frequency points (100 kHz step) from 500 MHz to 2 GHz from a
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Figure 2-8. Empty cylinder geometry in COMSOL, where the CAD model has been drawn with a small ring
on the center perimeter to simulate a thin slot. The small blue rectangle on the ring is the driven element.

26



single slot element to the nine probes only required 0.35 seconds in MATLAB on a single core.

Full-wave simulation of the slot-to-probe response is compared with the modal solution in Fig. 2-9.
Good agreement is seen for most of the modes. However, some of the weaker modes are not being
captured. A mode at 692 MHz is perhaps the most obvious example. This is possibly due to
sampling fields right at the cylindrical wall in the closed-form expressions, whereas in COMSOL
fields are computed slightly away from the walls to avoid numerical problems. This may be the
reason that some additional weak modes are observed in the full-wave simulation.

2.6. Example 3: Probe-injection Response of Box in PV2

In this example, we use the numerical mode probe-injection framework to analyze a geometry for
which only a numerical modal basis is possible. Fig. 2-10 shows the geometry, consisting of a
metal box centered in the bottom of PV2. A numerical modal basis is found in COMSOL using
this model.

For this example, a full-wave simulation was not performed, and so we compare with probe-injection
measurements that were collected for the box-in-PV2 configuration, as described in Chapter 6. S-
parameter measurements were collected with a VNA from 560 MHz to 20 GHz using a 100 kHz
step. Fig. 2-11 compares the measured response of the box-in-PV2 configuration with a direct
measurement for the raw 100 kHz frequency resolution. Although the responses fit quite well, the
peaks are not always at the same level for the different resonances. Part of this is due to insufficient
frequency resolution, as was described previously. However, there is also more uncertainty in the
box-in-PV2 model, since the box was manually placed and held to the bottom with copper tape.
Further, we have not simulated the box as having a different conductivity (steel) as compared to the
vessel walls.

2.7. Conclusion

This chapter has described a modal simulation technique that provides very efficient simulation of
electromagnetic fields in enclosures. The main strength of the technique is that the modal structure
only needs to be computed once with a numerical simulation. After this, arbitrary slots and probes
may be placed, and the response rapidly computed.

The efficient nature of the modal simulation method provides many orders of magnitude improve-
ment over full-wave simulation for each probe/slot configuration. This efficiency enables thousands
of different probe configurations to be rapidly simulated in Monte Carlo studies described in Chap-
ters 4-6. Note that such studies would be virtually impossible with traditional full-wave simulation
techniques.
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Figure 2-9. Probe voltages for simulations of empty PV2 with a single 1 V/m slot element excited on the
wall. A full-wave COMSOL simulation is compared with the slot-to-probe analysis technique using a

closed-form basis.
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Figure 2-10. Box-in-PV2 geometry used to find modal solutions in COMSOL.
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Figure 2-11. Comparison of measured S-parameters with the numerical mode solution for probe injection
of the box-in-PV2 model.
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3. FIELD RECONSTRUCTION THEORY

This chapter describes methods for reconstructing fields throughout a cavity from sparse sensor
measurements with probes. The methods rely on having a basis for cavity fields with no more
basis functions than the number of probes. This can be easily satisfied in the fundamental and
undermoded regimes, where the degrees of freedom of the cavity fields are sufficiently small.

The reconstruction can be performed at unmeasured candidate probe locations, as is done in the
simulations and experiments in Chapters 4-6, as well as points throughout the cavity volume. Such
methods also allow worst-case shielding effectiveness to be predicted from a few judiciously chosen
probe locations.

3.1. Basis Selection

This section describes the basic concepts and notation required for generating a suitable basis used
for reconstruction.

3.1.1. Spatial Basis

Electric field in the cavity is assumed to be a sum of spatial basis functions according to

𝐸 (𝑟) =
∑︁
𝑛

𝑒𝑛𝐸𝑛 (𝑟), (3.1)

where 𝑟 is a spatial coordinate, 𝐸𝑛 (𝑟) is the 𝑛th full-volume spatial basis function, and 𝑒𝑛 is the 𝑛th
basis coefficient.

In practice, the field may be sampled (estimated) at a sparse set of 𝑁𝑃 probe locations. Typically, a
single probe can only sense one component of the electric or magnetic field, returning a complex
scalar for each frequency point sampled. At a single frequency, we denote p as the vector of
observed probe signals. For illustration, assuming normal electric field probes (monopoles) on the
surface of the cavity, the 𝑖th probe signal is

𝑝𝑖 = 𝑛̂(𝑟𝑖) · 𝐸 (𝑟𝑖), (3.2)

where 𝑟𝑖 is the location of the sensor, and 𝑛̂(𝑟𝑖) is the normal to the surface at the probe.

We are interested in reconstructing fields at unobserved locations, and we denote y to be the vector
of 𝑁𝑌 unobserved scalar quantities at a single frequency. One example of a practical y of interest is
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a vector of potential probe signals at locations where physical probes have not actually been placed,
but whose response we wish to predict. For normal electric field probes we have

𝑦𝑖 = 𝑛̂(𝑟′𝑖) · 𝐸 (𝑟′𝑖), (3.3)

where 𝑟′𝑖 is the spatial position of a candidate probe location we are assuming is not observed. In
the studies in Chapters 4-6, we use this designation of unobserved signals to predict field at certain
test points, which are then measured and/or simulated, allowing the error in those predictions to be
quantified.

Another unobserved signal of practical interest is the field at arbitrary points throughout a cavity’s
interior which may be very difficult or impossible to measure in practice. In this case we could
denote

y =


𝐸 (𝑟′1)
𝐸 (𝑟′2)

...

𝐸 (𝑟′𝑁𝑌
)


, (3.4)

where 𝐸 (𝑟) = [𝐸𝑥 (𝑟)𝐸𝑦 (𝑟)𝐸𝑧 (𝑟)]𝑇 is the 3D field vector at spatial location 𝑟, and {·}𝑇 denotes
transpose. Here, we would have 𝑁𝑌 = 3𝑁 , where N is the total number of points on a Cartesian
grid that samples the entire volume, and y becomes a stacked vector of the 3D electric field at all
points on that grid.

For the purpose of field reconstruction, we need to establish a correspondence between the unob-
served and observed quantities. Specifically, we identify basis vectors p𝑘 and y𝑘 , which are arrays
of observed and unobserved signals that occur together, and 𝑘 = 1, . . . , 𝑁𝐵. This set of vectors is
referred to as the reconstruction basis or just basis for short. We can organize the basis vectors into
basis matrices, namely

P = [p1 p2 . . . p𝑁𝐵
] (3.5)

Y = [y1 y2 . . . y𝑁𝐵
] . (3.6)

Considering our example of normal electric field probes for both observed and unobserved signals,
we have

𝑝𝑖𝑘 = 𝑛̂(𝑟𝑖) · 𝐸
(𝑘) (𝑟𝑖), (3.7)

𝑦𝑖𝑘 = 𝑛̂(𝑟′𝑖) · 𝐸
(𝑘) (𝑟′𝑖), (3.8)

where the superscript (𝑘) on the field vector indicates the 𝑘th excitation of the cavity, which could
denote a mode index, frequency, angle of incidence, incident polarization, etc. The main point is
that for a single excitation, p𝑘 and y𝑘 are not uniquely determined, but rather depend on the same
field quantity 𝐸

(𝑘) (𝑟). In summary, our reconstruction basis consists of matrices P and Y, whose
columns represent corresponding vectors of observed and unobserved signals, respectively.

A natural choice for our reconstruction basis is to tie it back to the original spatial field basis,
according to

𝑝𝑖𝑛 = 𝑛̂(𝑟𝑖) · 𝐸𝑛 (𝑟𝑖), (3.9)
𝑦𝑖𝑛 = 𝑛̂(𝑟′𝑖) · 𝐸𝑛 (𝑟′𝑖). (3.10)
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Thus, if we can find a spatial field basis with good properties, it is trivial to convert this into a
reconstruction basis.

3.1.2. Basis Orthogonalization

Depending on how a basis is constructed, there may be undesired redundancy. A proper orthogonal
decomposition (POD) may be used to make the basis significantly more compact. This section
describes how this can be accomplished for an arbitrary basis, represented by P and Y, by employing
the singular value decomposition (SVD).

Stacking the observed and unobserved basis vectors, we can construct the joint basis

A =

[
P
Y

]
. (3.11)

Performing the SVD of this joint basis, we have

A = USV𝐻 =
[

U1 U0
]

SV𝐻 , (3.12)

where {·}𝐻 is the Hermitian (conjugate transpose) operator. We retain 𝑀 columns of U that are
associated with the 𝑀 largest singular values in S, denoted U1. We can partition U1 into rows of
observable and unobservable signals as

U1 =

[
P′

Y′

]
, (3.13)

where the P′ and Y′ represent the new POD basis matrices for observed and unobserved signals,
respectively.

3.1.3. Modal Basis

Finding a modal basis for fields in the cavity is perhaps the most efficient way to represent the limited
degrees of freedom that may exist. In some cases we may have an efficient way of finding modes
of a structure, such as closed-form expressions for simple geometries or reduced-order solvers for
shapes with symmetry. For arbitrary shapes, we can use a numerical eigenfrequency solver, such
as the workflow described in Appendix C.

For a modal basis, we assume there are 𝑁mode modes in the frequency band of interest. We will let
𝑓𝑛 denote the 𝑛th resonant frequency (or eigenfrequency) of the cavity, which has a corresponding
spatial basis function 𝐸𝑛 (𝑟).

One drawback of a modal basis for cavity fields is that perturbation of the modal fields due to POEs
is not captured. Also, in cases where we have high density of modes, the number of basis functions
may be too large to estimate modal coefficients with sparse probes.
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3.1.4. Data-Driven Basis

The idea of a data-driven basis is to perform full-wave simulation of the cavity with POEs present
to empirically generate a spatial basis. To sample the space of possible solutions, we generate 𝑁𝑆

parameter sets, where fixed incident field and POE parameters are chosen for each set. Performing a
frequency sweep over the band of interest at 𝑁𝐹 frequencies for each parameter set yields 𝑁 = 𝑁𝑆𝑁𝐹

spatial basis functions 𝐸𝑛 (𝑟).

3.2. Pseudoinverse Reconstruction

Assuming that our basis spans all possible signals of interest in our cavity, we can write arbitrary
observed (p) and corresponding unobserved (y) signals as

p = Px, (3.14)
y = Yx, (3.15)

where x is a vector of complex basis weights. Assuming that the number of probes at observed
locations is at least as large as the number of basis functions, we can compute

x = P+p, (3.16)

where {·}+ is the pseudoinverse. Unobserved signals may then be computed as

y = YP+p. (3.17)

For the pseudoinverse method to work well, we need the number of basis functions to be no larger
than the number of probes. In the case of a modal basis and a wide frequency range, we will likely
have too many modes to satisfy this criterion. One remedy is to limit the number of modes used
when reconstructing field at each frequency. Specifically, when reconstructing field at frequency
𝑓 we limit the number of modes used in the reconstruction basis to the 𝑁′

mode nearest modes
(those having the smallest | 𝑓 − 𝑓𝑛 |), where 𝑁′

mode ≤ 𝑁𝑃. For a data-driven basis, the number of
basis functions for reconstruction at each 𝑓 can be limited by using basis orthogonalization and by
limiting frequency samples to a small neighborhood around the reconstruction frequency.

Note that the analysis so far has not considered the noise of the probe signals, which is always
present in practice. Such noise, coupled with the pseudoinverse estimation method, may lead to
significant noise amplification and poor reconstruction performance. Maximum likelihood (ML)
estimation is a theoretically optimal approach, which is outlined in the next section.

3.3. Maximum Likelihood Estimation

In this section we illustrate one optimal approach that is expected to have significantly improved
performance over the pseudoinverse estimator, namely the ML estimator. We augment the previous
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model slightly,

p = Px + n, (3.18)
y = Yx, (3.19)

where n is a vector of independent and identically distributed (iid) zero-mean complex Gaussian
noise samples. Our goal is to estimate y from noisy observations of p. If we assume that the the
modal coefficients x have a joint zero-mean complex Gaussian distribution, p and y will also be
jointly zero-mean complex Gaussian. Since we observe p, we are interested in the distribution of y
conditioned on p. Choosing the y = yopt that maximizes the conditional probability density function
is then our ML estimate. The multivariate complex Gaussian density function is maximized when
y is equal to the mean of the distribution, or yopt = 𝜇𝜇𝜇𝑦, where 𝜇𝜇𝜇𝑦 is the mean of y.

