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Abstract

Platinum is an unreactive transition metal that does not experience any experimentally

observed solid-solid phase transitions from its face-centered cubic (fcc) crystal structure

below melt. Platinum is a material standard frequently used for high pressure and shock

compression experiments at Sandia National Laboratories. During these experiments, ma-

terials are subjected to a very large range of thermodynamic conditions, during which

materials can regularly enter the liquid-vapor coexistence region. Despite its status as a

material standard, the region around the liquid-vapor critical point is poorly understood

for platinum, with reported critical temperatures spanning approximately 7000 K. In or-

der to accurately predict experiments that encounter these phases, knowing the location of

the liquid-vapor phase boundary is paramount. For general material design, understand-

ing liquid-vapor coexistence and phase transitions is vital when considering the efficiency

and safety of products utilizing these materials. Additionally, many industrial chemical

processes rely on the vaporization and distillation of materials.
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In this dissertation we conduct density functional theory based molecular dynamics

(DFTMD) simulations for platinum for a range of temperatures and densities near liquid-

vapor coexistence. The phase diagram for platinum is refined near the critical point using

two independent techniques for analyzing the DFTMD data. The first technique includes

fitting the DFTMD results to an equation of state (EOS) in order to calculate the critical

point. The phase boundary is then characterized by performing a Maxwell construction.

The second technique utilizes an instantaneous interface calculation to divide the volume

into two distinct phases. We find that the two approaches result in a critical point and

liquid-vapor phase boundary that agree well. We also find that our analyses agree within

error with recent experimental measurements of the liquid side of the phase boundary

of platinum. With the improved characterization of the coexistence region, we then in-

vestigate the electrical conductivity of platinum in this region of phase space using the

Kubo-Greenwood approximation. We find that the calculated effective DC conductivity is

heavily influenced by the geometry of the system.
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Chapter 1

Introduction

Material characterization is a fundamental research endeavor that influences almost every

aspect of modern life. It is through the understanding of material properties that there

exists continued innovation of new and old technologies. The advances in material devel-

opment and design are so ubiquitous in society and the manufacturing processes so stream-

lined that they are often treated as expendable. But it has been the culmination of decades

of concentrated research efforts dedicated to understanding and adequately representing

the complex quantum mechanical processes underlying material behaviors. Material char-

acterization can be approached both experimentally, through laboratory measurements,

and theoretically, through materials modeling. From the materials modeling field there are

a wide range of techniques using mathematical models to describe materials in order to

predict properties quantitatively. The focus of this work will be on computational mate-

rials modeling from first principles, starting from fundamental theoretical axioms, using

density functional theory (DFT) molecular dynamics to predict material properties based

on the electronic configuration. Much of this work emphasizes the existence of an interdis-
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Chapter 1. Introduction

ciplinary crossroad, wherein the application of fundamental concepts of materials science,

physics and chemistry are only realizable through the use of high performance computing

architectures employing applied mathematics and numerical analysis procedures.

1.1 Electronic Structure Theory

To understand how a material’s bulk properties relate to its electronic configuration, it is

necessary to have a solid understanding of electronic structure theory. Electronic structure

theory focuses on the quantum mechanical treatment of atoms and electrons that determine

physical and chemical properties of matter. The motion and position of a single electron

is described by the Schrödinger equation [12]; for the purposes of this work, we will only

be considering the time-independent Schrödinger equation [13]:

[
−

N

∑
i=1

h̄2

2me
∇

2
i +V (r)

]
Ψ(r) = EΨ(r). (1.1)

Here, h̄ is the reduced Planck constant and me is the electron mass. The sum over i is

the sum over all N electrons. The first term inside the bracketed expression represents

the kinetic energy of the electrons, while V (r) is the potential energy and r represents all

particles in the system.

Considering a molecular system, the Schrödinger equation must describe the interac-

tions and positions of many interacting electrons and nuclei. Replacing the first term of

equation 1.1, the kinetic energy for a system of N electrons and M nuclei is

−
N

∑
i=1

h̄2

2me
∇

2
i −

M

∑
j=1

h̄2

2M j
∇

2
j , (1.2)

2



Chapter 1. Introduction

where m j is the mass of the jth nucleus.

To define the potential energy in the many-body Schrödinger equation, the interactions

between the different types of particles need to be accounted for. The Coulomb repulsion

between electrons for N̂ is represented by [14]:

e2

8πϵ0

N

∑
i ̸=i′

1
|ri − ri′ |

, (1.3)

where e is the electron charge and ε0 is the permittivity of vacuum. Similarly, the Coulomb

repulsion between nuclei is:

e2

8πϵ0

M

∑
j ̸= j′

Z jZ j′

|R j −R j′|
, (1.4)

where Z j is the atomic number of the jth nucleus. Finally, the Coulomb attraction between

electrons and nuclei is:

− e2

4πϵ0

N

∑
i

M

∑
j

Z j

|ri −R j|
. (1.5)

From Equations 1.2, 1.3, 1.4, 1.5 the many-body Schrödinger equation is written as [15]:

[
−

N

∑
i=1

h̄2

2me
∇

2
i −

M

∑
j=1

h̄2

2M j
∇

2
j +

1
2

N

∑
i ̸=i′

e2

4πϵ0

1
|ri − ri′|

+
1
2

M

∑
j ̸= j′

e2

4πϵ0

Z jZ j′

|R j −R j′|
−

N

∑
i

M

∑
j

e2

4πϵ0

Z j

|ri −R j|

]
Ψ = EtotΨ, (1.6)

3



Chapter 1. Introduction

where Ψ is a function of the position vectors of the electrons and ions, Ψ(r;R), and Etot is

the total energy of the system.

Solving the many-body Schrödinger equation scales exponentially. Because the wave-

function for N particles depends on the complete N-dimensional configuration space, the

number of variables needed to describe the quantum system scales as 3N . Conversely, we

need only 6N variables to describe a classical system. This results in a problem that is

impossible to solve with current computational tools for all but the simplest of systems. In

order to represent the system in a way that is solvable quantifiably, some approximations

need to be made.

1.1.1 Hartree Atomic Units

Before continuing on with our discussion, we first take a moment to consider the units

of measurement being used. The expression in equation 1.6 contains several fundamental

physical constants that are independent of the material under consideration, namely:

• the reduced Planck constant, h̄ = 1.0545718 ·10−34 J · s

• the electron mass, me = 9.1093837 ·10−31 kg

• the proton mass, mp = 1.6726219 ·10−27 kg

• the electron charge, e = 1.6021766 ·10−19 C

4



Chapter 1. Introduction

• the permittivity of vacuum, ϵ0 = 8.8541878 ·10−12 F/m

For convenience, we consider the average electron orbital radius for the hydrogen

atom, a0 ≃ 0.5291772 Å, where one angstrom, Å, is 10−10 m. With this, along with

equations 1.3-1.5, we find an estimate for the Coulomb energy between particle pairs, also

referred to as the Hartree energy:

EHa ≃
e2

4πϵ0a0
= 27.211386 eV, (1.7)

where "Ha" stands for Hartree. A typical magnitude of the potential energy terms in

equation 1.6 is of order EHa. Similarily, we find that the kinetic energy terms are also of

the order EHa. Considering the angular momentum and force balancing for the hydrogen

atom [16], we find

meva0 = h̄ (1.8)

and

me
v2

a0
=

e2

4πϵ0a0
(1.9)

=⇒ 1
2

mev2 =
1
2

EHa. (1.10)

Because all of the terms in equation 1.6 are of the order EHa, we can divide the entire

expression by this quantity, giving us a simplified expression that describes energies in

5



Chapter 1. Introduction

units EHa, distances in units a0, and masses in units of me, also referred to as atomic units.

Within this Hartree unit scheme, the value of the electron charge, e, and mass, me are 1. In

Hartree atomic units, the many-body Schrödinger equation takes the form [15]:

[
−

N

∑
i=1

∇2
i

2
−

M

∑
i=1

∇2
j

2M j
−

N

∑
i

M

∑
j

Z j

|ri −R j|
+

1
2

N

∑
i̸=i′

1
|ri − ri′|

+
1
2

M

∑
j ̸= j′

Z jZ j′

|R j −R j′|

]
Ψ = EtotΨ,

(1.11)

1.1.2 Born-Oppenheimer Approximation

A common technique for simplifying equation 1.11 is to implement the Born-Oppenheimer

approximation [17]. Because the nuclei are much more massive than the electrons, they

move more slowly than the electrons. Therefore, the coordinates of the nuclei can be

approximated as being fixed in place with respect to the electrons. In other words, the

wavefunction representing the system can be separated into two independent wavefunc-

tions, one representing the electron coordinates and one the coordinates of the nuclei:

Ψtotal = ψelectronicΦnuclear (1.12)

Within this approximation, the nuclear kinetic energy can be calculated separately such

that the ion dynamics are determined by the ground-state electronic wavefunction. This

allows us to neglect the ion-ion term in the Hamiltonian. Applying this to equation 1.11,

the many-body Schrödinger equation is simplified to:

[
−

N

∑
i=1

∇2
i

2
−

N

∑
i

M

∑
j

Z j

|ri −R j|
+

1
2

N

∑
i ̸=i′

1
|ri − ri′|

]
ψ = Eψ, (1.13)
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Chapter 1. Introduction

where ψ = ψelectronic. This new energy, E, is defined as the total energy from equation

1.11 with the ion-ion contribution removed:

E = Etot −
1
2

M

∑
j ̸= j′

Z jZ j′

|R j −R j′|
. (1.14)

1.1.3 Independent Electrons Approximation

Even with the simplifications from the Born-Oppenheimer approximation, equation 1.13

is still too complex to solve outside of the simplest systems. To simplify this expres-

sion further, additional approximations must be made. Within equation 1.13, the only

term representing interactions between electrons is the Coulomb repulsion term, therefore

removing this term would result in a system where the electrons do not interact. This

simplification is called the independent electron equation [15]. Because the electrons are

independent the probability of finding electron 1 at r1, and electron 2 at r2, ... and electron

N at rN becomes the product of the individual probabilities of finding the ith electron at

position ri:

|ψ(r1,r2, ...,rN)|2 = |φ1(r1)|2|φ2(r2)|2...|φN(rN)|2, (1.15)

where |φi(ri)|2 is the probability of finding electron i at ri.

Assuming that the now independent electron wavefunctions are the solutions to the

single-particle Schrödinger equation:

N

∑
i

Ĥ0,i(ri)φi(ri) = εiφi(ri), Ĥ0,i(ri) =−1
2

∇
2
i −

M

∑
j

Z j

|ri −R j|
(1.16)

7
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where Ĥ0 is the single electron Hamiltonian. Considering again the Schrödinger equation

that represents the entire system, plugging in equation 1.15:

[
∑

i
Ĥ0,i(ri)

]
φ1(r1)φ2(r2)...φN(rN) = Eφ1(r1)φ2(r2)...φN(rN), (1.17)

which can be further separated

[
ˆH0,1(r1)φ1(r1)

]
φ2(r2)...φN(rN)+φ1(r1)

[
ˆH0,2(r2)φ2(r2)

]
...φN(rN)+...=Eφ1(r1)...φN(rN)

(1.18)

From equation 1.16, we find:

E = ε1 + ε2 + ...+ εN . (1.19)

While we have significantly simplified the problem with the addition of the indepen-

dent electron approximation, there are important issues that need to be addressed within

this approximation.

1.1.4 Fermion Wavefunctions

The Pauli exclusion principle states that two or more fermions cannot simultaneously oc-

cupy the same quantum state [13]. Within the independent electron approximation dis-

cussed in the previous section, equation 1.15 does not obey the Pauli exclusion principle.

For example, given a system of two electrons, the wavefunction ψ(r1,r2) = φ1(r1)φ2(r2),

8
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where r1 ̸= r2 does not satisfy ψ(r1,r2) ̸= ψ(r2,r1), nor the proper spin statistics. How-

ever, the normalized wavefunction form:

ψ(r1,r2) =
1√
2

[
φ1(r1)φ2(r2)−φ1(r2)φ2(r1)

]
, (1.20)

satisfies the spin statistics condition, such that ψ(r1,r2) =−ψ(r2,r1), as well as the con-

dition that ψ(ri,ri) = 0 with i = 1,2. Equation 1.20 can be written as:

ψ(r1,r2) =
1√
2

∣∣∣∣∣∣φ1(r1) φ1(r2)

φ2(r1) φ2(r2)

∣∣∣∣∣∣ . (1.21)

This representation of the wavefunction is referred to as the Slater determinant [18]. In the

case of more than two electrons, N > 2, the normalization prefactor is given by 1√
N!

and

the electron label increases along the horizontal, while the orbital label increases along the

vertical of the matrix.

