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The crash "is really the first case study that we have, not only from a fire perspective, but also just
from a crash survivability perspective,” said Anthony Brickhouse, an air safety expert at Embry-
Riddle Aeronautical University.'

[1]Insinna, V. & Plucinska, J., “Japan crash marks test of how
new carbon jets cope in a disaster,” Reuters, 01/04/24
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Quasi-static TP+DIC Geometry-agnostic Dynamic Testing

Background, Methods, and Exemplar Calibration Preliminary set-up and considerations
Application for high strain rate testing




7/

7 to flames (approximately 1000°C).
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Phosphors are transition or rare earth

Cameras image a sample that is ‘excited’
elements doped into a ceramic material

with UV light

/Phosphors are inorganic ceramics that can sense temperature
changes ranging from cryogenic (approximately -260°C)
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Phosphors produce light with
temperature-dependent color




Digital Image Correlation (DIC) provides full-field measurements
of strain and other kinematic quantities.

/4 [ ‘Keep the dots in the box” (Prof. Samantha Daly) ]

Reference (undeformed) Deformed image
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/Thermographic Phosphor Digital Image Correlation (TP+DIC) is a
synergistic elevation of the two optical diagnostics?4:3.
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[2] EMC Jones et al., Meas. Sci. Tech., 2022
[3] EMC Jones et al., Strain, 2022 ‘




/ Quasi-static TP+DIC leveraged two machine vision cameras and four UV

LEDs to image a stainless steel 304L dogbone tensile specimen.
660 nm Andover filter
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/  strains and temperatures.

DIC Axial Strain Field
[
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TP+DIC was successfully applied to simultaneously measure full-field
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Application for high strain rate testing




/I'he relationship between the intensity ratio and the temperature depends on the
geometry of the imaging equipment.

Representation of Experiment

Current procedure requires a 4 hour in-situ phosphor
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,/I'he relationship between the intensity ratio and the temperature depends on the
geometry of the imaging equipment.

Real E)(pe/'/menl'- 660 nm (BW 10 nm)

Andover filter

Current procedure requires a 4 hour in-situ phosphor
temperature calibration

FLIR (PointGrey) 2.3

MP Grasshopper
cameras Increasing efficiency of calibration will mature

Specimen the TP+DIC technology and facilitate broader
adoption of TP+DIC diagnostic.
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Geometry of imaging system

Specimen Lens Aperture and Camera
633 nm (BW 20 nm) I Bandpass Filter Detector
Andover filter (Image)
e foeal lemoth — Cherrg,
° ens rtocal lengt _ T _
) g Field-of-view F!J—_- (Entrance angle, 8 ‘-———__'_____-__________ |
° Stand_off dlstance FOV gy mimim e o oo -—-_'_'__-_,le__:__:__._:._:__________ : ....... Ir
 Field-of-view ‘

Stand-off distance, SOD Image distance, s




7

rd

74

Field-of-view,
FOW

/Development of an imaging model to account for the geometry of the
equipment and the blue-shift effect of interference bandpass filters

« Iflight isn't perfectly normal to the filter, it will be non-
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Or/g/‘na/ in situ calibration
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This model greatly reduces the time required to generate phosphor calibration
curves, increasing overall efficiency and applicability of TP+DIC.
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Preliminary results of temperature rise in a mechanically-deformed

tensile dog bone show good agreement between the two calibration

processes. Agreement will be improved with tuning of the blue shift
model parameters ‘
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/Maturing TP+DIC to dynamic testing will broaden applicability

7 All samples were sprayed with Aerosol Deposition = binderless coating
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‘4 Quasi-static testing Moderate Dynamic Extreme Dynamic Testing
/esting.
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,/ Dynamic testing advances diagnostics in a controlled laboratory

% Experimental Impact Mechanics Lab
C

. apSatEc’:wlilr:lerz.tes ranging from 100s™" to 5000s"" Dynarmic Compression Dynarnic Tension

« Loading durations up to ~Tms

 Various stress states including
compression, tension, torsion, shear, etc.

* Extreme temperatures ranging from
-200°C to 2000 °C

* In-situ DIC

\- In-situ IR Temperature Measurement

ca. 600ps loading duration /

In-situ Temperature Measurement
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,/High-speed phosphor selection must consider four factors.

Temperature
Sensitivity

300 - 600K

flir.com/products/ceyag




,/ Phosphors must thermally respond faster than the image capture time,
remain temperature sensitive, and produce high quality images.

« All samples were sprayed with Aerosol Deposition - binderless coating
* Magnesium Fluorogermanate (MFG) is used as a benchmark

Magnesium Cerium doped Yttriurm Aluminum
Fluorogermanate

(1

Exposure Time = 3300 ys Exp. Time = 0.87 ys
Thickness =5-10 um Thickness = 4 um Thickness = ~80 um

Sufficient signal from YAG:Ce was generated using a nanosecond laser pulse.
Insufficient signal was generated using continuous UV LEDs.
Next steps - finalizing excitation and installation into Hopkinson Bar Lab




/ How can we use TP+DIC to assess structural integrity for safety engineering?

FULL-SCALE TESTING

Test the safety and
response of an entire
aircraft to an
accident

COMP/SIM DESIGN

Physically-sound models
simulate new design response

LABORATORY TESTING

Small-scale material
characterization
How does work
convert to heat?

10s of Meters

10s of Microns

PRODUCTION TESTING

MODEL CALIBRATION
Plastic-work-to-heat Individual pieces can be tested in

conversion added to models accident scenarios
Rich and reliable data sets Do predictions account for thermal
reduce uncertainty and solid mechanics effects?




This work was funded by Sandia’s Laboratory
Directed Research and Development Program &
NNSA's Technology Maturation Portfolio

Questions?
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/ Evaluate phosphor-ink under large deformations

Aerosol Deposition (AD) Elastic Ink

Flame Temperatures ModerateTemperatures
(1000°C) (250°C)

Small, Simple Deformation

Large, Complex Deformation

Multiple patterning techniques extend the usability of TP+DIC

 Patterning can be tailored to the environment

» Aerosol deposition - a binderless, impact consolidation coating - can resolve flame
temperatures in reacting environments but only small deformations (left).

» Elastic ink with embedded thermo-phosphors can resolve and large deformations
but only at moderate temperatures (right).