From [2], the mean of y conditioned on p is

𝜇𝜇𝜇𝑦 |𝑝 = 𝜇𝜇𝜇𝑦 + R𝑦𝑝R−1
𝑝𝑝 (p − 𝜇𝜇𝜇𝑝), (3.20)

where
R𝑎𝑏 = E

{
(a − 𝜇𝜇𝜇𝑎) (b − 𝜇𝜇𝜇𝑏)𝐻

}
(3.21)

is the covariance matrix of vectors a and b,

𝜇𝜇𝜇𝑐 = E {c} (3.22)

is the mean of vector c, and E {·} represents expectation. Substituting our model from (3.18) and
(3.19) into (3.20), and assuming the independence of noise and modal coefficients, we have

yopt = 𝜇𝜇𝜇𝑦 |𝑝 = YR𝑥𝑥P𝐻 (PR𝑥𝑥P𝐻 + 𝜎2I)−1p, (3.23)

where 𝜎2 is the noise variance, and I is the identity matrix.

It is instructive to consider the operation of (3.23). If we let the noise approach zero, and model
the modal coefficients as iid Gaussian (R𝑥𝑥 = I), we obtain the pseudoinverse estimator from the
last section. This means if we are in a very high signal-to-noise (SNR) environment and all modes
in R𝑥𝑥 are strongly coupled to the reconstruction frequency, the pseudoinverse should have good
performance.

On the other hand, if we have significant noise, the 𝜎2I term will tend to regularize the inverse by
increasing the diagonal entries of R𝑝𝑝 before taking the inverse. Also, if the power of some modes
(diagonal entries of R𝑥𝑥) is small relative to the noise, these modes will be de-emphasized due to
the regularization term 𝜎2I.

It is also interesting to consider how we might practically implement the ML estimator. One option
is to do as we have done with the pseudoinverse estimator, where we restrict our attention to the
closest 𝑁′

mode modes to a given reconstruction frequency. This would mean taking a subset of the
rows and columns of R𝑥𝑥 for each reconstruction performed. Another option is to simply use the
full R𝑥𝑥 for all modes and let the estimator optimally choose the proper weighting of the modes in
(3.23).
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One concern is how we would know or estimate R𝑥𝑥 and 𝜎2. Typically 𝜎2 would correspond to
the noise of the measurement instrument, which can be easily estimated from an observed noise
floor. The covariance R𝑥𝑥 can be estimated through modal simulation combined with Monte Carlo
techniques. For example, for slot excitation, we would generate many random realizations of
slot voltages v, according to expected illumination conditions. For each realization and at each
reconstruction frequency we can compute

x = Mv, (3.24)

where M is the linear operator (matrix) linking slot voltages to modal coefficients, which can be
constructed from expressions in Chapter 2. We have R𝑥𝑥 = MR𝑣𝑣M𝐻 .

Another idea is to take a maximum entropy approach, where we properly normalize P and choose
R𝑥𝑥 = 𝜎2

𝑥 I, which treats modes equally. It can be shown that this choice leads to a single SNR
parameter that needs to be specified, which can be estimated from instrument noise and average
probe power.

Note that reconstructions in this report are limited to the simple pseudoinverse estimator, and we
expect to investigate the performance of ML and other optimal estimators in future work.

3.4. Reconstruction Error Quantification

This section introduces definitions and methods that are used to quantify reconstruction performance
in this report.

3.4.1. Port Designations

Three different types of ports are referred to when simulating or measuring the response of an
enclosure and reconstructing fields:

Injection Ports. Ports with antennas that are used to transmit power into the vessel. These are
used in probe injection experiments, which allow the vessel to be excited in a convenient
bench-top experiment with relatively low power. For slot-excitation experiments, there are
no injection ports.

Probe Ports. Ports having probes used to collect observed field samples and construct the vector
p.

Test Ports. Ports with probes that are assumed to be the unobserved field locations, where field
will be reconstructed. Signals from test ports form the vector y. Note that in this work, we
do measure or simulate the field at the test ports, allowing the error in the reconstruction to
be computed.

In experiments, we are limited to a small set of ports that can be investigated, and the following
specific ports were always used in experiments:

Injection Ports: 4E, 12A
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INJ1 (4E)

INJ2 (12A)

TEST1 (3W)

TEST2 (9G)

TEST3 (17Q)

(a) Injection and Test Ports

P1(1A)
P2
(3I) P3

(5Q)P4
(7E)

P5
(12M)

P6
(18U)

(b) Heuristic Probe Ports

Figure 3-1. Specific port locations of PV2 used in experiments and some simulations: (a) injection (INJ)
and test (TEST) port locations used in experiments, (b) locations of probes for the heuristic probe set.

Test Ports: 3W, 9G, 17Q

These injection and test locations are depicted in Fig. 3-1(a), which were chosen to be spread out
and to inject or sample field on both the top and side of the vessel. As described in Chapter 4, in
simulation, arbitrary injection and test ports can be considered, which are randomly generated.

The effect of probe placement on reconstruction performance is a major focus of this report. Several
probe-placement strategies are considered, one of which is referred to as the heuristic probe set,
which uses the following port locations:

Heuristic 6 Port: 1A, 3I, 5Q, 7E, 12M, 18U

Heuristic 4 Port: 1A, 5Q, 7E, 18U

It is referred to as “heuristic” because it represents a rule-of-thumb placement strategy that a person
might use without detailed information on the cavity modes. In this case, an equal number of probes
is placed on the vessel top and side surfaces. On the top surface, probes are widely separated in
polar angle and in the radial direction. On the side surface, probes have large separation around
the circumference and in the longitudinal direction. Note that probes are also chosen to not be near
injection or test locations. The heuristic probe locations are depicted in Fig. 3-1(b).

3.4.2. Error Metrics

Reconstruction error is computed at resonant peaks, which are expected to be the most important
frequency points used in shielding effectiveness characterization. Only peaks above a certain
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threshold are identified and used for error computation, which was done to avoid the high sensitivity
of less important weak peaks. The peak threshold in dB is computed as

𝑃dB,thres =
〈
𝑃dB( 𝑓 ) − 20 log10( 𝑓 2)

〉
𝑓
+ 20 log10( 𝑓 2) + Δ𝑦dB, (3.25)

where < · > 𝑓 indicates an average over frequency, and Δ𝑦dB = 25 dB was used in this work. The
idea of including the 20 log10( 𝑓 2) term is to create a threshold that tracks the probe efficiency
with frequency. Both the transmitted field at an injection probe and the sampled voltage at a
receive probe are proportional to 𝑓 , meaning that a transmission S-parameter in dB will scale as
20 log10( 𝑓 2) on average. The extra term of Δ𝑦dB indicates the offset above the average expected
field that a peak must lie above to be detected.

Peaks are identified as points in the test port signal where the derivative of the response with respect
to frequency has a zero crossing and power is above 𝑃dB,thres. Reconstructions are performed in
a neighborhood around each peak, extending from the peak frequency to positive and negative
frequency offsets where the response drops by 𝛿𝑦dB dB relative to the peak. In this work, 𝛿𝑦dB =

20 dB was used.

Absolute error at each peak is computed as

𝜖 ( 𝑓𝑘 ) = |𝑃dB,test( 𝑓𝑘 ) − 𝑃dB,recon( 𝑓𝑘 ) |, (3.26)

where 𝑓𝑘 is the frequency sample where a peak is detected, and 𝑃dB,test( 𝑓 ) and 𝑃dB,recon( 𝑓 ) are
the measured/simulated test port power and reconstructed test port power, respectively, in dB at
frequency 𝑓 .

Sometimes the reconstruction error for a given peak can be very high due to the dB scale, and these
very large errors can dominate the statistics. For this reason, we will define errors above 10 dB as
missed peaks, and such peaks will be excluded from the computation of statistical distributions and
error metrics. However, the probability of missed peaks (𝑃missed) is computed in simulations and
experiments, providing an indication of the robustness of the reconstructions.

The set of error at all detected peaks at the test ports is used to generate empirical cumulative
distribution functions (CDFs). For visualization purposes, the complementary CDF (CCDF),
computed as 1-CDF, is plotted on a log scale, allowing easy identification of 90%, 99%, 99.9%, . . .

CDF levels. On a CCDF plot, these are 10%, 1%, 0.1%, . . . levels, indicating the error levels
where 90%, 99%, 99.9%, . . . of the cases have lower error. Quantifying error level this way is a
another measure of robustness of the reconstruction method. The numerical error level for the 90%
CDF level is denoted Error90%, and this is used to rank the different probe sets in terms of error
performance. Average error will be denoted ErrorAvg which is the simple mean of the absolute
error of all detected peaks.

3.5. Example Reconstruction: Empty PV2 with Probe Injection

To conclude this chapter, we provide an example of applying reconstruction to simulated data of the
empty PV2, which was generated using the modal simulation technique with closed-form modes.
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Figure 3-2. Example reconstruction of simulated field at the injection, probe, and test port locations
shown in Fig. 3-1. The dashed line is the peak detection threshold.

Here, we use the measurement test and injection ports specified in Section 3.4.1, along with the
heuristic probe locations for six ports. A noise level of -80 dB is assumed and probe lengths are
1 cm.

Fig. 3-2 shows the simulated (Actual) field at the test ports, as well as the field reconstructed
(Estimated) at test port locations from the six probe measurements. Blue circles are plotted at the
detected peaks in the test port signals, and the reconstructed response at the same frequency of
each peak is shown with a red x. In this example, very good reconstruction is achieved. Table 3-1
shows the reconstruction metrics for the three test locations, indicating error levels below 1 dB and
no missed peaks. Fig. 3-3 illustrates a CCDF of the data, generated from the 85 detected peaks.
The 90% error level can be extracted from the plot by reading the error on the 𝑥 axis when the
probability level on the 𝑦 axis is 10% = 10−1.
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Test Port 𝑃missed Error90% ErrorAvg
1 0.00 % 0.8 dB 0.2 dB
2 0.00 % 0.6 dB 0.6 dB
3 0.00 % 0.8 dB 0.2 dB

Table 3-1. Performance metrics of the example reconstruction case.
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Figure 3-3. CCDF of the reconstruction error for the example reconstruction case.
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4. EMPTY VESSEL PROBE INJECTION STUDY

This chapter describes simulations and experiments that were performed to evaluate the perfor-
mance of the developed field reconstruction methods for the empty PV2. Here we concentrate on
convenient probe-injection studies, which can be performed on a lab bench without the need of a
chamber or high power EM fields.

The modal simulation technique from Chapter 2 was used with closed-form modes to simulate the
vessel response. Efficient modal simulation allows fairly exhaustive simulations of random probe
placement to be performed, indicating the statistical behavior of reconstruction error. Simulations
of random probe placement not only show the sensitivity of reconstruction error to probe location,
but also provide useful probe sets with good and bad performance that can be explored in later
experiments.

The chapter concludes with probe injection experiments performed on PV2 for a few different probe
placement strategies. Overall, the limited experimental trials confirm the findings seen in the more
exhaustive simulation studies.

4.1. Random Probe Set Simulations

Two hundred random probe sets were generated, where each probe set had six probes, and these
were used for all random probe studies in this report. The complete listing of these probe sets
is provided for reference in Appendix D. The reconstruction performance of each probe set was
tested by running one hundred random realizations for each probe set, where a realization has two
randomly chosen injection ports, three randomly chosen test ports, and a random injection weight
vector. The random port locations are chosen to have uniform probably for all candidate locations
on the top and side of PV2. Injection, test, and probe ports are not allowed to coincide with
each other. The random weight vector is generated with iid complex Gaussian entries and then
normalized to have unit norm.

S-parameters [4] were used to quantify the response of the vessel from injection ports to probe
and test ports. This simplifies later VNA experiments, where the S-parameters are directly mea-
sured. The reconstruction methods can be applied without modification to S-parameters rather than
sampled field, because field is directly proportional to calibrated S-parameters. Random complex
Gaussian noise was added to each S-parameter realization to simulate the behavior seen in later
measurements. The variance of the noise was chosen to achieve a noise floor of -80 dB, similar to
probe injection experiments.
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Figure 4-1. Reconstruction performance statistics of the random parameter sets for the empty PV2 probe
injected case.

