

Sandia
National
Laboratories

Exceptional service in the national interest

Puncture of Thin Aluminum 7075-T651 Plates

Experiments and Simulations

Carter J. Fietek, Edmundo Corona, and Douglas Van Goethem

2024 SEM Annual Conference – Vancouver, Washington

Introduction

Dynamic metallic plate puncture problems are of interest in many applications

They are demanding on the elastic-plastic and ductile failure models in FEAs.

- Temperature and rate dependencies may need to be addressed
- Tensile-dominated and shear-dominated failure modes can be activated
- Possible sensitivity to element size

Objectives

- Identify if calibrations of thermal-mechanical material models made from one lot can accurately predict puncture of plates from a different lot.

t , mm	σ_o , MPa	σ_u , MPa	ε_f (%)
1	490 (-11)	564(-9)	12 (1)
1.6	517 (-6)	588 (-5)	12.7 (5)
2	518 (-6)	583 (-6)	11.4 (-6)
3.2	501 (-9)	571 (-8)	12.9 (7)
4.8	495 (-10)	571 (-8)	12.3 (2)
12.7	551	618	12.1

← Stock used for calibrations

- Compare FE predictions of plate puncture experiments to experimentally identified:
 - Minimum punch velocity to cause puncture
 - Force-time histories
 - Failure mode

Material Model Calibration

Plasticity Model Calibration

J_2 Yield Function with Isotropic Hardening:

$$f(\sigma_{ij}, \bar{\varepsilon}^p, T, \dot{\bar{\varepsilon}}^p) = \phi(\sigma_{ij}) - \sigma_y(\bar{\varepsilon}^p, T, \dot{\bar{\varepsilon}}^p) \quad \phi(\sigma_{ij}) = \sqrt{\frac{3}{2} s_{ij} s_{ij}}$$

Associated Flow Rule:

$$\dot{\bar{\varepsilon}}_{ij}^p = \lambda \frac{\partial \phi}{\partial \varepsilon_{ij}^p}$$

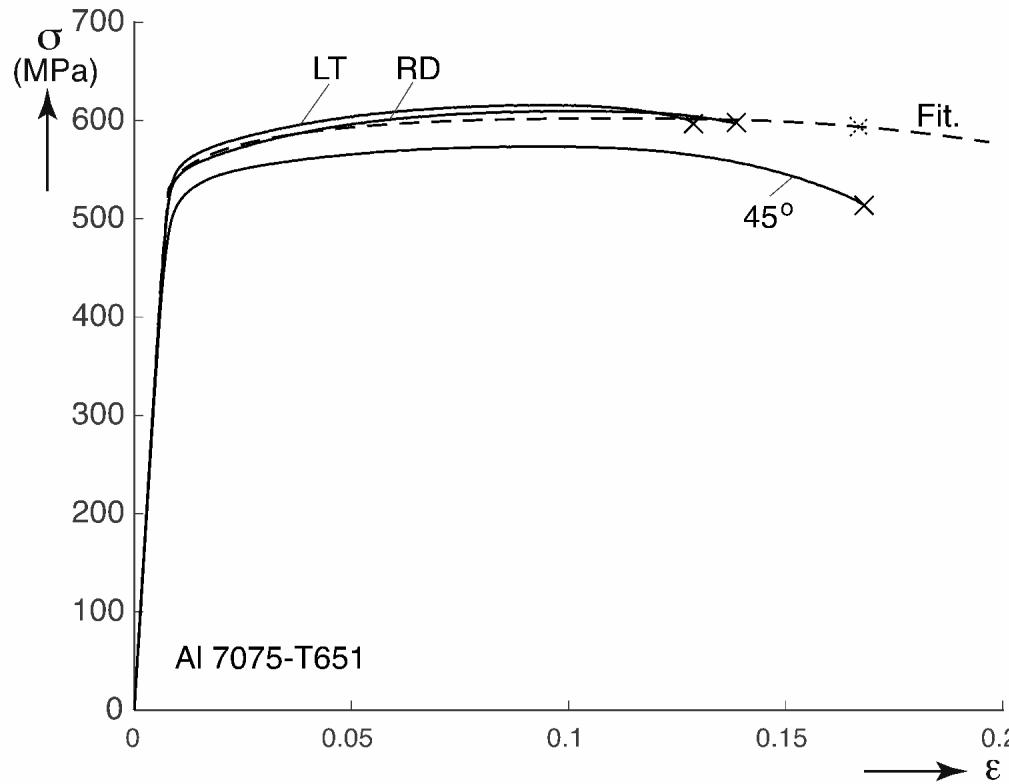
Hardening Function:

$$\sigma_y(\bar{\varepsilon}^p, T, \dot{\bar{\varepsilon}}^p) = \left[\sigma_y^o(T) + A(T) (\bar{\varepsilon}^p)^{n(T)} \right] \left[1 + C(T) \ln \left(\frac{\dot{\bar{\varepsilon}}^p}{\dot{\varepsilon}_o} \right) \right]$$

Adiabatic Heating:

$$T(t) = T(0) + \frac{\beta^{\text{TQ}}}{\rho c_p} \int_0^t \phi \frac{\partial \bar{\varepsilon}^p}{\partial \tau} d\tau$$

Plasticity Calibration: Effect of Temperature



Values at 20°C

ρ , kg/m ³	E , GPa	ν	c_p , J/kg-K	β^{TQ}
2810	71.7	0.33	960	0.7
σ_y , MPa	A , MPa	n	C ,	$\dot{\varepsilon}_o$, 1/s
517	405	0.41	0.008	1.6×10^{-4}

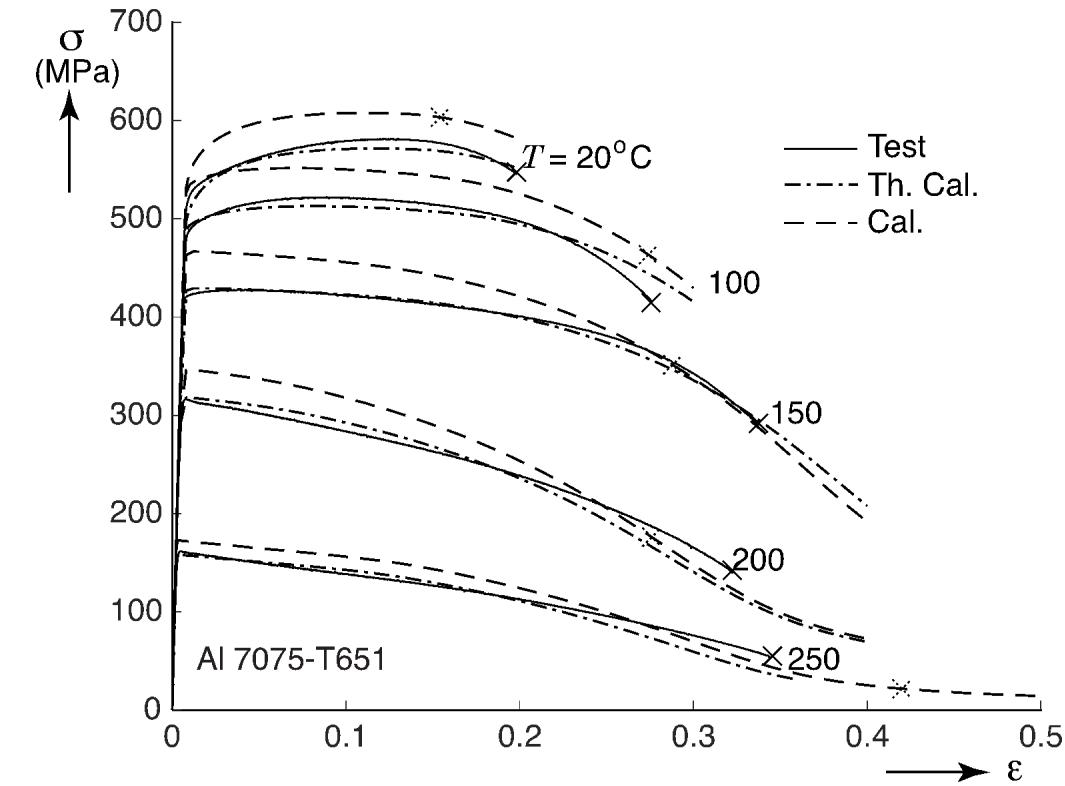
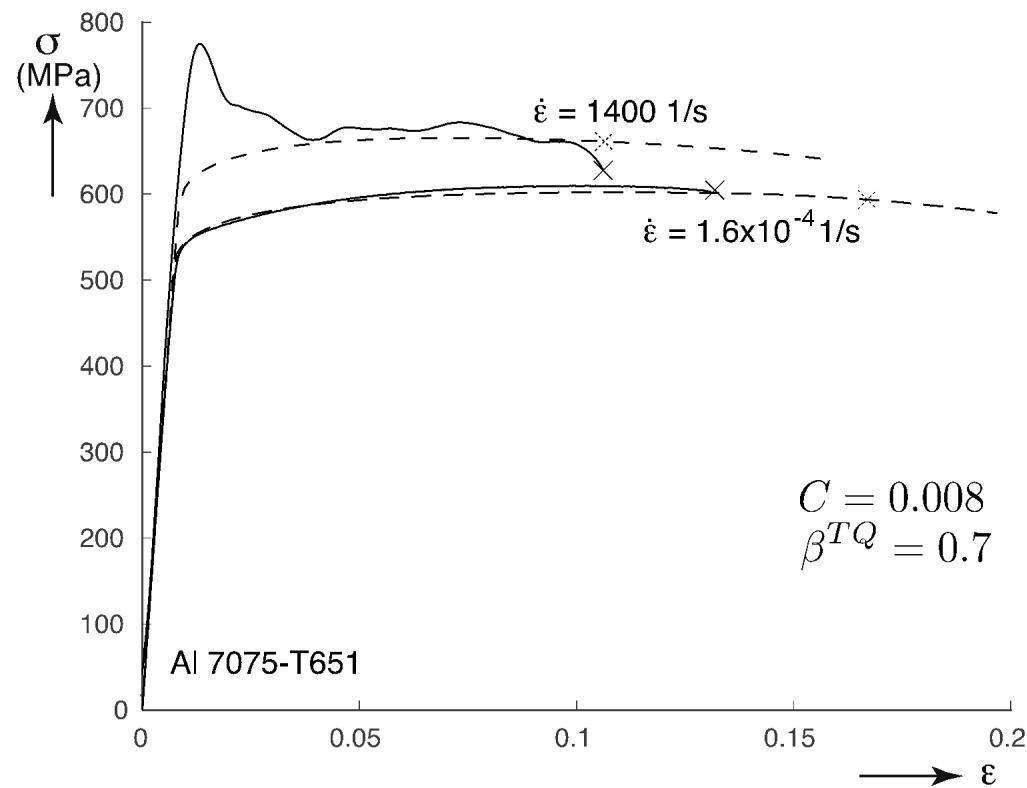


