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Abstract 

A radar system’s antenna characteristics are fundamental to its performance.  A principal 
defining feature of an antenna’s performance are its often problematic sidelobes.  Often in 
monopulse antenna topologies, the emphasis has been on the sum channel sidelobes at the 
expense of difference channel sidelobes.  Edward Bayliss published a paper detailing a design 
procedure for managing the difference channel sidelobes.  The resulting aperture taper now is 
identified by his name.  This report analyzes his taper derivation, and resulting performance 
attributes, after which some implementation comments are rendered. 
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1 Introduction and Background 

Perhaps no single component in a typical radar system has a greater impact on overall 
performance than the antenna.  It is a transducer between the circuitry of radar hardware and 
propagating electromagnetic fields, for both generating those Transmitted (TX) fields, and 
sensing the Received (RX) fields.  By virtue of its beamwidth, the antenna serves as a spatial 
filter, with gain and sensitivity in some directions at the expense of others. 

In sensing RX fields, we generally desire accurate and precise knowledge of the Direction of 
Arrival (DOA) for the RX energy.  The directivity or gain of a RX antenna pattern is usually 
designed to peak in a specific direction, but also offers some angular width to a lobe of 
sensitivity around the peak.  Absent any additional information, a single static antenna beam 
when pointed in a single direction, can only presume to locate the DOA of a RX signal to ‘within 
the mainlobe’ of the antenna.  To refine the DOA accuracy and precision to something finer than 
merely in the antenna’s mainlobe requires additional information.  This additional information 
comes in the form of additional antenna beams with some diversity in either their mainlobe 
direction, or with some diversity in their physical location, or sometimes perhaps both.   

In this report, we shall examine a topology with spatially separated RX antennas, identifying this 
architecture as a “Phase Monopulse” topology.†  In fact, we will constrain ourselves in this report 
to analyzing a 1-Dimensional antenna aperture where two antenna phase centers are created by 
dividing the overall RX antenna aperture into left-half and right-half subapertures.  We thereby 
create an interferometer between left-half and right-half subapertures. 

Often, the signals from these halves might be coherently added in phase to create a “sum” signal, 
or reference signal, which exhibits a “sum pattern” over DOA angles for directivity.‡  Otherwise, 
or in addition, the signals from these halves might have one subtracted from the other to create a 
“difference” signal, which exhibits a “difference pattern” over DOA angles for directivity.§  This 
subtraction may be implemented by suitable phase shifting and adding. 

An antenna’s far-field directivity pattern is determined by the weighting applied to the overall 
antenna aperture.  This is sometimes called an aperture illumination function.  The aperture 
weighting and directivity pattern constitute a Fourier Transform pair.  Creating a directivity 
pattern from a taper function is often called “beamforming.”  The tapering is usually intended to 
control characteristics of the directivity pattern such as mainlobe shape and sidelobe levels.  
Antenna sidelobes for RX antennas are problematic in allowing energy from undesired DOA 
angles to enter the signal stream.  The aperture weighting to control this is generally real-valued, 

 
† Multiple antenna beams with diversity in their mainlobe direction would constitute an “Amplitude Monopulse” 
topology. 

‡ We emphasize that this reference signal is generated from over the entire aperture, not just a segment from it. 

§ We note that in a typical antenna beam mainlobe, there is a one-to-one correspondence between specific DOA 
within the mainloabe, and the derivative of the mainlobe directivity function with DOA.  So, if we can measure the 
angular derivative of the directivity response, then we should be able to locate the specific DOA even within the 
mainlobe response of the received energy.  We further note that deriviatives are estimated from difference 
responses.  This is the essence of classical monopulse processing. 
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with symmetry.  The sum pattern results from even symmetry of the taper, and the difference 
pattern results from an odd symmetry of the taper.  The magnitude function of the tapers need 
not be the same, but nevertheless often are.  In cases where the magnitudes are the same, the 
taper for the difference pattern results from negating the weighting (applying a π phase shift) for 
either the left half of the aperture or the right half of the aperture, thereby forcing the desired odd 
symmetry.**  This substantially simplifies the overall beamforming process. 

We note that from basic Fourier Transform properties, for a sum taper that is real and even, then 
the sum pattern is also real and even.  However, if the difference taper is real and odd, then the 
difference pattern is imaginary and odd. 

In the usual case where the sum and difference tapers have the same magnitude, then the sum 
taper over the whole aperture is typically designed first to optimize the sum pattern for mainlobe 
response and sidelobe control.  The difference taper is then simply created by negating the 
weighting for half the aperture.  This is accomplished with a monopulse network.††  This results 
in the difference pattern exhibiting fairly large sidelobes, even when the sum pattern does not. 

Edward Bayliss published a paper in 1968 in the Bell System Technical Journal that took a 
somewhat different approach.1  In it he notes  

“The flexibility of modern monopulse radar antenna systems makes possible the 
independent optimization of sum and difference patterns.”   

He further stipulates in his paper  

“The objective of this investigation was to develop a difference pattern which 
possesses characteristics that are compatible with those of the Taylor [taper] sum 
pattern. Specifically, the goal was to obtain the maximum angle sensitivity 
commensurate with a given sidelobe level. Low sidelobes are desirable in both 
sum and difference patterns for the suppression of near-target clutter, ground 
clutter, and jammers. Requiring large angle sensitivity and low sidelobes for the 
difference pattern is analogous to requiring a narrow beamwidth and low 
sidelobes in the case of the sum beam. The pattern that meets these requirements 
must be produced by a reasonably well behaved aperture illumination.” 

In other words, Bayliss sought to optimize the performance of the difference pattern, the sum 
pattern notwithstanding.  He assumed that the sum pattern could be formed independent of the 
difference pattern.  Although fully independent sum and difference patterns complicate the 
beamforming process, Bayliss nevertheless judged this to be “feasible.” 