1.1.5 Mean-Field Approximation

As mentioned in Section 1.1.3, there are a few concerns when implementing the inde-

pendent electron approximation. We discussed the first concern in the previous section,

satisfying the Fermi-Dirac statistics. The second issue with the independent electron ap-

proximation is that the Coulomb potential is of the same magnitude as the other terms in

equation 1.13; thus, it cannot be entirely ignored.

Recall in classical electrostatics, the distribution of an electric charge, n(r), will gen-

erate an electrostatic potential, VH(r), determined by Poisson’s equation [14]:

9
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∇
2VH(r) =−4πn(r), (1.22)

with the solution,

VH(r) =
∫

dr′
n(r′)
|r− r′|

. (1.23)

Equation 1.23 is referred to as the Hartree potential [19]. Following from the form of

the Slater determinant, the electron charge distribution in the independent electron approx-

imation,

n(r) = ∑
i
|φi(r)|2, (1.24)

is the sum of the probabilities of finding an electron in each of the occupied states, i. We

can improve the representation of the system by including this extra term in Ĥ0(r):

[
−

N

∑
i=1

∇2
i

2
+Vn(r)+VH(r)

]
φi(r) = εiφi(r), (1.25)

where Vn(r) is defined as:

Vn(r) =−
N

∑
i

M

∑
j

Z j

|ri −R j|
, (1.26)

the Coulomb potential of the nuclei experienced by the electrons. Because the Hartree

potential is the average potential experienced by each of the electrons in the independent

electron approximation, this approach is referred to as a mean-field approximation.

10
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1.1.6 Indistinguishable Electrons

A final concern that arises within the independent electron approximation is the issue

of self-interaction. The single-particle Schrödinger equation for each electron is solved

individually and each electron is treated as interacting with every particle in the system.

This results in the inclusion of each electrons interaction with itself being considered in

the final solution.

1.1.7 Hartree-Fock Equations

The Slater determinant was introduced as a representation of the N-body independent elec-

tron wavefunction in Section 1.1.4. In previous sections, however, we noted that the elec-

tron interactions cannot be entirely ignored, thus introducing the mean-field approxima-

tion. We are able to show that the system can still be represented in the form of a Slater

determinant by applying a variational principle. For a given quantum eigenstate, ψ , the

energy of the eigenstate is represented as:

E =
∫

dr1...drNψ
∗Ĥψ = ⟨ψ|Ĥ|ψ⟩ . (1.27)

Considering for the time being a system of two electrons, N = 2, the corresponding

Schrödinger equation is:

[
Ĥ0(r1)+ Ĥ0(r2)+

1
|r1 − r2|

]
ψ = Eψ, (1.28)

where the single-particle Hamiltonian, Ĥ0 is that defined in equation 1.16. Recall the defi-
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nition of the Slater determinant from equation 1.20, which is the solution to the Schrödinger

equation for the electronic ground-state energy. Writing the average energy as a function

of the normalized wavefunctions:

E = ⟨φ∗
1 |Ĥ0|φ1⟩+⟨φ∗

2 |Ĥ0|φ2⟩+
∫

dr1dr2

[
|φ1(r1)|2|φ2(r2)|2

|r1 − r2|
−

φ∗
1 (r1)φ

∗
2 (r2)φ1(r2)φ2(r1)

|r1 − r2|

]
.

(1.29)

To solve for the φ1 and φ2 that minimize this energy, the following conditions need to

be satisfied:

δE
δφ1

=
δE
δφ2

= 0. (1.30)

We impose normalization and orthogonality of the single-particle wavefunctions using

the method of Lagrange multipliers [20]. This involves minimizing an auxiliary function,

L[φ1,φ2,λ11,λ12,λ21,λ22] = E[φ1,φ2]−∑
i j

λi j[⟨φi|φ j⟩−δi j], (1.31)

which is the difference between equation 1.29 and a sum over Lagrange multipliers, λi j.

In this framework, equation 1.30 is replaced by:

δL
δφ∗

i
=

∂L
∂λi j

= 0, i, j = 0. (1.32)

Evaluating these criteria, the following conditions are obtained:

12
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Ĥ0(r)φ1(r)+
∫

dr′
|φ2(r′)|2

|r− r′|
φ1(r)−

∫
dr′

φ∗
2 (r

′)φ2(r)
|r− r′|

φ1(r′) = λ11φ1(r)+λ12φ2(r),

(1.33)

Ĥ0(r)φ2(r)+
∫

dr′
|φ1(r′)|2

|r− r′|
φ2(r)−

∫
dr′

φ∗
1 (r

′)φ1(r)
|r− r′|

φ2(r′) = λ21φ1(r)+λ22φ2(r),

(1.34)

∫
drφ

∗
i φ j = δi j, i, j = 0. (1.35)

Recalling the definition of the single-particle Hamiltonian and the Hartree potential,

we find:

[
− ∇2

2
+Vn(r)+VH(r)

]
φ1(r)+

∫
dr′VX(r,r′)φ1(r′) = λ11φ1(r)+λ12φ2(r), (1.36)

[
− ∇2

2
+Vn(r)+VH(r)

]
φ2(r)+

∫
dr′VX(r,r′)φ2(r′) = λ21φ1(r)+λ22φ2(r), (1.37)

where VX is defined as:

VX(r,r′) =−∑
j

φ∗
j (r′)φ j(r)
|r− r′|

(1.38)

and is called the Fock exchange potential [21], which is a nonlocal potential depending on

the wavefunctions of every particle in the system, and therefore complicates the problem
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significantly. Because both the Hamiltonian and the Lagrange multipliers are Hermitian,

we can introduce a unitary matrix to diagonalize the Lagrange multipliers:

S

∣∣∣∣∣∣λ11 λ12

λ21 λ22

∣∣∣∣∣∣S−1 =

∣∣∣∣∣∣ε1 0

0 ε2

∣∣∣∣∣∣ , (1.39)

where ε1,ε2 are real eigenvalues. Additionally, we define a new set of wavefunctions:

ψi = ∑
j

Si jφ j. (1.40)

Equations 1.36 and 1.37 are rewritten as

[
− ∇2

2
+Vn(r)+VH(r)

]
ψ1(r)+

∫
dr′VX(r,r′)ψ1(r′) = ε1ψ1(r), (1.41)

[
− ∇2

2
+Vn(r)+VH(r)

]
ψ2(r)+

∫
dr′VX(r,r′)ψ2(r′) = ε2ψ2(r). (1.42)

It should be noted that within the Hartree-Fock framework, the self-interaction men-

tioned previously is exactly cancelled.

1.2 Density Functional Theory

The fundamental theorems of density functional theory (DFT) [22] imply that the proper-

ties of a many-body system can be represented exactly as a functional of the ground-state
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density n(r). In other words the single scalar function, n(r), determines all of the infor-

mation in the many-body wavefunctions for the ground-state.

1.2.1 Hohenberg-Kohn Theorems

In 1964 Hohenberg and Kohn proved key theorems governing the behavior of the ground-

state of an interacting electron gas in an external potential [22]. Here we introduce the

Hohenberg-Kohn (HK) theorems and discuss the consequences of these theorems. One

of the underlying assertions of the HK theory is that the total ground-state energy of a

many-electron system is a functional of the electron density based on the following:

1. In the ground state, the external potential of the nuclei, Vn(r), is a unique functional

of the electron density.

2. For any quantum state, Vn(r) uniquely determines the many-body wavefunction.

The second theorem of Hohenberg and Kohn is their variational principle which states

that the ground-state density, n0(r), is exactly the function that minimizes the total energy,

E = EHK[n(r)], where

EHK[n(r)] =T [n(r)]+Einternal[n(r)]+
∫

drVn(r)n(r)+EN (1.43)

≡FHK[n(r)]+
∫

drVn(r)n(r)+EN , (1.44)

where T [n(r)] is the kinetic energy, Einternal[n(r)] is the Coulomb energy, and EN is the

ion-ion interaction energy of the nuclei.
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1.2.2 Kohn-Sham Equations

From the HK theorem, we know that the energy of a many-body system in the ground

state is a functional of the electron density, however the theorem does not define how this

functional is constructed. Expressing the energy as a functional of the electron density,

n(r), per the HK theorems:

E = E[n(r)] =
∫

drn(r)Vn(r)+ ⟨ψ(r)|FHK[n(r)]|ψ(r)⟩ , (1.45)

where

FHK[n(r)] = T [n(r)]+Einternal[n(r)] =−∑
i

∇2
i

2
+

1
2 ∑

i̸= j

1
|ri − r j|

. (1.46)

Clearly, the first term of equation 1.45 is explicitly dependent on the electron density,

n(r), however the dependence of the kinetic energy and Coulomb energy are at present

only implicit. In their 1965 publication [23], Kohn and Sham split these implicit terms

into kinetic and Coulomb energies of independent electrons, as in equation 1.25, with

an additional term accounting for exchange and correlation between electrons [15]. Here

electronic exchange refers to the interactions between electrons due to their indistinguisha-

bility while correlation describes the influence that the movement of one electron has on

all other electrons in the system.

E =
∫

drn(r)Vn(r)︸ ︷︷ ︸
External potential

−∑
i

∫
drφ

∗
i (r)

∇2
i

2
φi(r)︸ ︷︷ ︸

Kinetic energy

+
1
2

∫∫
drdr′

n(r)n(r’)
|r− r′|︸ ︷︷ ︸

Hartree energy

+EXC[n(r)]. (1.47)
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The extra term, the exchange and correlation energy, represents all of the unknown

contributions of the energy encompassed in a single term. We now need to determine

how to calculate the ground-state electron density. Kohn and Sham showed that the HK

variational principle can be used to derive the following set of coupled single-particle

equations:

[
− ∇2

2
+Vn(r)+VH(r)+VXC(r)

]
φi(r) = εiφi(r), n(r) =

N

∑
i
|φi(r)|2 (1.48)

and the exchange and correlation potential:

VXC(r) =
δEXC[n(r)]

δn(r)

∣∣∣∣∣
n(r)

. (1.49)

Equations 1.48 are referred to as the Kohn-Sham (KS) equations and form the basis

of KS theory [23]. The exchange and correlation energy, EXC, is an exact, universal func-

tional that includes all many-body effects. While in theory there exists a definition of

EXC that exactly represents the ground-state energy, this universal functional is at present

unknown and must be approximated.

1.2.3 Local Density Approximation

Because the exact exchange and correlation functional is unknown, there is a great deal of

effort focused on constructing accurate approximate forms. The simplest approximation of

the exchange and correlation functional is the local density approximation (LDA), which

depends only on the density at the coordinate where the functional is evaluated. Although
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a real material is not adequately represented by a homogeneous electron gas, the premise

of the LDA is to partition the volume of the material and consider each infinitesimal vol-

ume element to contain a homogeneous electron gas (HEG) because the density of that

localized volume is varying slowly. To begin, we separate the exchange and correlation

energy into two terms representing exchange and correlation independently:

EXC = EX +EC. (1.50)

In LDA, the density is assumed to be locally constant, this typically leads to an un-

derestimated exchange energy and an overestimate of the correlation energy. The LDA is

an approximation built off of the idea of the HEG. There exists a gas of N electrons that

experience a Coulombic repulsion constrained within a volume, Ω, and the potential of the

nuclei is taken to be constant. For the HEG system, we can calculate exactly the exchange

energy and the correlation energy can be calculated numerically [24]. The eigenstates and

eigenvalues for this system in Hartree units are given by [25]:

ψk(r) =
1√
Ω

eik·r, εk =
|k|2

2
. (1.51)

These solutions are stationary waves, where k is the wavevector. For the highest oc-

cupied state, the value of the eigenvalue is the Fermi energy, εF , and the corresponding

wavevector is the Fermi wavevector, kF , where

εF =
k2

F
2
, kF = (3π

2n)
1
3 , (1.52)

where n is the electron density, n = N/Ω. Now, to determine the exchange energy, we

take:
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EX =−∑
i, j

∫
Ω

dr
∫

Ω

dr′
ψ∗

i (r)ψi(r′)ψ∗
j (r′)ψ j(r)

|r− r′|
, (1.53)

where i and j are indexed over the occupied electronic states and Ω is the volume of the

box containing the gas. Plugging in the wavevectors from equation 1.51 and converting

our summations to integrals over the continuous functions:

EX =− 1
(2π)6

∫
|k|≤kF

dk
∫

k′≤kF

dk′
∫

Ω

dr
∫

Ω

dr′
e−i(k−k′)·(r−r′)

|r− r′|
(1.54)

Implementing integration by substitution, this expression for the homogeneous electron

gas exchange energy simplifies to [26]:

EX =− C
(2π)6 k4

FΩ =−3
4

(
3
π

)1/3

n4/3
Ω. (1.55)

Unfortunately, a simple analytic solution to the correlation energy of this system is

not known. However, a solution has been found using stochastic numerical methods to

sample the many-body Schrödinger equation. In the case of a zero net magnetic moment,

the expression for the correlation energy is [24, 27]:

EC = nΩ ·

{
0.0311lnrs −0.0480+0.002rs lnrs −0.0116rs if rs < 1,

−0.1423
1+1.0529

√
rs+0.3334rs

if rs ≥ 1,
(1.56)

where rs is the Wigner-Seitz radius, which represents the radius of a sphere whose volume

is equal to the volume per electron [28], defined as:

Ω

N
=

4π

3
r2

s =
1
n

(1.57)
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These expressions form the basis for defining the local density approximation used

in DFT. In the discretized view of the LDA, each volume element contributes its own

exchange-correlation energy:

EXC =
∫

Ω

EHEG
XC [n(r)]

Ω
dr, EHEG

XC [n(r)] = EHEG
X [n(r)]+EHEG

C [n(r)], (1.58)

where EHEG
X and EHEG

C correspond to equations 1.55 and 1.56, respectively. Equation 1.58

is the analytic representation of the local density approximation [29].

