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Abstract

Current trends point to a future where large-scale scientific applica-
tions are tightly-coupled HPC/AI hybrids. Hence, we urgently need to
invest in creating a seamless, scalable framework where HPC and AI/ML
can efficiently work together and adapt to novel hardware and vendor li-
braries without starting from scratch every few years. The current ecosys-
tem and sparsely-connected community are not sufficient to tackle these
challenges, and we require a breakthrough catalyst for science similar to
what PyTorch enabled for AL
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The potential for scientific discovery is on the cusp of a seismic change
because of a confluence of factors, such as rapid advances in Artificial Intel-
ligence and Machine Learning (AI/ML) and their demand for low-precision,
diverse and customizable hardware, and rapid advances in traditional High Per-
formance Computing (HPC). It is imperative for the scientific community to
start building sustainable software infrastructure that can harness this poten-
tial effectively. Challenges abound because of multiple axes of growth and their
need to keep up and interoperate with one another. To prepare for the ar-
rival of exascale platforms, the United States Department of Energy launched
the Exascale Computing Project (ECP)! seven years ahead of the delivery of
the first machine, Frontier, at Oak Ridge National Laboratory. This endeavor
was a concerted effort to consolidate the gains of two decades of research and
growth in HPC software and hardware and computational science into a robust
computing ecosystem.

It would be impossible to repeat the ECP for every generation of new devel-
opment in hardware, especially because it is becoming harder to predict what
that hardware might look like. Additionally, the explosive growth in AT/ML
utility, scaling, and national interest? occurred during the lifetime of the ECP,
but only a handful of mission-critical codes were in a position to benefit from it.
In part, this is linked to the fact that commercial competition in the Al space
led to rapid developments of siloed software ecosystems which lack uniform,
stable, and scalable APIs to interface with conventional HPC software.

1ht‘cps ://wuw.exascaleproject.org
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Together, these developments have created a perfect storm where the soft-
ware ecosystem to exploit the advances in HPC and AI/ML together for science
is nearly nonexistent. Computational science needs immediate investment and
commitment to develop a framework where HPC and AI/ML interoperate effi-
ciently, scale well, and can evolve with the challenges of growing complexity in
workflows without having to go back the drawing board for each new generation
of platforms, models, and algorithms.

Similar to siloed AT software ecosystems [1], a siloed funding and develop-
ment structure fostered the state of HPC software that we are in today, which
on the surface appears coherent. However, if one would create a compatibil-
ity matrix—mot just theoretically but on a practical level—of all packages in
Spack?, the result would be much sparser than expected. Incentive structures
paired with these incompatibilities in solvers, libraries, languages, tools, etc.,
then leads to further inefficiencies, fragmentation and redundant research and
developments. While challenging the status quo is occasionally beneficial [2], a
consolidation of efforts, e.g., as seen recently in the compiler [3] or the perfor-
mance analysis communities [4], benefits everyone but especially the ones who
matter most: the users!

Another dismal example is the various programming frameworks, especially
when targeting accelerators. Although successful in their intended goal, state-
of-the-practice approaches to programming frameworks lack a holistic program
view that is crucial for attaining performance, approachability, and interoper-
ability. Frameworks often focus on executing task graphs and providing portable
computations at the kernel level, which are only a part of modern-day per-
formance engineering. Scientific codes, however, are workflows consisting of
multiple components, i.e., languages, numerical and communication libraries,
frameworks, surrogate Al models, and runtime memory management—all of
which need to be carefully orchestrated to minimize memory footprint and data
movement. As a result of this decoherence, many optimization opportunities
are missed.