 
** We note that we are here referring to the RX antenna.  The TX antenna is not necessarily constrained to the same 
aperture weighting as the RX sum taper.  It may or may not be. 

†† The monopulse network is also often called a “monopulse comparator, “magic T,” “arithmetic network,” 
“monopulse hybrid,” or any of a variety of other names. 
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Our interest in this report is for array antennas, specifically programmable Active Electronically 
Steered Array (AESA) antennas, and the elemental weightings necessary to define a directivity 
pattern for optimum performance. 

As background for this report, and to somewhat help guide us in the subsequent analysis, we 
offer several reference publications.  With apologies to the larger radar community, we 
acknowledge that this list is not at all complete. 

An iconic text that discusses monopulse principles generally is by Sherman and Barton.2 

The equivalence of Amplitude and Phase Monopulse performance was discussed in an 
earlier report.3 

Window taper functions in general were discussed in another earlier report.4 

The effects of tapers on array antenna performance were discussed in yet another earlier 
report.5 

Several publications discuss details of the Bayliss taper specifically.   

A text that discusses array antennas in general, with a section on Bayliss tapers, is offered 
by Mailloux.6 

Similarly, a text by Elliott also discusses details of the Bayliss taper development.7 

A report by Shelton gives design equations for both Taylor and Bayliss tapers.8 

A report that presents the theory related to the design of Taylor and Bayliss tapers is 
given in a paper by Zinka and Kim.9 

Aspects of the Baylis taper are also given in several other publications.10,11 

Other publications yet discuss the role of a Bayliss taper in monopulse antenna performance 
generally.12,13,14 

Elliot also discusses an extended design technique “which will yield difference patterns with 
arbitrary sidelobe topographies.”7,15 

Indeed, other techniques and algorithms exist to optimize difference patters, including those that 
use Zolotarev polynomials.16,17,18,19,20,21,22 

We note that tapers have also been investigated that impose dependencies between sum and 
difference tapers in an attempt to optimize both somewhat without two entirely independent 
beamformers, often with subarray structures.23,24 

While Bayliss’ technique addresses phase monopulse tapers, we acknowledge that amplitude 
monopulse antenna optimization with respect to sidelobes has also been studied.25,26,27,28 
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2 Derivation of the Bayliss Taper 

The pedigree of the Bayliss taper development derives from the development of the Taylor 
window taper function,29,30 itself an approximation to the Dolph taper, also called the Dolph-
Chebyshev taper.31  Bayliss himself stated that 

“This paper solves the problem of generating difference patterns by using a 
technique that parallels Taylor's approach to the sum pattern design.” 

While Bayliss focused his attention on a circular aperture, he did also address a line source in the 
appendix to his paper.  In this report we will concern ourselves more with the line source 
development, as this is more readily extensible to rectangular apertures which are more relevant 
to our work. 

What follows in this section is a review of the development by Baylis for a line source.  We will 
use his nomenclature for parameters for our review.  We will also provide some commentary to 
the development, and correct some apparent typographical errors. 

Some Preliminary Notes 

We first define a line source with finite length 

2a = length of line source. (1) 

Bayliss normalizes the length with respect to a  such that the position along the line source is 
constrained to 

x    . (2) 

The aperture illumination function is 

 g x  = aperture illumination function. (3) 

Note that 

  0g x   for x  . (4) 

The far-field antenna pattern generated by this line source is given as the Fourier Transform of 
the aperture illumination function, which Bayliss identifies as 

     jux juxF u g x e dx g x e dx






 

   , (5) 

where 

 2 sinu a   , 

λ = signal wavelength, and 
θ = angle measure from the normal to the line source. (6) 
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The Goal 

Since we are dealing with a difference pattern, Bayliss chooses to model it as a finite sum of sine 
functions, namely 

   
1

0

sin

0

N

l l
l

B x x
g x

else

  





  

 



 , (7) 

where 

lB  = coefficients that we will need to find, 

N = number of terms to sum, and 

l  = frequency term. (8) 

Note that l is an integer.  Now for some comments. 

 We stipulate that the coefficients lB  are allowed to be complex (i.e., not limited to real 

values). 

 The number of terms N is analogous to the Taylor window parameter often identified as 
nbar or n .  It identifies approximately the point in the taper function Impulse Response 
(IPR) where otherwise equal-level sidelobes begin to increasingly diminish with distance 
from peak value. 

 Bayliss identifies that a nonzero boundary value is required for the truncated series.  
Consequently, we limit 

1 2l l   , (9) 

The Bayliss paper appears to contain a typographical error regarding this.   

Performing a Fourier Transform on Eq. (7) yields 

     
 

1

2 2
0

1 cos
2

1 2

lN

l
l

u u
F u j B

l u








 
   (10) 

This is the IPR of the aperture illumination function identified in Eq. (7) above.  It describes the 
far-field antenna pattern resulting from the taper.  This is also Eq. 42 in the Bayliss paper, 
although the Bayliss paper again exhibits a minor typographical error in the argument of the 
cosine terms.   