4.2. Random Simulation Results

This section documents error performance of field reconstructions when 𝑁′
mode = 4, meaning the

four modes closest to each reconstruction frequency are used for reconstruction. Fig. 4-1(a) and
(b) plot CCDFs for reconstruction error with six and four probes, respectively. The performance of
three randomly generated probe sets are plotted, namely those having the best, median, and worst
Error90% performance. The indices of the probe sets are listed in the plot legend, which can be
referred to in Appendix D. The statistical performance of the heuristically chosen probe set is also
shown for comparison.

When using four probes, performance increases significantly when moving from the worst probe
set, to the median probe set, to the best probe set. However, for six probes, the median probe set
and best probe set are very close. This illustrates that having more probes relative to the number
of mode coefficients to be estimated reduces the importance of selecting the optimal set. It is
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𝑁𝑃 Index Probes
Good 6 61 17S, 7H, 18F, 2E, 19M, 4A

4 73 13P, 9W, 10T, 19M
Bad 6 36 9P, 4B, 5A, 3P, 3L, 5K

4 36 9P, 4B, 5A, 3P
Heuristic 6 - 1A, 3I, 5Q, 7E, 12M, 18U

4 - 1A, 5Q, 7E, 18U

Table 4-1. Identified good and bad probe sets from random probe set simulations for four-mode
reconstruction in empty PV2 with probe injection. The heuristic probe set is also given for comparison.

𝑁𝑃 𝑃missed Error90% ErrorAvg
Good 6 0.04% 0.4 dB 0.2 dB

4 1.63% 0.7 dB 0.3 dB
Bad 6 18.43% 6.2 dB 1.7 dB

4 17.87% 6.2 dB 1.8 dB
Heuristic 6 7.09% 1.7 dB 0.6 dB

4 8.38% 3.4 dB 1.0 dB

Table 4-2. Performance of specific probe sets selected from random probe set simulations for four-mode
reconstruction in empty PV2 with probe injection.

also interesting to see that the heuristically chosen probe set actually exhibits worse than median
performance for both four and six probes.

Fig. 4-1(c) and (d) plot histograms of 𝑃missed and Error90% with respect to the 200 random probe
configurations. With four probes, the histograms for both metrics are fairly spread out with long
tails, indicating strong dependence of reconstruction performance on the probe locations. With six
probes, the histograms become more concentrated at lower 𝑃missed and Error90%, indicating there
are many probe sets with high performance. The heuristic probe set exhibits poor performance for
these metrics, lying to the right of the main mass of the random probe set histograms.

Good and bad probe sets were identified from the random probe sets by sorting them with respect
to Error90%. It is also desirable to have a low 𝑃missed for a good set, so this was also taken into
account. Finally, a probe location should not coincide with a test or injection port to be used in
later experiments, which eliminates some probe sets. Table 4-1 lists specific good and bad probe
sets for four-mode reconstruction that were identified according to these criteria. The numerical
performance of these and the heuristic probe set are given in Table 4-2.

4.3. Measurement

Measurements were performed of the empty PV2 with probe injection using the selected probe
sets in Table 4-1. The measurements were performed with a calibrated two-port vector network
analyzer (VNA) shown in Fig. 4-2 using the parameters listed in Table 4-3.
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Figure 4-2. VNA measurement setup for empty PV2 with probe injection.

Parameter Value
Output Power 7 dBm
IF Bandwidth 1 kHz

Frequency Range 560 MHz – 2 GHz
Frequency Step 100 kHz (14401 points)

Calibration Full 2-port

Table 4-3. VNA parameters for PV2 probe injection measurements.
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Figure 4-3. Background measurement for empty PV2 probe injection experiments.

Port 1 of the VNA was connected to one of the two injection ports, and Port 2 was connected
to one of the nine probe or test ports, requiring 2×9 measurements for each probe set. Note that
unconnected PV2 ports were always terminated with 50Ω loads when not connected to the VNA.

A background measurement of the probe injection experiment is shown in Fig. 4-3. In this
measurement, a terminator/short blocking element was placed between the end of the Port 1 VNA
cable and the injection port (4E) on PV2. The terminator/short is a coaxial 50 Ω terminator and
a coaxial shorting cap that have been soldered together (back to back). This blocks the radio-
frequency (RF) signal on the inside of the cable, but still provides a ground connection. The idea
is to allow measurement of undesired coupling in a background measurement on or through cable
shields, while blocking the desired RF path on the cable interior. Port 2 of the VNA was connected
to the first heuristic probe port (1A) as usual. The background response is dominated by the VNA
noise floor, which is -80 dB or lower.

The same modal reconstruction technique was applied here to measurements of the good, bad, and
heuristic probe sets for both six and four probes. The injection weight vector applied to the two
injection ports was [1 𝑗] in all cases here. Simulations were also performed for the same injection,
probe, and test ports used in measurements. Detailed reconstructions are shown in Appendix E
Section E.1 for the empty PV2 for the good, bad, and heuristic probe sets for both simulated and
measured data with six and four probes.

A summary of the performance metrics for the different cases is shown in Table 4-4. Overall, good
agreement is seen in the reconstruction performance seen in measurement and simulation. The main
exception is the measured good probe set, which has significantly worse measured performance
than simulations. Interestingly, in the measurements for these specific injection and test ports,
the heuristic probe set performs as good or better than the good random probe set. This was not
true in simulation, where the heuristic probe set performed somewhat worse than the good random
probe set. The poor performance of the bad random probe set is seen in both simulation and
measurement.

These results illustrate that useful reconstructions can be performed on measured data, where model
uncertainty is certainly present. With six probes, reconstruction error at the 90% confidence level
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Measured
𝑁𝑃 𝑃missed Error90% ErrorAvg

Good 6 0.00 % 1.4 dB 0.6 dB
4 6.19 % 3.5 dB 1.4 dB

Bad 6 13.00 % 4.7 dB 1.4 dB
4 14.00 % 4.8 dB 1.7 dB

Heuristic 6 0.00 % 1.1 dB 0.5 dB
4 0.00 % 3.2 dB 1.1 dB

Simulated
𝑁𝑃 𝑃missed Error90% ErrorAvg

Good 6 0.00 % 0.4 dB 0.1 dB
4 3.37 % 0.5 dB 0.3 dB

Bad 6 10.99 % 4.2 dB 1.4 dB
4 10.42 % 4.2 dB 1.4 dB

Heuristic 6 0.00 % 0.8 dB 0.3 dB
4 0.00 % 2.4 dB 0.7 dB

Table 4-4. Performance metrics of measured and simulated reconstructions in the empty PV2 with probe
injection.

was only 1.4 dB with the good random probe set, and no missed peaks were observed. With four
probes, the error increased to 3.5 dB for this case, but this level of error is also expected to be useful
for practical shielding effectiveness characterization.
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5. BOX IN VESSEL PROBE INJECTION STUDY

This chapter describes simulations and experiments of a more difficult reconstruction case, where
a small steel box with dimensions 122 mm × 122 mm × 87 mm was placed in the bottom of PV2.
There were two important reasons for studying this more complex case:

• Adding the box breaks the symmetry of the vessel, requiring numerical modes to be computed
with the workflow described in Appendix C. Thus, the box-in-vessel case illustrates that useful
reconstructions with low error can be obtained using these numerical methods.

• Additional model uncertainty is present, since the box is placed manually in the bottom of
the vessel. Such uncertainty is likely to be present in real measurement scenarios, and it is
important to check if the field reconstruction methods are robust to such errors.

The modal simulation technique from Chapter 2 was used with numerical modes found with the
workflow in Appendix C. The COMSOL geometry is depicted in Fig. 5-1. COMSOL simulation
of this cavity using the default physics-controlled mesh from 500 MHz to 2 GHz found 65 modes.
Run time was about 7 minutes on an Intel Xeon Platinum 8176 CPU at 2.10 GHz using 12 cores.
Subsequent simulation of 11×11 S-parameters using modal simulation required only 0.7 seconds
in MATLAB on a single core for the full frequency range.

5.1. Random Probe Set Simulations

The same two hundred probe sets that were described in Section 4.1 and listed in Appendix D
were analyzed for the box-in-PV2 simulations. As before, one hundred random realizations were
generated for each probe set, with each realization having two random injection ports, three random
test ports, and a random injection weight vector. For a given set of ports, 11×11 S-parameters were
computed for the box-in-PV2 geometry using the modal simulation method with numerical modes.
Complex Gaussian noise was added to a achieve a noise floor of -80 dB.

5.2. Random Simulation Results

This section documents error performance of field reconstructions when 𝑁′
mode = 4, meaning the

four modes closest to each reconstruction frequency are used for reconstruction. Fig. 5-2(a) and
(b) plot CCDFs for reconstruction error with six and four probes, respectively. The CCDFs for
three randomly generated probe sets are plotted, namely those having the best, median, and worst
Error90% performance. The indices of the probe sets are listed in the plot legend, which can be
referred to in Appendix D.
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(a) Cavity Model (b) Meshed Model

Figure 5-1. Box-in-PV2 model used to find numerical modes with COMSOL.

The statistical performance of the heuristically chosen probe set is also shown for comparison.

For both four and six probes, performance increases significantly when moving from the worst
probe set, to the median probe set, to the best probe set. Note that this is different from the empty
vessel case, where with six probes, the 1-CDF plot of the median and best cases looked nearly
identical for the median and best cases. This suggests that having a more complex vessel shape
(lack of symmetry) increases the importance of judiciously choosing probe locations.

Fig. 5-2(c) and (d) plot histograms of 𝑃missed and Error90% with respect to the 200 random probe
configurations. For four probes, the results are similar to the case of the empty vessel, where these
metrics are spread out for four probes, but much more concentrated for six probes. This emphasizes
the importance of selecting good probe locations with sparse probes.

Good and bad probe sets were identified from the box-in-PV2 random probe set simulations, which
are given in Table 5-1. The numerical performance of these and the heuristic probe set are given
in Table 5-2. We note that the the bad probe set had significantly worse performance for the
box-in-PV2 case as compared to the empty vessel (see Table 4-2). Interestingly, the heuristic probe
set with four probes also had somewhat decreased performance compared to the previous empty
case.

5.3. Measurement

Measurements were performed of the box-in-PV2 with probe injection using the selected probe
sets in Table 5-1, except for the bad probe set, which was not investigated for this vessel configu-
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Figure 5-2. Reconstruction performance statistics of the random parameter sets for the box in PV2 probe
injected case.

𝑁𝑃 Index Probes
Good 6 116 8P, 5O, 18B, 3K, 14W, 16I

4 136 13G, 7X, 13N, 16I
Bad 6 36 9P, 4B, 5A, 3P, 3L, 5K

4 36 9P, 4B, 5A, 3P
Heuristic 6 - 1A, 3I, 5Q, 7E, 12M, 18U

4 - 1A, 5Q, 7E, 18U

Table 5-1. Identified good and bad probe sets from random probe set simulations for four-mode
reconstruction in box-in-PV2 with probe injection. The heuristic probe set is also given for comparison.

49



𝑁𝑃 𝑃missed Error90% ErrorAvg
Good 6 0.03% 0.4 dB 0.2 dB

4 0.41% 0.9 dB 0.4 dB
Bad 6 17.87% 5.3 dB 1.5 dB

4 35.08% 6.5 dB 2.0 dB
Heuristic 6 0.18% 0.8 dB 0.3 dB

4 7.78% 2.7 dB 0.9 dB

Table 5-2. Performance of specific probe sets selected from random probe set simulations for four-mode
reconstruction in box-in-PV2 with probe injection.

Figure 5-3. Steel box placed in the vessel for box-in-PV2 measurements. The box was taped to the bottom
of PV2 using copper tape.

ration. The same VNA setup, parameters, and procedure were used for measurements as was done
previously with the empty vessel (see Section 4.3).

The placement of the metal box in the bottom of PV2 is depicted in Fig. 5-3. The welded steel box
has no seams or apertures, except for a probe hole in the bottom center. This probe hole was used
to align the box with the bottom center of PV2 using an SMA bulkhead connector. The box was
manually rotated to be approximately aligned in the 𝑥𝑦 plane as shown in Fig. 5-1. The rotation
was approximate, because it had to be moved and aligned by hand. Copper tape was used to affix
the box to the bottom of PV2 at four edges, which kept the box from moving during setup and
measurements.