Given this prescription for solving the exchange-correlation energy, the last step needed

to be able to solve the Kohn-Sham equations is to define the exchange-correlation poten-

tial, which can be found by using the expression 1.58 in equation 1.49. It is worth noting

that the LDA approach to DFT typically results in an exchange potential that is too short-

ranged. This is not an exact representation of the true exchange-correlation functional and

suffers from self-interaction errors.

1.2.4 Self-Consistency

From the previous sections, we now have the tools needed to solve the Kohn-Sham equa-

tions (1.48). However, we have demonstrated that the Hartree potential, ϕH(r), and the

exchange-correlation potential, VXC(r) are both functionals of the electron density, n(r),

and thus depend on knowing the density. From the definition of the density in equation

1.48, we know that the density is dependent on the unknown single-particle orbitals, φi.

Within this scheme, each solution to the eigenvectors and eigenvalues implicitly depends

on every other solution to the eigenvectors and eigenvalues, therefore they have to be

solved self-consistently.
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Under this constraint the procedure for solving the Kohn-Sham equations is as follows:

1. Specify the nuclear coordinates of the system such that the nuclear potential, Vn

(1.26), can be calculated.

2. Define a first pass guess for the electron density, n(r), which is then used to calculate

the initial values of the Hartree, ϕH , and exchange-correlation, VXC, potentials.

3. Numerically solve the Kohn-Sham equations for this initial total potential, Vtot , to

generate the new wavefunctions.

4. Use these new wavefunctions to construct a better estimate for the electron density

and, in turn, the total potential.

5. Repeat this process until the newly calculated density matches the previous density

within a desired tolerance.

6. With the final electron density, calculate the total ground-state energy of the system.

1.2.5 Numerical Solutions

There are several approaches to solving the Kohn-Sham equations numerically. Because

the Kohn-Sham equations are second-order differential equations, at least two boundary

conditions need to be defined in order to solve them. Throughout this paper, the DFT

calculations are performed using the software package Vienna Ab-Initio Simulation Pack-

age (VASP) [30, 31, 32, 33], which utilizes periodic boundary conditions and a planewave

representation of the single-particle wavefunctions. For the case of periodic boundary

conditions where the computational cell is a cubic volume of side length a, we have:
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ψi(x+a,y,z) =ψi(x,y,z), ∇ψi(x+a,y,z) = ∇ψi(x,y,z) (1.59)

ψi(x,y+a,z) =ψi(x,y,z), ∇ψi(x,y+a,z) = ∇ψi(x,y,z) (1.60)

ψi(x,y,z+a) =ψi(x,y,z), ∇ψi(x,y,z+a) = ∇ψi(x,y,z) (1.61)

Within the plane wave basis, the wavefunctions are represented using a Fourier series

and solving the Fourier coefficients. The primitive vectors of the reciprocal lattice are

defined as [15]:

u1 =
2π

a
x̂, u2 =

2π

a
ŷ, u3 =

2π

a
ẑ, (1.62)

where again a is the length of the cubic cell. We define the reciprocal lattice vectors:

G = m1u1 +m2u2 +m3u3, (1.63)

where m1,m2,m3 are integer values. The complex exponentials

eiG·r (1.64)

satisfy the boundary conditions given in equations 1.59, 1.60, 1.61. We can then write the

Kohn-Sham orbitals as a linear combination:

ψi(r) = ∑
G

ci(G)eiG·r, (1.65)
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where the sum is over all G values defined by the integers m1,m2,m3 and ci(G) are the

planewave coefficients. This basis set is in principle infinite, however must be truncated

for numerical computation. This truncation is defined by a parameter called the planewave

energy cut-off:

Ecut =
|Gmax|2

2
, (1.66)

where the basis set contains only those functions who satisfy this constraint. The Kohn-

Sham equations for the system are then written as:

|G|2

2
ci(G)+∑

G′
vtot(G−G′)ci(G′) = εici(G), (1.67)

Vtot(G) =
1
a3

∫
dr e−iG·rVtot(r) (1.68)

1.2.6 Pseudopotential Approximation

In many cases, particularly when simulating high-Z materials, numerical calculations

quickly become too computationally intensive for present day computational capacity. In

these scenarios it is often advantageous to explicitly consider only the valence electrons

of an atom. This is done by introducing the idea of a pseudopotential [29, 34]. The un-

derlying notion within this representation is that the core electrons are tightly bound to the

nucleus and can be considered chemically inert. This is done by modifying the nuclear

potential such that it satisfies the following conditions:
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1. Outside the region that is being "pseudized," the modified potential matches the

original Kohn-Sham potential which accounts for all electrons.

2. Inside the region that is being "pseudized," the modified potential yields the exact

same eigenvalue solution to the Kohn-Sham equations as the pseudo-wavefunction.

1.2.7 Generalized Gradient Approximation

There has been significant success in characterizing materials using the LDA exchange-

correlation functional, oftentimes reliably calculating properties of systems that are very

far removed from the homogeneous electron gas. However, there exist situations were a

more accurate description of the exchange and correlation energies is needed. The next

step forward in accuracy has been through the development of generalized-gradient ap-

proximations (GGA) [29]. These functionals are the first departure from an entirely local-

ized reliance on the density, characterized by their dependence on the first-order gradient

of the density, ∇n, as well as n at each point. In many cases, GGA functionals surpass the

LDA in performance, however this is not a universal trait.

To define the gradient expansion of the exchange-correlation functional, it is conve-

nient to consider the exchange-correlation energy in terms of that for the HEG system

[35],

EXC =
∫

Ω

EHEG
X [n(r)]FXC[n(r),∇n(r)]n(r)dr. (1.69)

Throughout this dissertation, the particular GGA described by Perdew, Burke, and

Ernzerhof (PBE) [36] is used. The PBE exchange and correlation functional was created

to preserve the features of the LDA while also including the most energetically important
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features of gradient-corrected nonlocality. PBE is a non-empirical functional thus it de-

pends only on the rules of quantum mechanics with special limiting conditions, such as the

correct asymptotic behavior for large distances and the correct description of the uniform

electron gas. PBE is considered widely applicable to many different systems while also

providing computational efficiency making it a popular choice among GGAs. PBE is an

attractive choice where dispersion interactions are not dominant.

1.3 Molecular Dynamics

Molecular dynamics (MD) is a general computer simulation approach to analyze the physi-

cal movements of atoms and molecules. In this dissertation we are using density functional

theory based molecular dynamics (DFTMD). In this framework, the motion of the elec-

trons and the corresponding energies and forces are determined using DFT, described in

Section 1.2.4. The motion of the ions are then solved classically using Newton’s equations.

This process is then repeated for the number of desired timesteps.

Figure 1.1: Flowchart depicting the procedure for solving for one timestep in a molec-
ular dynamics simulation implementing DFT. The process of converging the energy is
described in section 1.2.4.
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Motivations

Liquid-vapor coexistence in materials is a phenomenon that is encountered every day, with

the entirety of our day-to-day lives existing within the liquid-vapor coexistence region of

water [37, 38]. In addition to the commonly observed water liquid-vapor phases, under-

standing coexistence is crucial for many industrial and scientific applications. The process

of decaffeinating such substances as coffee and tea utilizes supercritical CO2 to dissolve

and remove caffeine [39]. In contrast to using chemical solvents, this method of decaf-

feination is used to minimally impact the original flavors. Another example of the impor-

tance of characterizing liquid-vapor coexistence within industrial processes is the process

of refining crude oil. Through petroleum distillation, crude oil is separated into different

fractions of gasoline, kerosene, and diesel based on the boiling points of the components

[40].

Many topics within scientific research are also concerned with understanding liquid-

vapor coexistence and critical behavior. Within the field of astrophysics, the accretion of

planetary bodies and giant impact events result in the creation of considerable amounts
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of supercritical fluids [41]. For shock experiments involving dynamic compression, ma-

terials may intersect the liquid-vapor phase boundary at late times as they isentropically

decompress [8].

Typically the temperatures and pressures at the liquid-vapor critical point for metals

are extremely high, making experimental investigation incredibly difficult. Direct mea-

surements and characterization of the critical point are only available for metals with low

melting points, such as mercury [42, 43]. This has resulted in a heavy reliance on the-

oretical methods of investigating material behaviors in this regime. In this dissertation,

we have characterized the liquid-vapor coexistence and critical behavior of platinum using

density functional theory. Platinum is frequently used as a high pressure material stan-

dard in shock compression experiments [44, 9]. At the Z Pulsed Power facility at Sandia

National Laboratories platinum is used as a high-impedance impactor in flyer plate shock

compression experiments [8]. Despite its use as a standard, current estimates of the liquid-

vapor critical point of platinum are highly unconstrained, spanning approximately 7000 K

and 2 g/cm3 [1, 2, 3, 4, 5, 6].

27



Chapter 3

Liquid-Vapor Coexistence of Platinum

from Ab-initio Simulations

The contents of this chapter have been submitted as part of Meghan K. Lentz, Michael P.

Desjarlais, and Joshua P. Townsend; Liquid-Vapor Coexistence of Platinum from Ab-initio

Simulations. J. Chem. Phys. (in revision). Minor edits within this dissertation have been

made to clarify the text.

3.1 Abstract

Platinum is a standard material for high pressure experiments, yet estimates of the liquid-

vapor critical temperature and density span nearly 7000 K and 2 g/cm3. Here we present

the results of the first systematic investigation of liquid-vapor coexistence and critical be-

havior of platinum using density functional theory-based molecular dynamics. We ob-
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tained critical point parameters and an estimate of the liquid-vapor phase boundary from

a fit to a generalized virial equation of state model and subsequent Maxwell construction

on isotherms below the critical temperature. We performed this analysis on different sized

systems in order to quantify finite size effects. We extrapolated our results to the thermo-

dynamic limit and found a critical point of ρc = 4.18±0.09 g/cm3, Tc = 8120±60 K, and

Pc = 5.56±0.50 kbar. Our predicted phase boundary agrees well with recent experiments

measuring the liquid side of the Pt vapordome, demonstrating significant improvement in

the phase diagram in this region.

3.2 Introduction

Platinum (Pt) is a metal with a high melting point whose face-centered cubic crystal does

not display any experimentally observed solid-solid phase changes up to its melt [45] and

is predicted to remain stable up to at least 800 GPa [46, 44, 47]. Due to these properties

and others, platinum is frequently used as a material standard, in high-pressure and shock

compression physics. Pt is also used as a high-impedance impactor in flyer plate shock

experiments [44, 48], which may enter the liquid-vapor coexistence region upon release.

Despite continued interest in the high pressure and temperature phase diagram, the proper-

ties of the liquid-vapor region remain poorly understood. Clarity in this region of the phase

diagram spanning liquid and vapor states is hindered due to the experimental challenges

that come with confining high temperature liquid and vapor.

Indeed, previous estimates of the critical point typically rely on extrapolations from

low temperature measurements employing exploding wire and pulsed heating techniques

[5, 3]. In contrast to the described low temperature extrapolations, previous computational
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studies have relied on classical interatomic potentials trained from low-pressure data or

simplified equation of state (EOS) models from which a critical point can be directly cal-

culated [6, 2, 4, 1, 49, 50]. Taken together, the estimates of the critical temperature, Tc,

span about 7000 K and estimates of the critical density, ρc, span about 2.00 g/cm3, shown

in Figure 3.1. To our knowledge, there have been no ab initio studies to date and the need

for such calculations in this region has been noted by Elkin et al. [49].