Our goal is to identify the coefficients lB .  This entails equating Eq. (10) to an ideal “asymptotic 

difference pattern.”  
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The Asymptotic Model Difference Pattern 

Bayliss begins with the ideal sum pattern used by Taylor as of the form 

   2 2cosF u u A    , (11) 

where 

A = constant that determines maximum allowable sidelobe level. (12) 

This ideal sum pattern has equal sidelobes for an infinite extent.  The derivative of Eq. (11) 
yields a difference pattern which we calculate as 

     1 2 1 22 2 2 2sinF u u A u u A 
 


    
 

 .  (13) 

This is Eq. (12) in Bayliss’ paper.  Bayliss notes that “The first few sidelobes of this function are 
not of equal height.”  He also states that “However, it is possible to modify the first few 
sidelobes of the above function so that they are equal to the asymptotic sidelobe level.”  The 
zeros of Eq. (13) are identified as 

  1 22 2

0 0

1,2,3,
n

n
z

n A n


 
   

 . (14) 

By moving the first several zeros, Bayliss creates a “Model” difference function as 

   
2 2

2 2
1

T
n

M
n n

u
F u F u

z u










   = Model difference function, (15) 

where 

n   = the position to which nz  is moved, and 

T = the number of zeros on either side of the mainlobe that are moved. (16) 

Now for some comments. 

 Bayliss identifies that “Very good results were obtained by moving only the first four 
zeros on either side of the origin.”  This implies that good results are given with 4T  . 

 Specific values for A and n  will depend on the desired sidelobe levels in the final IPR of 

the difference pattern.  Bayliss fit a fourth-order polynomial to these parameters as a 
function of sidelobe level which gives reasonably good results over the span of sidelobe 
levels from 15 dB to 60 dB relative to the difference pattern peak value.  Polynomial 
coefficients are given in Table 1, with plots given in Figure 1. 

 Bayliss also identifies the location of the difference pattern peaks at 0u p  . 
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Table 1. Parameter Polynomial Coefficients.  This table reproduces the data in Fig. 4 of the Bayliss paper. 

Parameter Polynomial Coefficients 

C0 C1 C2 C3 C4 

A 0.30387530  ‐0.05042922  ‐0.00027989  ‐0.00000343  ‐0.00000002 

ξ1 0.98583020  ‐0.03338850  0.00014064  0.00000190  0.00000001 

ξ2 2.00337487  ‐0.01141548  0.00041590  0.00000373  0.00000001 

ξ3 3.00636321  ‐0.00683394  0.00029281  0.00000161  0.00000000 

ξ4 4.00518423  ‐0.00501795  0.00021735  0.00000088  0.00000000 

p0 0.47972120  ‐0.01456692  ‐0.00018739  ‐0.00000218  ‐0.00000001 

The parameters are calculated as 

 
4

0

Parameter k
k dB

k

C S


    , (17) 

where 

dBS  = sidelobe level with respect to difference pattern peak in dB. (18) 

 

Figure 1.  Parameter values as a function of sidelobe level using polynomial approximations.  
This table reproduces the plots in Fig. 4 of the Bayliss paper. 
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As Bayliss observes, “The use of fitted polynomials inevitably leads to errors in the results.  The 
effect of these errors is more pronounced in the low sidelobe pattern.”  If better fidelity is 
required, then Bayliss advises “to use the calculated zeros directly and avoid use of the 
polynomials.”  Nevertheless, over the sidelobe levels indicated, the polynomials work quite well. 

We observe that  MF u  is completely described by its zeros, which are located at 

2 2

0 0

1, ,

1,

n n

n

Z n T

A n n T



   

   





  , (19) 

Note that for large n  the zeros approach n  asymptotically.  However, the equal sidelobe 

levels for all sidelobes in  MF u  is not realizable due to finite energy constraints.  This is 

remedied by moving all sidelobe zeros for n N  to n .  This in turn causes another problem of 

a problematic transition region for sidelobe behavior in the n N  region.  This is then 

compensated by “dilating” the zero positions for n N  in the manner of scaling their location 

to the new position 

nZ  = new zero positions for n N , (20) 

where 

1 2N

N N

N

Z Z

 
   = dilation factor. (21) 

We may now describe the asymptotic model for the difference function as the canonical product 

 
2 21

1

1 1
N

a
n ln l N

u u
F u Cu

Z 

 

 

                       
   , (22) 

where 

C = a constant. (23) 

Bayliss states “The constant C is evaluated so that the peak of the asymptotic difference pattern 
is unity.”  The implication is that it is real-valued.  More on this later. 

Noting Eq. (9), we identify the product expansion 
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2

0

cos 1
ll

u
u







         
  . (24) 

This allows the asymptotic model for the difference function to be expressed as 

   

21

1

21

0

1

cos

1

N

nn
a

N

ll

u
Z

F u Cu u
u














              
            




 . (25) 

This function has poles at 1 2lu l    .  At these pole positions,  cos 0u  .  This is zero 

for every integer index l.  So, at these pole positions, we have zeros in both numerator and 
denominator.  To deal with this, we may rewrite this as 

   21

211

0

cos
1

1

N

a
Nnn

ll

uu
F u Cu

Z u












 
 

                                




 . (26) 

Note in the square brackets that at the poles, we have zero divided by zero.  At a particular pole, 
we can evaluate the square bracket equation at some mu   by noting 
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We evaluate this using L'Hôpital's rule, and arrive at the expression 
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which can be manipulated to 
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Noting that 1 2m m   , this can be further simplified to  
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This expression is the asymptotic model for the difference function evaluated at the zero 
positions.  The asymptotic model is an envelope for sidelobes. 
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The Result 

The task now is to reconcile the IPR in Eq. (10) with the asymptotic model for the difference 
function in Eq. (30).  Specifically, we will do so at the zeros 1 2m m   . 

Recall that the IPR is expressed as  
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We evaluate this at 1 2m m    by the limit 
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Specifically, we note that 
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Which corrects a slight typographical error in Bayliss’ equation Eq. (46). 

We now equate this with Eq. (30) to yield 
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This allows us to calculate the coefficients 
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Combining this with Eq. (30) yields 
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  (36) 

This is Bayliss’ Eq. (47) albeit with a slight correction of a typographical error.  Nevertheless, 
this expression now gives the coefficients lB  in Eq. (7) to define the taper function. 
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We now offer some comments. 