Table of Function Values

T , °C	$\frac{\sigma_y^0(T)}{\sigma_y^0(20)}$	$\frac{A(T)}{A(20)}$	$\frac{n(T)}{n(20)}$	$\frac{C(T)}{C(20)}$
20	1.0	1.0	1.0	1.0
100	1.01	0.8	1.5	1.0
150	0.89	0.75	2.2	1.0
200	0.66	0.3	2.44	1.33
250	0.32	0.0	2.44	4.0
750	0.0	0.0	2.44	13.3

Plasticity Calibration: Effect of Strain Rate



Ductile Failure Model (One-way coupling to plasticity)

Wilkins Model

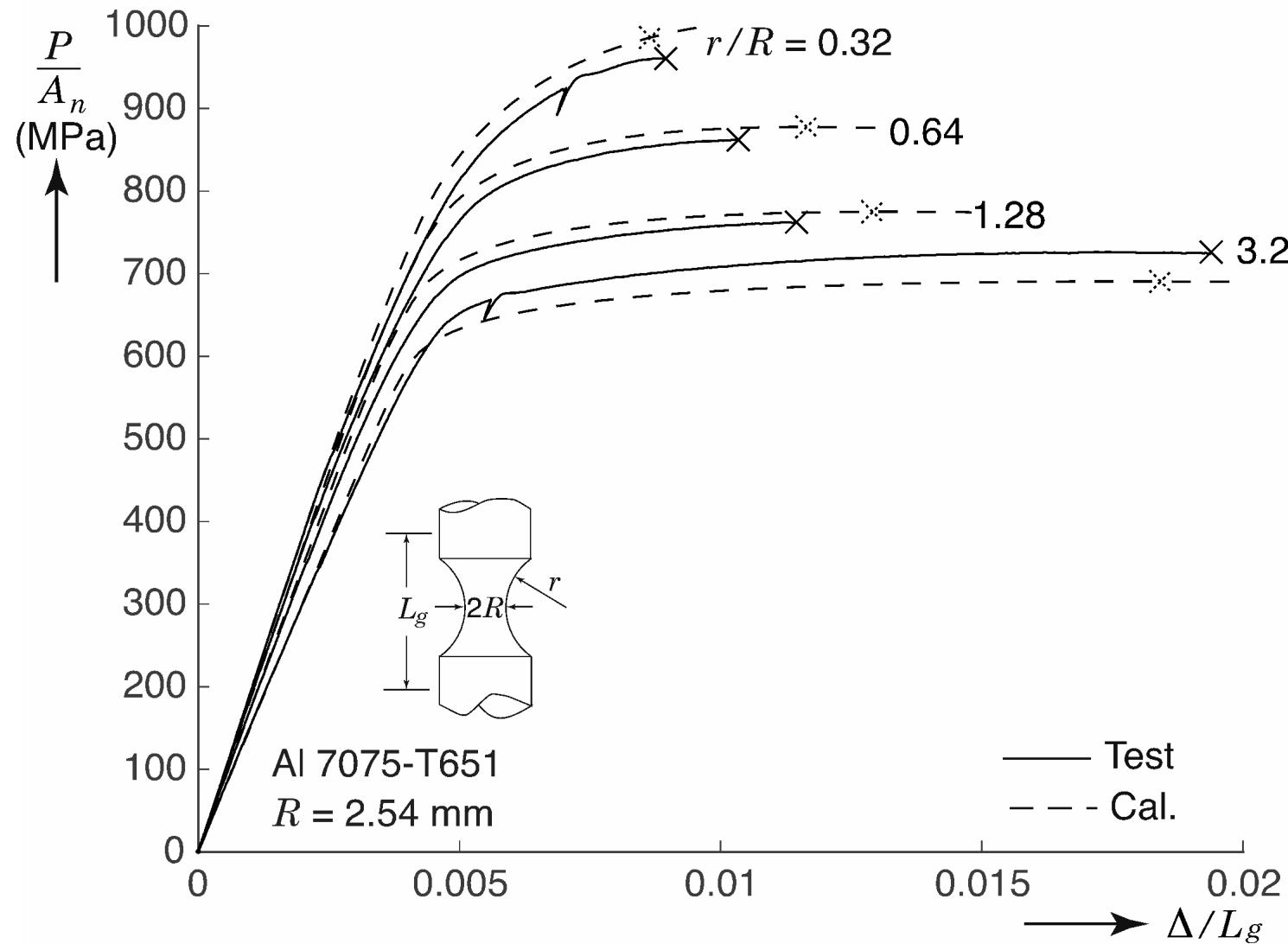
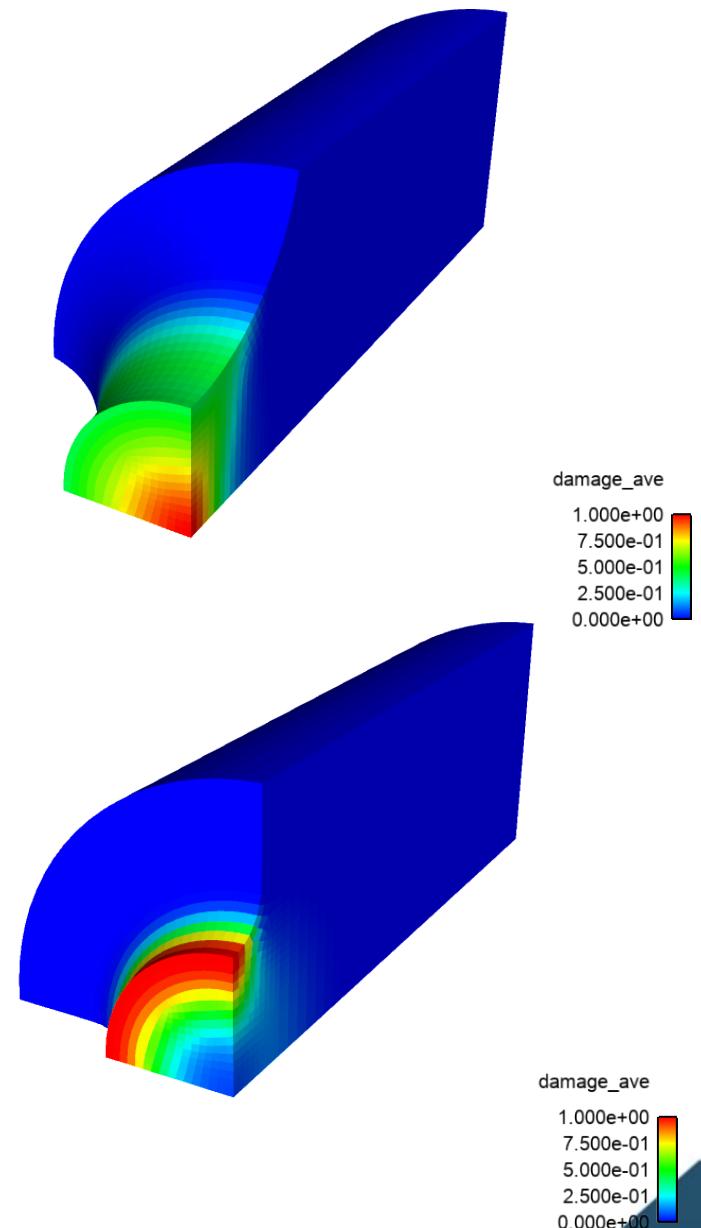
$$D = \frac{1}{D^{\text{cr}}} \int_0^{\bar{\varepsilon}^p} w_1(\sigma_m) w_2(\theta) w_3(\dot{\varepsilon}^p) w_4(T) d\hat{\varepsilon}^p$$