The numerical modal reconstruction technique was applied to measurements of the good and
heuristic probe sets for both six and four probes. The injection weight vector applied to the two
injection ports was [1 𝑗] in all cases here. Simulations were also performed for the same injection,
probe, and test ports used in measurements. Detailed reconstructions are shown in Appendix E
Section E.2 for the box-in-PV2 for the good and heuristic probe sets for both simulated and measured
data with six and four probes.

A summary of the performance metrics for the different cases is shown in Table 5-3. The per-
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Measured
𝑁𝑃 𝑃missed Error90% ErrorAvg

Good 6 0.00 % 1.7 dB 0.8 dB
Good 4 4.30 % 3.2 dB 1.4 dB

Heuristic 6 0.00 % 2.7 dB 1.2 dB
Heuristic 4 8.25 % 4.2 dB 1.5 dB

Simulated
𝑁𝑃 𝑃missed Error90% ErrorAvg

Good 6 0.00 % 0.4 dB 0.1 dB
Good 4 0.00 % 0.8 dB 0.3 dB
Bad 6 12.50 % 5.0 dB 1.3 dB
Bad 4 28.30 % 5.5 dB 1.6 dB

Heuristic 6 0.00 % 0.8 dB 0.3 dB
Heuristic 4 4.67 % 2.4 dB 0.8 dB

Table 5-3. Performance metrics of measured and simulated reconstructions for box-in-PV2 with probe
injection.

formance ranking of the different probe set cases is the same in measurements and simulations.
However, measurement results exhibit higher absolute 𝑃missed and error metrics as compared to
simulations, which is expected due to larger model uncertainty when placing the box in PV2. It is
worth noting that the measured performance of the good probe set is better than the heuristic probe
set, which was not true for the empty vessel.

These results illustrate that useful reconstructions can be performed on measured data of a sparsely
populated vessel using the reconstruction framework and numerical modes. With six probes,
reconstruction error at the 90% confidence level was only 1.7 dB with the good random probe set,
and no missed peaks were observed. With four probes, the error increased to 3.2 dB for this case,
which again is expected to be useful for practical shielding effectiveness characterization.
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6. BOX IN VESSEL SLOT EXCITATION STUDY

This chapter applies the modal reconstruction technique to a more practical shielding scenario,
where the box-in-PV2 configuration is excited from thin slots on the vessel perimeter. The same
numerical modes computed in Chapter 5 can be used for reconstruction and simulation of cavity
fields. However, to generate synthetic responses due to EM coupling through slots, the framework
in Section 2.3 was used. As was done in previous chapters, reconstruction performance for the
random probe sets in Appendix D are first studied to gauge the importance of probe placement and
to identify good and bad probe sets for later experiments. Experiments are then performed on the
box-in-PV2 in a small anechoic chamber, where the vessel is illuminated with an antenna outside
the vessel. The results demonstrate that useful reconstruction accuracy can be attained for this
more practical case.

6.1. Random Probe Set Simulations

The same two hundred probe sets that were described in Section 4.1 and listed in Appendix D
were analyzed for the box-in-PV2 simulations with slot excitation. As before, one hundred random
realizations were generated for each probe set, with each realization having three random test ports.
For the case of slot excitation, injection ports are no longer used. Instead, random excitation is
assumed on the thin slots around the perimeter of the vessel.

Slots are formed in PV2 by placing shims on the flange at bolt locations. We chose to place four
shims, separated by 90◦ around the flange. The shims are 5-mil (127 𝜇m) thick and made from
brass, thus forming a 5-mil slot when placed on the flange. Each shim occupies 16◦ of angular
extent around the vessel circumference. Fig. 6-1 shows a picture of the shim placement that was
used in subsequent experiments, which was also modeled in simulations.

A specific distribution of electric field needs to be assumed in the slots when using the framework
in Section 2.3 for slot excited modes. In this work, a thin 5-mil slot was assumed around the entire
circumference of PV2, which was divided into patches of 2◦ angular extent. The voltage in a single
slot was assumed to follow a half-sine shape:

𝑣𝑖 (𝜙) = 𝑣𝑖 sin
(
𝜋𝜙

Δ𝜙

)
, 0 ≤ 𝜙 ≤ Δ𝜙, (6.1)

where 𝑣𝑖 (𝜙) is the voltage in the 𝑖th slot at local angle 𝜙, 𝑣𝑖 is the complex voltage at the center of
the slot, and Δ𝜙 is the angular extent of the slot. The slot voltage 𝑣𝑖 was assumed to follow an iid
complex Gaussian distribution for all four slots. The sampled voltages around the circumference of
the vessel are denoted 𝑣𝑘 = 𝑣(𝜙𝑘 ), where 𝑘 = 1, . . . , 180 is the sub-slot index, and 𝜙𝑘 represents the
angle at the center of a sub-slot. This vector of voltages was always normalized to have unit norm

53



A

G

M

S

Figure 6-1. Shims placed in PV2.

in simulations. Fig. 6-2 shows an example realization of the amplitude of the slot voltage vector v.
Note that at shim locations the voltage is assumed to be zero. For each slot voltage realization, the
simple model of assuming the same voltage across the entire frequency band was used.

6.2. Random Simulation Results

This section documents error performance of field reconstructions when 𝑁′
mode = 4, meaning the

four modes closest to each reconstruction frequency are used for reconstruction. Fig. 6-3(a) and
(b) plot CCDFs for reconstruction error with six and four probes, respectively. The performance of
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Figure 6-2. Example realization of the random slot voltages.
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Figure 6-3. Reconstruction performance statistics of the random parameter sets for the box-in-PV2
slot-excited case.

three randomly generated probe sets are plotted, namely those having the best, median, and worst
Error90% performance. The indices of the probe sets are listed in the plot legend, which can be
referred to in Appendix D.

The performance of two other probe sets is plotted along with randomly generated probe set results.
First, the performance of the heuristic probe set is shown, which has been described previously.
Second, a code for fast selection of near-optimal probe locations has been developed in this LDRD,
referred to the Optimal Experiment Design (OED) code. This code implements a greedy algorithm
that uses the numerical modes to sequentially build a probe set with good performance. The probes
comprising the heuristic and OED probe sets are given in Table 6-1.

For four probes, a wider performance gap is seen between the three random probe sets (best, median,
worst) for this study as compared to the two previous probe-injection studies. This emphasizes again
the importance of judiciously choosing probe locations when the number of probes is relatively
small. For six probes, the median and best random probe sets have similar performance. The
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𝑁𝑃 Index Probes
Good 6 14 11P, 16I, 4C, 8R, 4V, 7P

4 136 13G, 7X, 13N, 16I
Bad 6 36 9P, 4B, 5A, 3P, 3L, 5K

4 36 9P, 4B, 5A, 3P
Heuristic 6 - 1A, 3I, 5Q, 7E, 12M, 18U

4 - 1A, 5Q, 7E, 18U
OED 6 - 8H, 17V, 3B, 15E, 17F, 3U

4 - 8H, 17V, 3B, 15E

Table 6-1. Identified good and bad probe sets from random probe set simulations for four-mode
reconstruction in box-in-PV2 with slot excitation. The heuristic and OED probe sets are also given for

comparison.

𝑁𝑃 𝑃missed Error90% ErrorAvg
Good 6 0.00% 0.2 dB 0.1 dB
Good 4 0.02% 0.7 dB 0.3 dB
Bad 6 25.93% 4.9 dB 1.2 dB
Bad 4 40.51% 5.1 dB 1.5 dB

Heuristic 6 0.48% 0.7 dB 0.3 dB
Heuristic 4 15.56% 3.3 dB 0.9 dB

OED 6 0.00% 0.2 dB 0.1 dB
OED 4 0.20% 0.6 dB 0.3 dB

Table 6-2. Performance of specific probe sets selected from random probe set simulations for four-mode
reconstruction in box-in-PV2 with slot excitation.

OED probe set consistently outperforms the heuristic and median random probe sets for both six
and four probes. It is interesting that the OED probe set has almost the same performance as
the best random probe set near the left side of the distribution (near the 90% confidence level),
but the low-probability tail on the right side of the distribution more closely follows the median
random probe set. Note that the performance of the heuristic probe set is poor for both six and four
probes.

Fig. 6-3(c) and (d) plot histograms of 𝑃missed and Error90% with respect to the 200 random probe
configurations. As in the probe injection studies, the heuristic probe set has rather poor performance
in terms of missed peak probability and 90% error level. On the other hand, the OED probe set has
nearly optimal performance for both six and four probes.

Good and bad probe sets were identified from the box-in-PV2 slot-excited random probe set
simulations, which are given in Table 6-1. The heuristic and OED probe sets are also shown for
comparison. The numerical performance of these probe set are given in Table 6-2.

Comparing the numerical performance of the different probe sets, it can be seen that the good probe
set has very low error and a vanishing probability of missed peaks for both six and four probes.
The heuristic probe set has significantly reduced performance compared to the good probe sets,
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G M

Figure 6-4. PV2 in the small anechoic chamber for box-in-PV2 slot-excitation experiments. The
log-periodic transmit antenna is pointed at the center of the slot between columns G and M on PV2.

especially for four probes. Finally the OED probe set has nearly identical performance to the good
random probe set for both four and six probes.

6.3. Measurement

Measurements were performed of the box-in-PV2 with slot excitation by placing PV2 in a small
anechoic chamber with dimensions 4 ft × 4 ft × 6 ft (1.22 m × 1.22 m × 1.83 m), depicted in
Fig. 6-4. Key measurement parameters are given in Table 6-3. Four slots were realized by placing
5-mil shims in the flange as depicted in Fig. 6-1. A log-periodic antenna (Aaronia HyperLog 7040)
was used to illuminate PV2 at a range of 55 cm from the tip of the antenna to the PV2 flange.
Although this separation is too close for farfield conditions, our goal is to excite fields in the slots,
not necessarily to generate a pure plane wave. An amplifier was used to boost the output power
at the antenna to 20 dBm. SMA cables were connected to all probe and test ports and fed to the
outside of the chamber. These cables were clamped tightly to the back wall of the chamber to keep
the cables from moving when manually changing connections during a measurement sequence.

57



Parameter Value
Transmit Power 20 dBm

Antenna Log Periodic (4 dBi gain)
IF Bandwidth 1 kHz

Frequency Range 560 MHz – 2 GHz
Frequency Step 100 kHz (14401 points)

Calibration Response (thru)

Table 6-3. Parameters for box-in-PV2 chamber measurements.
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Figure 6-5. Background measurement for box-in-PV2 slot-excitation chamber experiments.

Note that unconnected probe cables were always terminated using 50 Ω loads.

Due to the inclusion of the amplifier on transmit, a full two-port calibration was not performed.
Instead, a “response” type calibration was performed to remove bulk cable losses and phase shifts
for the nine measured ports (six probe and three test ports). This was accomplished by disconnecting
the transmit antenna cable (VNA Port 1) and connecting it to each of the nine PV2 port cables in
turn. On the receive side, the cable from VNA Port 2 was connected directly to the other side of
each cable. The 𝑆21 response for each port was measured and then used to correct subsequent PV2
slot-excitation measurements.

A background measurement of the slot-excitation chamber measurement is shown in Fig. 6-5. In this
measurement, VNA Port 1 was connected to the transmit antenna as usual, but a terminator/short
blocking element was placed between the first probe port SMA output (Port 1A) on PV2 and the
cable leading to the VNA. The background response is dominated by the VNA noise floor, which
is approximately -100 dB or lower.

The same modal reconstruction technique was applied here to measurements of the good and
heuristic probe sets for both six and four probes. Only the single angle of incidence (antenna
aimed at the slot between columns G and M) was tested. Simulations were also performed for
the same cases that were measured, where the slot voltage was assumed to be a half sine on the
single slot (between columns G and M) and zero on the other slots. Detailed reconstructions are
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Measured
𝑁𝑃 𝑃missed Error90% ErrorAvg

Good 6 0.00 % 1.8 dB 0.7 dB
Good 4 0.00 % 2.7 dB 1.3 dB

Heuristic 6 3.80 % 2.5 dB 1.0 dB
Heuristic 4 17.72 % 4.8 dB 1.4 dB

Simulated
𝑁𝑃 𝑃missed Error90% ErrorAvg

Good 6 0.00 % 0.2 dB 0.1 dB
Good 4 0.00 % 0.7 dB 0.3 dB
Bad 6 29.17 % 2.4 dB 1.0 dB
Bad 4 41.67 % 5.8 dB 2.0 dB

Heuristic 6 2.08 % 0.2 dB 0.1 dB
Heuristic 4 10.42 % 4.1 dB 0.9 dB

OED 6 0.00 % 0.2 dB 0.1 dB
OED 4 0.00 % 0.4 dB 0.2 dB

Table 6-4. Performance metrics of measured and simulated reconstructions for box-in-PV2 with slot
excitation.

shown in Appendix E Section E.3 for the box-in-PV2 chamber measurements. A summary of the
performance metrics for the different cases is shown in Table 6-4.