 As previously stated, Bayliss chose the constant C “so that the peak of the asymptotic 
difference pattern is unity.”  This implies that the asymptotic model for the difference 
function was real and odd.  Since the IPR function  F u  was chosen to match this, this 

also implies that the aperture illumination function was imaginary (in the complex sense) 
and odd.  This is borne out by the coefficients mB  in Eq. (36) being imaginary as well. 

 Traditionally, taper functions are taken to be real-valued.  Since the taper function in this 
case is also odd, this implies that the IPR function  F u  is imaginary and odd, common 

for phase-monopulse topologies.  This further implies that we need to match it to an 
asymptotic model for the difference function  aF u  that is also imaginary.  This can be 

accomplished by departing from Bayliss’ choice and instead choosing C that is purely 
imaginary, perhaps with a peak value of j .  The coefficients mB  in Eq. (36) are thereby 

calculated to be real instead.  With this small change, the derivation still remains valid. 

 There is nothing magical about C being chosen to yield a peak of the asymptotic 
difference pattern with a unity magnitude, whether real or imaginary.  Other magnitudes 
can work quite fine, too. 

 We will henceforth refer to the angle 0   as the antenna “boresight” angle. 
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“It is remarkable how much long-term advantage people like us have gotten  
by trying to be consistently not stupid, instead of trying to be very intelligent.” 

-- Charlie Munger 
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3 Taper Design Procedure 

Here we detail the procedure for designing a Bayliss taper suitable for programming a software 
function to do so. 

Preliminary 

Select the following input parameters. 

dBS  = maximum sidelobe level with respect to difference pattern peak in dB, 

N = approximate extent of equal sidelobe region, and 
P = number of samples with which the Bayless window is divided. (37) 

Step 1:  Identify Secondary Constants 

Initialize the following constants. 

T = 4 = number of zeros to move, and 
C = 1 = arbitrary temporary scaling constant. (38) 

Step 2:  Calculate Zero Positions 

Calculate A, and zero positions 1 2 3 4, , ,     using polynomial calculation of Eq. (17) and 

coefficients in Table 1. 

Identify all zeros using Eq. (19). 

Calculate dilation factor σ using Eq. (21). 

Step 3:  Calculate B Coefficients 

Calculate mB  coefficients for 0, , 1m N   using Eq. (36) 

Step 4:  Calculate Taper Function Samples 

Divide the span  ,   into P samples.  An individual sample takes on a specific value x within 

this span. 

Calculate taper function  g x  using Eq. (7) along with Eq. (9). 

Step 5:  Correct Scaling of Taper Function 

Convert to real-valued taper by multiplying by j, i.e.,    g x jg x . 

Scale the taper to have unity peak value, i.e.,       maxg x g x g x . 

Note that the peak value for  g x  may not always occur at one of the sampled values for x.  

Otherwise, other scaling criterial might also be used. 
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Gratuitous Comments 

The procedure outlined above will yield the Bayliss taper, which is an aperture illumination 
function to yield a difference antenna pattern. 

At times, it may be useful to employ a corresponding ‘sum’ antenna pattern for which we 
calculate a corresponding aperture illumination function as 

   sg x g x . (39) 

The sum and difference antenna patterns use aperture tapers that are thus interdependent. 

 

Example 

We illustrate the results of designing a Bayliss taper using the procedure above.  Let us assume 

30dBS   dB, 

10N  , and 
1000P  . (40) 

Figure 2 illustrated the Bayliss taper and resulting IPR.  Note that the near-in sidelobes are at the 
30 dB design level, but begin falling off near the specified 10 nominal beamwidths from the 
center.  Actually, the sidelobe at this position is 3 dB from the peak sidelobe level. 

However, the corresponding sum pattern generated by the taper defined in Eq. (39) is displayed 
in Figure 3.  We note that the well characterized sidelobes in the difference pattern come at the 
expense of rather horrible sidelobe response in the sum pattern.  In this example, the first 
sidelobes are below the peak value by a mere 8.8 dB. 
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Figure 2.  Bayliss taper designed for 30 dB sidelobes, and N=10, sampled for 1000 points. 
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Figure 3.  Sum taper and pattern created from Bayliss taper of Figure 2. 
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4 Monopulse Performance Parameters 

The question now is “How well does the Bayliss taper perform?”  Toward this end we examine 
several aspects of DOA performance. 

The purpose of a monopulse antenna is to make accurate off-boresight DOA angle 
measurements.  A reasonable question is “How well does the Bayliss taper facilitate this?”  
Toward answering this question, we examine several aspects of DOA performance with respect 
to the Bayliss taper. 

We begin by recalling the description of the far-field antenna pattern of the Bayliss taper given in 
Eq. (31), also identified as the taper’s IPR, with the specific coefficients defined by Eq. (36).  We 
note that the far-field antenna pattern as a function of DOA angle requires combining Eq. (31) 
with Eq. (6). 

We will generally follow the analysis methodology of an earlier report.3  To facilitate clarity, it 
becomes convenient to divide the overall aperture into two halves, so that 

 1h   = beam pattern from left half of the aperture with a Bayliss taper, and 

 2h   = beam pattern from right half of the aperture with a Bayliss taper. (41) 

We will define sum and difference patterns as 

         
2 1

2 sin2 u a

h h
d F u

 

 





    = Bayliss taper IPR, and 

     2 1

2

h h
s

 



  = convenient sum pattern, derived from Eq. (39). (42) 

We here follow the convention of creating sum and difference signals in a manner to preserve 
power; hence the division by 2 .  Ultimately, however, this will not impact the performance 
results we seek.  It just won’t matter. 

