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• accurate prediction of quantities of interest (velocities, contact forces, energies, …)
• multiscale & multiphysics context (different time integrators, solvers, meshes, material models for different bodies)
• numerical efficiency and robustness
• non-intrusive implementation in existent legacy solvers (e.g. Sierra/Solid Mechanics (Sierra/SM), Albany, …)

Numerical simulation of challenging mechanical contact problems
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Numerical simulation of challenging multiscale contact problems

Schwarz alternating method
• treats each body separately (as non-overlapping 

subdomains) 
• prevents interpenetration through an 

alternating Dirichlet-Neumann iterative process

Domain Decomposition context – solving PDEs on irregular domains by 
splitting them into domains of regular shape, overlapping and non-
overlapping approaches [H. Schwarz (1870) | P. I. Lions (1990)]
Multiscale coupling – overlapping approach [A. Mota et al. (2017, 2021)]
Contact/impact dynamics – non-overlapping approach [A. Mota et al. (2023)*]

Conventional contact methods
• introduce contact constraints into the variational form
• solve all bodies involved in contact as a ”coupled” 

system
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Schwarz alternating method for contact problems

Controller 
time stepper

Before the contact phase:
• solve PDEs in each body separately (different solvers, discretization techniques, time integrators, …)
• prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions
• check contact criteria at each controller time step (overlap/distance conditions, compression condition, …)
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Schwarz alternating method for contact problems

Contact phase
Controller 
time stepper
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During the contact phase:
• solve PDEs in each body separately (different solvers, discretization techniques, time integrators, …)
• prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions
• check contact criteria at each controller time step (overlap/distance conditions, compression condition, …)



Schwarz alternating method for contact problems

one controller time step 

Controller 
time stepper

Contact phase
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During the contact phase:
• solve PDEs in each body separately (different solvers, discretization techniques, time integrators, …)
• prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions
• check contact criteria at each controller time step (overlap/distance conditions, compression condition, …)



Iterate until Schwarz convergence criteria are satisfied
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Schwarz alternating method for contact problems
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• Information transfer in time (interpolation)
• Information transfer in space (transfer operators)
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• Generic (appropriate for different geometries, mesh types, element sizes, …)
• Same operator used for all Schwarz iterations within one controller time step



Schwarz alternating method for contact problems

Controller 
time stepper
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After the contact phase:
• solve PDEs in each body separately (different solvers, discretization techniques, time integrators, …)
• prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions
• check contact criteria at each controller time step (overlap/distance conditions, compression condition, …)
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Impact of two 1D linear elastic prismatic rods 



Analytical solution
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• Lagrange Multiplier methods: under-predict the release time

• Penalty methods: over-predict the contact point position and under-predict the release time

• Schwarz methods: accurately predict the contact point position and release time
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• Lagrange Multiplier methods: under-predict the 

maximum potential energy peak and over-predicts 

the energy after release

• Penalty methods: similar behavior as LM methods

• Schwarz methods: accurately predicts the 

maximum energy peak and better capture the 

energy after release 
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Analytical solution

Implicit LM
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• Lagrange Multiplier methods: important energy loss up to 7% (explicit) and 10% (implicit)

• Penalty methods: important energy loss up to 8% (implicit) and 9% (implicit)

• Schwarz methods: remarkable energy conservation properties – energy loss less than 0.3%
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• Lagrange Multiplier methods: important artificial 
oscillations during the contact phase (implicit LM), 
reasonably smooth solution with few undesirable 
artefacts (explicit LM) 

• Penalty methods: reasonably smooth solution with 
few undesirable artefacts 

• Schwarz methods: artificial oscillations during the 
contact phase and after the release
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• Lagrange Multiplier methods: artificial oscillations 
during the contact phase and after the release

• Penalty methods: artificial oscillations during the 
contact phase and after the release

• Schwarz methods: artificial oscillations during the 
contact phase and after the release
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Techniques for reducing artificial oscillations
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Techniques for reducing artificial oscillations
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• Contact enforcement methods: contact laws in 
terms of the velocity [M. Jean (1999) | J.J. Moreau. 
(1999)] or position [L. Paoli at al. (2001, 2002)] 