Ab-initio techniques such as density functional theory based molecular dynamics

(DFTMD) do not rely on experimental input and thus offer, in principle, an independent

method to investigate critical behavior. Such methods have been used previously to study

the critical behavior and phase diagrams of a wide variety of systems oftentimes using

different approaches [51, 52, 53, 54, 55]. A universal concern with atomistic simulations in

the coexistence region are the influences of finite size and time effects, which, in addition

to the usual DFT approximations, may result in significant bias in the results.

In this study we present a systematic investigation of the properties of platinum in

the liquid-vapor coexistence region from DFTMD calculations. To better understand the

nature of microscopic liquid and vapor, we first examine the MD trajectories and speciation

of the system around the coexistence region. We then compare estimates of the critical

point and liquid-vapor phase boundary obtained using three different sized systems fitting

the density, pressure, and temperature states to a general virial EOS in order to estimate

finite size effects. We find a critical point whose critical temperature is generally lower

than most of the previously reported data seen in Figure 3.1. We offer, to our knowledge,

the first ab initio characterization of the liquid-vapor phase boundary. Additionally, we

find exceptional agreement with recent experimental measurements done of the liquid side

of the phase boundary [8].
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Figure 3.1: The Pt critical point and liquid-vapor phase boundary calculated from a
Maxwell construction of a 256-atom system fit to an EOS are shown in blue. The various
colored individual points indicate previously calculated critical points [1, 2, 3, 4, 5, 6]. The
gray shaded region is the region of phase space that has been simulated using DFTMD.

3.3 Molecular Dynamics Calculations

DFTMD calculations were performed with the Vienna ab initio simulation package (VASP)

[30, 31, 32, 33], an implementation of Kohn-Sham DFT [22, 23] using a planewave basis
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and periodic boundary conditions. A platinum projector augmented wave (PAW) pseu-

dopotential [56] with a 5d96s1 valence configuration was used and the energy plane wave

cutoff was set to 700 eV. The exchange-correlation energy was computed with the Perdew-

Burke-Ernzerhof (PBE) generalized gradient approximation [36]. All simulations were

conducted within the NVT ensemble with a velocity scaling thermostat. The Brillouin

zone was sampled at the Γ point and the electronic occupations were populated using a

Fermi-Dirac distribution according to the Mermin finite temperature formulation of DFT

[57, 58, 54, 48]. Calculations were performed over a grid of temperatures, 6000-12000

K, densities, 3.00-10.00 g/cm3, and particle number, 32, 108, and 256. Each simulation

was initialized from an fcc crystal and run for approximately 10000 1- f s time steps and

checked for equilibrated pressures.

The trajectories obtained from the MD simulations show a rich variety of dynamical

behavior. At higher densities we have observed by visual inspection a homogeneous fluid

phase, while at lower densities and temperatures we observed phenomena such as droplet

formation and evaporation, as well as ephemeral bubbles and foams. The use of a plane-

wave basis limits the minimum density we can study because the size of the basis scales

with the cell volume. Thus our lowest density simulations (3 g/cm3) do not lie entirely

outside the coexistence region (note the grey shaded box in Figure 3.1).

Figure 3.2 shows the distribution of platinum clusters for selected density, temperature

points. In this analysis, an atom is defined to be part of a cluster if there is a neighboring

atom within the value of the first minimum of the radial distribution function (RDF). For

those densities studied, the 6000 K isotherm exists almost entirely inside the vapor dome.

This is supported by the lack of any intermediate cluster sizes; with the entire population

being made up of very large (liquid) clusters or clusters with only a few platinum atoms

(vapor) consistent with a sub-critical two phase system. Completely outside of the coexis-
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Figure 3.2: Platinum speciation cluster size along three different isotherms: 6000 K, 8000
K, and 12000 K for the range of calculated densities.

tence region, along the 12000 K isotherm, these well defined phases seemingly disappear

and we see clusters of many different sizes present throughout the simulation, consistent

with a supercritical fluid. The intermediary 8000 K isotherm is near criticality, with some

densities existing inside the coexistence region and some outside. This is evident by the

population of Pt clusters predominantly being made up of very large and very small clus-

33



Chapter 3. Liquid-Vapor Coexistence of Platinum from Ab-initio Simulations

ters, with the additional presence of a small number of intermediate sized clusters for the

lowest densities.

3.4 Results

3.4.1 Equation of State Model

We used a generalized virial EOS [54] to represent the pressure, P, in the coexistence

region:

P(n,T ) = kBT n+(a0 +a1kBT )n2 +(b0 +b1kBT )n3 (3.1)

where n is the atomic number density (N/V ) in units of 1/Å
3
, kB is the Boltzmann con-

stant, T the temperature, where kBT is in units of eV , and a0,a1,b0,b1 are obtained from

a least-squared fit to the DFTMD data. We find a0 = −72.8 ± 7.1, a1 = 26.2 ± 8.9,

b0 = 594±259, and b1 = 1110±326, with the following correlation matrix for the vector

of fit coefficients [a0,a1,b0,b1]:


1.00 −0.98 −0.99 0.96

−0.98 1.00 0.96 −0.99

−0.99 0.96 1.00 −0.98

0.96 −0.99 −0.98 1.00

 (3.2)

We note that due to the large correlations between EOS parameters in our model, the

uncertainty in, for example, the liquid density at 6000 K is approximately 0.4 g/cm3 (3%
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relative error). The EOS obtained from the 256 atom simulations is shown in Figure 3.3.

Regardless of the underlying EOS model, the critical point satisfies:

Figure 3.3: EOS fit (lines) to the DFTMD results (points) for the 256-atom supercell with
the critical point estimation (blue circle). The top axis represents the expansion of the
system, where ρ0 = 21.45 g/cm3 is the density of Pt at ambient. Note we have converted
number density to mass density using the atomic mass of platinum.

(
∂P
∂n

)
T=Tc

=

(
∂ 2P
∂n2

)
T=Tc

= 0. (3.3)

The critical density, temperature, and pressure for our chosen EOS are then simple

algebraic expressions in the EOS parameters:
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Tc =
−B±

√
B2 −4AC

2A
(3.4)

nc =− 1
3

a0 +a1kBTc

b0 +b1kBTc
(3.5)

Pc =P(nc,Tc) (3.6)

where A = b1 − 1
3a2

1, B = b0 − 2
3a0a1, and C =−1

3a2
0.

The isotherms obtained from the EOS model clearly show a region of instability at low

temperature where (∂P/∂n)T < 0. Applying the familiar Maxwell equal area rule [59]

to isotherms in this region gives a bound on the metastable and unstable regions which

provide an estimate of the liquid-vapor phase boundary. From these points in combination

with the critical point we then calculated the binodal coexistence curve by fitting these

points to the Wegner expansion: [60]

ρv =ρc −
1
2
(
C1xβ +C2xβ+∆

)
+C3x (3.7)

ρl =ρc +
1
2
(
C1xβ +C2xβ+∆

)
+C3x (3.8)

where ρ is the mass density, ρ = mn, x =
(
1−T/Tc

)
and the (fixed) critical exponents

correspond to the 3D Ising model ∆ = 0.5 and β = 0.325 [61]. Repeating this approach,

we have calculated a series of critical points for Pt for each of the different sized systems,

shown in Table 3.1. The values of parameters C1, C2, and C3 for the 256-atom system are

C1 = 11.16±0.12, C2 = 14.39±0.43, and C3 = 8.56±0.02, with the following correlation

matrix for the vector [C1,C2,C3]:
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
1.00 −0.84 −0.71

−0.84 1.00 0.98

−0.71 0.98 1.00

 (3.9)

At the low density limit, the EOS model is dominated by the ideal gas behavior. We

investigated the sensitivity of the critical point parameters to the choice of density and

temperature data and found that excluding the 3, 4, 5, 6, and 7 g/cm3 isochores from the

EOS model fit resulted in a critical density that is approximately 0.1 g/cm3 different and

a critical temperature with a less than 100 K difference. The critical point comparison for

the various data ranges is shown in Figure 3.4. The EOS parameters are most sensitive to

the highest density isochores due to the constraint of the low density ideal gas limit. This

strong dependence of the shape of the EOS fit on the ideal gas form is also the cause for

the significant correlation between parameters evident in Equation 3.2.

We found that the curvature of the isotherms in the coexistence region decreased with

system size, as expected [62]. In order to quantify the sensitivity of the critical point

parameters to the system size, we performed a finite size extrapolation of the critical den-

sity, temperature, and pressure to the thermodynamic limit using known scaling laws [7],

shown in Figure 3.5. We obtain: ρT DL
c = 4.18± 0.09 g/cm3, T T DL

c = 8120± 60 K, and

PT DL
c = 5.56±0.50 kbar. The critical point calculated for the 256 atom supercell is within

2% of the critical point estimate at the thermodynamic limit (Table 3.1). We concluded

that the finite size effects for the critical point of the 256 atom system are small, from this

we assumed the phase boundary calculated for the 256 atom system is reasonably well

converged with respect to system size.
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Figure 3.4: Critical point comparison excluding low density isochores in the EOS model
fit. The reference point at y=0 corresponds to the full range of data, including 3.00-10.00
g/cm3 isochores. We compare the change in critical parameters for as few as 7.00-10.00
g/cm3 isochores, corresponding to a density span of 3 g/cm3.

3.5 Summary

In summary, we have carried out a systematic investigation of the properties of platinum

in the liquid-vapor coexistence region and provided an improved estimate of the critical

point: ρc = 4.18± 0.09 g/cm3, Tc = 8120± 60 K, and Pc = 5.56± 0.50 kbar. We found

that the critical point obtained from an EOS model fit to the 256-atom DFTMD data was

within 2% of the extrapolated value at the thermodynamic limit.
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Figure 3.5: Extrapolation of the critical point obtained from DFTMD to the thermody-
namic limit using the finite-size scaling technique described in Wilding (1995) [7]. Here,
L is the length, with dimension d = 3, θ = 0.54 and ν = 0.629.

N ρc Tc Pc

[atoms] [g/cm3] [K] [kbar]
32 4.34 ± 0.08 8680 ± 50 9.59 ± 0.74

108 4.23 ± 0.04 8260 ± 30 6.54 ± 0.26
256 4.24 ± 0.03 8240 ± 20 6.44 ± 0.19
TDL 4.18 ± 0.09 8120 ± 60 5.56 ± 0.50

Table 3.1: Critical points calculated for the 32, 108, and 256 atom systems. Also shown is
the critical point at the thermodynamic limit (TDL).
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Figure 3.6: Phase diagram for the different sized Pt systems. The 256-atom EOS Maxwell
construction is shown with the black circles. The TDL extrapolated critical point is shown
by the filled in black point. The region calculated with DFTMD is shaded grey. Also
shown in green is experimental Z machine data [8].

Our results suggest a critical point that is lower in density and temperature compared

to most previous estimates. Previous estimates of the critical point are based on indi-

rect measurements [3, 5] extrapolated from low-temperature experiments and simplified

theoretical models [1, 49, 2, 4, 50, 6] derived from low-pressure data. Recent measure-

ments of the liquid side of the liquid-vapor phase boundary obtained from shock release

experiments on the Z machine at Sandia National Laboratories [8] agree very well with
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our calculated phase boundary, shown in Figure 3.6, and therefore lend confidence to the

results presented here.

While we have accounted for the influence of finite size effects, there exist other

sources of possible bias: such as the choice of exchange-correlation functional and the

method used to determine the critical parameters. There exist additional ab initio ap-

proaches of characterizing the liquid-vapor coexistence region [63, 64, 65]. The sensitivity

of the critical point to the calculation technique will be the focus of a future study.
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Chapter 4

Quantifying Shape Effects on Estimates

of the Liquid-Vapor Interface of

Platinum

The contents of this chapter have been written as part of Meghan K. Lentz, Michael P.

Desjarlais, and Joshua P. Townsend; Quantifying Shape Effects on Estimates of the Liquid-

Vapor Interface of Platinum. J. Chem. Phys. (in preparation).

