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ABSTRACT
Geographic data, such as seismic event locations, station locations, etc., are generally given in 
geographic latitude ’, longitude , and depth below sea level, z, using the WGS84 ellipsoid as a 
reference.  In software systems that use this type of geographic data, it is necessary to manipulate the 
data mathematically in order to perform such tasks as finding the angular distance or azimuth from 
one point to another, to find an array of points along a great circle, to rotate a point about a pole of 
rotation, to move a point some angular distance in a specified direction, to find the intersections of 
two great circles or to find the intersections of a great circle and a small circle.  In this paper, 
equations are presented that convert geographic locations first to geocentric coordinates and then to 
Earth-centered Cartesian coordinates where many mathematical manipulations can be performed 
conveniently and efficiently. 
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1. INTRODUCTION
Much of the geographic information used by seismologists is presented in the form of geographic 
latitude, longitude and depth or elevation relative to sea level.  This positional information is almost 
always described relative to the 1984 World Geodetic System ellipsoid.  From this information 
seismologists need to calculate the angular distance and azimuth from one point to another and 
other geometrical relationships.  There are several ways to accomplish these calculations.  Vincenty 
(1975) described a method for computing the distance in km between two points on the surface of 
an ellipsoid by evaluating elliptical integrals.  Another approach is to perform spherical trigonometry 
with spherical triangles connecting points on the surface of the ellipsoid.  In this paper we take the 
approach of converting geographical locations to an Earth-centered coordinate system and 
performing the calculations using vector analysis.

2. WGS84 ELLIPSOID
The shape of Earth is reasonably well approximated by an oblate spheroid which is an ellipsoid 
generated by aligning the minor axis of an ellipse with the rotational axis of the Earth and rotating 
the ellipse about its minor axis.  In general, ellipsoids require one to specify the lengths of its three 
principal axes, however, oblate spheroids only require specification of the polar and equatorial axes 
because the equator is assumed to be circular.

Over several centuries, geodesists have defined many ellipsoids for the Earth (Snyder, 1987) but the 
WGS84 ellipsoid is arguably the one most frequently encountered in seismology.  The parameters 
that define the WGS84 ellipsoid are

𝑎 = 6378.137 km (1)
𝑏 =  6356.75231424518 km

𝑓 =
𝑎 ― 𝑏

𝑎 = 1/298.257223563

𝑒2 =
𝑎2 ― 𝑏2

𝑎2 = 2𝑓 ― 𝑓2 = 0.0066943799901413165

where a and b are the equatorial and polar radii of the Earth, respectively, f is the flattening 
parameter, and e is the eccentricity.  Any two of these parameters are sufficient to uniquely define 
the ellipsoid.  In the equations presented in this paper a and e2 are used.

When we use an ellipsoid as our figure of the Earth, we must distinguish between geographic 
latitude and geocentric latitude (Figure 1).  Geographic latitude ’ is the acute angle between the 
equatorial plane and a line perpendicular to the plane that is tangent to the reference ellipsoid at the 
point of interest.  Geodesic latitude is a synonym for geographic latitude.  Geocentric latitude  is 
the acute angle between the equatorial plane and a line from the center of the Earth to the point of 
interest.  Geographic, geodesic and geocentric longitudes are all equivalent.  
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Figure 1. An exaggerated ellipsoid illustrating the difference between geographic latitude ’ and 
geocentric latitude .

For points on the surface of the ellipsoid, we convert back and forth between geographic latitude 
and geocentric latitude using

𝜙 = arctan ((1 ― 𝑒2)tan 𝜙′) (2)
𝜙′ = arctan( tan 𝜙/(1 ― 𝑒2))

(Snyder, 1987).  Geographic and geocentric latitudes at the surface of the ellipsoid are compared in 
Figure 2.

P

 ’equator

Line tangent to
ellipsoid at P

Center of 
the Earth
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Figure 2. a) Comparison of geographic and geocentric latitudes for the WGS84 ellipsoid.    b) Km 
per degree and Earth radius as function of geocentric latitude.

We also need to convert between depth, z, and radius, r, as a function of geocentric latitude.

𝑟 = 𝑅(𝜙) ―𝑧 (3)

where R(), the radius of the Earth at geocentric latitude  is given by
 

𝑅(𝜙) = 𝑎 1 + 𝑒2

1 ― 𝑒2 𝑠𝑖𝑛2𝜙
―1

2
(4)
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3. EARTH-CENTERED CARTESIAN COORDINATES
Mathematical manipulation of geographic information is most easily accomplished if we first 
transform the information into an Earth-centered Cartesian coordinate system where points are 
defined by a unit vector, v, with its origin at the center of the Earth, and a radial distance from the 
center of the Earth, r, measured in km (Figure 3).

Figure 3. Earth centered coordinate system. The vector v0 points from the center of the Earth 
towards the point on the surface with latitude and longitude 0°, 0°; v1 points toward latitude, 

longitude 0°, 90° and v2 points toward the north pole. 