Let a target present received energy at some angle and amplitude, where 

mA   = RX signal amplitude to the whole aperture, and 

m  = DOA angle. (43) 

The precise value for signal amplitude mA  will as a practical matter, and thus necessarily, 

remain undefined.  This is something we need to work around in the subsequent development. 

The voltages generated for each half of the aperture are calculated to be 
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 1 12
m

m
A

m h    , and 

 2 22
m

m
A

m h  . (44) 

The voltages generated by the Bayliss taper pattern and the corresponding sum pattern are 
concocted to be 

 2 1
2
m

d m
A

m m m d     = voltage generated by Bayliss taper pattern, and 

 2 1
2
m

s m
A

m m m s     = voltage generated by corresponding sum pattern. (45) 

This of course implies that 

   2m m dd A m  , and 

   2m m ss A m  . (46) 

Our task is to estimate DOA angle m  from measurements dm  and sm  or equivalent, without 

specific knowledge of signal amplitude mA . 

4.1 Monopulse Slope 

The monopulse slope, also called “difference slope,” identifies the rate of change of the 
difference pattern response with respect to angle, normally evaluated at the center of the beam, in 
the boresight direction where 0  .  We begin with the first-order Taylor series expansion 

  dd j k   = difference signal approximation, (47) 

where we identify the “monopulse slope” as 

       
 

1

2
0 0

1
4

1 2

lN
l

d
l

Bd d d
k j d j F u u a

d du d l
 

 



 

        
   

  . (48) 

For real coefficients lB  the monopulse slope is real-valued.  We shall stipulate this going 

forward.  This monopulse slope has units proportional to volts/angle.  Furthermore, once a 
particular Bayliss taper is selected, then this is a constant. 

It also follows from real coefficients lB  that  d   is imaginary, and  s   is real-valued.  Using 

Eq. (47) we may calculate DOA for small angles as 
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 1 2
m̂ m d

d d m

j d j m
k k A

      = DOA estimate. (49) 

Note that dm  is a measurement, dk  is a known constant, but mA  is unknown, rendering it 

problematic to estimate ˆ
m  without employing more information.  We will do so with  ms   or 

equivalent. 

4.2 Monopulse Ratio 

We may normalize the difference pattern response by dividing by the sum pattern response, 
which is also proportional to mA , thereby creating a monopulse ratio as 

   
   

md d m
m

s m m

dm j k
r

m s s

 
 

    = monopulse ratio. (50) 

This ratio is solely a function of measurements.  For small m , we may assume a constant value 

for the sum pattern, and simplify 

    00ms s s   . (51) 

This is a known quantity as a function of the sum pattern taper. 

Our DOA estimate can then be calculated as 

  0ˆ Imm m
d

s
r

k
  . (52) 

The monopulse ratio embodies all the measurements, and the rest of the parameters on right side 
of the equation are known, or knowable, constants.  Consequently, the DOA angle can now be 
estimated.  We may manipulate Eq. (52) to a form 

  ˆ Imref
m m

m

r
k


  , (53) 

where we define 

0

d
m ref

k
k

s
  = normalized monopulse slope, with units V/V/beamwidth, and 

ref  = nominal reference antenna pattern beamwidth. (54) 
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There is some latitude in defining the nominal reference antenna pattern beamwidth ref .  A 

particularly convenient reference beamwidth is 

 2ref a  . (55) 

This is the nominal beamwidth for a uniformly illuminated aperture, i.e., no taper at all, as for a 
line source with length  2a  as defined in Eq. (1).  This definition will allow a common 

reference for different tapers.  However, whatever is chosen to calculate mk  in Eq. (54) should 

also be the same value as the overt parameter in the right side of Eq. (53).  Noe that this 
reference pattern is generated from over the entire aperture, and not just from half of the 
aperture. 

We do note that the IEEE defines the monopulse/difference slope as “the slope of the difference-
pattern voltage (normalized with respect to the sum-pattern voltage) as a function of target angle 
from the tracking axis.”32  In spite of the IEEE definition, and to facilitate comparing monopulse 
performance parameters, we will assume a more generalized normalization of the monopulse 
slope against a common reference beamwidth such as Eq. (55), and a more general reference-
pattern voltage, to be discussed next. 

Generalizing the Sum Channel 

We now revisit the assumption for the sum pattern in Eq. (42) and Eq. (45).   These were derived 
assuming the sum pattern was calculated using the presumed taper of Eq. (39).  We are now 
divorcing ourselves from this constraint. 

We now allow ourselves to employ a second taper, requiring that it be real and even.  We define 
this to be a reference taper, that is 

 refg x  = reference taper. (56) 

This taper will produce a reference antenna pattern which we define as 

 refs   = reference antenna pattern, corresponding to Eq. (56). (57) 

Tapers of interest will produce a dominant mainlobe in the boresight direction at 0  .  The 
voltage generated by this antenna pattern becomes 

 
2
m

ref ref m
A

m s   = voltage generated by corresponding reference pattern. (58) 

Eq. (50) now becomes 

   
   

md d m
m

ref ref m ref m

dm j k
r

m s s

 
 

    = monopulse ratio. (59) 
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We also now redefine 

 0 0refs s . (60) 

With these new re-definitions, we may still calculate 

     0ˆ Im Imref
m m m

d m

s
r r

k k


    , (61) 

where now 

0

d
m ref

k
k

s
 . (62) 

Nevertheless, we remain mindful that both  mr   and mk  will depend on the specific reference 

antenna pattern  refs   used, and hence the specific reference taper  refg x  from which it is 

calculated. 

