

Evaluation of novel materials for anion sorption

Jessica Kruichak-Duhigg, Nelson Bell, Jeffery Greathouse, Philippe Weck, Ben Juba, Mark Rodriguez, Edward Matteo, and Yifeng Wang

Annual Meeting of the Clay Minerals Society and Asian Clay Conference

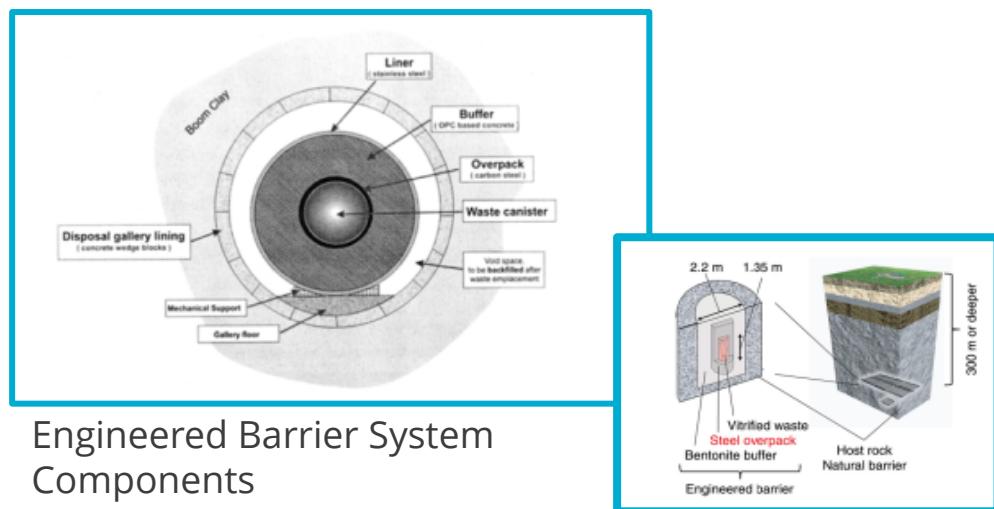
Honolulu, Hawaii

June 3- June 6

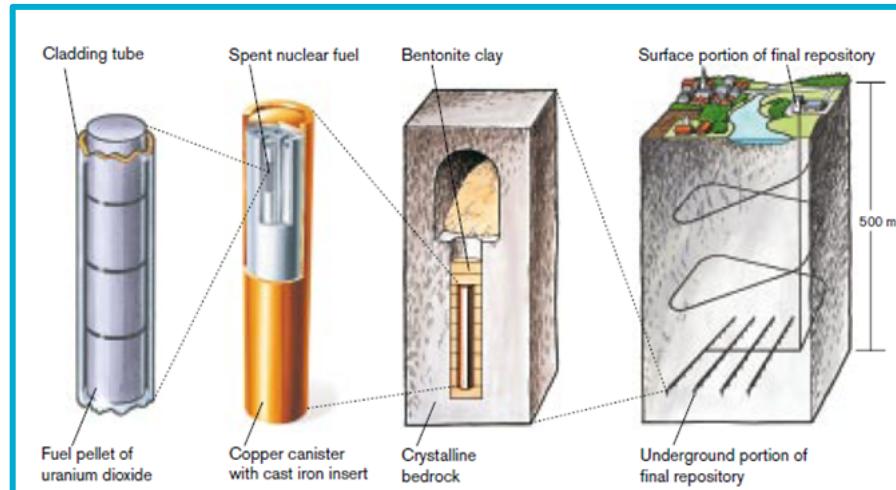
Sandia
National
Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline



- Background and Motivation
- Synthesis and Characterization
- Metal Functionalization and Characterization
- Anion Sorption
- Molecular Modeling
- Summary and Future Work

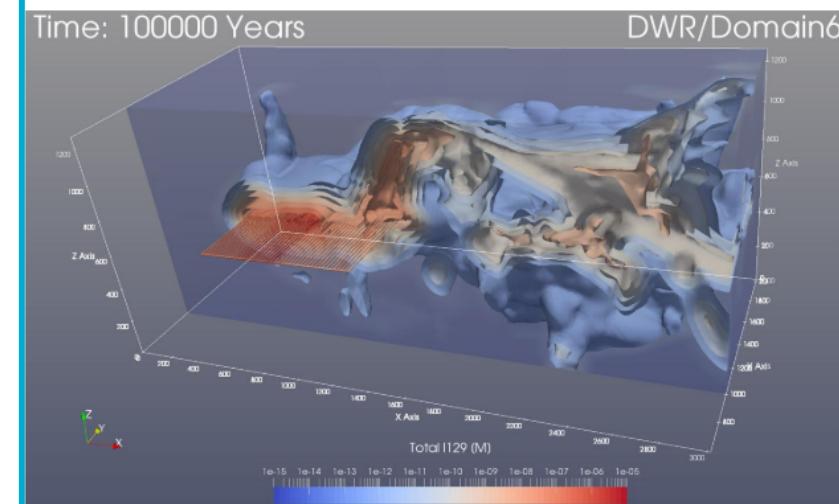
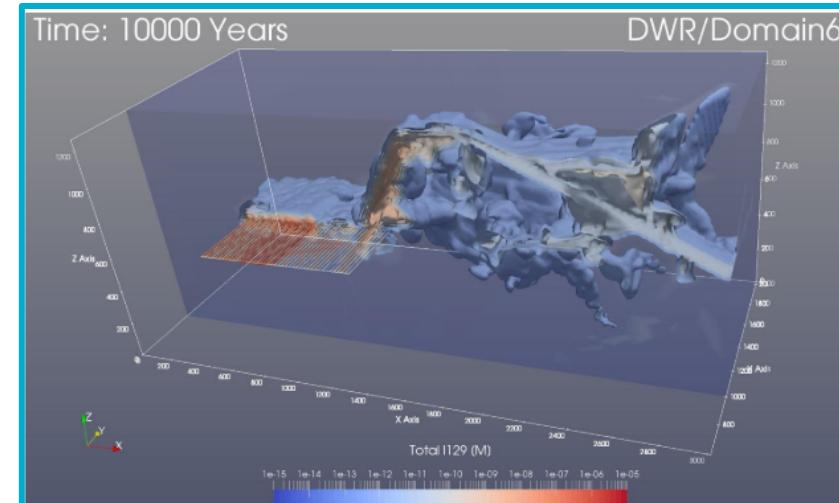