4.1 Abstract

Understanding the physical properties of materials in the liquid-vapor coexistence region is

crucial for a variety of applications, including material design, energy storage, and under-

standing fundamental thermodynamic processes. However, the liquid-vapor coexistence
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region is often oversimplified, typically relying on extrapolations from low-temperature

data that may not capture the behaviors of phase transitions in this regime. In this chap-

ter, we conducted density functional theory molecular dynamics (DFTMD) simulations of

platinum along a 5.00 g/cm3 isochore, exploring a range of temperatures to characterize

the liquid-vapor phase boundary. From the DFTMD we analyzed particle trajectories and

applied an instantaneous interface calculation, leading to the determination of the critical

point and the liquid-vapor phase boundary. We investigated the sensitivity of the critical

point and phase boundary to shape effects arising from complex geometries, which are

often encountered in real-world applications. To validate our results, we compared the

calculated critical parameters with previously published data obtained through an alter-

native, independent technique for characterizing the liquid-vapor region of platinum. We

find that the calculated liquid-vapor phase boundary is highly sensitive to the geometry of

the interface.

4.2 Introduction

Liquid-vapor coexistence is a ubiquitous phenomenon in nature. Indeed, common hu-

man experience takes place entirely within the liquid-vapor coexistence region of water

[37, 38]. Generally understanding liquid-vapor coexistence is important for a variety of

scientific and industrial applications. For example, many industrial chemical processes

rely on the ability to vaporize and distill materials [39, 40]. Additionally, many astro-

physical processes rely on material behaviors under extreme conditions; within planetary

accretion copious supercritical fluid is created through giant impact events [41]. Similarly,

in dynamic compression experiments when materials isentropically decompress they may

intersect the liquid-vapor coexistence region [8] at late-times. There are many practical
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challenges associated with investigating these regimes for transition metals in particular.

Due to their high melting temperatures, experimental data is oftentimes difficult to obtain

due to the difficulties of confining high temperature liquid and vapor metals [42]. For ex-

ample, prior studies on platinum (Pt) liquid-vapor coexistence show a large uncertainty in

the location of the liquid-vapor critical point [1, 2, 3, 4, 5, 6, 9].

Due to the difficulties of experiments, there is a need for theoretical approaches to pro-

duce highly accurate phase diagrams. A common starting point for understanding critical

behavior of fluids is the Van der Waals equation of state (EOS). Below the critical temper-

ature, isotherms inside of the liquid-vapor coexistence region show what are referred to as

Van der Waals (vdW) loops, where there is a portion of the isotherm such that the pres-

sure increases with increasing volume, representing an unstable state [66]. The Maxwell

construction, described in Figure 4.4, is a method for addressing this instability [67] and

identifying the liquid-vapor phase boundary. Due to the finite size and time of molecu-

lar dynamics calculations there is the appearance of vdW-like loops on isotherms inside

the liquid-vapor coexistence region due in part to oscillations between metastable states

[62, 64, 68, 69].

Ab initio techniques such as density functional theory based molecular dynamics

(DFTMD) offer the possibility of improved accuracy over simple classical potentials, but

biases due to finite size remain [9, 51, 52, 53, 54, 55, 64, 65, 69]. Despite the use of these

methods in the past, the influence of potential sources of bias is typically omitted, often-

times due to the significant expense of the simulations. Without a proper understanding

of the sources of bias and their influence in the resulting estimates of material properties

confidence is limited. Due to the known phenomenon of a divergence in the correlation

length for systems near the liquid-vapor critical point in the thermodynamic limit, length

scales of all magnitude are relevant in this regime, leading to typically large sensitivities
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to finite size effects.

This chapter is a follow up to the previous chapter on the liquid-vapor coexistence of

Pt found from a fit to a generalized equation of state (EOS). We conducted DFTMD sim-

ulations within the liquid-vapor coexistence region of platinum. We compare estimates

of the critical point and liquid-vapor phase boundary for different simulation geometries

obtained from a partitioning of the system into regions of liquid and vapor according to

an instantaneous interface calculation [65]. Previous studies have predicted liquid-vapor

phase behavior using the method of instantaneous interface calculations when considering

a slab-like geometry [65, 53]. While it is postulated that this approach is robustly appli-

cable to arbitrary geometries [65], we find that the geometry of the system is immensely

important with respect to the systems ability to represent liquid-vapor coexistence at the

thermodynamic limit. This is in agreement with previous work in which it was shown

that the growth of the vdW-like loops is proportional to the surface area of the two-phase

interface [69].

4.3 Methods

4.3.1 Molecular Dynamics Calculations

Density functional theory calculations [22, 23] were performed using the Vienna ab initio

simulation package (VASP) [30, 31, 32, 33] with the same initial conditions as described

in [9], using a planewave basis and periodic boundary conditions. A 10 e− platinum

pseudopotential [56] was used and the energy plane wave cutoff was set to 700 eV. The

exchange-correlation energy was computed with the Perdew-Burke-Ernzerhof (PBE) gen-
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eralized gradient approximation [36] and all simulations were conducted within the NVT

ensemble with a velocity scaling thermostat. The Brillouin zone was sampled at the Γ point

and the electronic occupations were populated using a Fermi-Dirac distribution according

to the Mermin finite temperature formulation of DFT [48, 54, 57, 58]. Calculations were

performed along a 5.00 g/cm3 isochore for a range of temperatures, 4000-8000 K, with

500 K increments. Each simulation was checked for equilibrated pressures. We looked at

two different sized systems, 108- and 256-atoms, and two atomic configurations, a slab of

liquid continuous in two dimensions surrounded by vapor and a heterogeneous mixture of

vapor pockets and liquid droplets inside of a cubic volume. We have noted that the slab of

liquid loosely resembles a french fry, while the cubic volume resembles a block of Swiss

cheese. Throughout this chapter we will be referring to the systems as the "french fry" and

"Swiss cheese" geometries.

4.3.2 Instantaneous Liquid Interface Approximation

To investigate coexistence we have followed the instantaneous interface calculation de-

scribed in Willard and Chandler (2010) [65]. In this scheme, we coarse-grain the mass

distribution inside the cell by convolving the position of every particle with a normalized

Gaussian. After coarse-graining we obtained a time-dependent density field, ñ, given by:

ñ(r, t) = (2πξ
2)−

3
2

N

∑
i

e
−|r−ri(t)|2

2ξ 2 (4.1)

where ri(t) is the position of the ith particle at time t and ξ is the coarse-graining length.

We have defined ξ to be the weighted average of all distances covered by the first peak in

the RDF, g(r), shown in figure 4.1: [70]
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ξ ≡
∫ rmin

0 rg(r)dr∫ rmin
0 g(r)dr

. (4.2)

Figure 4.1: Schematic showing the value used, the area of the red shaded region, for
calculating the coarse-graining length for the instantaneous interface calculations.

Within this coarse-grained density field, regions of high density are liquid and re-

gions of low density are vapor. A particle is defined to belong to the liquid phase above

the predetermined cut-off density which we have chosen to be the average density of

the field, ñi(r, t) ≥ ñavg. Similarly, the particle is in the vapor phase below this cut-off,

ñi(r, t)< ñavg.
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Once the particles have been partitioned into the separate phases the number of atoms

and volume of the liquid phase can be calculated using:

Nl =
∫

Ωl

dxdydz
N

∑
i

δ (x− xi)δ (y− yi)δ (z− zi), (4.3)

Vl =
∫

Ωl

dxdydz, (4.4)

where N is the total number of atoms in the system and Ωl is the liquid region where

n ≥ ñavg. Similarly, Ωv corresponds to the region where n < ñavg for the vapor. This

scheme satisfies N = Nl +Nv and V = Vl +Vv by construction. The estimated liquid and

vapor densities are then:

ρl,v =
Nl,vm
Vl,v

, (4.5)

where m is the atomic mass of Pt, m = 195.1 amu.

4.4 Results

4.4.1 "French Fry" Geometry

The left image in Figure 4.2 depicts the slab-like geometry of one of the 256 atom liquid-

vapor systems, where the majority of the particles exist within a homogeneous liquid, on

the inside of the density cut-off isosurface at ñavg. The DFTMD simulations were initial-

ized with an equilibrated cell of liquid with two cells of the same size at vacuum added to
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Figure 4.2: Snapshots from the simulations of the 256-atom french fry (left) and Swiss
cheese (right) systems at 6000 K and 5.00 g/cm3. Atoms within the instantaneous interface
(isosurface) are in the liquid phase and those outside of the isosurface are in the vapor
phase. The unit cell is marked by dashed lines and has been replicated in order to better
illustrate the topology of the liquid-vapor interface.

either side in the x-direction. The system was then slowly compressed and deformed until

an aspect ratio of 4:1 in the x-direction was achieved. The simulation was then run for sev-

eral temperatures along the 5.00 g/cm3 isochore. As the simulations progressed in time,

we saw the liquid either compress or expand depending on temperature, while particles

near the liquid interface vaporized, expelling particles into the vacuum. The simulation

cell in Figure 4.2 has been replicated in space to enhance visualization. The phase bound-

ary estimates for this system are shown in Figure 4.3, represented by the green points.
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Figure 4.3: Comparison of the platinum liquid-vapor phase boundary calculated from the
instantaneous interface calculations (red and green points) and the EOS fit [9] (blue), in-
cluding both the spinodal and binodal curves, for the 256-atom system.

4.4.2 "Swiss Cheese" Geometry

The right image in Figure 4.2 shows the positions of the atoms for one snapshot of the 256

atom Swiss cheese DFTMD simulation. These simulations were initialized with a cubic

cell homogeneously filled with fcc platinum and ran for approximately 10000 1- f s time

steps until it was equilibrated with respect to the pressure. The interface represents the

isosurface located at ñavg. Again, the simulation cell has been replicated to better illustrate

the partitioning of the system. This snapshot shows a fully connected liquid network

containing a large “bubble” inside of which is vapor. Over time, we see the systems that
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are inside of the coexistence region tend to cycle through different compositions: changing

from mostly liquid with bubbles to mostly vapor with droplets, as well as various sheet-

like configurations. The phase boundary estimates for this system are shown in Figure 4.3,

represented by the red points.

4.4.3 Spinodal to Binodal Mapping

In the thermodynamic limit the spinodal points mark the transition from unstable to meta-

stable states. However we found that the bounds on the coexistence curve obtained from

the instantaneous interface calculations for the Swiss cheese system span the space be-

tween the local pressure extrema, Plmin and Plmax (blue lines in Figure 4.4), as opposed to

Vliquid and Vvapor (red lines in Figure 4.4). We found overall that these estimates align

well with the spinodal obtained from the EOS calculation in the previous chapter [9]. This

is shown in Figure 4.3 when compared to the EOS spinodal curve.

We corrected the estimated liquid-vapor phase boundary obtained from the instanta-

neous interface calculations under the assumption that they correspond to the spinodal.

With this correspondence in mind, we established a scaling relationship between the EOS

binodal and EOS spinodal points, then re-mapped the estimated Swiss cheese instanta-

neous interface phase boundary by applying the following empirical transformation:

ρ
v
bin =ρ

v
spin −

1
2
(
k1xβ + k2xβ+∆

)
+ k3x, (4.6)

ρ
l
bin =ρ

l
spin +

1
2
(
k1xβ + k2xβ+∆

)
+ k3x (4.7)

where k1 = 4.16±0.28, k2 = 6.69±0.68, and k3 = 4.57±0.11. Here, x =
(
1−T/Tc

)
and
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Figure 4.4: Diagram of the Maxwell equal area construction for a typical isotherm dis-
playing a van der Waals loop. The red points indicate the binodal points where the system
transitions from a state of liquid-vapor coexistence to a homogeneous liquid (left) and va-
por (right). The blue points are the spinodal points. The regions of the isotherm between
the red lines and blue points are metastable states, while the region between the two blue
points, where the pressure increases with increasing volume, are unstable.

the exponential constants, β and ∆, are those used for the Wegner fit of the liquid-vapor

phase boundary, ∆ = 0.5 and β = 0.325. For x = 0, we enforce ρbin = ρspin for both the

liquid and vapor expressions. These re-mapped points are then fit to the Wegner equations

(4.8, 4.9) [60] to produce a phase boundary curve.

ρv =ρc −
1
2
(
C1xβ +C2xβ+∆

)
+C3x (4.8)

ρl =ρc +
1
2
(
C1xβ +C2xβ+∆

)
+C3x (4.9)

We found that the resulting re-mapped liquid-vapor phase boundary agrees well with

the EOS phase boundary and the re-mapping produces a critical point that agrees well with

those calculated from the EOS [9].
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Figure 4.5: Iteratively solved critical point for the instantaneous interface calculation from
a fit to the mapped binodal points of the 256-atom system.