The bottom line is that using a reference antenna pattern  refs   is all about getting rid of mA  

in Eq. (49), thereby eliminating the impact of target signal strength.  The parameter 0s  is just a 

scale factor for mA  for small DOA angles with respect to the voltage measurement in Eq. (58).  

Any real and even taper pattern that generates a dominant mainlobe at  0   will do, as it will 
eventually divide out in Eq. (61).  We just need to know what it is in the meantime.   

 

4.3 DOA Angle Noise 

We begin by expanding Eq. (61) using Eq. (59) to 

0ˆ Im d
m

d ref

s m

k m


    
  

. (63) 

The error in this DOA angle estimate will depend primarily on the noise in the difference pattern 
measurement.  That is, for signal measurement errors small with respect to refm , 

0
ˆ Im
m

d

d ref

s n

k m
    
  

 = angle error in DOA estimate, (64) 

where 
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dn  = complex noise in the difference pattern measurement, with zero mean, (65) 

with variance 

 22
d dE n   = variance of dn . (66) 

The DOA angle estimate error can be expanded to 

0
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 = angle in DOA estimate, (67) 

The variances of the errors are related as 
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   

 . (68) 

Note that the difference pattern measurement variance is divided by two because only the 
imaginary component is required.  This may be rearranged to 
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 . (69) 

We identify the signal power generated by the reference pattern for a target in the boresight 
direction at 0m   from Eq. (58) as 

  2 22 0

0 2
m

m
ref

A s
E m

 
  . (70) 

Consequently, the quantity in the square brackets of Eq. (69) is a Signal-to-Noise Ratio (SNR). 
Specifically, this SNR is the ratio of the power in the reference pattern signal to the noise power 
in the difference pattern signal. That is. 

2 2
0
22

m

d

A s
SNR

 
 

  
  

 = reference pattern signal power to difference pattern noise power.

 (71) 
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Consequently, and customarily, Eq. (69) is usually expressed as 

2
2
ˆ

1

2m

ref

mk SNR




 

 
  
 

 , (72) 

or as is commonly expressed in terms of standard deviation 

ˆ
2m

ref

mk SNR




 
  . (73) 

This is consistent with the result in an earlier report.3 

We now offer some comments. 

 SNR will most definitely depend on the specific aperture taper.  This is explored in an 
earlier report.5 

 Consider the case where Eq. (39) was true, that is, that the magnitudes of the sum and 
difference tapers were the same, only differing in phase for half the overall aperture.  
This is often a typical characteristic of most monopulse systems.  In this case, the noise 
power in the sum channel measurement would be the same as the noise power in the 
difference channel measurement.  That is, for this case 

SNR SNR     = SNR as measured in the sum channel only. (74) 

 Now consider the case where Eq. (39) was not necessarily true, that is, the difference 
taper and the reference taper were not equal to each other in magnitude, resulting in 
unrelated antenna patterns.  This will clearly impact 0s , and consequently also impact 

SNR  .  However, it will also impact mk , and do so in a manner that mitigates the 

impact of 0s  on the final DOA angle variance calculation.  This is most obvious in the 

middle expression of Eq. (69), where we see 2
0s  in both numerator and denominator, with 

no other parameters dependent on 0s .  This suggests that the reference taper, although 

impacting intermediate parameters, will ultimately not affect the noise in the DOA angle 
estimate.  This is good to know. 
 
It would be negligent, however, to not share that the development in this section does 
depend on an underlying assumption that SNR   is pretty good to begin with.  This is 

essentially the condition imposed upon Eq. (64). 

 We now address the question “If reference pattern doesn’t matter, and difference pattern 
is zero in the boresight direction, then how can we really predict performance?” 
 
We answer this by noting that the basic equation for DOA angle noise variance is a 
simplification of Eq. (68), namely 
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 

2
2

2
ˆ

1

22m

d

d mk A
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 
 
 

 . (75) 

We observe again that a reference antenna pattern has no impact on this.  Consequently, 
we may then choose ‘any’ convenient reference antenna pattern for an SNR calculation 
specifically for the purpose of estimating DOA angle noise.  This reference pattern does 
not have to be the same as is later used in an operational implementation for actually 
estimating DOA angle.  Accordingly, for this specific purpose only, we choose a 
reference antenna pattern derived from the aperture taper in Eq. (39).  This then makes 
Eq. (74) true, and the DOA angle noise variance may be calculated as 

22
2 0
ˆ

1 1

2 2m

ref

d m

s

k SNR k SNR




 

  
    
   

 , (76) 

where we acknowledge that some of the other parameters in Eq. (76) now also depend on 
Eq. (39).  We reiterate that this is true specifically for the case where Eq. (39) is true, 
repeated here as the sum pattern aperture taper 

   sg x g x . (77) 

When later a different reference antenna pattern is employed operationally, then 

parameters 0s , mk , and SNR   may change, but the DOA angle variance 2

m̂
  will 

remain the same, i.e., depending only on the unchanged parameters in Eq. (75). 

 

4.4 Antenna Gain/Efficiency 

The influence of antenna aperture tapers on TX and RX antenna gain, and performance 
efficiency with respect to uniform aperture illumination are discussed in an earlier report.5  
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5 Examples 

We now provide some examples of Bayliss tapers with variations in various input parameters.  
Our baseline for comparison is the parameter set 

30dBS   dB, 

10N  , and 
1000P  , (78) 

which yielded the taper and antenna pattern in Figure 2.  We repeat this case in Figure 4 with 
some additional information. 

The sum pattern is that which is generated by Eq. (39).   

The monopulse slope also assumes this sum pattern and a reference pattern beamwidth described 
by Eq. (55), numerically calculated from the monopulse ratio. 

The pattern efficiency is the sum pattern gain with respect to that of a uniformly illuminated 
aperture. 