Background and Motivation

- Deep geologic disposal concepts are based on a “multiple barrier system” to control radionuclide release
 - Waste package
 - Engineered barrier system
 - Host rock itself
- One of the main functions of the bentonite buffer and/or backfill in the engineered barrier system (EBS) is to capture and isolate cationic radionuclides in the near-field environment.

Engineered Barrier System Components

Mined repositories in crystalline rock (SKB 2011)

Background and Motivation

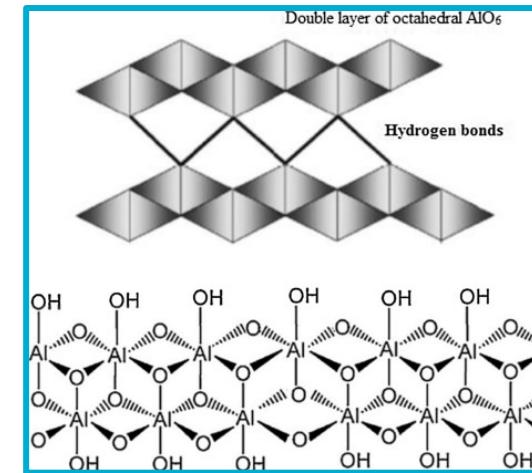


Iodide (I⁻)

- Dose release in the safety case for the deep geologic repository is frequently driven by the release of anion species.
- More specifically the anionic species- ¹²⁹I due to long half life of 15.7 million years and mobility
- The DOE Hanford Site is another example of remediation issues particularly ¹²⁹I contamination in the subsurface from former plutonium production.

Moore et al. 2020

Performance Assessment (PA Models)

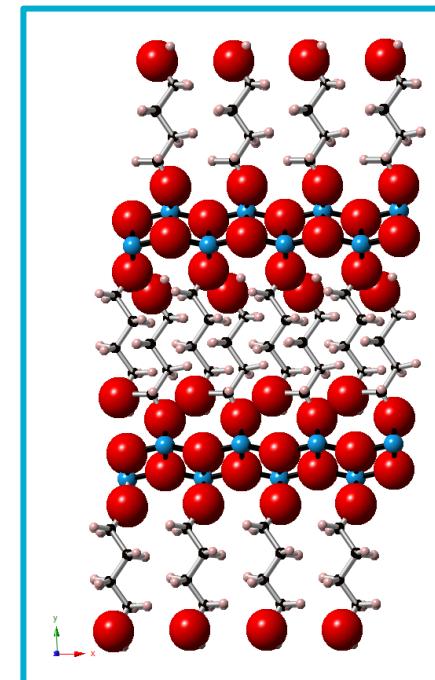
- Thermal-hydrological-chemical processes simulated via PFLOTRAN


Sevougian et al. 2016

Synthesis and Characterization

Boehmite

- Aluminum oxyhydroxide (γ -AlO(OH)): commercially used because of its high surface area as a catalyst support material or adsorbent.



M.Mohammadi, et.al. (2021)

Glycboehmite (GB)

- Aluminum oxyhydroxide boehmite synthesis using a glycothermal reaction in 1,4-butanediol
 - Under synthesis conditions the atomic structure of the boehmite phase is altered by chemisorption of the glycol solvent in place of interlayer hydroxyl groups

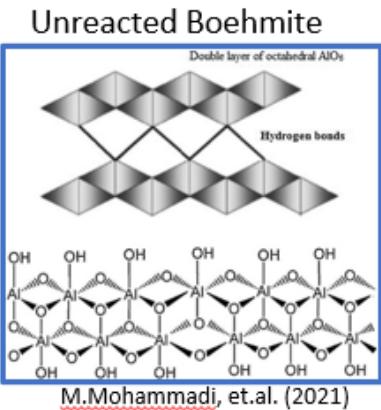
M. Inoue, Y. Kondo, and T. Inui, (1988)
M. Inoue, (2004)

Bell, N. et. al. (2021)

