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ABSTRACT

Geographic data, such as seismic event locations, station locations, etc., are generally given in

geographic latitude @’, longitude 6, and depth below sea level, g, using the WGS84 ellipsoid as a
reference. In software systems that use this type of geographic data, it is necessary to manipulate the
data mathematically in order to perform such tasks as finding the angular distance or azimuth from
one point to another, to find an array of points along a great circle, to rotate a point about a pole of
rotation, to move a point some angular distance in a specified direction, to find the intersections of
two great circles or to find the intersections of a great circle and a small circle. In this paper,
equations are presented that convert geographic locations first to geocentric coordinates and then to
Earth-centered Cartesian coordinates where many mathematical manipulations can be performed
conveniently and efficiently.
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ACRONYMS AND TERMS

Acronym/Term

Definition

WGS84

World Geodetic System 1984
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1. INTRODUCTION

Much of the geographic information used by seismologists is presented in the form of geographic
latitude, longitude and depth or elevation relative to sea level. This positional information is almost
always described relative to the 1984 World Geodetic System ellipsoid. From this information
seismologists need to calculate the angular distance and azimuth from one point to another and
other geometrical relationships. There are several ways to accomplish these calculations. Vincenty
(1975) described a method for computing the distance in km between two points on the surface of
an ellipsoid by evaluating elliptical integrals. Another approach is to perform spherical trigonometry
with spherical triangles connecting points on the surface of the ellipsoid. In this paper we take the
approach of converting geographical locations to an Earth-centered coordinate system and
performing the calculations using vector analysis.

2. WGS84 ELLIPSOID

The shape of Earth is reasonably well approximated by an oblate spheroid which is an ellipsoid
generated by aligning the minor axis of an ellipse with the rotational axis of the Earth and rotating
the ellipse about its minor axis. In general, ellipsoids require one to specify the lengths of its three
principal axes, however, oblate spheroids only require specification of the polar and equatorial axes
because the equator is assumed to be circular.

Over several centuries, geodesists have defined many ellipsoids for the Earth (Snyder, 1987) but the
WGS84 ellipsoid is arguably the one most frequently encountered in seismology. The parameters
that define the WGS84 ellipsoid are

a=6378.137 km ()
b= 6356.75231424518 km

a—>b
f= T =1/298.257223563

az _ bZ
e = > = 2f — f?2=0.0066943799901413165
a

where # and b are the equatorial and polar radii of the Earth, respectively, fis the flattening
parameter, and ¢ is the eccentricity. Any two of these parameters are sufficient to uniquely define
the ellipsoid. In the equations presented in this paper « and ¢ are used.

When we use an ellipsoid as our figure of the Earth, we must distinguish between geographic
latitude and geocentric latitude (Figure 1). Geographic latitude ¢’ is the acute angle between the
equatorial plane and a line perpendicular to the plane that is tangent to the reference ellipsoid at the
point of interest. Geodesic latitude is a synonym for geographic latitude. Geocentric latitude ¢ is
the acute angle between the equatorial plane and a line from the center of the Earth to the point of
interest. Geographic, geodesic and geocentric longitudes are all equivalent.



Figure 1. An exaggerated ellipsoid illustrating the difference between geographic latitude ¢’ and
geocentric latitude ¢.
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Center of
the Earth

For points on the surface of the ellipsoid, we convert back and forth between geographic latitude
and geocentric latitude using

¢ = arctan ((1 — e?)tan ¢") @)
¢’ = arctan(tan ¢/(1 — e?))

(Snyder, 1987). Geographic and geocentric latitudes at the surface of the ellipsoid are compared in
Figure 2.
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Figure 2. a) Comparison of geographic and geocentric latitudes for the WGS84 ellipsoid.
per degree and Earth radius as function of geocentric latitude.

0.20

/

N

0.15

0.10

0.05

Geographic - Geocentric Latitude (degrees)

0.00

15

30

Geocentric Latitude (degrees)

45

60

75

90

111.30

111.20

111.10

Km per degree

111.00

110.90

15

30

Geocentric Latitude (degrees)

45

60

~
(S}

©
o

-10

-15

Earth Radius - 6371 (km)

b) Km

We also need to convert between depth, z, and radius, 7, as a function of geocentric latitude.

r=R(¢p) —2z

where R(@), the radius of the Earth at geocentric latitude ¢ is given by

R(¢) = a(1+

€2
1—

e2

sin?¢

)"
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3. EARTH-CENTERED CARTESIAN COORDINATES

Mathematical manipulation of geographic information is most easily accomplished if we first
transform the information into an Earth-centered Cartesian coordinate system where points are
defined by a unit vector, v, with its origin at the center of the Earth, and a radial distance from the
center of the Earth, 7, measured in km (Figure 3).

Figure 3. Earth centered coordinate system. The vector vopoints from the center of the Earth
towards the point on the surface with latitude and longitude 0°, 0°; vspoints toward latitude,
longitude 0°, 90° and v:points toward the north pole.

Conversion back and forth between geocentric and Cartesian coordinates is accomplished using

vy = cos ¢ cos O 5)
v, =cos ¢ sinf
v, =sing

¢ = arcsin v,
@ = arctan (vl/ 170)

(Zwillinger, 2003). These equations are valid for all points in space, not just those on the surface of
the ellipsoid.