Based on this, we applied a mapping equation of a similar form to perform the transfor-

mation from the spinodal curve to the binodal curve, again using the same values for the

critical exponents (4.6) and (4.7). Defining the mapping in terms of

x =
(

1− T
Tc

)
, (4.10)

as opposed to simply T , we ensured by construction that at T = Tc the value of the binodal

and spinodal are equal. However, in doing so we also introduced a dependence on the

critical temperature. For the instantaneous interface calculation Tc is unknown initially so

we first applied the mapping to the instantaneous interface raw data using the Tc found

from the EOS fit [9] for the corresponding system size (red point in Figure 4.5). We
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then found the critical point of the instantaneous interface calculation using the Wegner

equations. For a self-consistent mapping of the instantaneous interface raw data to its

binodal-like curve, we found the critical point iteratively, substituting Tc in equation (4.10)

with the critical temperature found using the Wegner equations. The evolution of the

critical temperature over the iteration is shown in Figure 4.5.

Figure 4.6: Comparison of the raw (xs) instantaneous interface calculation results and the
mapped (circles) values for the Swiss cheese system (red) with the results from the EOS
analysis (blue) [9].

In order to define the mapping coefficients we look at the difference in the EOS binodal

and spinodal curves:
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ρ
EOS
bin = ρc ±

1
2
(
C1xβ +C2xβ+∆

)
+C3x (4.11)

ρ
EOS
spin = ρc ±

1
2
(
C4xβ +C5xβ+∆

)
+C6x (4.12)

ρ
mapped
bin = ρ

IIC
spin ±

1
2
(
(C1 −C4)xβ +(C2 −C5)xβ+∆

)
+(C3 −C6)x, (4.13)

where C1 = 9.6±0.2, C2 = 18±0.4, C3 = 8.6±0.1, C4 = 5.5±0.1, C5 = 11.4±0.2, and

C6 = 4.1±0.1.

4.4.4 Phase-Boundary Sensitivity

There exist multiple methods of calculating the instantaneous interface calculation coarse-

graining length, ξ , and the interface density cut-off, ρcut [65, 53]. To test the sensitivity

of the critical point calculation to the choice of parameter, we have varied the ξ and ρcut

values by up to 50% and recalculated the critical point for these new values. The results

of this investigation are shown in Figure 4.7. We found that the instantaneous interface

calculation is robust across the span of different ξ values for both geometries: at most

producing a difference in critical temperature of approximately 10% and a difference in

critical density of approximately 5%. On average, we saw a change in critical point quan-

tities of approximately 4%. The dependence of the critical point on the value of ρcut is

notably stronger, particularly with the Swiss cheese system. For the Swiss cheese simula-

tion, the differences in the critical temperature are as large as 37% and differences in the

critical density reach approximately 92%. While the sensitivity to the density cut-off is

less pronounced for the french fry calculation, it is still notably stronger than the depen-
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Figure 4.7: Comparison of critical point parameters for a range of different coarse-graining
lengths and density cut off values. Results for the Swiss cheese are on the left, while those
for the french fry are on the right. The y-axis represents the percent difference in the
calculated critical points extrapolated from the results shown previously in Figure 4.3.

dence on the coarse-graining length for the same system. The change in the critical density

for the french fry system is as high as almost 30%.

For the Swiss cheese simulations, we investigated the results of the instantaneous in-

terface calculation for the different sized systems, as we did in our previous study [9]. We

find that this calculation is much more sensitive to finite size effects than the EOS fitting

method. There is substantial variation in the slopes on either side of the phase boundary

for the different sized systems. We hypothesize that the difference in the sensitivities of

the liquid-vapor phase boundary are a consequence of the relatively poor representation of

the vapor phase within the instantaneous interface calculation. This is also illustrated in

Figure 4.6, where the majority of the vapor-side of the phase boundary exists at negative

densities for the remapped data—an entirely unphysical result. It is worth noting that the
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estimated number of atoms in the vapor phase is typically very small. For example we

found that the vapor phase was composed of fewer than 10 atoms on average in the 256

atom cell at the lowest temperature sampled. We were unable to perform the instanta-

neous interface calculation for simulations above 7000 K for the 32-atom system due to

the absence of any atoms inside the vapor region.

4.5 Discussion

In summary, we have implemented the instantaneous interface calculation method [65] for

studying an atomic system within the liquid-vapor coexistence region. We have performed

an investigation of the impact that the geometry of a system can have on the estimate of

the liquid-vapor phase boundary and critical point. It has been previously posited that this

technique is robust to "reasonably arbitrary geometries," however our results have shown

that, at least for some cases, the dependence on the geometry is non-negligible. A previous

study [69] looked at the affects of implementing a mean-field based MD simulation to

represent fluids and found that the offset of the extremum of the resulting vdW-like loops

from the "true" phase boundary is proportional to the interfacial surface to volume ratio. To

explore this idea we have calculated the average surface area of the liquid-vapor interface

for the different geometries, shown in Figure 4.8. Across the range of temperatures the

interfacial surface area for the Swiss cheese geometry is higher than that of the french fry.

The overall average surface area for the Swiss cheese system is 1330± 155 Å2 and for

the french fry is 527± 37 Å2. This supports the idea that the degree of metastability of

the coexisting phases is partially dependent on the surface area of the interface. For the

french fry geometry we found a phase boundary that is closer to the binodal of the Pt EOS

caluclated in our previous publication [9], while the Swiss cheese is much closer to the
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spinodal of the EOS. In addition to the difference in the average interfacial surface area,

the Swiss cheese system also has much larger error bars than the french fry system. This is

due to the variation of the atom configurations over time as the system fluctuates through

the bubbles and droplets.

Figure 4.8: Comparison of the average interfacial surface area for the french fry system
(green) and the Swiss cheese system (red) for the range of temperatures simulated.

A previous implementation of the instantaneous interface calculation [53] conducted

an analysis of the liquid and vapor densities by collapsing the 3-dimensional system into

a 1-dimensional problem. A 1-dimensional profile of the density is fit to determine the

liquid and vapor densities, averaged over time, as well as the width of the interface. This

approach is not applicable to the Swiss cheese geometry because of the complete asym-

metry present in every direction, which cannot be realized within a 1-dimensional density

profile. For the french fry geometry, this approach cannot resolve any curvature in the in-

terface surface and the presence of such curvature results in a smeared out interface making

the location of the interface less certain. Additionally, the liquid density that is extracted

from the fit corresponds to the middle of the liquid slab, as opposed to our approach where
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we have considered the average of the entire liquid region. By sampling the density such

that it is weighted toward the more dense middle of the french fry, the liquid-vapor phase

boundary is skewed towards a higher density liquid. We have attempted to assuage these

biases by performing a 3-dimensional analysis of the coarse-grained density field, which

allowed us to preserve any complex geometries.

As stated previously, this is a follow up to the previous chapter [9] in which we calcu-

lated the liquid-vapor critical point and phase boundary of platinum via a Maxwell con-

struction applied to an equation of state fit of our DFTMD data, which is shown in Figure

4.3. In that study we also performed a sensitivity review for our calculations based on var-

ious aspects of the analysis. We have found that in general the method of characterizing

the critical behavior from fitting an EOS to the DFTMD is less sensitive to the details of

the calculation than the instantaneous interface calculations. However, the approach of the

instantaneous interface calculation is significantly less computationally expensive than the

EOS fit. To adequately represent the system such that it can be fit to an EOS we needed to

perform many calculations for a range of temperatures and densities in order to produce

a series of isotherms, including temperatures outside of coexistence. However, for the

instantaneous interface calculation we needed a range of temperatures encompassing the

coexistence region for a single isochore. This is highly advantageous when dealing with

limited computational resources.
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Chapter 5

DC Electrical Conductivity of Platinum

From Ab-initio Simulations

The contents of this chapter were originally published as part of Meghan K. Lentz, Joshua

P. Townsend, Kyle R. Cochrane; DC electrical conductivity of platinum from ab initio

simulations. AIP Conf. Proc. 26 September 2023; 2844 (1): 320003. Minor edits within

this dissertation have been made to clarify the text.

5.1 Abstract

Platinum is a highly unreactive transition metal whose properties make it desirable for

experiments at Sandia National Laboratories’ Z Pulsed Power Facility (Z). In order to im-

prove the use of platinum as a material standard in shock compression experiments, we

investigated the necessary procedure to produce high quality DC electrical conductivity
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calculations from density functional theory using the Kubo-Greenwood (KG) approxima-

tion. We studied the effects of changing several parameters involved in these calculations,

all of which have some level of control over the calculated electrical conductivity. These

parameters include the sampling of the Brillouin zone, smearing of the KG energy dif-

ferences, the number of virtual orbitals included in the calculations, and the number of

atomic configurations that are considered in the average electrical conductivity.

5.2 Introduction

Platinum is an unreactive metal with a high melting point whose face-centered cubic crys-

tal does not display any experimentally observed phase changes up to melt. Due to these

properties, platinum is frequently used as a material standard, particularly in high-pressure

and shock compression physics [48]. For the experiments conducted at Sandia National

Laboratories’ (Sandia) Z Pulsed Power Facility (Z), it is important to understand mate-

rial properties for a large portion of phase space. Experiments on Z are subjected to very

large currents and magnetic fields, thus, understanding the electrical conductivity of ma-

terials being used as standards is important [71]. Current experimental diagnostics are

often unable to diagnose the thermodynamic regimes relevant to Z, leading to a reliance

on ab initio theory. In this study, we report the results of a systematic investigation of

the DC electrical conductivity of platinum using density functional theory (DFT) and the

Kubo-Greenwood (KG) approximation at ambient conditions, which can be compared to

experimental data. The quality of the estimate is sensitive to the approximations made

both in the electronic structure and the numerical evaluation of the KG formula [72]. We

show that with careful calibration in a modest supercell, one can obtain a well-converged

estimate of the DC conductivity.
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5.3 Methods

In order to calculate the KG electrical conductivity, we first performed density func-

tional theory based molecular dynamics (DFTMD) calculations. With the data from the

DFTMD simulations we calculated the low frequency electrical conductivity of platinum.

We extrapolated the calculated conductivity to zero energy to obtain the DC conductivity.

Electron-phonon coupling is accounted for by averaging the electrical conductivity over

several atomic configurations.

5.3.1 Molecular Dynamic Simulations

The DFTMD calculations were conducted at 300 K and ambient density, ρ = 21.45 g
cm3 .

Calculations were done using VASP 5.3.3, an implementation of Kohn-Sham DFT using

periodic boundary conditions and a plane-wave basis [30, 31, 32, 33]. Because we are in-

terested in the ambient crystal, a 10e− pseudopotential was used that has a 5d96s1 valence

configuration [73]. All simulations were conducted for a 108 atom cubic supercell within

the NVT ensemble with a velocity scaling thermostat. The energy plane wave cutoff was

set to 700 eV. The Brillouin zone was sampled at the Γ point. The exchange-correlation

functional used is the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation

[36]. The simulation was run for approximately 15,000 1 f s timesteps, and the energy and

pressure were verified to be well-converged.
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5.3.2 Electrical Conductivity Calculations

The essence of the KG formalism focuses on the physical interpretation of the single-

particle orbitals obtained from a Kohn-Sham DFT calculation. A commonly used approx-

imate form for the KG electrical conductivity, σk, at frequency ω for a specific k point is

given by:

σk(ω) =
2πe2h̄2

3m2ωΩ

N

∑
j=1

N

∑
i=1

3

∑
α=1

[F(εi,k)−F(ε j,k)]| ⟨Ψ j,k|∇α |Ψi,k⟩ |2δ (ε j,k − εi,k − h̄ω),

(5.1)

where e is the charge of an electron, m the electron mass, Ω the cubic supercell volume

element, and F(ε) the occupation from the Fermi-Dirac distribution [74, 75]. The i and j

summations are over the N discrete bands included in the calculations and the α summa-

tion over the three spatial directions, respectively.

To calculate the electrical conductivity, we consider several atomic configurations from

the DFTMD simulation. These atomic configurations must be statistically independent and

are chosen based on an estimated correlation time, 128 f s, calculated from a block aver-

aging of the energy. The conductivities for each snapshot are then averaged for the final

electrical conductivity. The low energy spectrum of the conductivity is especially sensitive

to the details of the calculation. States near the Fermi surface dominate the contribution to

the conductivity in this region, but there are also significant finite size errors. Therefore,

it is important when carrying out KG calculations to demonstrate convergence of the esti-

mated conductivity with respect to both k point sampling as well as other effects such as

smearing.