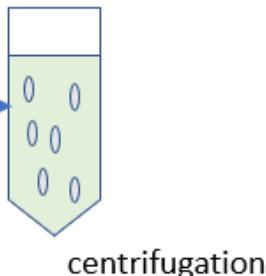
Diol content

Comparison of atom ratios from XPS and hypothetical diol loading a site substitution of 0.15 (C₄H₈OH) is the best match to XPS and C content (combustion)

	mol %Al	mol% C	mol% O	mol% K ^a	wt% C
XPS	24.95	16.46	58.33	0.26	13.4 ^b
AlOOH	33.33	0.00	66.67		
AlOOH (C ₄ H ₈ OH) _{0.10}	28.49	11.40	59.83	0.28	7.11
AlOOH (C ₄ H ₈ OH) _{0.15}	26.60	15.96	57.18	0.27	10.12
AlOOH (C ₄ H ₈ OH) _{0.20}	24.94	19.95	54.86	0.25	12.85
AlOOH (C ₄ H ₈ OH) _{0.25}	23.47	23.47	52.82	0.23	15.32
AlOOH (C ₄ H ₈ OH) _{0.30}	22.17	26.61	51.00	0.22	17.58

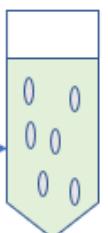

XPS data

Combustion analysis


Hypothetical values

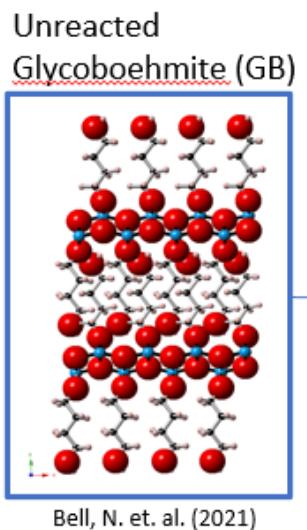
^a Based on 0.01 K per AlOOH formula unit for hypothetical formulas. ^b Average weight % C from two combustion samples (Galbraith Laboratories, Inc.)

Metal Functionalization


React Boehmite with
0.01M NiCl_2

Liquid: Boehmite/GB reacted solutions
ICP-OES analysis to measure:

- M^{2+} uptake
- Released species

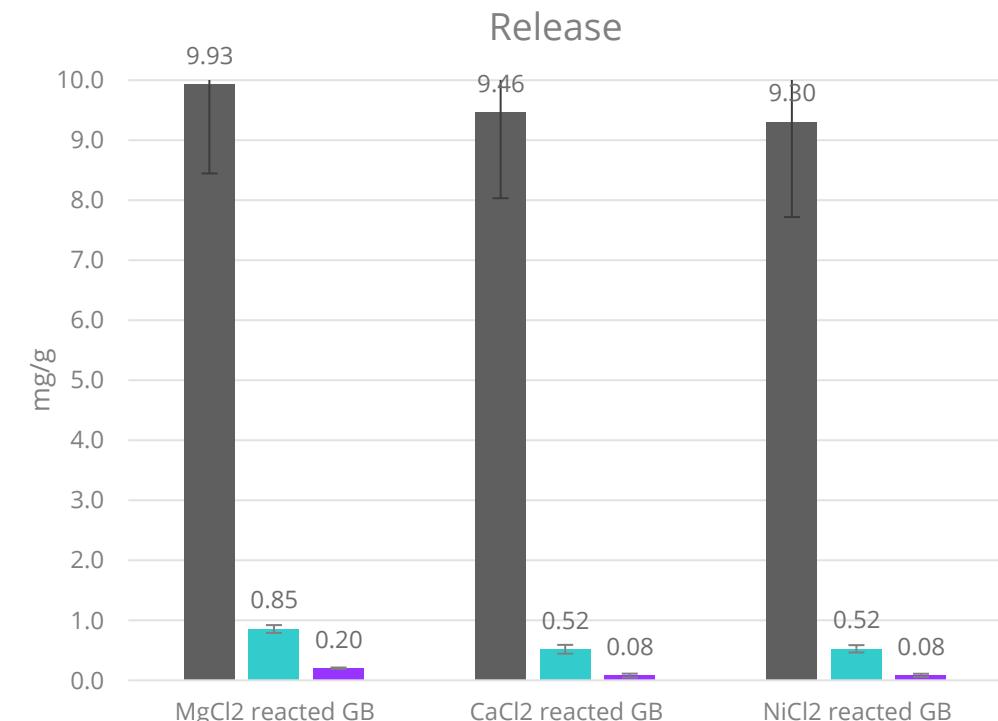
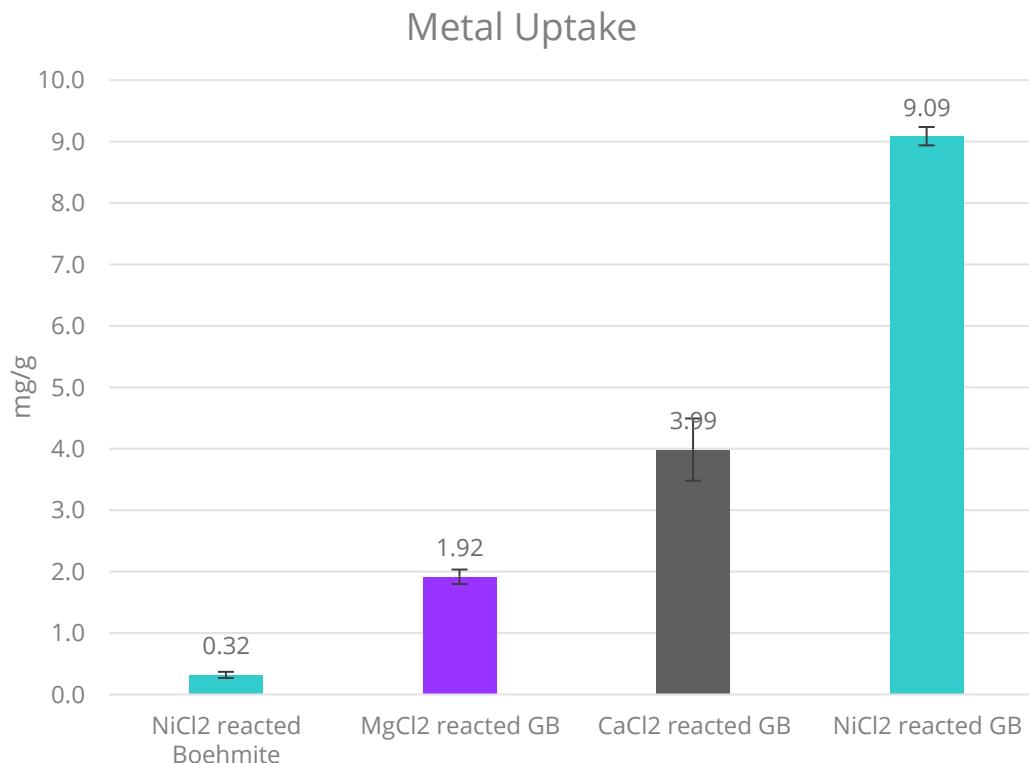