In terms of relative performance, simulations track measurement results fairly well. The heuristic
probe set has significantly lower performance as compared to the good probe set for missed peaks
and 90% error. Average error, however, is similar for the two probe sets. The simulated OED
probe set had zero missed peak probability, as well as the lowest simulated error metrics. The
simulated bad probe set shows the high penalty that could be caused by choosing a poor probe
configuration.

These results illustrate that useful reconstructions can be performed on practical measured data,
having uncertainty in the placement of internal components (the box) as well as imprecise knowledge
of angle of incidence and slot excitations. With six probes, reconstruction error at the 90%
confidence level was only 1.8 dB with the good random probe set, and no missed peaks were
observed. With four probes, reconstruction error at the 90% confidence level was only 2.7 dB and
still no missed peaks were observed. As with previous probe injection experiments, we expect this
level of error to be low enough for practical shielding effectiveness studies.
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7. SUMMARY AND CONCLUSION

This report has documented theory, simulations, and experiments from the Optimal Experiment
Design LDRD for reconstructing cavity fields from sparse probe measurements. This work directly
supports shielding effectiveness characterization, enabling spatial fields throughout an enclosure
to be predicted from judiciously placed probes. The methods are appropriate for the fundamental
and undermoded regimes, where modal fields are sufficiently sparse. A key aim of the work was to
understand the importance of probe placement in minimizing reconstruction error.

Key tools developed in this effort included workflows for modal simulation of cavity fields. Tra-
ditional simulation of enclosures in the fundamental and undermoded regimes requires full-wave
simulation with either a very fine frequency step or an adaptive sweep in order to resolve resonant
peaks. Even with an adaptive frequency sweep, full-wave simulations can be time consuming and
must be performed for all point-of-entry (POE) configurations of interest. On the other hand, the
modal simulation methods only require a single eigenfrequency simulation to be performed, after
which the response for fairly arbitrary POEs can be computed in a few seconds for a full frequency
sweep. This allowed extensive statistical studies of probe placement to be performed in this report,
where many thousands of POE configurations were simulated. We expect that these methods will
also be extremely useful in the future for efficient calibration of models to measured data.

Our investigations focused on a cylindrical cavity based on Vessel 2 [5], which was referred to
as the Perforated Vessel 2 (PV2). The top, bottom, and sides of PV2 are covered with numerous
holes for probes, allowing in-depth studies of the effect of probe placement on reconstruction
performance. We began with probe-injection simulations and experiments that could be performed
conveniently on a laboratory bench at relatively low EM power levels. Later, we performed
slot-excitation experiments in a small anechoic chamber. Overall, the behaviors seen in the more
difficult chamber-based measurements were already observed in the simpler probe-injection studies,
demonstrating that probe injection is a useful modality for testing EM cavity models and associated
reconstruction performance.

Simulations were performed on 200 probe sets that were randomly generated assuming a uniform
distribution over the available probe holes on the top and sides of PV2. The goal was to understand
how strongly reconstruction performance depends on probe placement, as well as to identify good
and bad probe sets that could be used in later experiments. The simulations illustrated that when
the number of probes is equal to the number of modal coefficients estimated at each reconstruction
frequency, judicious probe placement is critical for obtaining good reconstruction performance.
On the other hand, when the number of probes is significantly larger than the number of modes
being estimated, most of the randomly chosen probe sets had good performance.

A surprising simulation result was the relatively poor performance of a “heuristic” probe set that
was chosen using the intuition that probes should be spread out as much as possible on the top
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and side surfaces of PV2. The results showed that this choice of probe placement usually had
worse performance than the median randomly selected probe set. This shows that probe placement
algorithms and simulation studies may be critical for ensuring useful probe data is extracted from
experiments. It also illustrates the need for fast algorithms and new rule-of-thumb strategies to
place probes for good performance.

In addition to studies with the empty PV2 cavity, simulations and experiments were also performed
for the case of including simple contents in the enclosure. Specifically, a rectangular steel box
was placed in the bottom of PV2. The presence of this box breaks the symmetry of the structure,
requiring modes to be found numerically. The box also presents significant modeling uncertainty
in experiments, since the box was placed by hand in position and taped to the bottom of PV2 with
copper tape.

Experiments were performed on a limited number of cases to verify behaviors observed in simula-
tion. Experiments explored good, bad, and heuristic probe sets for the empty PV2 and box-in-PV2
cases, as well as both probe injection and slot excitation. Overall, the relative performance of the
various probe sets seen in simulations was confirmed by experiments. However, the absolute error
of reconstructions was higher in experiments, as compared to simulation, but error still remained
within useful levels. Numerically, the error of reconstructed resonant peaks for a judiciously chosen
probe set was no larger than 3.5 dB and 1.8 dB at the 90% confidence level for four and six probes,
respectively, with nearly zero probability of a missed peak detection.

One limitation of this work was the simplicity of the modal reconstruction method, where a direct
pseudoinverse was used for a fixed number of modes per reconstruction frequency. An advantage
of this approach is that the estimator does not require information on noise levels, the distribution
of modal coefficients, nor the degree of modal coupling to the reconstruction frequency. A
significant disadvantage, however, is that the pseudoinverse can exhibit noise amplification, leading
to suboptimal performance. Also, not estimating the optimal number of modes and including modes
with insignificant coupling to a reconstruction frequency can lead to poor conditioning and higher
error of the inverse. In future work, we expect to explore theoretically optimal approaches, such
as the minimum-mean-squared-error (MMSE) estimator, the maximum likelihood (ML) estimator,
etc.

In conclusion, we point out the success of this effort in demonstrating useful reconstruction of cavity
fields of an empty cavity, as well as one having simple contents. The results are encouraging and
suggest that modal reconstruction may have high practical value in estimating shielding throughout
an enclosure without the need to include a large number of probes. We have also demonstrated
that detailed simulations can predict the same behavior observed in measurements, suggesting
that probe placement can be explored before experimental campaigns to determine good probe
placement strategies and expected reconstruction error. Although the investigations in this report
considered fairly simple cavity geometries, the methods developed are general and should be
applicable to arbitrary cavity shapes. Future investigations are needed to assess how well these
methods perform for more realistic cavity shapes that may have significantly higher complexity and
associated model uncertainty.
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APPENDIX A. Perforated Vessel 2 (PV2)

This appendix provides details on the design of the perforated Vessel 2 (PV2) used in simulations
and experiments in this report. The design is very similar to the original Vessel 2 that is described
in [5]. PV2 consists of two top-hat like aluminum structures that are bolted together at a flange,
as depicted in Figure A-1. The wall thickness of PV2 is 0.5 inches, which was increased from the
0.25-inch thickness of the original Vessel 2 to accommodate probes on the walls. Slots are formed
by placing shims on the flange at bolt positions. In probe injection experiments, bolts were used at
eight out of the sixteen bolt holes, and no shims were used. Bolts were always torqued to 20 in-lbs
in this report. For slot excitation experiments, only four bolt holes were used, and 5-mil brass shims
were placed at the bolt positions as depicted in Fig. 6-1.

Like Vessel 2, PV2 has a flange that is 0.25 inches thick and extends 0.75 inches from the vessel
surface to the outer flange edge, giving the slots a depth of 1.25 inches. The interior of the vessel
is a cylindrical cavity with height and radius equal to 18 and 5.75 inches, respectively.

A detailed drawing of PV2 is shown in Figure A-3. Note that the eight tapped 10-32 holes on the
top face and bottom face can be used for vibration experiments or for placing PV2 on a rotation
stage for scanned measurements, as was done in [5].

Due to the many holes in PV2, a suitable way to cover the unused holes is needed. For this purpose,
a custom built SMA plug part was designed and manufactured. The plug was designed with the
0.25-36 UNS 2A thread compatible with SMA connectors. The length of the bolt shaft is 0.45
inch, which given the thickness of the vessel walls (0.5 inch) minus the inset for the probe heads
(0.05 inch), provides a nearly flush surface on the inside wall at each plug location. The SMA
plugs were fabricated in brass, which was deemed soft enough to not damage the threads of the
aluminum vessel. A photo and mechanical drawing of the SMA plug are given in Fig. A-4 and A-5,
respectively. Not only does the SMA plug avoid the use of copper tape or other means of covering
unused holes, the plugs may be removed or replaced without the need to disassemble the vessel.

The probes that were used with PV2 are monopoles that were realized by placing a 1-cm pin inside
a bulkhead SMA adapter. To save cost, standard dielectric-filled SMA bulkhead adapters were used
(Amphenol Part# 132170), where the outer conductor on the long side was cut off right at the end
of the dielectric material and inner pin socket. Using this cut SMA adapter with a standard 40-mil
copper crush washer provided almost the exact depth needed for the dielectric and inner pin socket
to be flush with the inside of PV2. A photo of the modified SMA adapter used in experiments is
shown in Fig. A-6.
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Figure A-4. Photo of the SMA plug.
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Figure A-5. Mechanical drawing of the SMA plug design.
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(a) Probe Base Parts (b) 1 cm Probe

Figure A-6. Probes used in experiments: (a) uncut SMA adapter, final cut SMA adapter, crush washer, (b)
completed 1 cm probe.
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APPENDIX B. Analytical Mode Solutions of Cylinders

Modes of a cylindrical vessel are given by expressions in [4]. Modes are indexed by three integers

𝑛 Tangential (𝜙) variation, 𝑛 = 0, 1, . . .

𝑚 Radial (𝜌) variation, 𝑚 = 1, 2, . . .

ℓ Axial (𝑧) variation, ℓ = 0, 1, . . .

B.1. Resonant Frequencies

Modal resonant frequencies for transverse electric (TE) modes are

𝑓TE,𝑛𝑚ℓ =
𝑐

2𝜋

√︄(
𝑝′𝑛𝑚
𝑎

)2
+
(
𝜋ℓ

𝑑

)2
, (B.1)

where 𝑐 = 1/√𝜇𝜖 is the wave velocity in the cavity medium, 𝑎 is the cylinder radius, 𝑑 is the
cylinder height, and 𝑝′𝑛𝑚 is the 𝑚th zero of the 𝑛th order Bessel function derivative satisfying
𝐽′𝑛 (𝑝′𝑛𝑚) = 0.

Modal resonant frequencies for transverse magnetic (TM) modes are

𝑓TM,𝑛𝑚ℓ =
𝑐

2𝜋

√︄( 𝑝𝑛𝑚
𝑎

)2
+
(
𝜋ℓ

𝑑

)2
, (B.2)

where 𝑝𝑛𝑚 is the 𝑚th zero of the 𝑛th order Bessel function satisfying 𝐽𝑛 (𝑝𝑛𝑚) = 0.

B.2. Quality Factor

The quality factor for TE and TM modes may be found in [1]. For TE modes we have

𝑄TE,𝑛𝑚ℓ =
𝜆0

2𝜋𝛿S

[
1 −

(
𝑛

𝑝′𝑛𝑚

)2
] [

(𝑝′𝑛𝑚)2 +
(
ℓ𝜋𝑎
𝑑

)2
]3/2

[
(𝑝′𝑛𝑚)2 + 2𝑎

𝑑

(
ℓ𝜋𝑎
𝑑

)2
+
(
1 − 2𝑎

𝑑

) (
𝑛ℓ𝜋𝑎
𝑝′𝑛𝑚𝑑

)2
] , (B.3)
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Table B-1. Cylindrical mode fields for exp( 𝑗𝑛𝜙) variation.
TE TM

𝐸𝑧 0 𝐽𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 cos(𝑘𝑧𝑧)
𝐻𝑧 𝐽𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 sin(𝑘𝑧𝑧) 0
𝐸𝜌

𝜔𝜇𝑛

𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 sin(𝑘𝑧𝑧) − 𝑘𝑧

𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 sin(𝑘𝑧𝑧)

𝐸𝜙 𝑗
𝜔𝜇

𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 sin(𝑘𝑧𝑧) − 𝑗

𝑘𝑧𝑛

𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 sin(𝑘𝑧𝑧)

𝐻𝜌
𝑘𝑧
𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 cos(𝑘𝑧𝑧) −𝜔𝜖𝑛

𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 cos(𝑘𝑧𝑧)

𝐻𝜙 𝑗
𝑘𝑧𝑛

𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 cos(𝑘𝑧𝑧) − 𝑗 𝜔𝜖

𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 cos(𝑘𝑧𝑧)

𝑘𝜌 𝑝′𝑛𝑚/𝑎 𝑝𝑛𝑚/𝑎
𝑘𝑧 𝜋ℓ/𝑑 𝜋ℓ/𝑑

where 𝜆0 = 𝑐/ 𝑓TE is the modal wavelength, 𝛿𝑠 is the wall skin depth, given by

𝛿S =

√︄
1

𝜋 𝑓TE 𝜇wall 𝜎wall
, (B.4)

and 𝜇wall and 𝜎wall are the permeability and conductivity, respectively, of the metallic walls.