We are a group of computer and computational scientists who believe that
the HPC community should be deeply concerned about the imminent barrier
to innovation that will come from not being able to use future resources in a
timely fashion. Additionally, the next iteration of code refactoring must take a
fundamentally different approach than the ECP, because the pace of change in
hardware and its specialization is likely to be faster than the pace in which a typ-
ical team can adapt their code(s) to the target hardware. Therefore, we have put
together ideas—based on our own prior experiences—for a viable application-
facing framework, that, we hope and expect would be able to support a large
class of tightly-coupled HPC/AT hybrids through several generations of hard-
ware evolution. Here, we describe our ideas that we believe can not only meet
the needs of several mission-critical science domains, but also provide a blueprint
for software where our design may not be directly applicable.

Shttps://spack.io




LATEST IN SCIENTIFIC PROGRAMMING

With the exception of the C++ -based tool Kokkos*, which has seen some adop-
tion, the vast majority of abstractions, programming models, and performance
portability tools have not been adopted by more than a handful of scientific
applications. Kokkos effectively addresses the challenge of having to maintain
multiple code variants for every different hardware target. As a result, cottage
industries have grown in many parts of the world where codes are being con-
verted from Fortran to C++, only to be able to use Kokkos. Those efforts still
focus on a largely dominant parallel execution model—it has merely switched
from distributed memory to a massively parallel model.

For many of the codes in the ECP, the objective was to offload as much work
as possible to the GPU, because of its computational and energy efficiency. Or-
chestration of data and computation movement received very limited attention,
and even more limited adoption. Orchestration was meant to be the purview
of the task-based runtime systems. Although several have been under devel-
opment for years, the only success stories they have are when the applications
using them were co-designed with the tool itself. Legacy codes, or independently
developed codes have had no success with them without deep refactoring, or in
a few cases, completely rewriting the code. The latter was up to now unfeasi-
ble in our community and whether Al-assisted code translation will be possible
without sufficient training data remains an open research question.

Another rapidly growing trend is that Python now dominates as the language
of choice for algorithmic innovations in many scientific domains. This trend has
been visible for a few years, due to a rich supporting ecosystem and the ease
of building prototypes with it. The arrival of AT/ML frameworks with Python
interfaces has further accelerated this trend across industry and academia. Tran-
sitioning prototypes developed in Python—especially those that are in flux—to
performant HPC codes has emerged as a real challenge. We are aware of at least
one use case where their toolchain® pivoted from being C++ -centric to Python-
centric because of domain scientists’ discomfort with C++, thereby making the
use of C++ -based abstractions an unsustainable development model.

It may seem impossible to reconcile the growth of Python-based development
with the anticipated growth in hardware complexity. However, the path taken by
the AT/ML frameworks—enabling plug-and-play code modules with some degree
of customization—hints at a way forward for HPC codes as well. For a scientist,
a dream come true would be to have an ecosystem where many capabilities they
need already exist, and where they can plug in missing capabilities to get results
at the cost of having to conform to the coding standards of the framework.
Such an approach had some notable successes in the cluster computing era with
multiphysics code frameworks that enabled plug-and-play features for physics
solvers®. We have succeeded in achieving some of these objectives in narrower

4nttps://kokkos.org
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contexts [5, 6].

We believe that our collective experience positions us well to articulate the
design challenges and possible solutions that may meet the needs of domain
scientists who require large-scale supercomputers to tackle mission-critical and
societal concerns.

Data Structures

Infrastructure

Arithmetic

Hardware

AI/ML Integration with HPC

Q Meshes Q Data-API Q Libraries
Q Spatial Q Movement Q Custom Solvers Q cpu N
Q Cells Q Shaping Q Mixed/Lower QO Non-CPU devices g Btelrffcev:}\h AI{tPr/‘II;hpa‘c\;agets antd models
Q Blocks Q Transforming Precision O Memory types a Thre"e;g:;ér;gw e infrastructure
Q Polynomials Q Performance Tools Q Decomposition Q Precision o P X
Q Graphs O Modeling O Functional Q Hierarchy Use offline trained
QO Nodes Q Code Generation O Components Q0 Memory g gurrlogates v .
Q Edges O Code Synthesis 0 Spatial O Processing al _ep age.one or more science components
O N-body Q Optimization QO Domain QO Network n-situ training )
Q Particles QO Runtime 0 Data Structure || Q Storage g ;anslsolbe us.ed to.tr:fam:urro.gates .
Q Lists Q Build system Q Temporal Q /Onode g achine learning within the science code
Q Look up Q Package management Q Work flow Q Burst buffer ao agent. R
O Hashes Q Support for O Reconcile parallelism « Or machine learning using science code as