$$w_1 = \left(\frac{1}{1 - \frac{\sigma_m}{B}} \right)^\alpha \quad w_2 = (2 - \mathcal{A})^\beta, \quad \mathcal{A} = \max \left(\frac{s_2}{s_3}, \frac{s_2}{s_1} \right)$$

$$w_3(\dot{\varepsilon}^p) = \frac{1}{1 + D_4 \ln \frac{\dot{\varepsilon}^p}{\dot{\varepsilon}_0}} \quad w_4(T) = \frac{1}{1 + D_5 \frac{T - T_{\text{ref}}}{T_{\text{melt}} - T_{\text{ref}}}}$$

B , GPa	α	β	D^{cr}	D_4	D_5	T_{melt} , ° C	T_{ref} , ° C
2.07	4.1	0.6	0.3	-0.039	22.6	750	20

Ductile Failure Model Calibration: QS Notched Tension Tests



Ductile Failure Model Calibration: QS Shear Dominated Tests

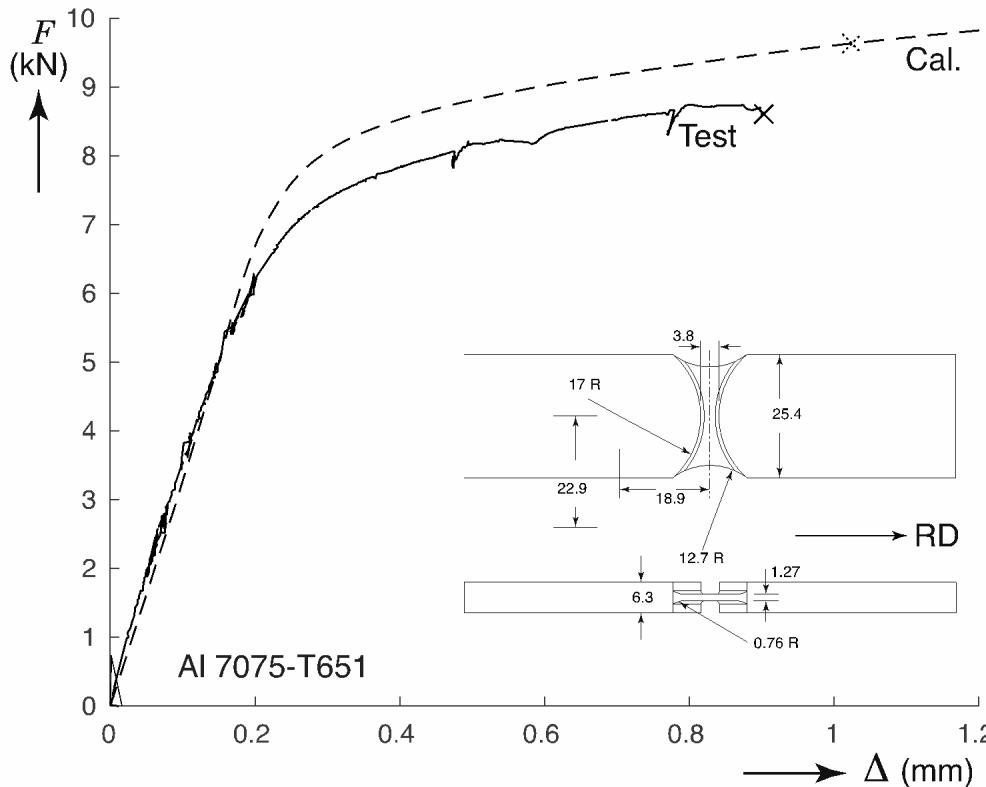
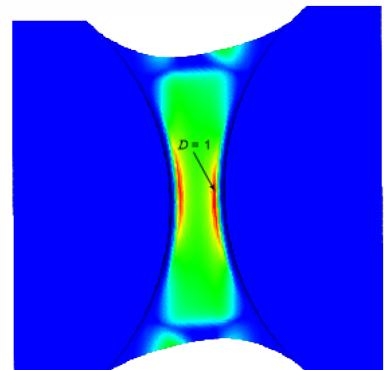
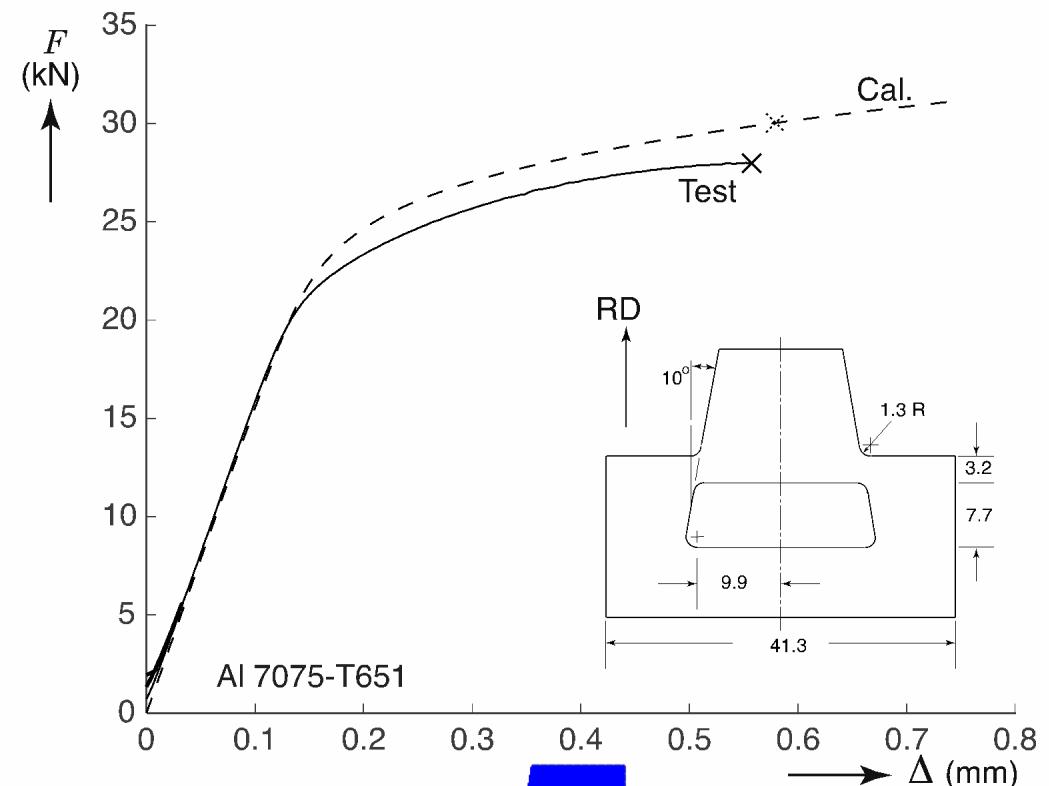
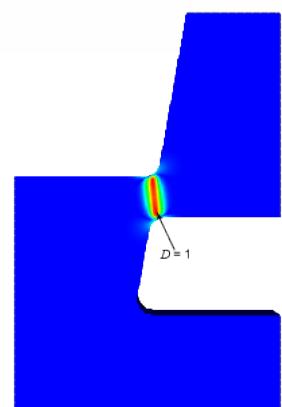
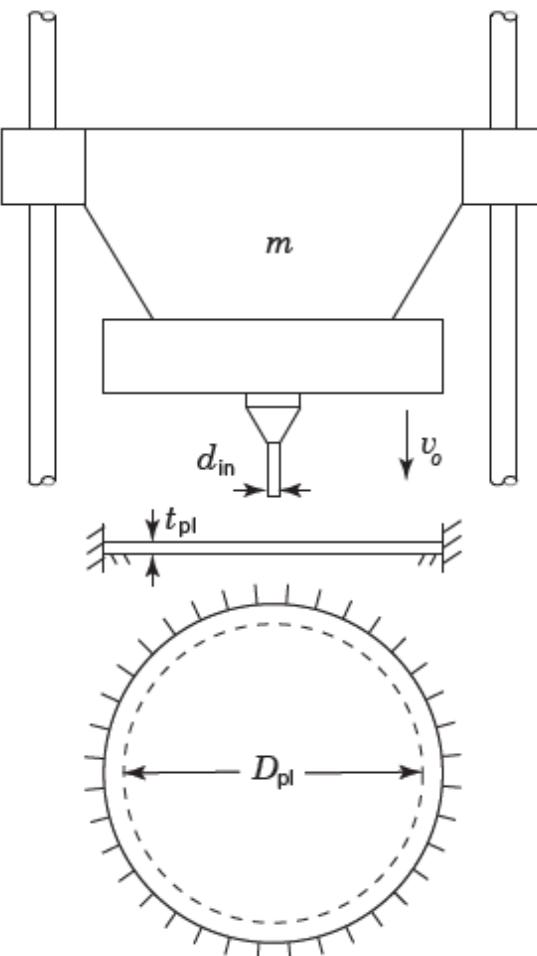
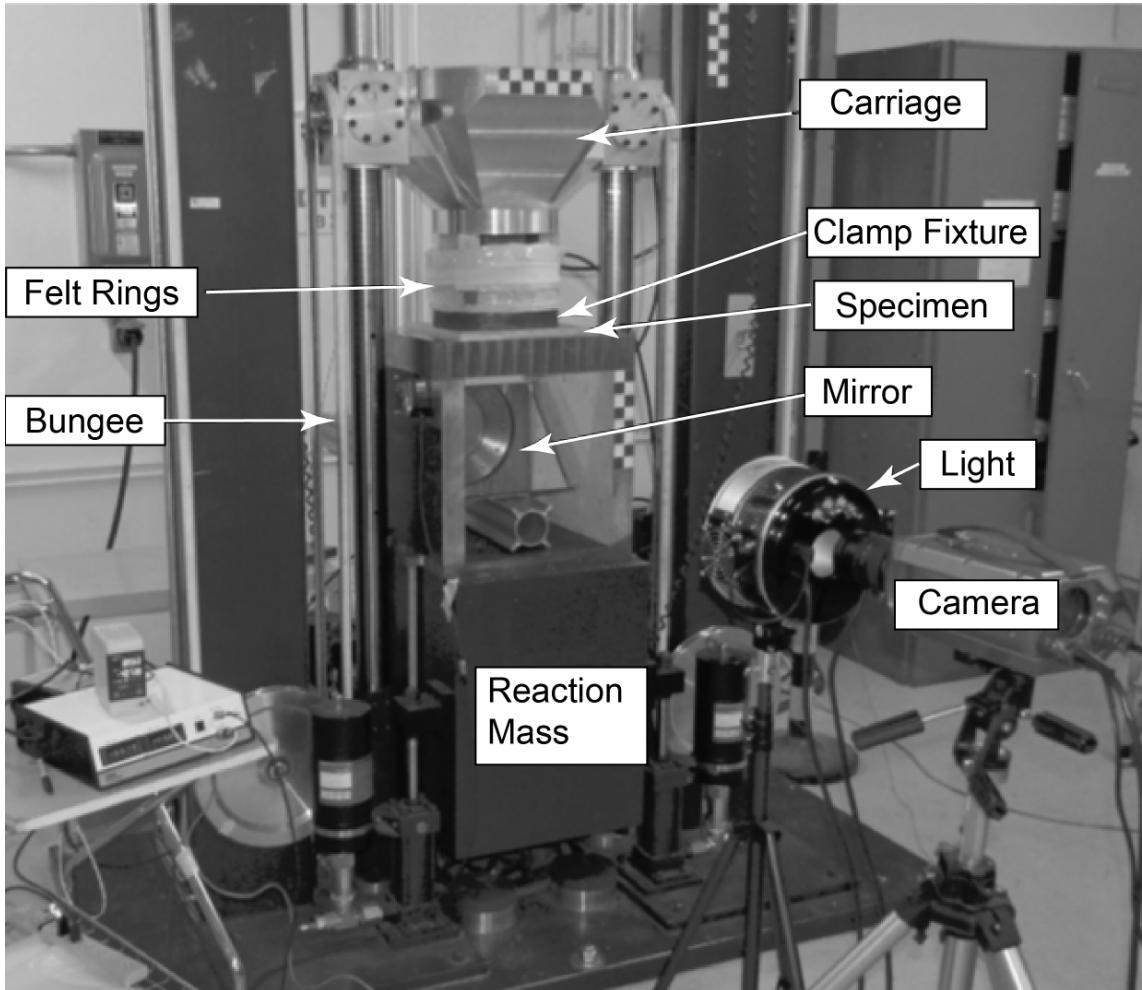
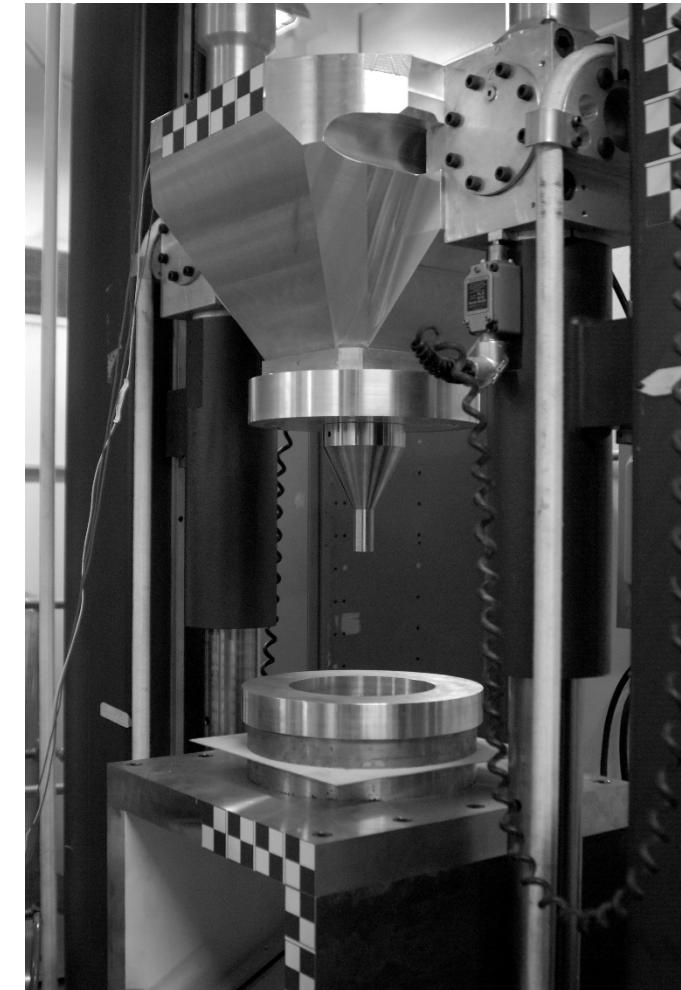