• Mass redistribution methods: reconstruct the 
mass matrix with zero mass assigned to nodes 
on the contact boundaries, keep unchanged 
the invariants of original mass matrix [H. Khenous 
at al. (2008) | C. Hager et al. (2008)] 

• Time integrators introducing numerical 
dissipation: modified variants of the Newmark-
beta scheme [A. Chaudhary et al. (1986) | J. Chung et 
al. (1994) | B. Tchamwa et al. (1999) | T. C. Fung et al. 
(2003)]

• Stabilization methods: make the inertia on the 
contact boundary vanish [C. Kane et al. (1999) | P. 
Deuflhard et al. (2008) | D. Doyen et al. (2009)]
Ønaïve-stabilized approach: setting the 

contact accelerations to zero 
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Techniques for reducing artificial oscillations
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• Contact enforcement methods: contact laws in 
terms of the velocity [M. Jean (1999) | J.J. Moreau. 
(1999)] or position [L. Paoli at al. (2001, 2002)] 

• Mass redistribution methods: reconstruct the 
mass matrix with zero mass assigned to nodes 
on the contact boundaries, keep unchanged 
the invariants of original mass matrix [H. Khenous 
at al. (2008) | C. Hager et al. (2008)] 

• Time integrators introducing numerical 
dissipation: modified variants of the Newmark-
beta scheme [A. Chaudhary et al. (1986) | J. Chung et 
al. (1994) | B. Tchamwa et al. (1999) | T. C. Fung et al. 
(2003)]

• Stabilization methods: make the inertia on the 
contact boundary vanish [C. Kane et al. (1999) | P. 
Deuflhard et al. (2008) | D. Doyen et al. (2009)]
Ønaïve-stabilized approach: setting the 

contact accelerations to zero 

• Significant reduction of artificial oscillations
• Global relative error smaller than the conventional methods
• Schwarz method’s accuracy and energy conservation properties 

preserved 
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3D benchmark
Analytical solution

Elements type Mesh size Number of nodes Time step Average number of 
Schwarz iterations

Imp-Imp Schwarz HEX8 HEX8 189 7
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Analytical solution

Elements type Mesh size Number of nodes Time step Average number of 
Schwarz iterations

Imp-Imp Schwarz HEX8 HEX8 189 7

Exp-Exp Schwarz TETRA4 TETRA4 199 6

Imp-Exp Schwarz HEX8 TETRA4 189 199 6

Exp-Imp Schwarz HEX8 TETRA4 1025 745 8

Time TimeTime Time

Relative total energy error, %

Displacement field in x 
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Analytical solution

Elements type Mesh size Number of nodes Time step Average number of 
Schwarz iterations

Imp-Imp Schwarz HEX8 HEX8 189 7 6

Exp-Exp Schwarz TETRA4 TETRA4 199 6 5

Imp-Exp Schwarz HEX8 TETRA4 189 199 6 5

Exp-Imp Schwarz HEX8 TETRA4 1025 745 8 7

Time TimeTime Time

Relative total energy error, %

3D benchmark

Naïve-stabilized Schwarz

• Reduces the artificial oscillations
• Schwarz method’s accuracy and energy conservation properties preserved
• Decrease the average number of Schwarz iterations 



Summary
• Schwarz contact method: a promising alternative to conventional contact methods 

o Accurate predictions of quantities of interest
o Remarkable energy conservation
o Different integrators, time steps, mesh resolutions and mesh types !

Ongoing/future work
• Julia prototype for multidimensional Schwarz methods: https://github.com/lxmota/norma

o Schwarz-based contact method
o Schwarz-based coupling/multiphysics algorithm (overlapping and non-overlapping approaches)

• Adding friction, rolling, sliding conditions, …
• Implementation in the Sandia’s production codes (Sierra/SM, Albany)
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https://github.com/lxmota/norma
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