SAND2024-06923C

Sandia

Exceptional service in the national interest National
Laboratories

Kokkos in LAMMPS

Stan Moore
2024 HPC LAMMPS Master Class Workshop

5. CEFARTHERT OF .. ?ﬂ!ﬂ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
EN ERG? f!_!ul__ F 4 owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
. 0003525.

LAMMPS L

= large-scale Atomic/Molecular Massively Parallel Simulator

= https://lammps.org

Open source, C++ molecular dynamics code
Bio, materials, mesoscale

Particle simulator at varying length and time scales
= Electrons = atomistic = coarse-grained = continuum

Spatial-decomposition of simulation domain for parallelism
Energy minimization, dynamics, non-equilibrium MD

GPU and OpenMP enhanced

Can be coupled to other scales: QM, kMC, FE, CFD, ...

Sandia
National
Laboratories

https://lammps.org

Accelerator Packages in LAMMPS h) S,

Accelerator packages:

Vanilla C++ version

OpenMP Package: native OpenMP threading

INTEL Package: native OpenMP threading, enhanced SIMD
vectorization, uses hardware intrinsics, fast on CPUs but very complex
code

GPU Package: native CUDA and OpenCL support, only runs a few
kernels (e.g. pair force calculation) on GPU, needs multiple MPI ranks
per GPU to parallelize CPU calculations

KOKKOS Package: implements Kokkos library abstractions, tries to run
everything on device, supports CUDA (NVIDIA GPUs), HIP (AMD GPUs),
SYCL (INTEL GPUs), and OpenMP (CPU) threading backends

KOKKOS Package Options)

= Many options that affect KOKKOS package performance can
be controlled via the package command in the input script

® See https://docs.lammps.org/package.html

= Package commands can also be invoked on the command line
(my preference): -pk kokkos newton on neigh
half

= Default values often (but not always) optimal

= Many of these options are commonly seen in KOKKOS package
code

https://docs.lammps.org/package.html

Neighbor Lists) 2.,

= Neighbor lists are a list of neighboring atoms within the
interaction cutoff + skin for each central atom

= Extra skin allows lists to be built less often

Full Neighbor List)

Each pair stored twice which doubles computation for
pairwise potentials but reduces communication, doesn’t

require atomic operations for thread safety (may be faster on
GPUs for pairwise potentials, but often not for manybody)

Half Neighbor List) Eom

With newton flag on, each pair is stored only once (usually
better for CPUs), requires atomic operations for thread-safety

= Many newer GPUs have fast FP64 hardware atomics, half list
can be better for manybody potentials

National

Newton Option) .

= Newton flag to off means that if two interacting atoms are on
different processors, both processors compute their
interaction and the resulting force information is not
communicated

= Setting the newton flag to on saves computation but increases
communication

= Performance depends on problem size, force cutoff lengths, a
machine’s compute/communication ratio, and how many
processors are being used

= Newton off almost always better for GPUs, newton on almost
always better for CPUs

8

) Rt

MPI Parallelization Approach

= Domain decomposition: each processor owns a portion of the
simulation domain and atoms therein

Multithreading (e.g. OpenMP, CUDA) h) e

= Used on top of MPI domain decomposition

= Each thread processes a subset atoms in a processor’s
subdomain

= Threads run concurrently, no guarantee of order

O O @ |proc

Thread 1 ©
Thread 2

Threading in LAMMPS rh) e,

Typically thread over owned atoms (atom->nlocal)

Additionally can thread over neighbors to expose more parallelism,
but can have overheads. Default for 16k or less atoms with simple
pair-wise potentials

Threading over neighbors also used for expensive machine learning

potentials with low atom counts/GPU. SNAP threads over atoms,
neighbors, and bispectrum

Can also manually flatten multiple loops into a single loop to expose
more parallelism

Typically run Kokkos LAMMPS with 1 MPI rank per GPU (leaves
many CPU cores idle, but often most of the FLOPs are on the GPUs)

If significant kernels are not running on the GPU, then using
multiple MPI ranks per GPU can help parallelize host calculations
(need to enable CUDA MPS on NVIDIA GPUs)

11

Sandia
P | National
Laboratories

Execution Spaces

With GPUs, LMPHostType execution space = CPU backed
(Serial or OpenMP), LMPDeviceType = GPU backend

= |n LAMMPS, all Kokkos pair styles are templated on
DeviceType: can be either host or device

= Compiler creates two different versions of the code, one for
CPU backend and one for GPU backend

= Users can choose at runtime which version to use via the
LAMMPS suffix command (see
https://docs.lammps.org/suffix.html)

= Generally must not use LMPDeviceType directly, use
DeviceType template parameter instead, since user could be
running a style on host

12

https://docs.lammps.org/suffix.html

KOKKQOS View Structs rh)

* ArrayTypes struct defined in src/KOKKOS/kokkos_type.h,
contains nearly all needed view types

" DAT:: refersto ArrayTypes<LMPDeviceType>
HAT:: refersto ArrayTypes<LMPHostType>