Variations in Sidelobe Levels 

Figure 5, Figure 6, and Figure 7 illustrate the impact of changing the sidelobe specification.  We 
observe that as sidelobe specifications become increasingly lower, so too does the monopulse 
slope diminish, as well as the pattern efficiency diminishing. 

Variations in Equal Sidelobe Span 

Figure 8, Figure 9, and Figure 10 illustrate the effects of adjusting the span of equal sidelobes.  
We observe that as the equal sidelobe span increases, the monopulse slope also increases, and 
even the pattern efficiency also increases.  Sidelobes falling off happens farther away from the 
center.   

We also observe that in the taper itself, as the equal sidelobe span increases, spikes arise at the 
ends of the tapers, and become increasingly ‘spikey’ as the span increases further.  These end 
spikes are sometimes called “inverse tapering,” or “edge illumination.”‡‡ 

This is also observed for the Taylor taper, especially as it approaches the Dolph-Chebyshev taper 
for equal sidelobe span.  This is what makes the Dolph-Chebyshev taper impractical. 

Variations in taper vector length 

Figure 11 and Figure 12 illustrate the impact of the taper vector length on the pattern 
characteristics.  Simply put, finer sampling of the taper yields higher fidelity results for the 
pattern. 

 
‡‡ To a lesser extent, these end spikes also begin to appear as sidelobe suppression becomes less severe. 
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Figure 4.  Baseline Bayliss taper for comparison. 
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Figure 5.  Bayliss taper for -20 dB sidelobes. 
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Figure 6.  Bayliss taper for -40 dB sidelobes. 
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Figure 7.  Bayliss taper for -50 dB sidelobes. 
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Figure 8.  Bayliss taper for N = 5. 
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Figure 9.  Bayliss taper for N = 20. 
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Figure 10.  Bayliss taper for N = 30. 
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Figure 11.  Bayliss taper with 10,000 samples. 
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Figure 12.  Bayliss taper with 100 samples. 

  

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

relative aperture position - (2a)

-1

0

1

-15 -10 -5 0 5 10 15

nominal beamwidths - /(2a)

-60

-40

-20

0

10-1 100 101 102 103 104

nominal beamwidths - /(2a)

-100

-50

0

taper = Bayliss (sidelobes = -30 dB, N = 10)
sum pattern half-power beamwidth = 0.9290
monopulse slope = 0.9941*( /2) at beam center
pattern efficiency = 0.8524 (-0.69 dB)



- 45 - 

6 Implementation Issues 

In a perfect world we would get we whatever we want, or at least these authors would.  Alas, 
practical implementation issues will limit or at least influence our choices with respect to antenna 
pattern generation, and ultimate performance.  We explore several aspects of this below.  We 
will presume a monostatic radar antenna arrangement. 

Ultimately, we wish to identify when and how it makes sense to use a Bayliss taper. 

 

6.1.1 Two-Way Antenna Patterns 

Confining ourselves to a single antenna dimension, we observe that there are three distinct 
antenna patterns with which we concern ourselves. 

1. TX pattern 

2. RX sum/reference pattern 

3. RX difference pattern 

These patterns may all be independent of each other, or may exhibit some interdependencies.  By 
extension, so too for the tapers that generate the antenna patterns. 

Nevertheless, radar echo signals received by the RX sum channel will exhibit characteristics of 
the product of the TX pattern and the RX sum/reference pattern. 

Similarly, radar echo signals received by the RX difference channel will exhibit characteristics of 
the product of the TX pattern and the RX difference pattern. 

These combination patterns are called “two-way” antenna patterns.  Of course, additive 
interference signals will not depend on the TX antenna.  Nevertheless, since radar echo signals 
embody the two-way patterns, the specific contributions of TX versus RX patterns are 
indistinguishable in the radar echo return signals.  Consequently, the burden of providing low 
antenna pattern sidelobes does not necessarily need to rest on the RX antennas alone.  The TX 
antenna pattern can provide a substantial amount of this.  This becomes a system design choice. 

We do note that often the desire to transmit maximum power will typically need the TX aperture 
taper to be uniform.5  We acknowledge that there may be other reasons for specific TX aperture 
tapers that constrain our choices in this regard. 

Nevertheless, for the following discussion we will assume that our principal mechanism for 
controlling the two-way patterns is via the RX antenna patterns. 
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6.1.2 Sidelobe Requirements 

Choosing a particular aperture taper is mainly about antenna pattern sidelobes.  Requirements for 
how much sidelobe suppression is necessary in the RX antenna patterns is very radar application 
or mode dependent, as well as dependent on how much suppression is already provided by the 
TX antenna pattern.  For example, a ground-based tracking radar might have very different needs 
than an airborne Intelligence, Surveillance, and Reconnaissance (ISR) radar.  Exploring the 
universe of radar applications for sidelobe requirements is beyond the scope of this report.  
Nevertheless, we will offer a handful of very general observations. 

RX Sum/Reference Antenna Pattern 

The RX sum/reference channel isolates a target DOA to within the antenna beam, intended to be 
the mainlobe of the antenna beam.  Undesired radar echo signals, characterized as “clutter,” 
entering via RX antenna pattern sidelobes may be falsely detected and/or have their DOA 
mischaracterized, so this is undesirable.   

Furthermore, for moving radar systems (e.g., airborne ISR radar), DOA is also often associated 
with Doppler due to radar velocity, as for Synthetic Aperture Radar (SAR).  In Ground Moving 
Target Indicator (GMTI) radar systems, stationary ground clutter is limited to a presumed well-
defined band of Doppler frequencies defined by the antenna mainlobe response, often called a 
“clutter band” or “clutter ridge” in range-Doppler maps.  Radar signals falling outside of this 
clutter band are presumed to be moving targets.  Consequently, unanticipated clutter echo energy 
allowed by excessive sidelobes can be falsely detected as moving targets, or even mask 
otherwise legitimate moving targets.33  In pulse-Doppler radar systems, sidelobe clutter might 
even be aliased to other DOA angles, even those within the antenna pattern mainlobe.  We don’t 
like this. 