Conversion back and forth between geocentric and Cartesian coordinates is accomplished using 

𝑣0 = cos 𝜙 cos 𝜃 (5)
𝑣1 = cos 𝜙 sin 𝜃
𝑣2 = sin 𝜙
𝜙 = arcsin 𝑣2

𝜃 = arctan 𝑣1 𝑣0

(Zwillinger, 2003).  These equations are valid for all points in space, not just those on the surface of 
the ellipsoid.

Once geographic information has been converted to unit vectors, a variety of useful calculations can 
be performed.

3.1. Epicentral distance between two points
Given two points defined by unit vectors, u and v, the angular separation of the two points is 

∆ = arccos(𝐮 ⋅ 𝐯) (6)

3.2. Azimuth from one point to another
The azimuth  from u to v, measured clockwise from north, is

𝛼 = arccos(|𝐮 × 𝐯| ∙ |𝐮 × 𝐧|) (7)
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𝑖𝑓 (|𝐮 × 𝐯| ∙ 𝐧 < 𝟎)        𝛼 = 2𝜋 ― 𝛼

where n is the vector pointing to the north pole, n = [0, 0, 1].  Note that azimuth is undefined if u 
and v are parallel, anti-parallel, or if u corresponds to the north or south pole.

3.3. Points on a great circle
Given two points defined by unit vectors u and v, to find another point, w, that lies on the great 
circle defined by u and v, at some angular distance , measured from u in the direction of v 
(Figure 4)

𝐭 = |𝐮 × 𝐯 × 𝐮| (8)
𝐰 = 𝐮cos 𝛿 + 𝐭 sin 𝛿

Note that if many points are to be found along the same great circle defined by u and v, the 
normalized vector triple product, t, only needs to be computed once. 

Figure 4. Calculation of w given u and v.  All vectors are unit length and reside entirely in the 
plane of the figure.

3.4. Rotate one vector around another
Vector u can be rotated angle  about another vector p as follows (see Figure 5).  

𝐰 = 𝐮cos 𝜑 + 𝐩(𝐩 ∙ 𝐮)(1 ― cos 𝜑) + (𝐩 × 𝐮)sin 𝜑 (9)

Note that  is positive clockwise when viewed in the direction of vector p (right hand rule).
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Figure 5. Start at point p, located at latitude, longitude 45°, 0°. Find a new point u δ = 20° north of 
p. Then rotate u φ = -235° around p to position w. Note that pu = pw = δ = 20°. 

3.5. Finding a new point some distance and azimuth from another point
To find a point, w, that is some specified distance  from p in direction φ, (Figure 5) we first find an 
intermediate point u, distance δ north of p by applying Equation 8 with v = n = [0, 0, 1].  Then w is 
found by rotating u around p by angle -φ.

3.6. Points of intersection of two great circles
Great circles g1 and g2 have, in general, two points of intersection located at |𝐧𝟏 × 𝐧𝟐| and ―
|𝐧𝟏 × 𝐧𝟐| where n1 and n2 are the unit normals to the two great circles.

3.7. Points of intersection of a great and a small circle
Given a great circle g with normal n and a small circle with center at c with radius r, we wish to find 
any points of intersection which might exist (Figure 6).  We begin by finding vector b, which is 
normal to the great circle containing vectors n and c

𝐛 = |𝐧 × 𝐜| (10)

Then we find vector a which is the point on g which is closest to c

𝐚 = |𝐛 × 𝐧| (11)

Angle , given by 𝑐𝑜𝑠―1(𝐜 ∙ 𝐚), is the angle between vectors c and a.  If  is greater than the radius 
of the small circle r, then no points of intersection exist.  If   r then find vector d by rotating 
vector c around b by angle r as described in equation 9.  d is the point of intersection of the small 
circle with a great circle through c and a.

Next, use spherical trigonometry to find angle 

𝛽 = 𝑐𝑜𝑠―1 tan (𝛼)
tan  (𝑟)

(12)
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which is the angle between the circular arc from c to a and the circular arc from c to one of our 
desired intersection points, i1.  The two intersection points can then be found by rotating vector d 
around c by angles  using equation 9.

Figure 6. A small circle with radius r on a sphere. The great circle g intersects the small circle at 
two points, i1 and i2. a is the point on g that is closest to the center of the small circle c.  d is 

located at the intersection of the small circle and the great circle that includes points c and a. ß is 
the angle between the circular arc from c to a and a circular arc from c to i1.  Other features 

discussed in the text cannot be displayed.

4. SUMMARY
We have described a mathematical framework for computing geometrical relationships between 
points in or near the Earth.  Geographical information such as the positions of seismic stations, 
seismic events, etc., are generally reported in geographical coordinates relative to the WGS84 
ellipsoid.  The approach we use involves first converting the information to geocentric coordinates 
and then to Earth-centered Cartesian coordinates where geographical information can be efficiently 
manipulated using vector analysis.
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