Plate Puncture

Experimental Setup

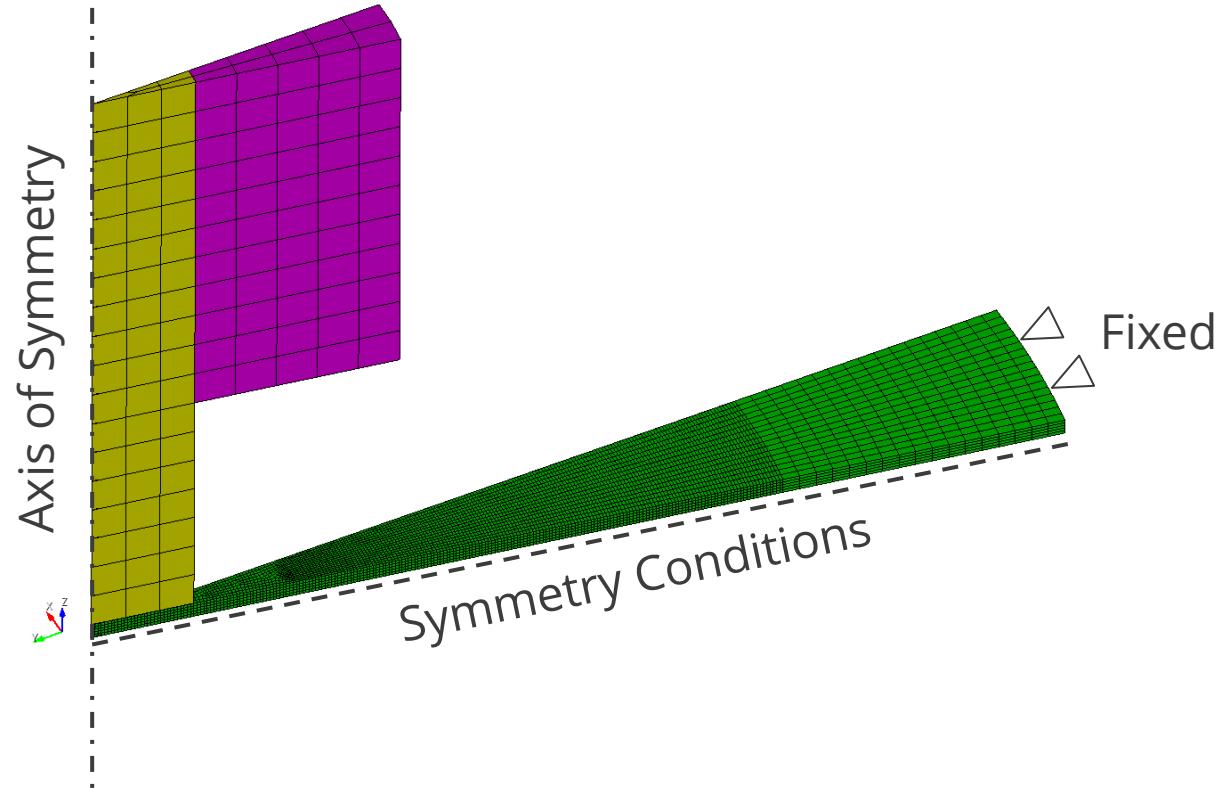


$$D_{pl} = \\text{?}$$
$$m = 1$$

$$t_{pl} = 1.1.6.2.3.2.4.8 \\text{ mm. } d_{in} = 25.4 \\text{ mm}$$

Finite Element Numerical Modeling

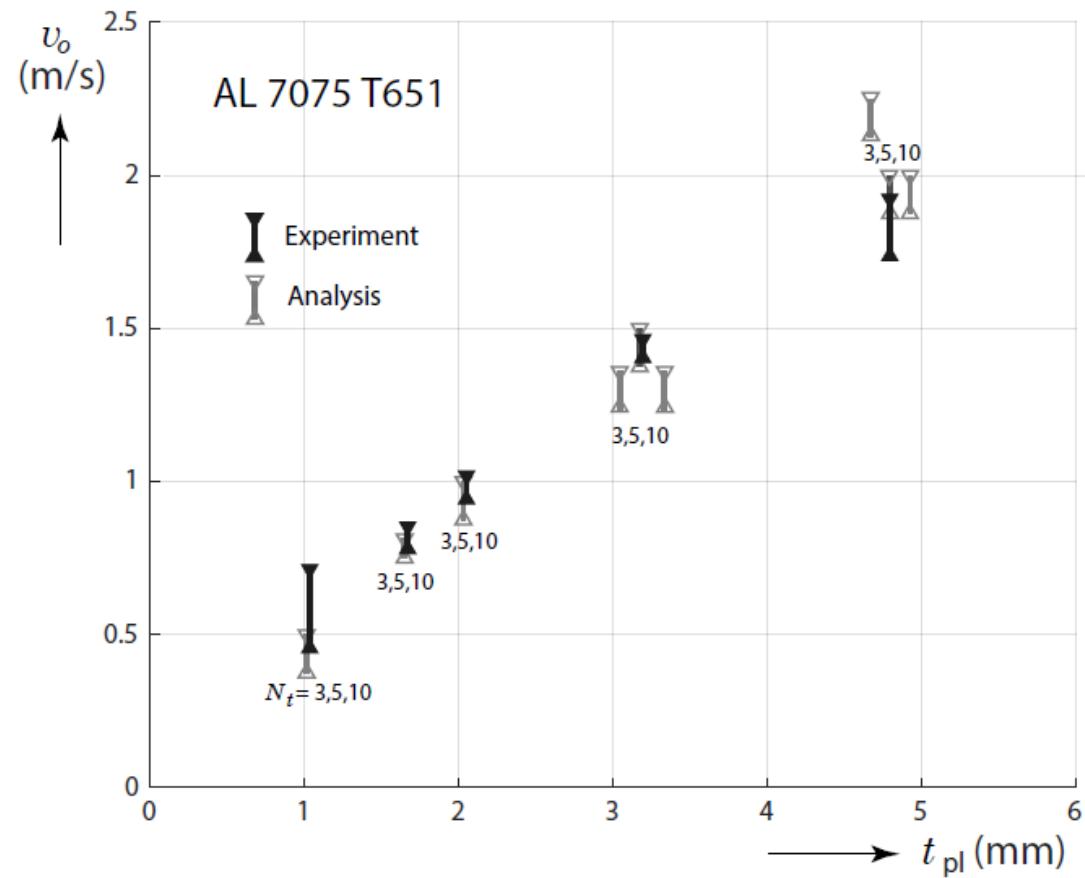
- Explicit, transient-dynamic finite element model.
- Reduced-integration 8-node hexahedral elements
- Frictional hard contact between punch and plate
- Punch is rigid, plate is elastic-plastic.
- Failure propagation modeled via element deletion.
- Simulations conducted with 3, 5 and 10 elements through the plate thickness.
- 180° wedge for 4.8, 3.2 and 2.0 mm thick
- 10° wedge for 2.0, 1.7, 1.0 mm thick