For TM modes we have

𝑄TM,𝑛𝑚ℓ =
𝜆0

2𝜋𝛿S

√︂
𝑝2
𝑛𝑚 +

(
ℓ𝜋𝑎
𝑑

)2

1 + 𝛿ℓ
(
𝑎
𝑑

) , (B.5)

where 𝜆0 = 𝑐/ 𝑓TM is the modal wavelength, 𝛿S is the wall skin depth, given by

𝛿S =

√︄
1

𝜋 𝑓TM 𝜇wall 𝜎wall
, (B.6)

and
𝛿ℓ =

{
1, ℓ = 0
2, otherwise. (B.7)

B.3. Modal Fields

The most compact way to write modes is to assume exp( 𝑗𝑛𝜙) tangential variation, where 𝑛 is an
arbitrary integer (positive, negative, or zero). The expressions for TE and TM modes are given in
Table B-1.

Often it is desirable to have real-valued modal functions, which is possible by converting each pair
of modes with 𝑒 𝑗𝑛𝜙 variation for positive and negative 𝑛 into a cosine and sine mode pair. Consider
a combination of the modes for coefficients ±𝑛, or

𝑓 (𝜌, 𝜙) = 𝑐𝑛 𝑓𝑛 (𝑘𝜌𝜌)𝑒 𝑗𝑛𝜙 + 𝑐−𝑛 𝑓−𝑛 (𝑘𝜌𝜌)𝑒− 𝑗𝑛𝜙. (B.8)
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Table B-2. Conversion from exp( 𝑗𝑛𝜙) to cos and sin variation.
TE TM

cos sin cos sin
𝐸𝑧 0 0 cos(𝑛𝜙) sin(𝑛𝜙)
𝐻𝑧 cos(𝑛𝜙) sin(𝑛𝜙) 0 0
𝐸𝜌 𝑗 sin(𝑛𝜙) − 𝑗 cos(𝑛𝜙) cos(𝑛𝜙) sin(𝑛𝜙)
𝐸𝜙 cos(𝑛𝜙) sin(𝑛𝜙) 𝑗 sin(𝑛𝜙) − 𝑗 cos(𝑛𝜙)
𝐻𝜌 cos(𝑛𝜙) sin(𝑛𝜙) 𝑗 sin(𝑛𝜙) − 𝑗 cos(𝑛𝜙)
𝐻𝜙 𝑗 sin(𝑛𝜙) − 𝑗 cos(𝑛𝜙) cos(𝑛𝜙) sin(𝑛𝜙)

We can create a cos(𝑛𝜙) mode by letting 𝑐𝑛 =
1
2 and 𝑐−𝑛 =

(−1)𝑛
2 , which converts the 𝑒 𝑗𝑛𝜙 variation

into cos 𝑛𝜙 (or 𝑗 sin 𝑛𝜙 ) variation when 𝑛 is not (or is) present in the mode coefficient.

Likewise, we can create a sin(𝑛𝜙) mode by letting 𝑐𝑛 = 1
2 𝑗 and 𝑐−𝑛 =

(−1)𝑛+1

2 𝑗 , which converts
the 𝑒 𝑗𝑛𝜙 variation into sin 𝑛𝜙 (or − 𝑗 cos 𝑛𝜙) variation when 𝑛 is not (or is) present in the mode
coefficient.

Note that deriving these relationships required applying the identity

𝑌−𝑛 (𝑥) =
{
+𝑌𝑛 (𝑥), 𝑛 even,
−𝑌𝑛 (𝑥), 𝑛 odd, (B.9)

where 𝑌𝑛 (𝑥) is an arbitrary Bessel function (or derivative).

The required replacements of the 𝑒 𝑗𝑛𝜙 term in the modes are summarized in Table B-2 for the
cosine and sine modes. Note in Table B-2 that it is possible to derive the sine mode of each mode
type (TE or TM) from the cosine mode by replacing 𝑛𝜙 in the cosine column with 𝑛𝜙 + 𝜙0. Then,
the cosine and sine columns are generated with 𝜙0 = 0 and 𝜙0 = −𝜋/2, respectively. This is a more
efficient way to generate the cosine and sine modes in a computer code.

Performing the substitutions described above results in Table B-3. We have multiplied all TE
expressions by − 𝑗 , resulting in purely real electric field and purely imaginary magnetic field for
both TE and TM modes. We have also used 𝑘 = 𝜔

√
𝜇𝜖 and 𝜂 =

√︁
𝜇/𝜖 in this form of the modal

fields.

B.4. Stored Energy and Normalization Integrals

Computation of stored energy is useful for later computation of mode normalization integrals. At
a resonance, stored electric and magnetic energy are equal, requiring only one to be computed.
Stored electric energy is

𝑈𝐸 =
𝜖

4

∫
𝑉

���𝐸 (𝑟)���2 𝑑𝑉︸           ︷︷           ︸
𝐼𝐸

, (B.10)
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Table B-3. Cosine and sine form of cylinder cavity modes. Cosine and sine modes are obtained with
𝜙0 = 0 and 𝜙0 = −𝜋/2, respectively.

TE TM
𝐸𝑧 0 𝐽𝑛 (𝑘𝜌𝜌) cos(𝑛𝜙 + 𝜙0) cos(𝑘𝑧𝑧)
𝐻𝑧 − 𝑗 𝐽𝑛 (𝑘𝜌𝜌) cos(𝑛𝜙 + 𝜙0) sin(𝑘𝑧𝑧) 0
𝐸𝜌

𝑘𝜂𝑛

𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌) sin(𝑛𝜙 + 𝜙0) sin(𝑘𝑧𝑧) − 𝑘𝑧

𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌) cos(𝑛𝜙 + 𝜙0) sin(𝑘𝑧𝑧)

𝐸𝜙
𝑘𝜂

𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌) cos(𝑛𝜙 + 𝜙0) sin(𝑘𝑧𝑧) 𝑘𝑧𝑛

𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌) sin(𝑛𝜙 + 𝜙0) sin(𝑘𝑧𝑧)

𝐻𝜌 − 𝑗
𝑘𝑧
𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌) cos(𝑛𝜙 + 𝜙0) cos(𝑘𝑧𝑧) − 𝑗 𝑘𝑛

𝜂𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌) sin(𝑛𝜙 + 𝜙0) cos(𝑘𝑧𝑧)

𝐻𝜙 𝑗
𝑘𝑧𝑛

𝑘2
𝜌𝜌
𝐽𝑛 (𝑘𝜌𝜌) sin(𝑛𝜙 + 𝜙0) cos(𝑘𝑧𝑧) − 𝑗 𝑘

𝜂𝑘𝜌
𝐽′𝑛 (𝑘𝜌𝜌) cos(𝑛𝜙 + 𝜙0) cos(𝑘𝑧𝑧)

where 𝐼𝐸 for a TE mode is computed as

𝐼𝐸 =

∫
𝑉

(��𝐸𝜌

��2 + ��𝐸𝜙

��2) 𝑑𝑉. (B.11)

Substituting field expressions for an arbitrary TE cosine mode from Table B-3, we obtain

𝐼𝐸 =
𝜋𝑑𝑘2𝜂2𝑎4

4(𝑝′𝑛𝑚)2

(
1 − 𝑛2

(𝑝′𝑛𝑚)2

) [
𝐽𝑛 (𝑝′𝑛𝑚)

]2
. (B.12)

Total stored energy for a TE mode is therefore

𝑈TE = 2𝑈𝐸 =
𝜖 𝐼𝐸

2
. (B.13)

Stored magnetic energy is

𝑈𝐻 =
𝜇

4

∫
𝑉

���𝐻 (𝑟)
���2 𝑑𝑉︸           ︷︷           ︸

𝐼𝐻

, (B.14)

where 𝐼𝐻 for a TM mode is computed as

𝐼𝐻 =

∫
𝑉

(��𝐻𝜌

��2 + ��𝐻𝜙

��2) 𝑑𝑉. (B.15)

Substituting field expressions for an arbitrary TM cosine mode from Table B-3, we obtain

𝐼𝐻 =
𝜋𝑑𝑘2𝑎4

𝛿𝑛𝛿ℓ 𝜂
2(𝑝𝑛𝑚)2

[
𝐽′𝑛 (𝑝𝑛𝑚)

]2
, (B.16)

where 𝛿(·) is given in (B.7). Total stored energy for a TM mode is therefore

𝑈TM = 2𝑈𝐻 =
𝜇𝐼𝐻

2
. (B.17)
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Noting that the form of the modes in Table B-3 have purely real electric field and purely imaginary
magnetic field, we can readily compute the the following normalization integrals from the stored
energy results. For a TE mode we have the normalization integral

𝐴𝑛𝑚ℓ =

∫
𝑉

𝐸 (𝑟) · 𝐸 (𝑟)𝑑𝑉 =

∫
𝑉

|𝐸 (𝑟) |2𝑑𝑉 = 𝐼𝐸 . (B.18)

For an arbitrary TM mode we have the normalization integral

𝐵𝑛𝑚ℓ =

∫
𝑉

𝐻 (𝑟) · 𝐻 (𝑟)𝑑𝑉 =

∫
𝑉

(−|𝐻 (𝑟) |2)𝑑𝑉 = −𝐼𝐻 . (B.19)
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APPENDIX C. Numerical Mode Solutions with COMSOL

For most cavity shapes of interest, there is no closed-form solution for the modes. However, modes
may be found numerically using finite-element (FEM) solvers, such as COMSOL. In FEM, the
modal system of equations results in a sparse matrix eigenvalue / eigenvector problem that may be
solved efficiently with sparse eigenvalue solvers like ARPACK [3]. This section describes the setup
required to find numerical modes in COMSOL, which may be used in place of closed-form modes
when finding internal cavity fields for the theory described in Chapter 2.

C.1. Problem Setup

The following steps should be followed when setting up the analysis problem in COMSOL:

1. A fully enclosed domain should be created that represents the empty space inside of the
cavity. The boundaries of the domain represent the cavity walls.

2. No ports or sources should be added to the geometry. It will be assumed that probes and
apertures do not appreciably perturb the modal fields inside the cavity.

3. Assuming walls with high conductivity, a perturbation approach is followed, where walls are
simulated as perfect electrical conductor (PEC) to find the modes. Later, the quality factor of
the modes may be found by accounting for the actual wall conductivity in post-processing.

4. The “eigenfrequency” study is selected in COMSOL, which is depicted in Fig. C-1. Here the
maximum number of eigenfrequencies and the range of frequencies to consider is selected.
Since we have PEC walls, the imaginary part of the eigenfrequency (loss) can be set to zero.

C.2. Field Export

Modal fields need to be exported for the various modes found in the frequency range of interest.
This is performed by creating a new “Data Export” item under the “Export” tab in the Model Builder
pane. The “Expressions” table should be populated with eigenfrequencies (freq) and each of the
electric and magnetic field components (emw.Ex, emw.Ey, emw.Ez, emw.Hx, emw.Hy, emw.Hz).
An example export setup is shown in Figure C-2.