The converged estimate of the low frequency portion of the electrical conductivity with
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respect to the investigated parameters is shown in Figure 5.1. Due to the finite size of the

system, the lowest energy spectrum is heavily influenced by finite size errors, evidenced by

a drastic drop in the conductivity below approximately 0.01 eV. In order to capture the DC

conductivity, we need to extrapolate the well resolved electrical conductivity to zero en-

ergy. Looking at 5.1, showing the conductivity of the low energy region, the conductivity

appears Drude-like. Therefore, we fit the KG results to the Drude model (Equation 5.2). It

is important to exclude from the fit both the extremely low energy conductivities that are

smaller than the typical eigenvalue separation, as well as the higher energy conductivities

that have departed from the fit to the Drude model.

σ =
σ0

1+ω2τ2 + constant. (5.2)

A constant has been added to the form of the Drude model to ensure an optimal fit.

From this fit, the DC conductivity can be reliably extrapolated.

5.4 Convergence Studies

Accurately evaluating the KG electrical conductivity depends on several controllable pa-

rameters. We have studied these parameters to understand how best to represent the sys-

tem. Included in these convergence studies are the k point mesh used to sample the Bril-

louin zone, the smearing term which smooths out local oscillations, the virtual orbitals

included in the conductivity calculation, and the number of atomic configurations the elec-

trical conductivity is averaged over.
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Figure 5.1: Calculated Kubo Greenwood electrical conductivity for platinum at ambient
conditions shown in orange with statistical error. The conductivity fit to the Drude model
is shown in blue. The measured DC conductivity, σDC = 9.43 106

Ωm , is in red [10]. Sampled
over a 10x10x10 irreducible wedge mesh with gaussian width (Eq. ) ∆ = 0.004 eV.
Calculated using 10 snapshots and 800 total bands.

5.4.1 Brillouin Zone Sampling

The convergence of the Brillouin zone sampling is an essential step in the calculation of

the electrical conductivity due to the extreme sensitivity of the DC conductivity to the k

point mesh used. The number and location of the k points used determines where on the

Fermi surface contributes to the conductivity calculation. For simple crystalline systems,

such as copper and aluminum, which have nearly spherical Fermi surfaces, few k points

are needed to sample the Fermi surface in order to sufficiently calculate the conductivity
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Figure 5.2: Comparison of the Fermi surfaces for Pt-group metals. Note the dramatic
difference in the complexity of the Fermi surface of platinum compared to that of copper.
Image taken from Dutta, et al. (2017) [11].

[75]. However, as seen in Figure 5.2 from Dutta, et al. (2017) [11], the Fermi surface of

platinum is much more complex and, therefore, requires the use of more k points.

For this study, we have sampled the 108 atom platinum system with meshes ranging

from 1x1x1 to 10x10x10. The number of k points increase as M3 for an MxMxM mesh

causing the higher order meshes to become too computationally expensive, thus, we used

the irreducible wedge for the samplings larger than a single k point. To do this, we give

VASP an explicit set of k points for which we ignore the breaking of symmetries caused

by thermal fluctuations and assume the full set of symmetries are present. We have con-

sidered both Γ-centered grids and the shifted Monkhorst-Pack scheme. In Figure 5.3, the

electrical conductivities calculated using KG are shown for the different Brillouin zone

samplings (left panel), as well as the extrapolated DC conductivities from the fit to the
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Figure 5.3: Conductivity calculated for a range of k point grids (left panel). Calculated
using a single snapshot with 800 total bands and ∆ = 0.02 eV. Corresponding DC conduc-
tivities extrapolated from Drude model fit (right panel).

Drude model (right panel). For the sake of computation time, all conductivities are calcu-

lated using a single snapshot. To avoid bias, the same snapshot is used for each calculation.

These results are looking only at the convergence of the DC conductivity with respect to

the number of k points needed. From Figure 5.3, we see that the estimated electrical con-

ductivity does not vary monotonically with respect to the number of k points. It is clear

that a large number of k points are necessary to calculate a converged DC conductivity and

that the spread in calculated conductivities is very large for the different k point meshes

[72].

5.4.2 Discrete Band Structure Smearing

Another variable that has a large influence over the calculated electrical conductivity is the

smearing of the discrete KG energies. Due to the discrete energy spectrum, the δ function
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in Equation 6.1 needs to be modified. In VASP 5.3.3, this is done using a Gaussian function

[74]. It is important to note that different codes and different versions of the same code

use different broadening functions and therefore is not necessarily transferrable.

δ (ε j,k − εi,k − h̄ω)→ e−
(ε j,k−εi,k−h̄ω)2

2∆2 , (5.3)

where ∆ is the width of the Gaussian. Previous literature [75] has suggested taking ∆ equal

to the average difference in energy eigenvalues immediately above and below the Fermi

energy, weighted by the slope of the Fermi distribution as a starting point for finding the

ideal smearing. It is suggested when choosing the amount of smearing to approach the

eigenvalue spacing from below to prevent over smearing. For platinum, we have found the

average difference between eigenvalues at the Fermi energy to be approximately 0.02 eV.

In Figure 5.4, we have calculated the KG electrical conductivity of a single snapshot for a

range of ∆.

Looking at Figure 5.4, large oscillations in the conductivity are the result of under

smearing, and make robust estimation of the DC conductivity a challenge. As the smearing

term increases, the KG conductivity in the figure becomes very smooth before flattening

and losing its structure, which causes a notable drop in the extrapolated DC conductivity.

Because it is necessary to avoid over smearing the conductivity, we preserve some minimal

oscillations in the KG calculation. From this, we have determined the optimal width of

the Gaussian to be between 0.003 eV, which maintains a larger degree of oscillations than

necessary, and 0.005 eV, where the curve has been significantly smoothed and may be

experiencing some structure loss.
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Figure 5.4: Kubo Greenwood conductivity calculations with different levels of discrete
band structure smearing. Calculations were sampled with a 4x4x4 shifted grid for expedi-
ency, using the irreducible wedge. Calculated from a single snapshot and 800 bands.

5.4.3 Number of Orbitals

In principle, the conductivity can be calculated to arbitrarily high frequencies by including

sufficiently many virtual orbitals. In practice, only finitely many virtual orbitals can be

considered. A common way to check the convergence of the calculated electrical con-

ductivity is through the evaluation of the well-known sum rule (Equation 5.4) [75, 74]. It

becomes clear in Figure 5.5 that the inclusion of a very large number of orbitals is neces-

sary for the total KG electrical conductivity to converge. However, the additional higher

energy bands are unoccupied and contribute very little to the low frequency conductivity.
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Figure 5.5: Electrical conductivity for several systems of different sizes (left). f -sum rule
calculations increasing the maximum energy difference required for excitation pairs to be
included in conductivity calculations (right). The discrete system size prevents the high
frequency conductivity from being resolved due to the lack of sufficient orbitals included
in the calculation, indicated by the sudden drop in the conductivity. The DC conductivity
remains the same as the size of the system decreases to 800 bands.

S =
2mΩ

πe2Ne

∫
∞

0
σ(ω)dω = 1 (5.4)

In addition to our sum rule calculations, we also extrapolated the DC conductivities for

systems of varying sizes, finding that the DC conductivity does not change for the range

of 800 to 2000 bands. For the purposes of this work, we are interested in finding the DC

conductivity of our system, looking only at the low energy conductivity, between 0.0-0.5

eV. Due to this, we require fewer virtual orbitals without the convergence of the sum rule.

We have included approximately 800 total bands, greatly decreasing computation times.
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5.4.4 Number of Snapshots

Lastly, we ran calculations looking at the necessary number of atomic configurations to be

included in the conductivity calculation. By averaging the conductivity calculation over a

number of different atomic configurations, we are able to capture the effects of electron-

phonon coupling. Snapshots were taken from the end of the DFTMD ambient calculation

to ensure equilibration. The KG electrical conductivity was then calculated including 1, 5,

10, 15, and 19 snapshots. From Figure 6.1, it is clear that considering only a single atomic

configuration is not representative of the converged KG conductivity; however, a rather

small number of configurations (10) is sufficient to see the system converge with relatively

small error.

5.5 Remarks and Future Work

In Figure 5.1, we have combined all of the findings from the convergence studies in order

to determine the DC conductivity for platinum at ambient conditions. For this calculation,

the number of energy points where the conductivity is calculated is 40,000 and the number

of bands 800, corresponding to approximately 250 virtual orbitals. The Brillouin zone is

sampled using the shifted 10x10x10 irreducible wedge, ∆ is set to 0.004 eV, and we have

averaged over 10 snapshots. This work has not yet accounted for the finite simulation size.

The calculated Drude DC conductivity for this calculation is 13.1±0.7 106

Ωm , which is within

28% of the measured value 9.43 106

Ωm . This level of error is not uncommon for calculations

of the DC electrical conductivity using the KG approximation. Previous literature reports

errors of up to 30% [75] and up to 50% [72].

This method of calculating the electrical conductivity has shown great success in study-
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Figure 5.6: Kubo-Greenwood conductivities calculated with contributions from a varying
number of atomic configurations, including statistical error. Calculated including 800
bands sampled with a 10x10x10 shifted mesh and ∆ = 0.004 eV.

ing many different systems, particularly those in the hot dense regime [72, 76], however,

it does have its limitations. Although DFT is in principle an exact theory, the exact func-

tional is unknown. Therefore, approximate forms are used, which introduce systematic

inaccuracies that are difficult to quantify.

In summary, we have shown that the successful calculation of the DC electrical con-

ductivity using the KG approximation requires a level of fine tuning. The calculated elec-

trical conductivity is highly dependent on the sampling of the Brillouin zone, especially for

materials like platinum with a complex Fermi surface. Applying sufficient smearing to the
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KG electrical conductivity is also vital in reducing the amount of noise in the low energy

region. Conversely, applying too much smearing results in the flattening of the conductiv-

ity curve, causing the calculated DC electrical conductivity to decrease substantially. We

have also shown that convergence of the full optical conductivity is not necessary when

interested in only the low energy electrical conductivity. Capturing the electron-phonon

coupling does require the calculation of more than one atomic configuration; however,

a relatively small number of configurations is suitable for calculating the KG electrical

conductivity for this material at this density and temperature.
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Chapter 6

Electrical Conductivity of Platinum

French Fries and Swiss Cheese

6.1 Abstract

Due to the high pressures and temperatures typically involved at the liquid-vapor critical

point of metals, experimental data in this regime is rare. Measurements of the electri-

cal conductivity in the liquid-vapor coexistence region are not possible to capture for all

but the lowest melting point metals. Due to these difficulties, there is a heavy reliance

on theoretical calculations to characterize transport properties near the critical point. We

have performed density functional theory molecular dynamics simulations in the region of

phase space around the liquid-vapor coexistence region for platinum in order to study the

electrical conductivity. Conductivities are calculated using the Kubo-Greenwood approx-

imation. In addition to a range of temperatures and densities studied, we also compare the

electrical conductivity for two different geometric configurations of the two-phase system
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to quantify anisotropic effects.

6.2 Introduction

Understanding the electronic properties of metals within the region of liquid-vapor co-

existence is a difficult, but important scientific endeavor. The continued development of

technology is heavily reliant on a deep understanding of the underlying materials being

used and enables continued technological advancements in many fields. For applications

in pulsed power experiments [75, 77, 78], materials are frequently subjected to very high

temperatures and pressures resulting in materials entering the coexistence region during

experiments. The presence of high voltages and currents amplifies the importance of un-

derstanding the transport properties of these materials under these conditions [79, 80, 81].

Accurate transport properties of these materials under high voltages and currents are also

important to astrophysical research. As a planetary body cools during the formative stages,

supercritical fluids play an important role which requires an understanding of material in

coexistence [41].

As metals traverse different regions of phase space, there are often associated transi-

tions in the electrical properties of the system. Data concerning these expanded metals,

particularly the electrical conductivity, is typically only available for metals with low melt-

ing points such as mercury [43, 42], due to current diagnostic limitations. This has led to a

reliance on theoretical techniques for characterizing materials transport properties. In ad-

dition to the lack of experimental measurements, theoretical simulation is also difficult due

to the complexities of electrical conductivity within the liquid-vapor coexistence region.

There have been observed metal-nonmetal (MNM) transitions within fluid metal coexis-
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tence, however a continuous MNM transition is not necessarily guaranteed. Because of

the presence of these MNM transitions, techniques used to study free-electron-like fluids

are not applicable in much of this region of phase space [82]. Those systems that are

experimentally accessible have indicated that there does not exist a universal behavior of

electronic properties within coexistence [42].

We have performed density functional theory molecular dynamics (DFTMD) calcu-

lations for a range of temperatures and densities of platinum (Pt) surrounding the liquid-

vapor coexistence region. To calculate the electrical conductivity we have used the Kubo-

Greenwood (KG) approximation, averaging over several snapshots in time. For these elec-

trical conductivity calculations we consider two different geometries for the Pt unit cell, a

heterogeneous cube—resembling a block of Swiss cheese—and a continuous slab—resem-

bling a french fry. We have found that the electrical conductivity depends strongly on the

geometry of the system. For entirely anisotropic volumes, determining the effective DC

conductivity of the macroscopic system is not a straightforward task.

