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INTERFACIAL FRACTURE

* Manufacturing defects or in-service damage can
lead to fracture based failure

* |sotropic materials fracture under Mode |

* Laminated materials activate more energetic
fracture modes

= Anisotropy
= Preferential fracture paths

» Bonded joints tend to fail either at the interface
(adhesive failure) or within the adhesive
(cohesive failure)

» Rarely are any failures pure Mode | or pure
Mode Il

Failure surface of Mode | DCB with GFRP secondarily bonded to
Aluminum with epoxy, mixture of adhesive and cohesive failure



FRACTURE TESTING

* Mode |

= Double cantilever beam (DCB)

= Wedge insertion

= Compact tension

= Single edge notched bending
* Mode I

= End notched flexure (ENF)

= End loaded split (ELS)
* Mixed mode /1l

= Mixed mode bending (MMB)
Asymmetric DCB

End notched flexure (ENF)
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Brazilian disc test’ Mixed mode bending (MMB)?
= Brazilian disc
. "Mega, Mor & Banks-Sills, Leslie. (2018). Testing of Brazilian Disk Specimens With a Delamination Between a Transversely
= Dual actuator |Oad|n9 Isotropic and a Tetragonal Composite Ply. Procedia Structural Integrity. 13. 123-130. 10.1016/j.prostr.2018.12.021.

¢ Many others 2Bamber Blackman, et.al, 17 - Understanding fracture mode-mixity and its effects on bond performance,
Editor(s): David A. Dillard, In Woodhead Publishing in Materials, Advances in Structural Adhesive Bonding (Second Edition),
Woodhead Publishing, 2023, Pages 579-613



DUAL ACTUATOR TESTING

* Developed by Dillard et al. (P.+P,)L L
 Current work by Liechti et al. C"I General Test
* Independent loading of each adherend 2h

= Superposition of DCB and ELS =
= Displacement, load, or moment control

Assumptions in this work (ongoing)

_ _ Mode | (DCB)
= Linear elastic
= Plane strain
= Slender beams — no shear contribution
= Small deformations/rotations
* Current testing is displacement controlled Mode Il (ELS)

Simple beam theory and two J-integral based
data reduction schemes investigated



EXPERIMENTAL FIXTURE DESIGN

« Selected use of existing MTS servo-hydraulic bi-axial load
frame

= Four horizontal 550-kip actuators placed 90 degrees
apart

= One pair used for this testing

= Unlike other setups, actuators are fixed and cannot pivot,
possibility for actuator to impart a moment on pull rods

= Approx. 180cm of space between actuators
« Steel work table supports fixturing
* Two linear rails support clamping carriage
= Counterbalanced
= Block easy view for DIC along length of specimen

= Extension rods at hinge points can have speckled flags
for DIC

* Two 1-kip load cells are used in series
* Pull/push rods are steel 5/8”-18 all-thread

* Inclinometers used to measure specimen rotations

Linear Rails

Counterbalance Carriage LVDT

I P, 35,0,
I P, 5, 0,
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Monitored signals during test



COMPLIANCE CHECK

50

* 6061 Aluminum bar (225mmx25mmx3.175mm) clamped in
carriage

40

» Loaded with a single actuator — only in tension (need to check
compression) %

Load (M)

« Stroke compared to predicted beam deflection

* Nonlinearity in beginning of loading

10

« Some hysteresis, relief of slack in system

* Produces similar terminal compliance at higher force ket

* Initial nonlinearity produces around 10% error
« Can be corrected with compliance correction

= |Laser displacement sensors or LVDTs can be used to
improve displacement accuracy

= Required for effective crack length determination

= J-integral approaches do not rely on displacements
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DATA REDUCTION L O
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= Simple beam theory calculation
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DATA REDUCTION
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EXPERIMENTS

* Material

= AS4/3362-100 8HS woven carbon composite
Layup: 12 plies - [(0/90)],
300mm x 300mm panel

V, (mmjmin) V, (mmimin)

1 2.54 2.54
— Autoclave cured 5 2 54 197

— 50mm Teflon precrack (125um thickness) 3 2 54 0
= Specimens approx. 25mm x 300mm, tile saw cut 4 2 54 1.27
= Bonded piano hinges, pin loaded S 2.54 -1.905
6 2.54 -2.49

Crack extended in Mode | to around 115mm
Positive displacement rate is tension

Clamped length — approx. 50mm

* Test Matrix
= Varied displacement rate for two actuators
= Pure Mode | to near pure Mode Il loading



TYPICAL RESULTS (V,=2.54 MM/MIN, V,=-1.27 MM/MIN
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INITIAL RESULTS
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FURTHER CHECKS/IMPROVEMENTS

Improve load/displacement measurements

= Laser displacement sensor

= Check compliance in compression
— Add 6-axis load cell
— Stiffen push rod

= Smaller load cell for more compliant specimens

Add shear contributions (Timoshenko beam theory)

Decompose load components into normal and shear

Try with more stable crack growth fabric (GFRP)
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