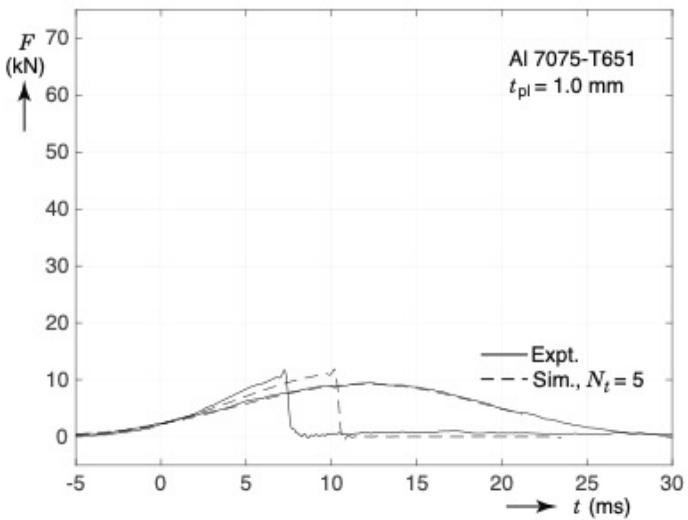
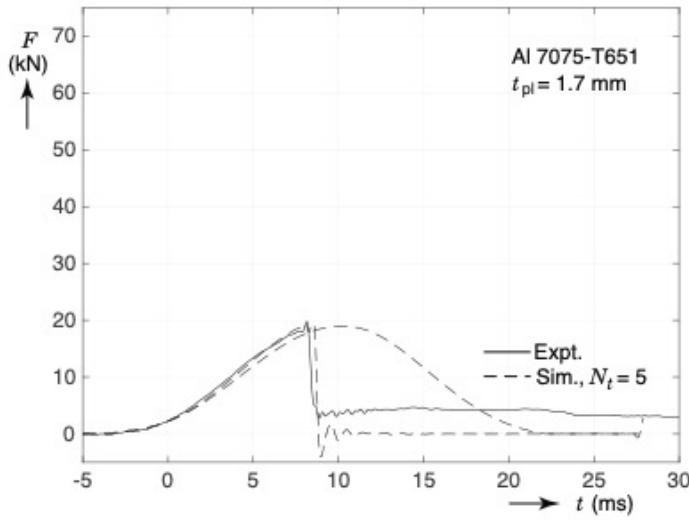
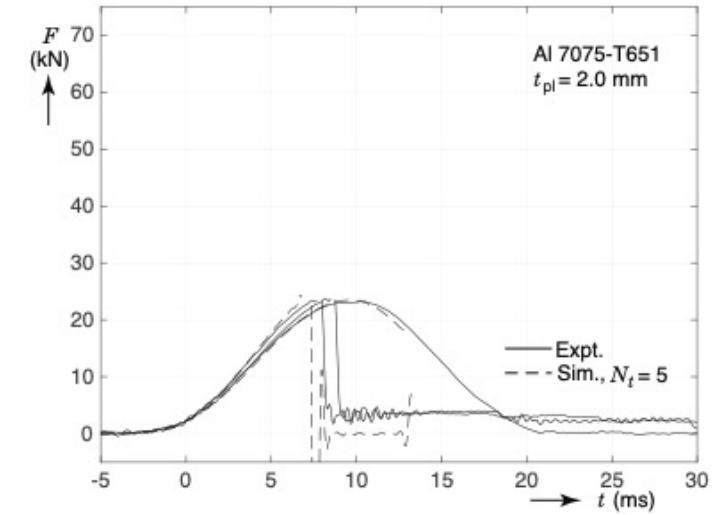
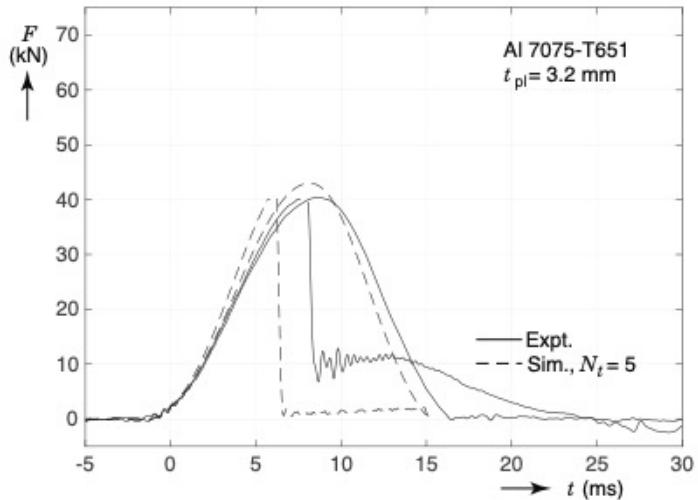
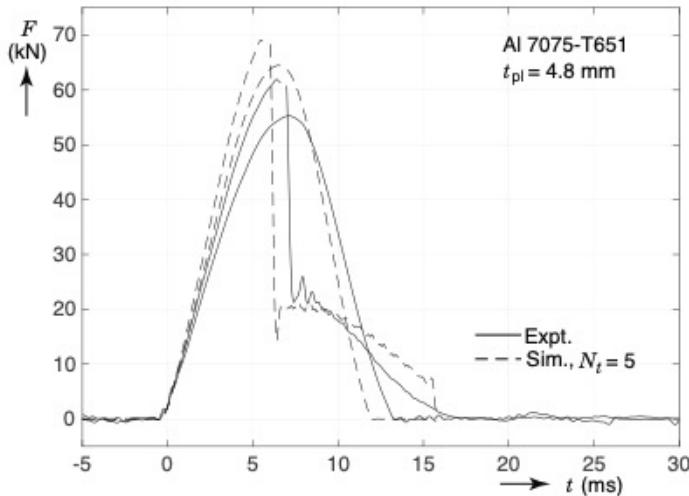
Comparison of Measured and Predicted Puncture Speed Brackets

Basic Plastic Properties (% difference wrt 12.7 mm)

t , mm	σ_o , MPa	σ_u , MPa	ε_f (%)
1	490 (-11)	564(-9)	12 (1)
1.6	517 (-6)	588 (-5)	12.7 (5)
2	518 (-6)	583 (-6)	11.4 (-6)
3.2	501 (-9)	571 (-8)	12.9 (7)
4.8	495 (-10)	571 (-8)	12.3 (2)
12.7	551	618	12.1



Force-Time History Comparisons

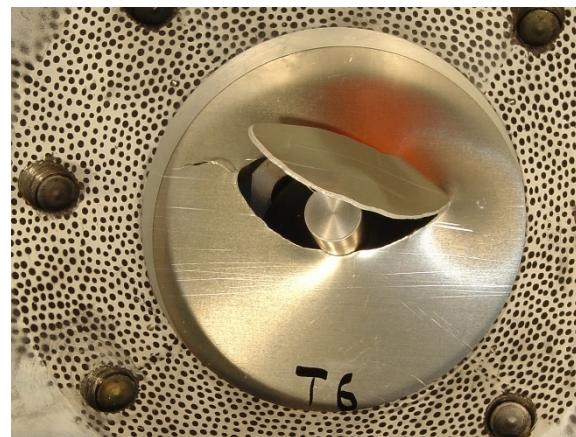


Basic Material Properties

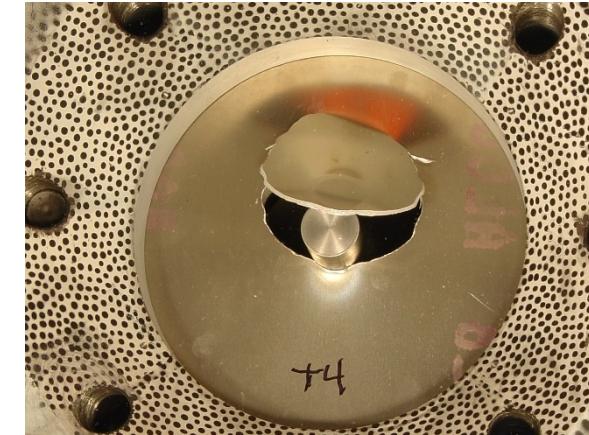
$t, \text{ mm}$	$\sigma_o, \text{ MPa}$	$\sigma_u, \text{ MPa}$	$\varepsilon_f (\%)$
1	490 (-11)	564(-9)	12 (1)
1.6	517 (-6)	588 (-5)	12.7 (5)
2	518 (-6)	583 (-6)	11.4 (-6)
3.2	501 (-9)	571 (-8)	12.9 (7)
4.8	495 (-10)	571 (-8)	12.3 (2)
12.7	551	618	12.1