centrifugation

React GB with 0.01M
 MgCl_2 ,
 CaCl_2 , or NiCl_2

Solid: M^{2+} -functionalized material
Digestion of solid analyze with ICP-OES
and XRF to measure:

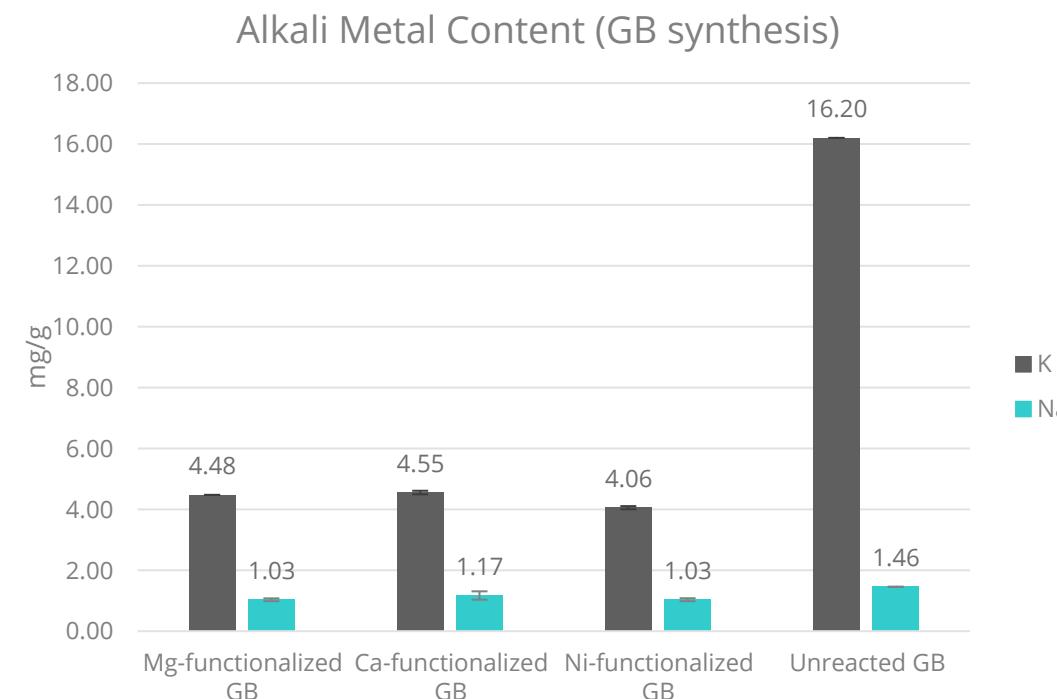
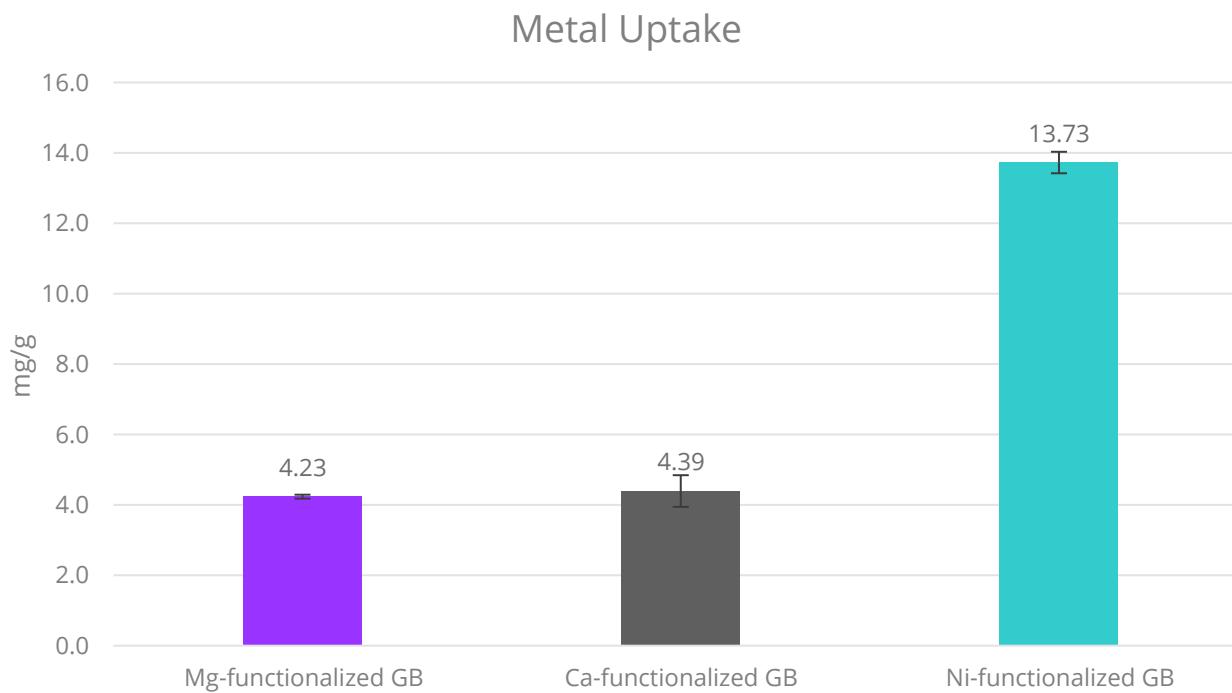
- M^{2+} uptake
- Released species