6.3 Methods

DFTMD calculations were performed using the Vienna ab initio simulation package (VASP)

[30, 31, 32, 33] with the same initial conditions as described in Chapter 2 [9] and Chapter

3 of this dissertation, where we have considered a range of temperatures, 6000-12000 K,

and densities, 4.00-10.00 g/cm3 for the homogeneous cube. Additionally, we performed

DFTMD simulations along a 5.00 g/cm3 isochore for the temperature range 5000-8000

K for both geometries. VASP implements a planewave basis and periodic boundary con-

ditions. We have used a 10 e− platinum pseudopotential [56] and the energy planewave
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cutoff was set to 700 eV. The exchange-correlation energy was computed with the Perdew-

Burke-Ernzerhof (PBE) generalized gradient approximation [36] and all simulations were

conducted within the NVT ensemble with a velocity scaling thermostat [57]. From our

analysis of the reported DFT data [9], we have estimated a critical point for platinum of

ρc = 4.18± 0.09 g/cm3, Tc = 8120± 60 K, and Pc = 5.56± 0.50 kbar and additionally

predicted a liquid-vapor phase boundary. Here we will use the results of our MD simula-

tions in order to calculate the electrical conductivity of platinum in this region of the phase

diagram.

6.3.1 Electrical Conductivity Calculations

For our conductivity calculations we will be implementing the Kubo-Greenwood approx-

imate formula [83, 84, 85, 74, 75]:

σ(ω) =
2πe2h̄2

3m2ωΩ

N

∑
j=1

N

∑
i=1

3

∑
α=1

[F(εi)−F(ε j)]| ⟨Ψ j|∇α |Ψi⟩ |2δ (ε j − εi − h̄ω), (6.1)

where e is the charge of an electron, m the electron mass, Ω the supercell volume element,

and F(ε) the occupation from the Fermi-Dirac distribution.

Following our previous work [58], we conducted several convergence studies to de-

termine the parameters of our conductivity calculations. For the discrete band structure

smearing term, we have used the value ∆ = 0.003 eV. For the sampling of the Brillouin

zone, we have utilized a k-point grid that is a 4x4x4 Monkhorst-Pack irreducible wedge

mesh. The results are averaged over 20 independent snapshots from the DFTMD simula-

tions. A large enough number of orbitals were used to ensure each calculation included

unoccupied energy bands in accordance with the convergence studies.
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6.4 Results

Figure 6.1 illustrates the liquid-vapor phase separation for one snapshot in time from each

of the different geometries where the unit cells have been periodically replicated. The

simulations shown were conducted at a temperature of 6000 K and a density of 5.00 g/cm3.

The image on the left is has an exposed surface in the x and y direction, which causes a

tall skinny simulation cell in the z direction, we refer to this as the "french fry" geometry.

Alternatively the figure on the right demonstrates a simulation cell that is periodic in all

three directions, where the phase separation leads to voids in the simulation cell, we refer

to this as "Swiss cheese". To initialize the simulations for the case of the french fries, we

use a near-equilibrated cell of liquid with two equally sized cells at vacuum attached to

either side of the liquid in the x-direction. To initialize the Swiss cheese configurations we

begin with fcc platinum homogeneously distributed in a cubic cell. All simulations were

run for a sufficient number of time steps such that they are equilibrated with respect to the

pressure.

6.4.1 Temperature Dependence: Swiss Cheese

The calculated Kubo-Greenwood electrical conductivity in the x, y, and z directions for

three different temperatures of the Swiss cheese geometry at a single instance in time

(left), as well as the corresponding atomic configurations (right) are shown in Figure 6.2.

The variation in the conductivity along the individual cartesian directions illuminates the

complexity of the conductivity calculations within liquid-vapor coexistence (middle, bot-

tom) opposed to a one phase system (top). The top image is of a snapshot at 12000 K,

which exists outside of the liquid-vapor coexistence region. The directional components
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Figure 6.1: Snapshots from one of the simulations of the 256-atom french fry (left) and
Swiss cheese (right) systems at 6000 K and 5.00 g/cm3. Atoms inside the isosurface are in
the liquid phase and those outside of the isosurface are in the vapor phase. The unit cell of
each system is marked by dashed lines and has been replicated in order to better illustrate
the phase separation.

for the electrical conductivity are the same, indicative of a homogeneous system. To cal-

culate the effective electrical conductivity of this system, we can simply take the trace of

the conductivity tensor averaged over time. The other two atomic configurations shown in

Figure 6.2 are for temperatures inside the coexistence region at 7000 K (middle) and 6000

K (bottom). The atomic configurations at these two temperatures illustrate varying de-

grees of directional uniformity. The atomic configuration at 7000 K is not uniform in any

direction, while at 6000 K a liquid phase emerges that is uniform in the y and z directions.

Comparing the conductivities, the 7000 K snapshot has less spread between the different

components due to the apparent lack of a bulk direction. The uniformity in the y and z

direction of the 6000 K snapshot result in much larger values of the conductivity in these
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directions. Although the conductivity is continuous its not entirely symmetric resulting in

the y and z components being slightly different. To calculate an effective conductivity, an

average over the snapshots would be used, however this proved to be less straightforward

for this system. For the Swiss cheese geometry, the atomic configurations fluctuate over

time resulting in major shifts in the connectivity and structure of liquid and vapor phases.

These fluctuations also result in a changing electrical conductivity over time.

To understand whether the change in the conductivity across the temperature range is

due to the changing ionic configuration or a dramatic change in the electronic structure we

have plotted the quantity, ζ , which is akin to the mean ionization of the system. We define

ζ as:

ζ ≡ 1
N

∫
∞

εF

g(ω)F(ω)dω, (6.2)

where N is the total number of atoms, εF is the Fermi energy, g(ω) is the density of states,

and F(ω) is the Fermi function. In Figure 6.3, we have plotted ζ for various temperatures

along an isochore for the Swiss cheese cell. We see that ζ increases linearly as a function

of temperature which suggests that the system does not experience an abrupt dramatic

change in the electronic structure, indicating that the change in the electrical conductivity

is due to the geometry of the ions.

6.4.2 Comparing Geometries

While not an exact representation of the bulk liquid, the french fry configurations and its

uniformity in two dimensions should allow us to approximate the electrical conductivity

for the liquid. To get an estimate for the liquid phase in coexistence, we take an average
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of the conductivity in the continuous directions. The conductivity in the perpendicular

direction is a much smaller contribution and thus can be excluded from our estimates. The

electrical conductivity separated into the different components for each of the different

geometries is shown in Figure 6.4. The results shown are for the french fry cell (left) and

Swiss cheese cell (right) at a temperature of 5000 K and a density of 5.00 g/cm3. For both

geometries, we see that two of the conductivity components are notably larger than the

third. For the Swiss cheese cell the conductivity from this third direction is larger—thus

has a larger effect on the effective conductivity of the system than that of the uniform

french fry cell.

Because of the discrete number of orbitals in our calculations, we are unable to resolve

the conductivity at the zero frequency limit, therefore to estimate the DC conductivity we

take a polynomial fit of the low-frequency Kubo-Greenwood conductivity data defined by:

σ(ω) = A+Bω
1/2 +Cω

3/2. (6.3)

The DC conductivity is then found by extrapolating the fit to ω = 0.

Figure 6.5 is showing the average electrical conductivity of the two largest compo-

nents of the Kubo-Greenwood calculation (black lines) for the same snapshots shown

in Figure 6.4. The polynomial fit from equation 6.3 to these averages is shown in red

with the extrapolated DC conductivity shown by the red points on the y-axis. For the

same temperature and density conditions, the conductivity of the Swiss cheese configu-

ration is lower due to the influence of the nonuniformities. For the french fry cell (left)

we find a DC conductivity of σDC = 2.47± 0.04 x105(Ωm)−1 and for the Swiss cheese

σDC = 1.12±0.02 x105(Ωm)−1.
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One possible approach to try to compensate for the changing structural orientation over

time that the Swiss cheese configuration undergoes is to remove any explicit directional

dependence. Instead of averaging over the cartesian components, we take the highest,

lowest, and median values of the conductivity at each time step and average over those.

This is shown in Figure 6.6 for the same Swiss cheese simulation as in Figures 6.4 and

6.5. By disregarding the cartesian directions, we find a new DC electrical conductivity

of σDC = 1.49 ± 0.02 x105(Ωm)−1. While this has brought σDC for the Swiss cheese

configuration closer to the calculated bulk liquid conductivity from the french fry, we still

see the affects of the nonuniformity of the system because the liquid is not in a symmetric

slab with relatively flat edges as in the case of the french fry.

6.4.3 Extracting The Vapor Conductivity

A frequently-used technique for calculating the conductivity in liquid-vapor coexistence

is to employ the lever rule, defined in Equation 6.4. This makes it possible to estimate the

conductivity in coexistence based on the ratio of the two phases, as well as the values of

the conductivity in the vapor phase and liquid phase on either side of the phase boundary

curve. From the french fry configuration, we are able to extrapolate an estimate of the

conductivity of the liquid phase, σliq. The Swiss cheese cell gives us the conductivity

of the system in coexistence, σcoex, for which we are using the trace of the conductivity

tensor. We have implemented the lever rule using these two values, as well as the volume

ratio of the liquid, to extract an estimate of the DC conductivity of the vapor phase, σvap =

0.36±0.06 x105(Ωm)−1.

σcoex = χliqσliq +(1−χliq)σvap (6.4)
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6.5 Summary

For those simulations where we have compared the french fry and Swiss cheese configu-

rations, we see a clear difference in the calculated electrical conductivity originating from

the differences in the geometries of the systems. When dealing with a relatively symmet-

ric geometry, such as the french fry, calculating an effective DC electrical conductivity is

much more straightforward than in the case of an asymmetric structure. Because of the

symmetry of the system, we were able to get an estimate of the DC electrical conductivity

for the bulk liquid phase from the analysis of the french fry cell. We have found that the

ionic geometry of a system plays a large role in determining the electrical conductivity.
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Figure 6.2: Component-separated Kubo-Greenwood electrical conductivity (left) for the
Swiss cheese geometry at 12000 (top), 7000 (middle), and 6000 K (bottom), as well as
the corresponding atomic configuration (right). The simulation cells has been replicated
in space to enhance visualization.
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Figure 6.3: Calculated ζ values for a range of temperatures along the 5.00 g/cm3 isochore.
ζ is the normalized integral of the occupied density of states, shown in Equation 6.2, which
approximately represents the average number of unbound electrons.

Figure 6.4: Time averaged x, y, and z components of the Kubo-Greenwood electrical con-
ductivity at 5000 K and 5.00 g/cm3. The plot on the left is for the french fry system, while
the right image is for the Swiss cheese system.
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Figure 6.5: Average of the two largest components of the electrical conductivities shown
in Figure 6.4 (black line) for the french fry (left) and Swiss cheese (right) configurations.
The red line is a polynomial fit to the data at low frequencies. The fit has been extrapolated
to zero frequency in order to calculate the DC electrical conductivity (red point).

Figure 6.6: Average Swiss cheese conductivity for the maximum, minimum, and median
values at each time step (left), as well as the extrapolation to the DC limit (right) excluding
the minimum conductivity curve.
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Conclusions

The research in this dissertation has broadly focused on understanding material properties

relevant to the high energy density physics experiments that are being done at the San-

dia National Laboratories Z Pulsed Power facility. Sample materials in these experiments

are regularly subjected to extreme conditions. To accurately interpret the data from these

experiments, the materials involved, particularly the material standards, need to be fully

characterized. In particular, there is a need for robust material equations of state. One

example of a material standard that is used at Sandia is platinum. We have performed

density functional theory molecular dynamics (DFTMD) simulations for a range of tem-

peratures, densities, and number of atoms for platinum. The phase diagram of platinum

near the liquid-vapor critical point and coexistence region has been characterized, finding

a phase boundary curve that agrees very well with experimental data. The possible range

of values of the critical point estimate has been narrowed. We have conducted an investi-

gation of potential sources of bias in our calculations of the critical point and liquid-vapor

phase boundary, finding that the size, geometry, method of separating the liquid and vapor
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phases, as well as the well known approximations made within DFTMD all affect the crit-

ical point calculation. We have also begun an investigation of the transport properties of

platinum within the liquid-vapor coexistence region.
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