= AT:: refersto ArrayTypes<DeviceType>, mustbe
defined in each class or functor

"= DAT::tdual * refersto DualView

= AT::t * referstodeviceview, HAT: :t * refersto host
Must not use DAT: : t * because it hard codes device space
(some rare exceptions, usually in core code)

= Can define new view types if needed, see
https://github.com/lammps/lammps/blob/develop/src/KOKK
OS/pair_eam_kokkos.h#1171-L177

13

https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_eam_kokkos.h#L171-L177
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/pair_eam_kokkos.h#L171-L177

KOKKOS View Names in LAMMPS) e,

= k [view_name] means DualView
= d [view_name] means device view
= h [view_name] means host view

= | [view_name] means local copy of device view (for lambdas)

Sandia

Allocating Memory) fooes,

= Not all stylesin LAMMPS are ported to Kokkos, sometimes
need to maintain compatibility with legacy data structures

= Alias Kokkos DualViews to LAMMPS legacy data using
memoryKK->create kokkos()

= Already done for all atom data (position, force, velocity, etc.)

= Constrains LayoutRight, may not give optimal
performance for GPUs, so do not alias unless necessary

= For class variable not used by legacy code, use
memKK: :realloc kokkos () instead, avoids

initialization overhead and reduces memory use, does not
preserve existing values

" UsememoryKK->grow kokkos () orview.resize ()

to preserve values
15

Sandia

Data Transfer i) e

" DualView data transfer controlled by atom masks:
X MASK (positions), F MASK (forces), V. MASK (velocities),
ALL MASK, EMPTY MASK, etc.

" Always use atomKK->sync andmodifiedif possible
(unless custom class view), e.g. at omKK-
>sync (space, X MASK|F MASK)

= All pair styles define two variables: datamask read and
datamask modify

= |f only one parallel kernel, fine to set datamask read and
datamask modify, e.g.atomkk-
>sync (space,datamask read)

= Otherwise better to define these as EMPTY _MASK and use

atomKK->sync (space, X MASK|F MASK) instead
16

S

Memory

= |f a LAMMPS style is not ported to Kokkos it will run on CPU in
serial and require data transfer every time it is invoked:
consider porting to Kokkos to improve performance

" |n LAMMPS often use Kokkos: :DualView syncand
modi fy on Device and Host to transfer data (not for atomKK)

= Alsosee Kokkos::deep copy and
Kokkos::create mirror view insome cases instead

(not for atomKK)

Copymode rh) e,

= When using tags in class or KOKKOS CLASS LAMBDA, we pass
*this asthe functor, creates a copy of the class

= When the class copy goes out of scope at the end of the
parallel region, the class destructors gets called, including the
parent destructor

= This deallocates class memory prematurely, can lead to a
segmentation fault or other memory issues

= Need to protect all destructors (Kokkos class and all parent
classes) with if (copymode) return;

= Needtoset copymode = 1 before Kokkos parallel region,
copymode = 0 atend

18

Templating for Performance)

Templating parallel regions can reduce runtime overhead of
conditional statements

if (TEMPLATE PARAM) : compiler should move conditional
check to compile time and create two separate code branches

If not, can use C++17 if constexpr (TEMPLATE PARAM) as
hammer on the compiler to force it

Can template functors and tags, not sure how to template lambdas

Initialization and Overheads) N

Typically assume that a user is going to run a simulation for an hour
or longer

Therefore, don’t typically try to port initialization and setup kernels
to use Kokkos (likely won’t run efficiently on GPUs anyway)

Same for infrequent operations on CPU like load balancing

Keep in mind that every thermo output step requires copying
significant amount of data from GPU to CPU (all atom data goes to
host since we don’t know what will be used)

Keep thermo output to a minimum (e.g. only 1000 steps or less
frequent)

Similar overhead for fixes that collect data like fix ave/atom,
better to call every 10 timesteps than every step

Polymorphism h) o,

= Nearly all KOKKOS package classes are derived from non-
Kokkos parent classes using polymorphism (overriding virtual
functions)

= Greatly reduces code duplication: initialization/setup code is
run on host and often identical for Kokkos styles vs parent

= When using tags, all scalars in class stack memory get copied
and can be used in device code. Pointers in class need to be
changed to views

= Any scalar references to host memory (e.g. force-
>boltz) need to be copied into class variables

= Typically cannot use virtual multiple inheritance for Kokkos
device code on GPUs, must duplicate code (e.g. see pair
eam/kk vs eam/alloy/kk)

21

Parallel Reductions

) Neoona

For multiple values, must create custom struct with multiple
members. See
https://github.com/lammps/lammps/blob/develop/src/KOKK

OS/compute temp kokkos.h#L41-L57

Some built-in Kokkos reducer types exist (e.g. compute min or
max of values instead of sum), see https://kokkos.org/kokkos-
core-wiki/ProgrammingGuide/Custom-Reductions-Built-In-