Experimental Failure Configurations

1.0 mm



1.7 mm



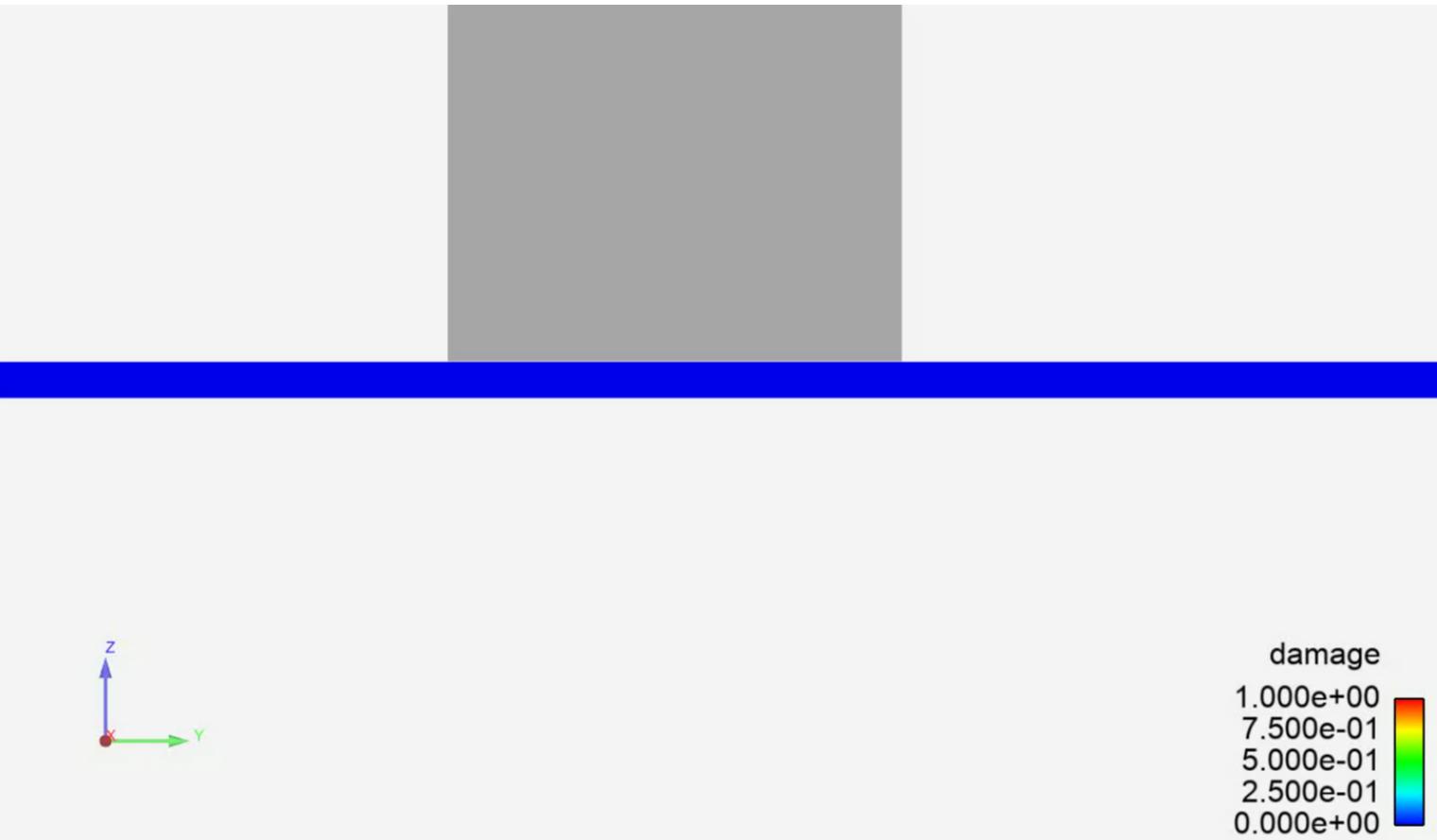
2.0 mm

3.2 mm

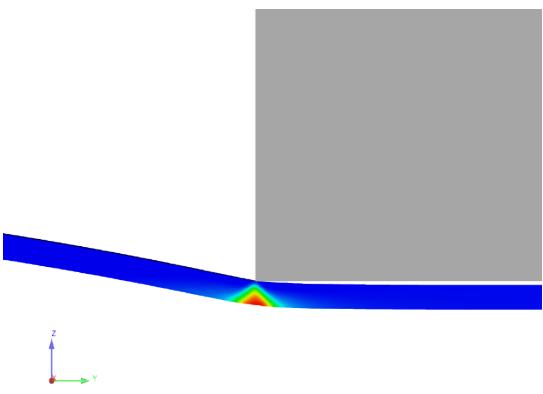
4.8 mm

Failure initiates under edge of punch and propagates outwards.

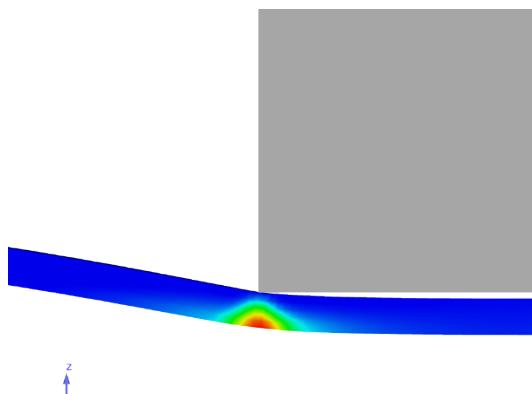
Progression of Damage $t = 2$ mm



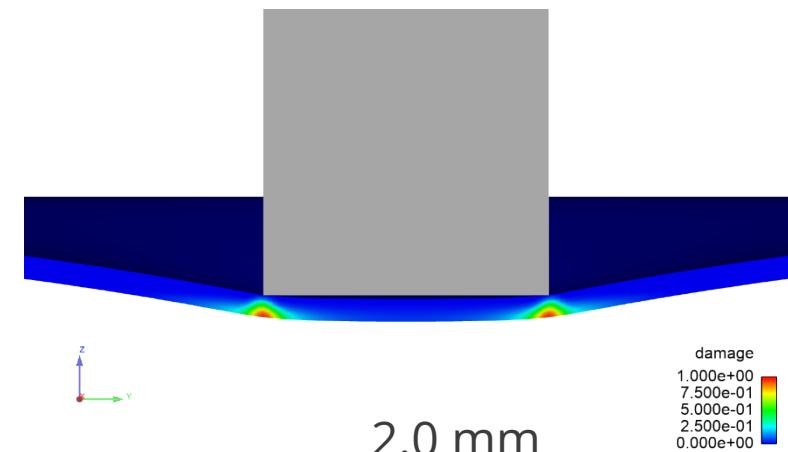
Damage at Failure ($N_t = 5$)