Typical sidelobe suppression level requirements will depend on allowable false alarm statistics 
as well as the specific target Radar Cross Section (RCS) that we wish to detect.34,35  Overall 
sidelobe suppression levels greater than 55 dB can easily be justified. 

In any case, we desire RX sum/reference pattern sidelobes to be suppressed to levels that would 
generally avoid targets at erroneous DOA angles from being detected or otherwise interfering 
with legitimate detections. 

We do note that should sidelobes not be adequately suppressed, then it might be possible to 
employ a “guard” channel to identify sidelobe responses, thereby allowing such signals to be 
ignored or perhaps even compensated. 

RX Difference Antenna Pattern 

Difference patterns are used to make fine DOA measurements near the boresight 0   direction 
of the antenna.  Angle measurements are necessarily confined to the central monotonic and 
nearly linear slope region of the difference pattern.   

For tracking radars, the difference pattern response provides an error signal to facilitate steering 
the antenna beam and keeping an antenna “locked” onto a specific target. 
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As with the sum/reference beam, for moving radar systems (e.g., airborne ISR radar), the DOA 
measure provided by the difference beam allows for discrimination of moving targets with 
respect to stationary clutter.  Also, as with sum/reference beams, in pulse-Doppler radar systems, 
difference beam sidelobe clutter might be aliased to Doppler regions associated with other DOA 
angles, thereby perturbing measurements and interfering with clutter cancellation and moving 
target detection generally.  We don’t like this, either. 

Bottom Line 

So, ideally, we basically want low sidelobes in both the RX sum/reference antenna beam pattern, 
as well as the RX difference antenna beam pattern, that is, if we can get it. 

 

6.1.3 Independent Sum and Difference Tapers 

Ideally, we wish to implement independent sum/reference and difference antenna patterns 
simultaneously. For example, we might simultaneously implement a Bayliss difference antenna 
pattern and perhaps a Taylor reference antenna pattern, and optimize each independently.  This 
was, in fact, a presumption by Bayliss in his paper.  This would generally require simultaneous 
application of different aperture taper functions, which can be problematic, but not impossible.  
Among several techniques for doing so are the following. 

1. We might employ dual analog beamformers behind an array antenna, with each 
beamformer allowing for different aperture tapering weights.  This is doable, but a 
certainly a complication to overall system design. 

2. We might employ digital beamforming, where individual elements have their RX signals 
digitized, and beamforming occurs via Digital Signal Processing (DSP) on essentially 
sampled and recorded contemporaneous data.  In this manner, the digitized data can be 
reused with any number of taper functions, with multiple antenna beam patterns formable 
at our leisure. 

3. If we are limited to but a single taper at any one time, but the taper is easily 
programmable, then we could consider interleaving reference and Bayliss tapers from 
pulse to pulse in a pulse-Doppler radar.  This cuts the effective Pulse Repetition 
Frequency (PRF) in half, and may require some data corrections due to the slight timing 
offsets for the reference and difference pattern data. 
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6.1.4 Interdependent Tapers  

In many radar systems we are limited with the tapers available to us.  Here we address the 
conventional case where Eq. (39) is true, that is, say, specifically sum tapers and difference 
tapers have the same magnitude, and differ only in that half the difference aperture is given a   
phase shift with respect to the same portion of the sum taper. 

Our choice for contemporaneous RX sum and RX difference patterns boils down to trading 
sidelobe performance between these patterns.  A pattern from a Taylor sum taper will give us 
high sidelobes in the difference antenna pattern.  Similarly, a pattern from a Bayliss difference 
taper will give us high sidelobes in the sum antenna pattern.  This becomes a “pick your poison” 
exercise. 

A remaining option is to employ a taper in the TX aperture to mitigate two-way antenna pattern 
sidelobes for all RX channels.  This, of course, has its own drawbacks.5  In addition, as 
previously mentioned, high sum-pattern sidelobes can somewhat be addressed with a guard 
channel. 

Finding some happy medium between sidelobe performance for codependent sum and difference 
tapers is beyond the scope of this report.  We opine that the prospect for achieving satisfactory 
overall performance seems challenging.  Nevertheless, the possibility exists for some 
circumstances. 

 

 

 

 

 

 

 

 

 

 

 
 

 

  



- 49 - 

7 Comments and Conclusions 

Some observations are worth repeating here. 

 The Bayliss taper effectively lowers difference pattern sidelobes, as it was designed to 
do.  Sidelobe levels and other characteristics are essentially programmable. 

 A sum pattern generated from the Bayliss taper, with magnitude taper values equal to the 
magnitude of the Bayliss taper, differing only in phase for half the aperture, will exhibit 
problematic high sidelobes. 

 The Bayliss taper is most effective when used with a separate independent reference 
pattern taper, but then requires multiple beamformers for the same aperture.  This is a 
complication that must be addressed. 

 A straightforward Bayliss taper design procedure was presented. 
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Figure 13.  "Rainbow" (courtesy Miss Sloane Doerry, age 3) 

 

 

“The way I see it, if you want the rainbow, you got to put up with the rain.” 
-- Dolly Parton 
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“I don't care about what anything was DESIGNED to do, I care about what it CAN do.” 
-- Gene Kranz, NASA Flight Director, played by Ed Harris in “Apollo 13,” 

 produced by Imagine Entertainment, distributed by Universal Pictures, 1995. 
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