It should be noted that modal fields are exported at nodes on the COMSOL volume mesh, which
usually does not form a regular grid. However, conversion to a regular grid or arbitrary obser-
vation points can be easily accomplished using interpolation (such as the ScatteredInterpolant in
MATLAB).
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Figure C-1. Eigenfrequency study setup in COMSOL.
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Figure C-2. Modal field export in COMSOL.
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C.3. Dissipated Power Export

To compute quality factor, dissipated power in the cavity walls needs to be computed for each
mode, which can be accomplished using the “Results →Derived Values” tab. Dissipated power is
computed with the integral

𝑃d,𝑛 =
𝑅𝑆

2

∫
𝑆

���𝑛̂ × 𝐻𝑛

���2 𝑑𝑆︸             ︷︷             ︸
𝐼𝑃

, (C.1)

where 𝑆 is the surface consisting of cavity walls, 𝑛̂ is the inward surface normal, 𝐻𝑛 is the magnetic
field on the wall for the 𝑛th mode, the wall resistivity is given by

𝑅𝑆 =

√︄
𝜋 𝑓𝑛𝜇wall
𝜎wall

, (C.2)

and 𝑓𝑛 is the frequency of the 𝑛th mode. In COMSOL it is most convenient to compute and export
just the integral 𝐼𝑃 in (C.1), which can then be scaled according to 𝑅𝑆/2 in later processing.

Figure C-3 shows the setup for computing the dissipated power integral 𝐼𝑃. The translation of 𝐼𝑃
into COMSOL variables is as follows:

emw.Hx*conj(emw.Hx)*(nz^2 + ny^2) + emw.Hy*conj(emw.Hy)*(nx^2 + nz^2) +
emw.Hz*conj(emw.Hz)*(nx^2 + ny^2) - 2*nx*ny*real(emw.Hx*conj(emw.Hy)) -
2*nx*nz*real(emw.Hx*conj(emw.Hz)) - 2*ny*nz*real(emw.Hy*conj(emw.Hz))

For the simplest model, the wall conductivity is the same for all surfaces. However, it is possible
to create multiple derived values for different surfaces and export 𝐼𝑃 separately for each one. Then,
the total dissipated power would be the sum of these exported quantities scaled by 𝑅𝑆/2 of each
surface.

When evaluating a derived value, a table is created which can then be exported to an ASCII file
using the “Export” tab.

C.4. Stored Energy and Mode Normalization Export

Computation of quality factor requires stored energy of each mode to be computed. Total stored
energy of the 𝑛th mode is the sum of electric and magnetic stored energy, or

𝑈𝑛 = 𝑈E,𝑛 +𝑈H,𝑛. (C.3)

Electric stored energy is computed as

𝑈E,𝑛 =
𝜖

4

∫
𝑉

|𝐸𝑛 |2𝑑𝑉, (C.4)

which can be computed in COMSOL using a volume integral “Derived Result” with the equation
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Figure C-3. Power loss computation in COMSOL.
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epsilon0_const/4*(emw.Ex*conj(emw.Ex) + emw.Ey*conj(emw.Ey)
+ emw.Ez*conj(emw.Ez))

Magnetic stored energy is computed as

𝑈H,𝑛 =
𝜇

4

∫
𝑉

|𝐻𝑛 |2𝑑𝑉, (C.5)

which can be computed in COMSOL using a volume integral “Derived Result” with the equation

mu0_const/4*(emw.Hx*conj(emw.Hx) + emw.Hy*conj(emw.Hy)
+ emw.Hz*conj(emw.Hz))

In addition to stored energy, normalization constants for electric and magnetic fields are needed for
subsequent modal analysis, given by

𝐴𝑛 =

∫
𝑉

𝐸𝑛 (𝑟) · 𝐸𝑛 (𝑟)𝑑𝑉, (C.6)

𝐵𝑛 =

∫
𝑉

𝐻𝑛 (𝑟) · 𝐻𝑛 (𝑟)𝑑𝑉, (C.7)

which are computed in COMSOL with the volume integrands

emw.Ex^2 + emw.Ey^2 + emw.Ez^2

emw.Hx^2 + emw.Hy^2 + emw.Hz^2

respectively.

The setup for the stored energy and field normalization computation is shown in Figure C-4. Data
is evaluated to a table and exported using the “Export” tab as before.

C.5. Quality Factor Computation

Given the numerical values for wall dissipated power and stored energy described in the previous
sections, the quality factor for each mode is computed as

𝑄𝑛 =
2𝜋𝑈𝑛

𝑃d,𝑛
. (C.8)
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Figure C-4. Stored energy and field normalization computation in COMSOL.
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APPENDIX D. Random Probe Sets

Two hundred random probe sets were generated for use in simulation and experimental studies in
this work. Here the probe sets are listed, allowing them to be referred to elsewhere by a numerical
index. Each probe set has six probe locations. When only four probes are used, the first four probe
locations are used. The row (number) and column (letter) designations of the ports are shown in
Fig. A-1.
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1 13K, 10K, 17M, 14S, 14X, 14W 68 11K, 16I, 8F, 16S, 8T, 17M 135 16J, 13B, 3S, 14J, 8N, 12P
2 11N, 8H, 11T, 3M, 3P, 9I 69 14K, 6L, 9T, 4E, 10V, 12I 136 13G, 7X, 13N, 16I, 14V, 7U
3 13C, 18T, 9B, 6B, 8T, 16B 70 14A, 11V, 14L, 12J, 17O, 8M 137 15D, 12H, 11D, 6U, 11M, 12C
4 9V, 8H, 14H, 8E, 10P, 2K 71 1Q, 10L, 10V, 17C, 15P, 17F 138 17E, 7E, 4U, 12D, 17M, 15J
5 9X, 18H, 9K, 17M, 13L, 6P 72 19G, 3L, 9J, 11X, 3R, 16V 139 19G, 5T, 1M, 11E, 4T, 7O
6 3W, 6A, 17V, 16S, 17J, 15E 73 13P, 9W, 10T, 19M, 16X, 15T 140 12T, 14E, 19M, 10M, 4E, 16F
7 4C, 14A, 12T, 14R, 7W, 11T 74 19P, 3J, 13K, 1I, 3I, 5K 141 16Q, 17A, 12Q, 16V, 7U, 3X
8 2Q, 9C, 12I, 16N, 19T, 18G 75 11U, 4F, 5S, 12U, 1W, 4E 142 16N, 3W, 14W, 9B, 15O, 12H
9 4F, 16D, 16L, 13W, 5T, 7T 76 11N, 0A, 12H, 11B, 15C, 2I 143 5L, 12E, 13U, 11C, 3O, 17X
10 3N, 7D, 12P, 13B, 19H, 10X 77 14W, 14I, 19C, 15W, 13D, 3N 144 19H, 12C, 11D, 8B, 19Q, 11M
11 11W, 2S, 8O, 2I, 10K, 16A 78 5U, 7P, 4K, 15H, 18Q, 4X 145 10M, 13H, 11E, 4T, 9H, 6V
12 18C, 11K, 10N, 3N, 18U, 12I 79 1I, 13O, 17J, 10T, 9D, 8B 146 12N, 1U, 7J, 13C, 6V, 4M
13 9H, 18B, 3W, 14Q, 17Q, 14K 80 17E, 6V, 1S, 10R, 10F, 18L 147 6H, 15I, 8E, 17E, 8P, 8V
14 11P, 16I, 4C, 8R, 4V, 7P 81 12K, 15M, 18T, 16R, 10U, 14P 148 8J, 3E, 13I, 9I, 19A, 18I
15 6B, 2C, 15L, 7K, 11A, 3P 82 7L, 18J, 18W, 6K, 9X, 17O 149 10B, 10P, 18B, 8S, 16E, 15B
16 15H, 4G, 11K, 5O, 8T, 13D 83 9O, 5B, 6L, 8F, 3P, 1C 150 14L, 15Q, 18P, 3S, 5H, 9L
17 13D, 7A, 6R, 13R, 16E, 9B 84 6G, 13C, 2O, 18P, 11B, 10O 151 4R, 3C, 3D, 11I, 17X, 15K
18 10J, 3W, 2U, 8N, 1G, 14L 85 18O, 8X, 14T, 11I, 8M, 18W 152 3J, 5G, 14N, 19Q, 4H, 6K
19 15H, 12K, 17T, 8E, 1K, 5J 86 17U, 10R, 7P, 14L, 18P, 16A 153 8D, 11H, 10L, 17M, 16F, 7I
20 3E, 15K, 11F, 19G, 7B, 7W 87 6T, 12G, 7B, 3E, 9S, 6Q 154 6G, 13E, 18V, 8O, 10R, 2C
21 13L, 9Q, 3C, 12P, 16X, 12V 88 11A, 8A, 7X, 17S, 16B, 2E 155 18G, 10U, 6V, 18B, 10R, 6S
22 1W, 18M, 16Q, 16T, 4M, 5R 89 3W, 6D, 18W, 17H, 13W, 10A 156 7O, 4X, 3X, 10B, 18W, 16W
23 15R, 2W, 9M, 17G, 6L, 19Q 90 8A, 9G, 17F, 17T, 3C, 11D 157 2E, 7K, 19D, 14U, 18V, 12F
24 18U, 10B, 9U, 10K, 3U, 4O 91 13S, 6T, 9R, 3D, 11D, 1W 158 18F, 11K, 14K, 16K, 9U, 13P
25 18N, 10V, 6R, 17K, 17I, 7H 92 6G, 19H, 11I, 5V, 13N, 8C 159 14U, 7W, 6F, 6D, 2A, 5C
26 3M, 7V, 8E, 3P, 3C, 9E 93 18A, 8Q, 5Q, 8B, 17D, 10M 160 19E, 9E, 16O, 2A, 2Q, 14T
27 11H, 14X, 14T, 18G, 5F, 17Q 94 15J, 7H, 12B, 12K, 9V, 11H 161 14I, 6J, 11B, 17V, 15G, 18P
28 10F, 18F, 4I, 18K, 4C, 6M 95 18U, 2W, 6H, 9M, 12G, 16J 162 7A, 7T, 14K, 6M, 9Q, 10P
29 11D, 9U, 15L, 6A, 0A, 17G 96 19E, 6V, 13I, 11X, 15J, 18K 163 19N, 6I, 14Q, 10R, 6R, 13Q
30 9G, 19O, 4K, 19D, 10N, 10M 97 8E, 10L, 15R, 14M, 11O, 8P 164 17T, 8F, 4W, 2A, 5R, 12E
31 17F, 3U, 15H, 7G, 9L, 8U 98 17V, 18N, 13S, 8E, 13V, 10H 165 8I, 7H, 19V, 10A, 8N, 2S
32 13L, 2A, 0A, 1A, 15P, 18R 99 8N, 10R, 4L, 15W, 15E, 15H 166 3B, 6S, 3H, 7D, 5C, 7K
33 13Q, 17E, 10J, 4P, 4F, 14L 100 6T, 17I, 7E, 19G, 7W, 6C 167 3W, 2A, 14N, 13T, 9P, 18L
34 0A, 9F, 2G, 10M, 3N, 12G 101 8T, 19W, 17W, 16V, 16A, 13W 168 13M, 3L, 7I, 12D, 13V, 5X
35 16G, 15F, 1A, 19G, 6E, 10P 102 13L, 4B, 12Q, 18T, 16W, 14L 169 4N, 17B, 2O, 11Q, 14W, 3S
36 9P, 4B, 5A, 3P, 3L, 5K 103 18E, 5W, 18V, 15B, 4V, 19H 170 13X, 8L, 19X, 11L, 9K, 13C
37 15W, 3X, 18D, 8U, 14I, 15B 104 15I, 12L, 14I, 9F, 9Q, 6M 171 5T, 14T, 13J, 6E, 14W, 7K
38 13X, 1O, 19U, 18Q, 10L, 18T 105 12G, 2E, 15V, 6Q, 7R, 3X 172 15R, 18R, 17B, 8A, 7I, 17R
39 8I, 19C, 16O, 19G, 9S, 9W 106 3W, 16R, 4W, 9B, 15R, 13C 173 18A, 14B, 4U, 2U, 15J, 18D
40 1A, 13A, 15G, 1M, 9C, 9Q 107 13U, 4T, 16B, 7G, 13F, 17C 174 6E, 4M, 14G, 13V, 3K, 7B
41 19L, 13O, 12P, 17N, 10U, 18K 108 6S, 13C, 17M, 4C, 5W, 13X 175 11L, 5U, 4N, 9A, 6E, 2G
42 7H, 13F, 2O, 19K, 12B, 16J 109 15V, 11X, 17F, 8X, 10C, 8N 176 17G, 12D, 14C, 14F, 14E, 13C
43 13R, 6U, 16G, 5J, 16J, 15L 110 18M, 13S, 12N, 15U, 9T, 9M 177 8J, 17L, 1M, 18Q, 19C, 12M
44 19D, 17N, 7H, 8G, 4B, 19P 111 14H, 5K, 17I, 6X, 7J, 4A 178 3D, 10B, 12I, 12O, 13E, 15C
45 6T, 9A, 4F, 6R, 4X, 6X 112 3L, 14X, 17H, 13X, 16Q, 13P 179 13I, 3V, 3F, 11X, 7L, 8S
46 17M, 8T, 19T, 17I, 12R, 8P 113 12U, 11X, 15P, 5E, 15E, 6I 180 7E, 8N, 14K, 4O, 6L, 1W
47 5H, 2E, 19T, 10X, 3V, 16A 114 16W, 19J, 16H, 18O, 11S, 3M 181 18R, 18J, 3Q, 17X, 13K, 9P
48 15R, 10W, 11W, 6N, 12I, 7V 115 3J, 18R, 6G, 12E, 11T, 13R 182 16Q, 2G, 7H, 19H, 9J, 10F
49 12H, 7L, 14J, 9Q, 4U, 9W 116 8P, 5O, 18B, 3K, 14W, 16I 183 13I, 13Q, 5T, 18V, 8D, 12W
50 4K, 16P, 16S, 6N, 14S, 11O 117 17W, 11O, 6H, 7C, 9R, 9Q 184 17F, 13A, 14F, 14K, 10Q, 4Q
51 18P, 15S, 11R, 18E, 15K, 4K 118 19P, 18D, 12V, 12K, 11L, 8Q 185 4D, 19S, 4X, 10N, 14A, 9F
52 16B, 13J, 3U, 5D, 13P, 10S 119 13D, 5V, 15K, 5E, 18K, 1W 186 19V, 9A, 16T, 10U, 19A, 10R
53 3J, 13O, 17C, 7K, 3P, 3A 120 5A, 4F, 11R, 17B, 14F, 8K 187 10Q, 3E, 13V, 3K, 12A, 17P
54 4R, 10J, 18U, 9I, 3K, 14I 121 10G, 17X, 14B, 7G, 10F, 12B 188 4G, 4P, 8C, 12F, 5K, 15T
55 8B, 14N, 3C, 10H, 7H, 4H 122 19L, 19W, 8S, 5N, 13M, 10H 189 11F, 16P, 8L, 13T, 7C, 14B
56 19A, 4K, 3X, 11D, 7L, 16W 123 6I, 3W, 16X, 8P, 17T, 15K 190 19M, 17M, 16N, 2C, 12H, 19N
57 5E, 7V, 19Q, 8R, 16I, 9G 124 14J, 16Q, 12N, 10X, 11X, 15K 191 3Q, 13J, 7D, 6E, 10E, 5T
58 14T, 12M, 17C, 18W, 9T, 19J 125 17F, 15D, 16W, 4G, 9E, 7U 192 12E, 12L, 16H, 10F, 11O, 4P
59 11U, 7U, 9R, 12L, 1C, 18X 126 10A, 16Q, 9A, 18K, 5G, 19L 193 15A, 11P, 13O, 10L, 11W, 10J
60 14V, 6E, 9E, 16G, 8B, 10K 127 2G, 15T, 19G, 9D, 4W, 18C 194 4I, 13L, 8J, 10Q, 9X, 2S
61 17S, 7H, 18F, 2E, 19M, 4A 128 12S, 13T, 2A, 12F, 18E, 9G 195 1W, 16H, 14A, 2M, 19H, 13I
62 5H, 8H, 14A, 12R, 11V, 10A 129 12V, 16F, 14F, 13B, 15V, 9U 196 7H, 7M, 5Q, 13E, 8X, 6I
63 12Q, 17X, 11N, 1A, 7S, 14J 130 13F, 19V, 8R, 5K, 17L, 13X 197 3I, 3B, 15Q, 8P, 12E, 4L
64 9D, 11S, 10K, 7B, 18F, 3P 131 8B, 13D, 11R, 4I, 16V, 10K 198 17O, 13J, 17L, 5C, 10I, 19B
65 6P, 10S, 8D, 16V, 17C, 4F 132 15X, 3U, 16M, 14D, 3M, 17F 199 18Q, 3E, 7H, 15J, 9D, 14N
66 7L, 18Q, 5F, 9O, 5C, 16X 133 14W, 5K, 3U, 8O, 16D, 4N 200 5N, 18P, 3L, 5M, 12H, 3F
67 2G, 15X, 19U, 1U, 4U, 3U 134 19F, 11U, 1C, 4E, 5K, 10G
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APPENDIX E. Reconstruction Plots