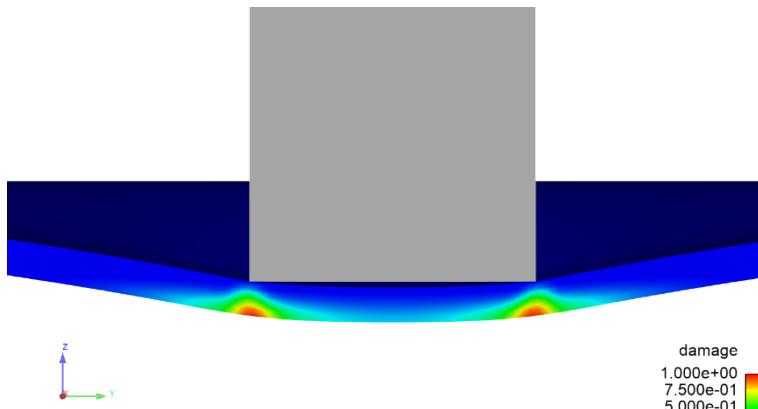
1.0 mm



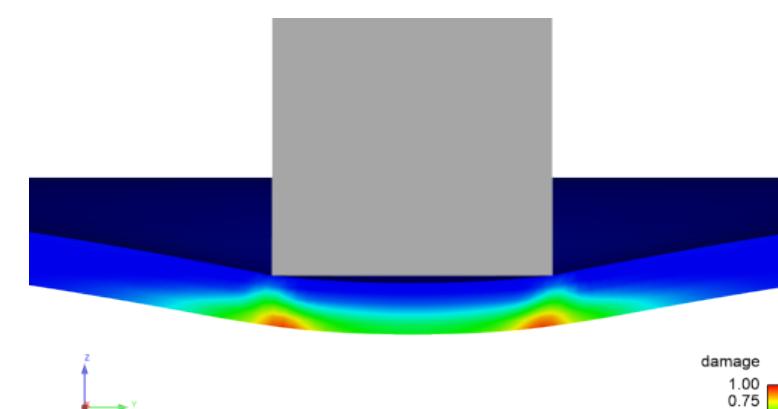
1.7 mm



2.0 mm



3.2 mm



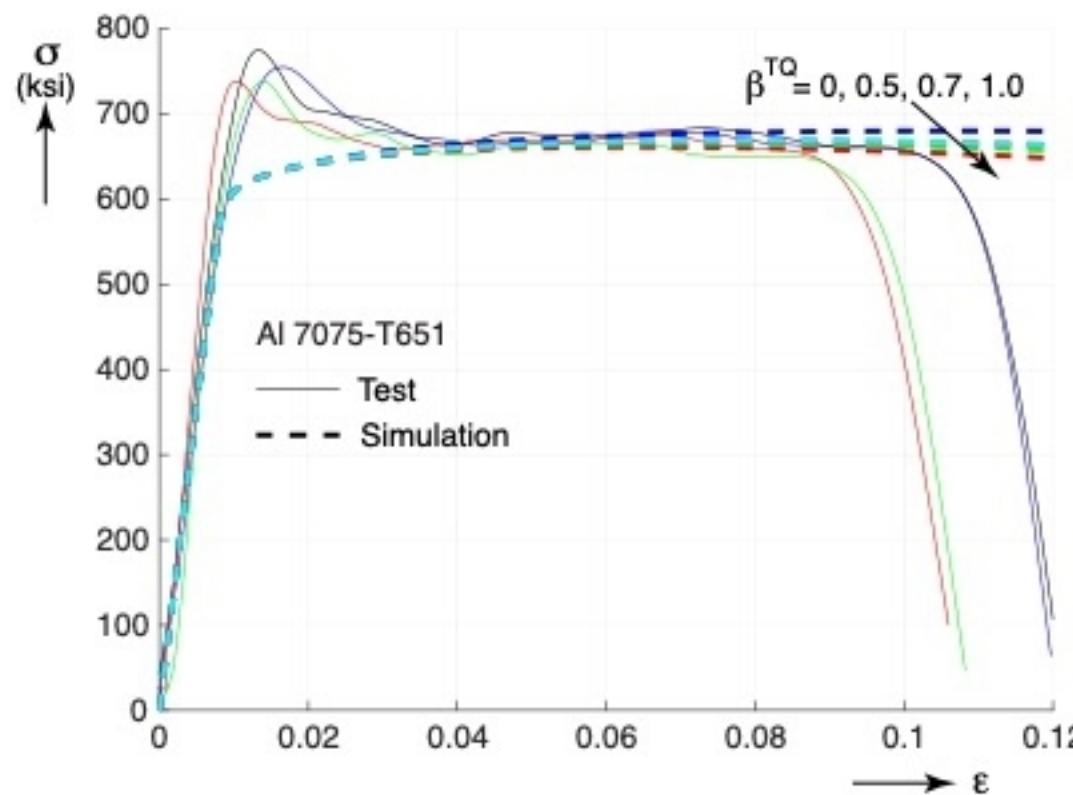
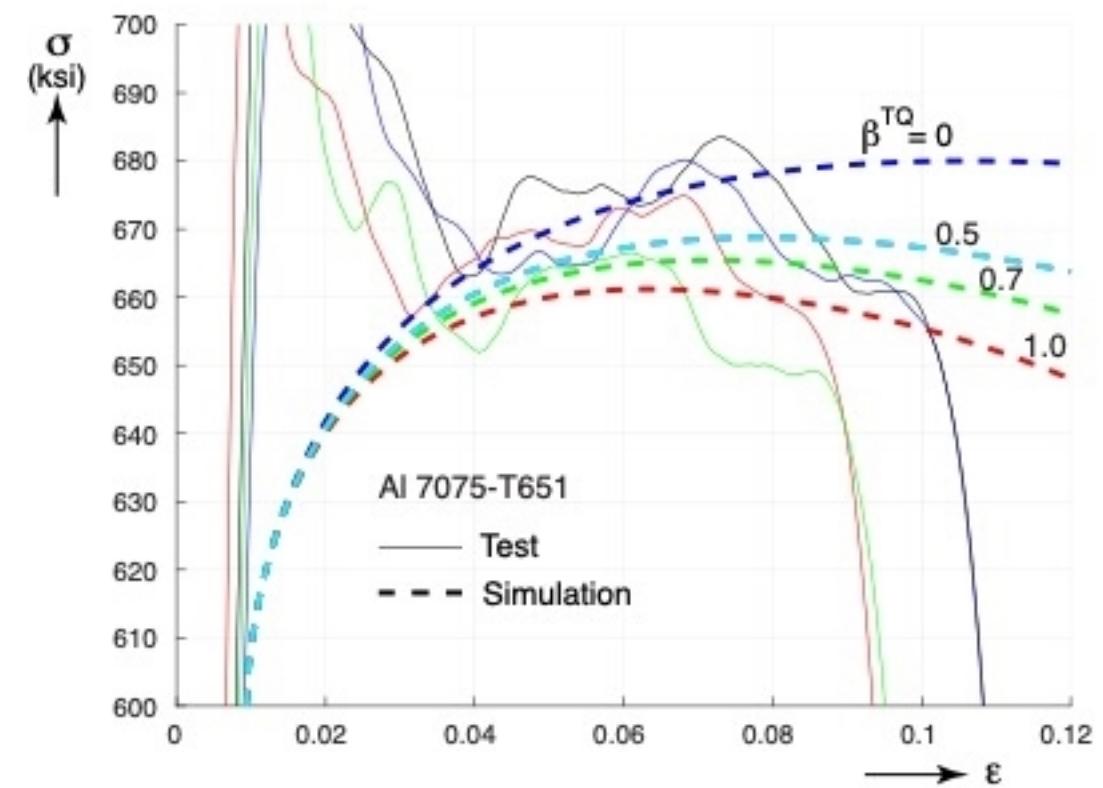
$t_{pl} = 4.8 \text{ mm}$

Conclusions

- Thermal-mechanical plasticity and ductile failure model calibrations were made from one lot of 7075 for finite element simulation of Al 7075-T651 plate puncture tests of different lots.
- Predictions for the threshold puncture punch velocity and punch Force-time histories agree reasonably well with experiments
- Not very strong element size sensitivity within the ranges studied
- Calibrated plasticity and ductile failure models were appropriate for predictions on puncture velocity, and Force-time histories but not for predicting final flap shape.

Thank you for your Attention
Questions?

Calibration of β^{TQ}



Failure Model Calibration procedure

INPUT

Experiment
 $d_i, i = 1, 6$

Simulations
 $\{\bar{\varepsilon}^p, \sigma_1, \sigma_2, \sigma_3\}_i, i = 1, 6$

Calibration Parameters
 $\{e_1, \dots, e_N\}_i, i = 1, 6$
 B
 $\{\alpha_{\min}, \alpha_{\max}, \Delta\alpha\}$
 $\{\beta_{\min}, \beta_{\max}, \Delta\beta\}$
 $\{D_{\min}^{cr}, D_{\max}^{cr}, \Delta D\}$

PREREQUISITE CALCULATIONS

$$\sigma_m = \frac{1}{3} \sum_{j=1}^3 \sigma_j$$

$$s_j = \sigma_j - \sigma_m, j = 1, 2, 3$$

$$A = \max \left(\frac{s_2}{s_3}, \frac{s_2}{s_1} \right)$$

TABULATION

for $\alpha = \alpha_{\min}$ to α_{\max} increment $\Delta\alpha$ do:

for $\beta = \beta_{\min}$ to β_{\max} increment $\Delta\beta$ do:

for $D^{cr} = D_{\min}^{cr}$ to D_{\max}^{cr} increment ΔD^{cr} do:

for $i = 1$ to 6 increment 1 do:

for $k = 1$ to N increment 1 do:

$$D_k = \frac{1}{D^{cr}} \int_0^{\bar{\varepsilon}^p} w_1 w_2 d\hat{\varepsilon}^p$$

Find e_i with lowest \bar{d}_k when $D_k = 1$

$$E_i = \bar{d}_i - d_i$$

$$E = \sum_{i=1}^6 E_i^2$$

Tabulate $\{E, \alpha, \beta, D^{cr}, \text{other diagnostics}\}$

Histories at First Failure Location