Q Tables
Q Tensors
Q Redundancy support

redundancy
Q Backends

a
[m]

of various solvers
Integration specs
High level control flow

agent
Q Al assistance as part of the developer workflow

Figure 1: The design space that a mul-

Figure 2:
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Computing software.

OBJECTIVES AND FEATURES FOR THE FRAME-

WORK

We are aware that this is an extremely complicated design space, and that any
attempt to implement a general purpose solution would be a very ambitious
undertaking. However, we also believe that a concerted effort to crystallize
some ideas for how such a framework can be built is already past due. If we had
a design and started building the framework now we may have had a possibility
of having a partially functional one halfway through the life of the post-exascale
platforms. Additionally, past experiences show that attempting to fully specify
the design of all aspects of any framework without substantial input from the
end-users, the scientists, do not survive the test of deployability. Therefore, the
exploration of the design space could, in itself, be a multi-year effort.

The only viable approach at this late date is for the design specifications to
be living documents, which may be subject to change throughout the life of the
framework. Meaningful in-depth input from end-users must be central to the
evolution of the design. Certain insights from existing frameworks and abstrac-
tion tools point to features, listed in Figure 1, which will definitely be needed
in the framework. They include a library of data structures for the supported
methods and models compatible with known algorithmic constraints; tools to
efficiently transform data when migrating between supported data structures



and hardware; and embedded tools to monitor and report on runtime behavior.
The latter will be necessary for debugging, reasoning about performance, as well
as training the AI/ML engines. Figure 2 shows our current view of how AI/ML
will be used in this ecosystem. Effectively serving a wide range of science ar-
eas, algorithms, and implementation strategies hinges on a set of features, listed
hereafter, which are essential to building and maintaining scalable HPC-AI/ML
applications.

Desired Features:

Below we enumerate the high-level features that we believe the framework must
have to be successful.

Data transformers. Components that can efficiently convert data struc-
tures for different portions of the workflow, i.e., from an HPC friendly data
container to AI/ML friendly one.

Disentangling math from control flow. The holy grail for domain
scientists is to write their equations and have the code generated to solve
them. While that is impossible to achieve universally given the multi-
tudes of ways in which equations can be solved, it is possible to enable
implementation of numerical algorithms without entanglement with data
structures through appropriate abstractions.

Expressing locality. Being able to explicitly state the data and compu-
tation locality is a critical necessity for efficiency and energy saving.

Constraining semantics. Idiomatic richness of the target language is
a proportionate burden on the optimizing compiler. Equations do not
need this richness; thus, a semantically constrained language subset that
is mutually agreed upon by the domain developers and tool developers
benefits both sides, and ultimately science. Domain-specific languages
follow this idea but relying on new syntax makes them niche solutions.

Composability. A very high degree of composability is essential for any
framework that aims to support a wide range of scientific workflows while
also accommodating non-public code.

Cost models. Such models assist in composing the components of an
application and guide optimal workflow execution decisions.

The lower levels—especially where competing solutions exist—will require input
and careful selections by panels of subject matter experts and users.

DEVELOPMENT APPROACH

Our overarching vision is to allow codes to follow a staggered development and
migration. Our collective experience is that any abrupt shift in software archi-
tecture will not only be disruptive for science that is relying upon the software
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for discovery, but also a tremendous barrier of entry to adopting new approaches.
Application codes are large and complex, and making them compatible with any
new programming model or abstraction takes a long time. If no mechanism is
provided to keep the code usable while the shift is taking place, scientists cannot
continue their work.