Reducers.html

Can also have custom init () and join () functions

With templated tags in a class, can only have a single

reduction type. Need to use functors if have multiple
parallel reduce with different reduction types (e.g.

integer and double)

22

https://github.com/lammps/lammps/blob/develop/src/KOKKOS/compute_temp_kokkos.h#L41-L57
https://github.com/lammps/lammps/blob/develop/src/KOKKOS/compute_temp_kokkos.h#L41-L57
https://kokkos.org/kokkos-core-wiki/ProgrammingGuide/Custom-Reductions-Built-In-Reducers.html
https://kokkos.org/kokkos-core-wiki/ProgrammingGuide/Custom-Reductions-Built-In-Reducers.html
https://kokkos.org/kokkos-core-wiki/ProgrammingGuide/Custom-Reductions-Built-In-Reducers.html

How to Optimize GPU Performance) S,

= Saturate GPU threads (increase number of atoms or expose more
parallelism)

= Use memory efficiently (improve memory access patterns and data
locality, be mindful of view LayoutLeft or LayoutRight)

= Keep atom data in GPU memory (avoid moving data as much as
possible, port all kernels to Kokkos)

= Avoid launch latency overhead for small systems (fuse kernels if
possible), use subview array instead of multiple scalar views for
data transfer

= Avoid allocating memory every timestep (overallocate views and
only grow if size is exceeded, don’t shrink)

= Watch out for Kokkos view initialization overheads (on by default
but can turn off)

= Actually profile to see what is important; don’t spend time
optimizing a kernel that is <1% of runtime)3

Performance of Real Potentials

400 1

Millions of atom-steps/sec

o]
=]
=

Pt
=]
=

LJ: single node

1K 4K 16K 64K 256K 1M 4M 16M
Atom count

ReaxFF HNS: single node

1K 4K 16K 64K 256K 1M
Atom count

—a8— Skylake
—— V100-1

—&— Skylake
—&— V100-1

=
]
un

Millions of atom-steps/sec

EAM: single node

= = e
MO = 2 kLN
tn o wmw 2o w 2

—a— Skylake
—&— V100-1
07K 4K 16K 64K 256K 1M aM 1&M
Atom count
SNAP: single node
—8— Skylake
—e— V100-1

Millions of atom-steps/sec

——0—0—0—0— 00009

1K 4K 16K 64K 256K 1M
Atom count

Port a (Simple) Pairwise Potential rh) e,

= Abstractions in src/KOKKOS/pair_kokkos.h greatly simplify the
process

= Copy *.h and *.cpp files from existing style into src/KOKKOS
= Find/replace old class name with new
= Change the code in the energy and force functions

= Minor changes to parent styles, e.g. add virtual keyword,
copymode

= Add new styles to src/KOKKOS/Install.sh

= Add new styles to documentation. Don’t forget to update
doc/src/Commands_*.rst

25

Port a Manybody or ML Potential rh) e,

= Copy *.h and *.cpp files from existing style into src/KOKKOS

= Find/replace old class name with new

= Port loops over atoms to use Kokkos parallel foror
parallel reduce

= Port arrays to use Kokkos views

= Minor changes to parent styles, e.g. add virtual keyword,
copymode

= Add new styles to src/KOKKOS/Install.sh

= Add new styles to documentation. Don’t forget to update
doc/src/Commands_*.rst

26

New KOKKOS Package Option)

= Add a new class variable to kokkos . h and initialize to
default value in kokkos. cpp

= Add a new parsing line that sets the value of the variable

o »”

= In command names, avoid underscores “ ”, prefer “/” instead,
e.g. atom/map instead of atom map

= Update documentation (lammps/doc/src/package.rst)

Code Examples)

= Examine simple compute code: compute
ave/sphere/atom/kk

= Port simple pairwise potential: pair style soft

= Examine manybody potential code: pair style eam/kk

Porting Advanced Features h) S,

= New atom style, styles with complicated forward/reverse
comm, core features that need to be ported, etc.

= Copy from closest existing Kokkos file

= Contact developers on LAMMPS developer Slack channel
(https://lammps.slack.com) or send an email (see
https://www.lammps.org/authors.html) for advice

https://lammps.slack.com
https://www.lammps.org/authors.html

More Resources)l

= KOKKOS package documentation:
https://docs.lammps.org/Speed_kokkos.html

= MatSci LAMMPS forum archives: join and post new questions,
https://matsci.org/lammps

= Github: submit a bug report or draft pull request,
https://github.com/lammps/lammps

= LAMMPS reference paper: gives an overview of the code
including its parallel algorithms, design features,
performance, and brief highlights of many of its materials
modeling capabilities
https://doi.org/10.1016/j.cpc.2021.108171

30
-~ ...

https://docs.lammps.org/Speed_kokkos.html
https://matsci.org/lammps
https://github.com/lammps/lammps
https://doi.org/10.1016/j.cpc.2021.108171

Thank You) e,

Questions?

31