Final Materials:



- Unreacted boehmite
- Ni-functionalized boehmite
- Unreacted GB
- Mg-functionalized GB
- Ca-functionalized GB
- Ni-functionalized GB

Modified material characterization

Liquid analysis using ICP-OES (metal uptake and release)



- GB has a greater capacity for Ni^{2+} than either Mg^{2+} and Ca^{2+}
- GB significantly greater uptake of Ni^{2+} compared to boehmite
- The same amount of K^+ is released when reacted with either MgCl_2 , CaCl_2 , and NiCl_2

Modified material characterization

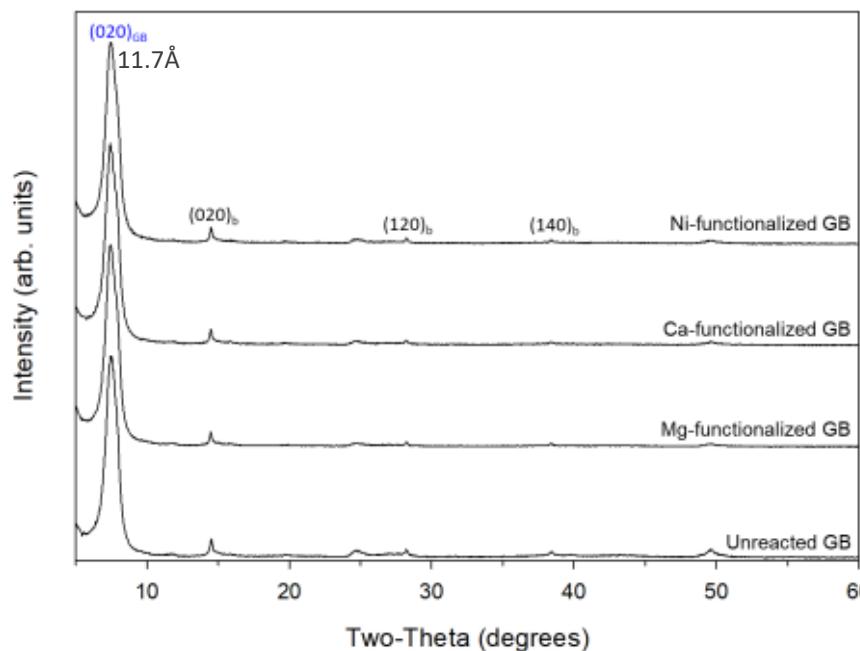
Solid material acid digestion then liquid analysis using ICP-OES
(metal uptake and release)

- Similar results to liquid analysis
 - Ni^{2+} uptake significantly higher than Mg^{2+} and Ca^{2+} by GB
 - K^+ release is similar when GB reacted with MgCl_2 , CaCl_2 , and NiCl_2