E.1. Empty PV2 with Probe Injection

This appendix plots detailed reconstructions of all of the measurement cases described in this
report. Each measured reconstruction is also compared with a simulation for the same ports for
verification purposes.
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E.1.1. Six Probes

E.1.1.1. Good Random Probe Set (Measured)
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1 0.00 % 1.1 dB 0.5 dB
2 0.00 % 1.5 dB 0.6 dB
3 0.00 % 1.5 dB 0.6 dB

Figure E-1. Measured good random probe set in empty PV2 with six probes.
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E.1.1.2. Good Random Probe Set (Simulated)
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2 0.00 % 0.4 dB 0.1 dB
3 0.00 % 0.5 dB 0.2 dB

Figure E-2. Simulated good random probe set in empty PV2 with six probes.
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E.1.1.3. Bad Random Probe Set (Measured)
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2 19.44 % 4.8 dB 1.5 dB
3 14.63 % 6.5 dB 2.2 dB

Figure E-3. Measured bad random probe set in empty PV2 with six probes.
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E.1.1.4. Bad Random Probe Set (Simulated)
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3 10.81 % 7.7 dB 2.3 dB

Figure E-4. Simulated bad random probe set in empty PV2 with six probes.
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E.1.1.5. Heuristic Probe Set (Measured)
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Figure E-5. Measured heuristic probe set in empty PV2 with six probes.
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E.1.1.6. Heuristic Probe Set (Simulated)

0.5 1 1.5 2

Frequency (GHz)

-80

-60

-40

-20

0

20

d
B

Test Location 1

Actual

Estimated

0.5 1 1.5 2

Frequency (GHz)

-80

-60

-40

-20

0

20

d
B

Test Location 2

0.5 1 1.5 2

Frequency (GHz)

-80

-60

-40

-20

0

20

d
B

Test Location 3

Test Port 𝑃missed Error90% ErrorAvg
1 0.00 % 0.7 dB 0.2 dB
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3 0.00 % 0.8 dB 0.2 dB

Figure E-6. Simulated heuristic probe set in empty PV2 with six probes.
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E.1.2. Four Probes

E.1.2.1. Good Random Probe Set (Measured)
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Figure E-7. Measured good random probe set in empty PV2 with four probes.

92



E.1.2.2. Good Random Probe Set (Simulated)
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3 0.00 % 0.6 dB 0.4 dB

Figure E-8. Simulated good random probe set in empty PV2 with four probes.
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E.1.2.3. Bad Random Probe Set (Measured)
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3 14.63 % 6.5 dB 2.4 dB

Figure E-9. Measured bad random probe set in empty PV2 with four probes.
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E.1.2.4. Bad Random Probe Set (Simulated)
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3 10.26 % 7.7 dB 2.2 dB

Figure E-10. Simulated bad random probe set in empty PV2 with four probes.
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E.1.2.5. Heuristic Probe Set (Measured)
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Figure E-11. Measured heuristic probe set in empty PV2 with four probes.
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E.1.2.6. Heuristic Probe Set (Simulated)
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2 0.00 % 3.7 dB 1.1 dB
3 0.00 % 1.3 dB 0.5 dB

Figure E-12. Simulated heuristic probe set in empty PV2 with four probes.
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E.2. Box in PV2 with Probe Injection

E.2.1. Six Probes

E.2.1.1. Good Random Probe Set (Measured)
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Figure E-13. Measured good random probe set in box-in-PV2 with six probes.
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E.2.1.2. Good Random Probe Set (Simulated)

0.5 1 1.5 2

Frequency (GHz)

-80

-60

-40

-20

0

20

d
B

Test Location 1

Actual

Estimated

0.5 1 1.5 2

Frequency (GHz)

-80

-60

-40

-20

0

20

d
B

Test Location 2

0.5 1 1.5 2

Frequency (GHz)

-80

-60

-40

-20

0

20

d
B

Test Location 3

Test Port 𝑃missed Error90% ErrorAvg
1 0.00 % 0.5 dB 0.2 dB
2 0.00 % 0.2 dB 0.1 dB
3 0.00 % 0.3 dB 0.1 dB

Figure E-14. Simulated good random probe set in box-in-PV2 with six probes.
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E.2.1.3. Bad Random Probe Set (Measured)

This experiment was not performed.
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E.2.1.4. Bad Random Probe Set (Simulated)
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3 17.95 % 6.2 dB 1.9 dB

Figure E-15. Simulated bad random probe set in box-in-PV2 with six probes.
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E.2.1.5. Heuristic Probe Set (Measured)
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Figure E-16. Measured heuristic probe set in box-in-PV2 with six probes.
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E.2.1.6. Heuristic Probe Set (Simulated)
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Figure E-17. Simulated heuristic probe set in box-in-PV2 with six probes.
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E.2.2. Four Probes

E.2.2.1. Good Random Probe Set (Measured)
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Figure E-18. Measured good random probe set in box-in-PV2 with four probes.
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E.2.2.2. Good Random Probe Set (Simulated)
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Figure E-19. Simulated good random probe set in box-in-PV2 with four probes.
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E.2.2.3. Bad Random Probe Set (Measured)

This experiment was not performed.
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E.2.2.4. Bad Random Probe Set (Simulated)
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Figure E-20. Simulated bad random probe set in box-in-PV2 with four probes.
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E.2.2.5. Heuristic Probe Set (Measured)
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Figure E-21. Measured heuristic probe set in box-in-PV2 with four probes.
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E.2.2.6. Heuristic Probe Set (Simulated)
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Figure E-22. Simulated heuristic probe set in box-in-PV2 with four probes.
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E.3. Box in PV2 with Slot Excitation

E.3.1. Six Probes

E.3.1.1. Good Random Probe Set (Measured)
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Figure E-23. Measured good random probe set in box-in-PV2 with six probes.
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E.3.1.2. Good Random Probe Set (Simulated)
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Figure E-24. Simulated good random probe set in box-in-PV2 with six probes.
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E.3.1.3. Bad Random Probe Set (Measured)

This experiment was not performed.
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E.3.1.4. Bad Random Probe Set (Simulated)
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Figure E-25. Simulated bad random probe set in box-in-PV2 with six probes.
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E.3.1.5. Heuristic Probe Set (Measured)
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Figure E-26. Measured heuristic probe set in box-in-PV2 with six probes.
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E.3.1.6. Heuristic Probe Set (Simulated)
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Figure E-27. Simulated heuristic probe set in box-in-PV2 with six probes.
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E.3.1.7. OED Probe Set (Measured)

This experiment was not performed.
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E.3.1.8. OED Probe Set (Simulated)
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Figure E-28. Simulated OED probe set in box-in-PV2 with six probes.
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E.3.2. Four Probes

E.3.2.1. Good Random Probe Set (Measured)
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Figure E-29. Measured good random probe set in box-in-PV2 with four probes.
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E.3.2.2. Good Random Probe Set (Simulated)
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Figure E-30. Simulated good random probe set in box-in-PV2 with four probes.
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E.3.2.3. Bad Random Probe Set (Measured)

This experiment was not performed.
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E.3.2.4. Bad Random Probe Set (Simulated)
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Figure E-31. Simulated bad random probe set in box-in-PV2 with four probes.
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E.3.2.5. Heuristic Probe Set (Measured)
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Figure E-32. Measured heuristic probe set in box-in-PV2 with four probes.
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E.3.2.6. Heuristic Probe Set (Simulated)
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Figure E-33. Simulated heuristic probe set in box-in-PV2 with four probes.
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E.3.2.7. OED Probe Set (Measured)

This experiment was not performed.
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E.3.2.8. OED Probe Set (Simulated)
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Figure E-34. Simulated OED probe set in box-in-PV2 with four probes.
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