Once geographic information has been converted to unit vectors, a variety of useful calculations can
be performed.

3.1. Epicentral distance between two points

Given two points defined by unit vectors, u and v, the angular separation of the two points is
A = arccos(u - v) (0)

3.2 Azimuth from one point to another

The azimuth « from u to v, measured clockwise from north, is

a = arccos(Ju X v| - |[u X n|) (7

12



if Juxv|'n<0) a=2r—a

where n is the vector pointing to the north pole, n = [0, 0, 1]. Note that azimuth is undefined if u
and v are parallel, anti-parallel, or if u corresponds to the north or south pole.

3.3. Points on a great circle

Given two points defined by unit vectors u and v, to find another point, w, that lies on the great

circle defined by u and v, at some angular distance J, measured from u in the direction of v
(Figure 4)

t=|uxvxu| ®)
W =ucosd + tsind

Note that if many points are to be found along the same great circle defined by u and v, the
normalized vector triple product, t, only needs to be computed once.

Figure 4. Calculation of w given u and v. All vectors are unit length and reside entirely in the
plane of the figure.

u
A W
s v
t
3.4. Rotate one vector around another

Vector u can be rotated angle @ about another vector p as follows (see Figure 5).

w=ucos® +p(p-u)(1—cose)+ (pXu)sing )

Note that ¢ is positive clockwise when viewed in the direction of vector p (right hand rule).
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Figure 5. Start at point p, located at latitude, longitude 45°, 0°. Find a new point u & = 20° north of
p- Then rotate u @ = -235° around p to position w. Note that Zpu = Zpw = & = 20°.
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3.5. Finding a new point some distance and azimuth from another point

To find a point, w, that is some specified distance ¢ from p in direction ¢, (Figure 5) we first find an
intermediate point u, distance ¢ north of p by applying Equation 8 with v =mn = [0, 0, 1]. Then w is
found by rotating u around p by angle -¢.

3.6. Points of intersection of two great circles

Great circles g, and g, have, in general, two points of intersection located at [nq X ny| and —
|ng X ny| where n; and n, are the unit normals to the two great circles.

3.7. Points of intersection of a great and a small circle

Given a great circle g with normal n and a small circle with center at ¢ with radius 7, we wish to find
any points of intersection which might exist (Figure 6). We begin by finding vector b, which is
normal to the great circle containing vectors n and ¢

b=|n X c| (10)
Then we find vector a which is the point on g which is closest to ¢
a=|b xn| an

Angle o, given by COS_l(C *a), is the angle between vectors ¢ and a. If ais greater than the radius
of the small circle 7, then no points of intersection exist. If & <= r then find vector d by rotating
vector ¢ around b by angle ras described in equation 9. d is the point of intersection of the small
circle with a great circle through ¢ and a.

Next, use spherical trigonometry to find angle

B = cos_l[w] (12)

tan (1)
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which is the angle between the circular arc from c to a and the circular arc from c to one of our
desired intersection points, i;. The two intersection points can then be found by rotating vector d

around c by angles +/ using equation 9.

Figure 6. A small circle with radius r on a sphere. The great circle g intersects the small circle at
two points, i; and i,. a is the point on g that is closest to the center of the small circle c. dis
located at the intersection of the small circle and the great circle that includes points c and a. B is
the angle between the circular arc from c to a and a circular arc from c to i;. Other features
discussed in the text cannot be displayed.

4, SUMMARY

We have described a mathematical framework for computing geometrical relationships between
points in or near the Earth. Geographical information such as the positions of seismic stations,
seismic events, etc., are generally reported in geographical coordinates relative to the W(GS84
ellipsoid. The approach we use involves first converting the information to geocentric coordinates
and then to Earth-centered Cartesian coordinates where geographical information can be efficiently
manipulated using vector analysis.

15



This page left blank

16



REFERENCES
Snyder, J. P., Map Projections — A Working Manual, USGS Prof. Paper 1395, 1987.

Vincenty, T., Survey Review, 23, No 1706, p 88-93, 1975

Zwillinger, D., CRC Standard Mathematical Tables and Fomulae, 31rst Edition, 2003.

17



This page left blank

18



DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address
Eric Furman 6371 emfurma@sandia.gov
Mark Harris 6371 mharris@sandia.gov
Bryan Olivas 6371 brolivas@sandia.gov
Jann Smith 6375 jismit@sandia.gov
Andrea Conley 6752 acconle@sandia.gov
Erica Emry 6752 elemry@sandia.gov
Daniel Gonzales 6752 dgonza2@sandia.gov
Nicole McMahon 6752 nmcmaho@sandia.gov
Julia Sakamoto 6752 jsakamo@sandia.gov
Sanford Ballard 6756 sballar@sandia.gov
Kathy Davenport 6756 kdavenp@sandia.gov
Chris Young 6756 cjyoung@sandia.gov
Steve Vigil 6756 srvigil@sandia.gov
Brian Young 8911 byoung@sandia.gov
Technical Library 1911 sanddocs@sandia.gov

19



This page left blank

20



This page left blank

21



Sandia
National _
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.