We propose beginning with a non-intrusive framework that enables bridging
of models through interfaces without any attempts to add new abstractions.
This should allow applications to plug into the framework and be able to use
features that they may not already have, as shown in Phase 1 of Figure 3. The
applications may be able to use limited AI/ML interfaces. As we progress to-
wards later phases, we begin to introduce abstractions where, in exchange for
handing some of the control and details over to the framework, the applications
gain greater performance and portability while simplifying their own code base.
For example, in Phase 2 the framework may become the primary custodian
of data containers, with applications indicating what their needs are, allowing
them to hand over the communication and data movement to the framework. In
the next phase, we can further abstract the knowledge of hardware and control
of data from the application so that the framework can internally apply trans-
formations and optimizations as needed. Our final goal is to reach a state where
the algorithm writer can express their arithmetic and data storage requirements
without binding them to one another. Instead, they can leave the management
to the framework.

The use of AT/ML elements is interwoven into the various phases, so as to
allow sub-programs to be seamlessly exchanged for surrogate models, as well as
use Al to estimate performance models and facilitate automatic optimization
without brute-force search.

As the framework grows more sophisticated, one can bring in the state-of-
the-art code generation/translation/assembly techniques as integrated capabil-
ities into the framework. Simultaneously, one can integrate necessary tooling to
visualize and analyze results, as well as monitor and understand performance.

IMPLEMENTATION PROPOSAL

Given that our HPC community already has a rich ecosystem of existing libraries
and tools, we envision a two-pronged approach to the development of the frame-
work. One would begin with a pilot where one can simultaneously study and
digest ways in which the existing abstractions and tools are hampered from in-
teroperability by their design choices, and conceptualizing the elements of the
framework that would overcome these limitations. In this phase, the backbone
elements of the framework would be prototyped and evaluated by the stake-
holders and the wider community. This is where the tight coupling with the
end user becomes critical for success.

Because we envision existing libraries and tools being integrated into the
whole with appropriate refactoring, the approach would be to make a draft
design for some selected (usually critical) portion of the library as a component,



build the substrate in the framework where the component fits, and then refactor
the section of the library to fit into the framework. At this point, it would be
feasible to partially evaluate the scalability and efficacy of the design. One could
assess the gaps and weaknesses and tweak it as needed. In some circumstances
some components of the design may even need a hard reset. The same process
can be repeated with other sections of the library, going back to any of the
earlier refactored portions and substrates and modifying them if necessary.

Through this incremental and cooperative co-design approach, we should be
able to catch design flaws early in the development cycle. We envision several
teams working on different aspects of the framework, who are assisted by the
latest large-language models to accelerate mundane tasks such as documenta-
tions, code transpilations, and interface creation. However, there should always
be a degree of overlap among teams and a continuous exchange of information,
especially if any team makes non-trivial change in its direction.

CONCLUDING REMARKS

We agree that this is no trivial undertaking. However, the Linux Kernel com-
munity, and more recently Deep Learning community with PyTorch et al., have
shown what can be achieved by coordinated and targeted efforts. Unfortunately,
thus far, HPC lacks this level of coordination, resulting in the field being left
behind in the rapidly changing landscape of hardware and software options.
We simply cannot afford that every application team struggles with the same
challenges in isolation anymore, especially when it comes to code modernization
and AI/ML integration.

For efficiency reasons, we urgently need a single scalable framework, into
which the majority of relevant scientific algorithms are either integrated or can
seamlessly be glued into, to enable HPC-AI/ML hybrids. Data transformers,
reuse and composability, code generation, and separation of concerns are the
keys to allow computational scientists to focus on algorithms, while computer
scientists tackle the efficiency challenges involved in mapping these algorithms
onto various processors and distributed architectures.
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