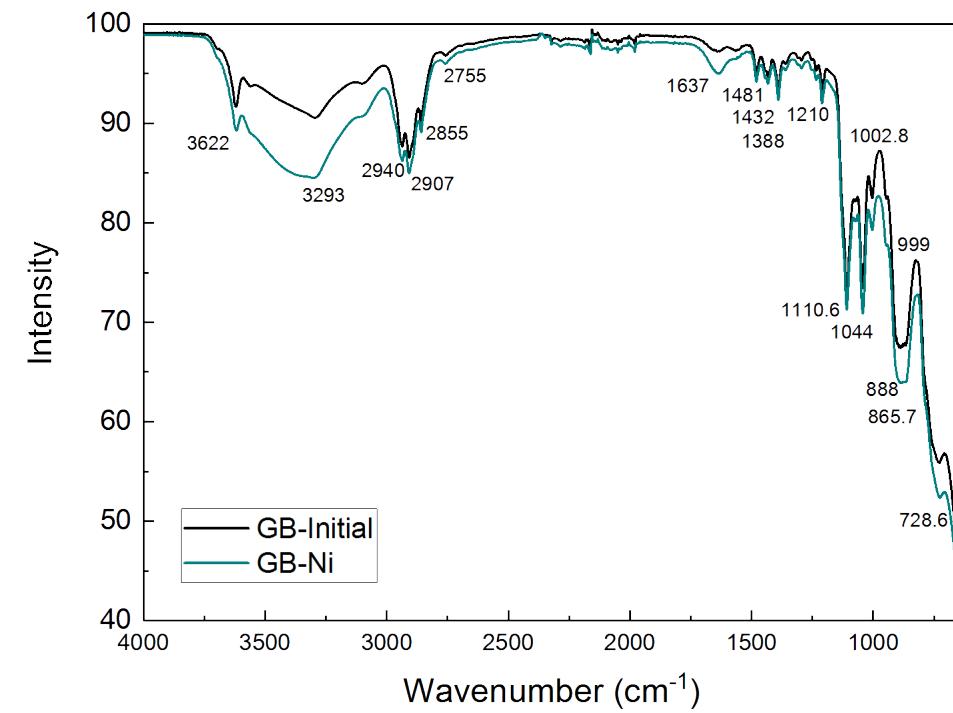
Metal Composition by X-ray Fluorescence

XRF of GB and metal functionalized GB
(metal uptake and release)

- Conclusion: Third method shows same trend as above two elemental methods:
 - Metal uptake trend: $\text{Ni}^{2+} > \text{Ca}^{2+} > \text{Mg}^{2+}$
 - K^+ similar release in all reacted materials


GB Material	Mole percent elemental species					
	Al	Cl	K	Ca	Mg	Ni
Unreacted GB	94.96	0.06	5.64	0.00	0.00	0.00
Mg-functionalized GB	96.21	2.07	1.24	0.02	0.44	0.00
Ca-functionalized GB	94.58	2.07	1.24	2.10	0.00	0.00
Ni-functionalized GB	93.92	2.84	0.85	0.00	0.00	2.38

*Cl⁻ from reaction step (chloride salts)


Structural Analysis

XRD and FTIR show no structural change when GB functionalized with divalent metals

- Little to no change in the $(020)_{GB}$ peak location for all functionalized materials when compared to unreacted GB
- Interlayer spacing for dry GB powders is dictated by the incorporation of the organic glycol molecule regardless of cation present

- GB and Ni-functionalized GB appear unchanged in FTIR peak location and intensity

Anion Sorption

Iodide/pH adjusted

- Sorption Reactors
 - 0.1g of material
 - 7.425 mL deionized water
 - pH adjusted to 7(+/-0.5) using KOH or HNO3
 - 0.075 mL 1000ppm I⁻ standard (final I⁻ concentration 10ppm)
 - pH adjusted to 7(+/-0.5) using KOH or HNO3 before I⁻ addition
- Analyze I⁻ concentration using Ion Chromatography (IC)

Arsenate

- Sorption Reactors
 - 0.1g of material
 - 19.9 mL deionized water
 - 0.1 mL 0.01M sodium arsenate (final arsenic concentration 3.75ppm)
- Analyze arsenic at the 188nm wavelength using Inductively Coupled Plasma- Optical Emission Spectra (ICP-OES)

Calculate the K_d value

Solid: liquid partitioning coefficient (mL/g)

$$K_d = (C_1 - C_f) / C_f * S$$

C₁= initial aqueous anion concentration (mg/L)

C_f= final aqueous anion concentration (mg/L)

S= solid: solution ratio (g/mL)

I⁻ and AsO₄³⁻ Sorption (surface area)

No pH adjustment:

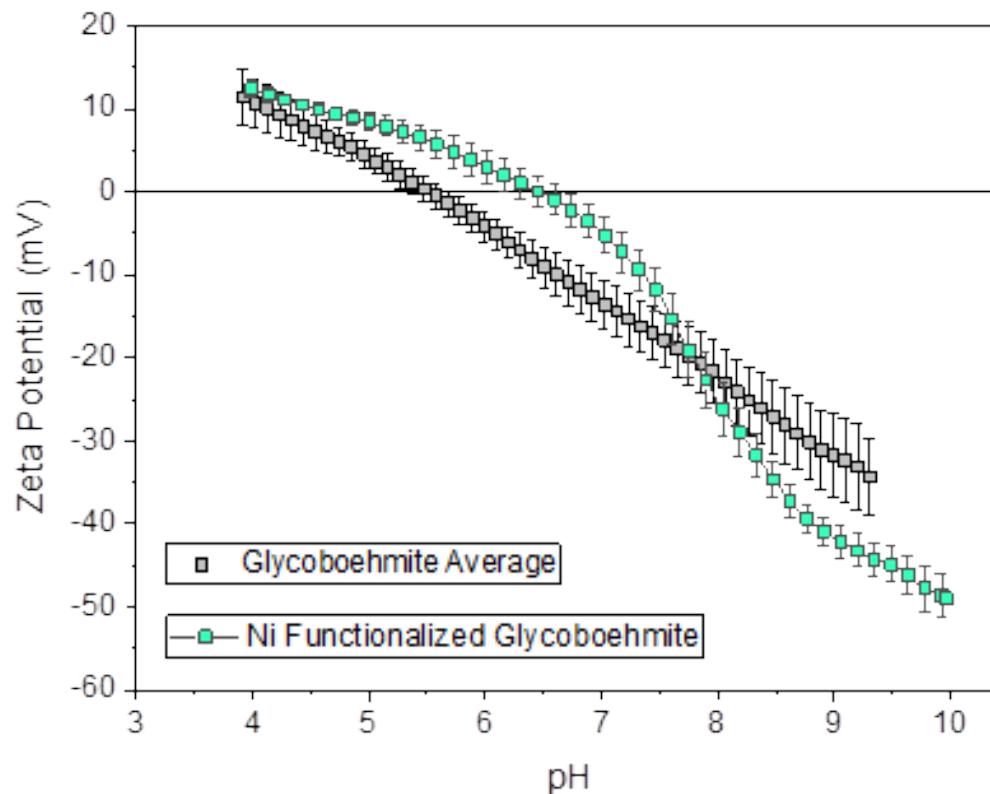
- K_D for arsenate and iodide increases significantly when GB is functionalized with Ni²⁺ (~45 times)
- Mg²⁺ and Ca²⁺ doesn't influence I⁻ sorption like Ni²⁺ does
- pH remains high resulting in low sorption- while the pH in the Ni-functionalized reactor is much lower

pH adjustment:

- I⁻ K_D is much higher in Ni-functionalized GB compared to unreacted GB
- KD for iodide increase a small amount when comparing boehmite and Ni-functionalized boehmite
- pH adjustment in the Ni-functionalized GB showed a higher K_D for I⁻ than the unadjusted pH reactors

GB material	No pH adjustment			pH adjustment	
	Iodide K_D	Arsenate K_D	Final pH	Iodide K_D	Final pH
Mg-functionalized GB	1.63		9.67		
Ca-functionalized GB	0.85		9.80		
Ni-functionalized GB	43.07	6427	6.28	60.85	6.42
Unreacted GB	0	135	9.67	13.23	7.96
Ni-functionalized boehmite				29.06	6.56
Unreacted boehmite				21.37	7.24

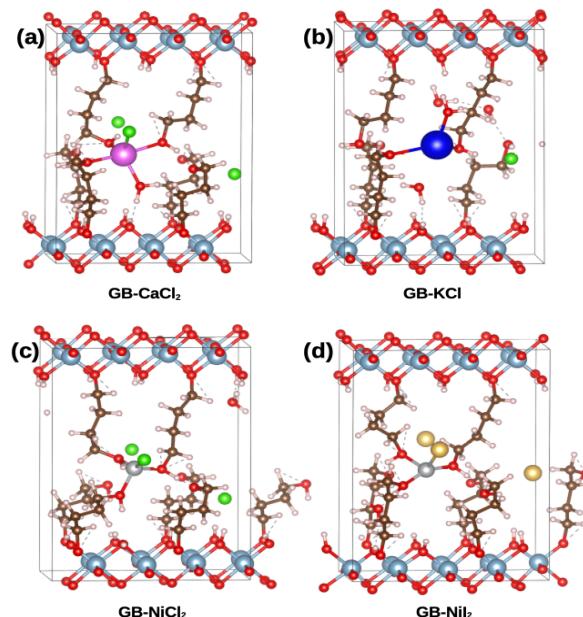
Surface area, Ni^{2+} uptake, and I^- sorption



- Boehmite has a much higher surface area than GB
- When surface area is considered GB has a 12 times higher affinity for Ni^{2+} than boehmite does
- Ni-functionalized GB has a 5 times higher $\text{I}^- k_D$ than Ni-functionalized GB when normalized by surface area

Material	BET surface area (m ² /g)	Ni^{2+} uptake (mg/g)	I^- sorption (KD) (pH adjusted)
Unreacted boehmite	297.5	0.32	21.37
Ni-functionalized boehmite	285.4		29.06
Unreacted GB	122.7	9.09	13.23
Ni-functionalized GB	119.7		60.85

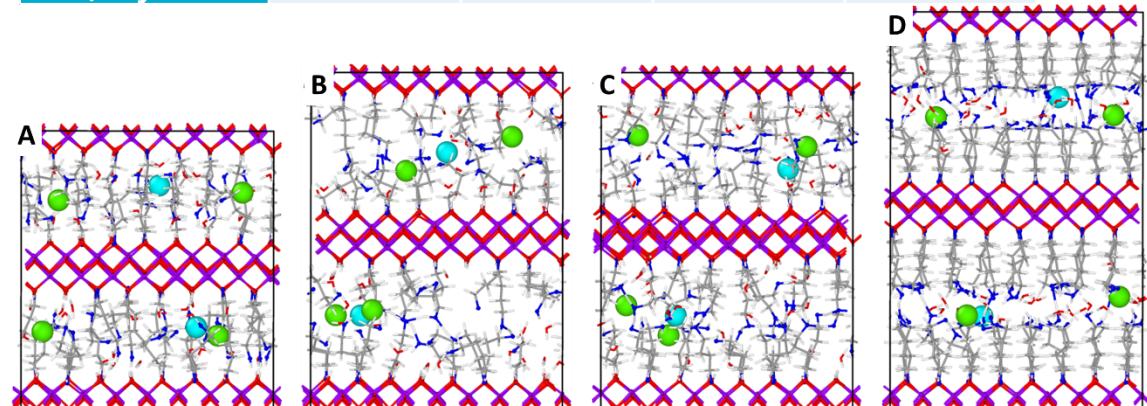
Surface charging behavior- Zeta Potential


- GB has a much lower isoelectric point than boehmite (~9)
 - GB has partial substitution of surface hydroxyls with mono terminated glycol modifications
- Isoelectric point shift from 5.5 to 6.5 and a change in pH sweep profile when Ni^{2+} is adsorbed to the material
 - Additional positive surface charge from Ni^{2+} adsorbed into the hydrophilic interlayers through coordination with neighboring oxygen atoms from butanediols and surface hydroxyls
- As pH rises Ni^{2+} becomes hydrolyzed to NiOH at pH 8 and further to Ni(OH)_2 (strong downward trend)
 - The cancelation of the positive surface charge as the Ni hydrolyzes and adsorbs OH^- species shows additional negative charges are present from the solution

Molecular Modeling

Ab initio molecular dynamics (AIMD) simulations

- Metal ions initially immobilized in the interlayer
 - Form covalent bonds with oxygen atom from butanediols and water molecules
- Cl⁻ and I⁻ anion appear to form covalent bonds with Ca and Ni in the GB-CaCl₂, GB-NiCl₂, and GB-NiI₂ for charge compensation



Al-Cyan, C-Brown, Ca-Magenta, Cl-Green, H-White
 I-Yellow, K-Blue, Ni-Grey, O-red

CMD simulations

- XPS results- approximate loading 0.66 diol/u.c with a d-spacing of 11.7 Å (XRD results)
- Here 0.5 diols/u.c show higher d-spacing (12.6 Å for K⁺ and 12.7 Å for Ni²⁺)
- Experimental samples don't contain water in the interlayer

Ions	0.5	1.0	1.25	2.0
no ions, dry	11.0	12.2	15.1	16.7
K⁺	12.7	14.3	15.7	18.3
Ni²⁺	12.6	15.3	15.4	18.0
Ni²⁺, dry	12.2	15.5	15.5	17.2

Snapshots from CMD simulations of GB with hydrated NiCl₂ interlayers at diol loadings of A) 0.5, B) 1.0, C) 1.25, and D) 2.0 diols/u.c. Color legend: Al, purple; O, red; H, white; C, gray, Ni, cyan, Cl, green. Periodic boundaries are shown as black lines.

Summary and Future Work

We have demonstrated a new high surface area sorbent material for anionic contaminant removal

- GB when reacted with divalent metals (Ca^{2+} , Mg^{2+} , and Ni^{2+}) a higher uptake of Ni^{2+} is observed while K^+ removal from the material is similar in all reactions
- GB has a 12 times higher sorption affinity for Ni^{2+} than boehmite when normalized by surface area
- When GB is functionalized with Ni^{2+} it has a 50 fold increase in k_D for I^- and ASO_4^{3-} than GB-unreacted

Future work:

- Testing for stability/function at high temperature.
- pH dependence of I^- sorption
- Bentonite/material interaction
- Molecular modeling (particle edges)

References

1. Moore, R.C., et al., *Iodine immobilization by materials through sorption and redox- driven processes: A literature review*. Science of the Total Environment, 2020. **716**.
2. Sevougian, S., et al., *Status of Progress Made Toward Safety Analysis and Technical Site Evaluations for DOE Managed HLW and SNF*. 2016, Office of Scientific and Technical Information (OSTI).
3. Mariner, P., et al., *Advances in Geologic Disposal System Modeling and Application to Crystalline Rock*. 2016, Office of Scientific and Technical Information (OSTI).
4. Mohammadi, M., et al., *Boehmite nanoparticles as versatile support for organic?inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis*. Journal of Industrial and Engineering Chemistry, 2021. **97**: p. 1-78.
5. Bell, N.S., et al., *Polymer intercalation synthesis of glycobohemite nanosheets*. Applied Clay Science, 2021. **214**(15).
6. Inoue, M., Y. Kondo, and T. Inui, *An Ethylene-Glycol Derivative of Boehmite*. Inorganic Chemistry, 1988. **27**(2): p. 215-221.
7. Inoue, M., *Glycothermal synthesis of metal oxides*. Journal of Physics-Condensed Matter, 2004. **16**(14): p. S1291-S1303.