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Numerical simulation of challenging mechanical contact problems

Localized contact, impact, touching surfaces, sliding, bolted/fastener joint, ...
- presence of nonlinearities and lack of smoothness

' Q\(Q; N Q)

— Need a robust, stable and accurate method for mechanical contact

* accurate prediction of quantities of interest (velocities, contact forces, energies, ...)

« multiscale & multiphysics context (different time integrators, solvers, meshes, material models for different bodies)
« numerical efficiency and robustness

« non-intrusive implementation in existent legacy solvers (e.g. Sierra/Solid Mechanics (Sierra/SM), Albany, ...)




Numerical simulation of challenging multiscale contact problems N\

Conventional contact methods

 introduce contact constraints into the variational form
« solve all bodies involved in contact as a "coupled”
system

Penalty method - amount of interpenetration ~ contact pressure

[G. L. Goudreau et al. (1982) | T. Belytschko et al. (1991)]

Lagrange Multipliers method - additional Lagrange constraints
[T J. R. Hughes. (1976) | K J. Bathe et al. (1956)]

Perturbed and Augmented Lagrangian methods - constrained
optimization theory, hybrid penalty/LM approach

[]. C Simo et al. (1985, 1992) | R. Glowinski et al. (1989)]

Nitsche method - optimization problem with contact constraints
[F. Chouly et al. (2016) | P. Wriggers et al. (2008)]

+ well-established (proven convergence, ...)
— accuracy and stability often affected by
problem-dependent parameters

— all bodies are coupled and solved
simultaneously

— intrusive implementation

AN

AN

Schwarz alternating method ~

* treats each body separately (as non-overlapping \
subdomains)

« prevents interpenetration through an
alternating Dirichlet-Neumann iterative process

Domain Decomposition context - solving PDEs on irregular domains by
splitting them into domains of regular shape, overlapping and non-
overlapping approaches [H. Schwarz (1870) | P. I. Lions (1990)]

Multiscale coupling - overlapping approach [A. Mota et al. (2017, 2021)]
Contact/impact dynamics - non-overlapping approach [A. Mota et al. (2023)%]

+ strong theoretical basis (domain
decomposition context)

+ flexible (different time integration
schemes, solvers, meshes, material models
for different bodies)

+ non-intrusive implementation

— iterative process and transfer operators




Schwarz alternating method for contact problems \

Before the contact phase:
 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)

check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...) \
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Schwarz alternating method for contact problems

During the contact phase:

 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)

« prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions
« check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...)
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AN

Schwarz alternating method for contact problems N\

During the contact phase:
 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)
« prevent interpenetration through an iterative process based on the Dirichlet-Neumann contact boundary conditions \

« check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...)
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one controller time step




Schwarz alternating method for contact problems
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Schwarz alternating method for contact problems

—

Contact boundaries I't and 12

Notations
displacement
P ¢
acceleration -
9

Piola-Kirchoff stress P

(div P™ + pB = p¢p™ in QX1

et =x on 9, A X1

Lk Iy Lk +1 2 \pN=T on dp QX1
I | kqw”‘(.ur:, t) = ?g‘z_}rl)xikq?“‘l(nz, t) onT'xI,

Use implicit or explicit time
integrator to advance Q!

| i
A% LTransfer displacement,
S i velocity and acceleration

| to impose contact
Dirichlet BCs on T'!

N\

AN
\

mass density P

LY

body force pB \

traction T

Dynamic problem
Regular Dirichlet BCs
Regular Neumann BCs

Contact Dirichlet BCs
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Schwarz alternating method for contact problems N\
Notations \
ﬂz displacement @  Mmass density 0 A
/ acceleration (0 body force pB \
Contact boundaries I'* and I e .
Piola-Kirchoff stress  p traction T
Ly I Lk +1
l |
I I
II".’Zli“..i' P" 4+ pB = p@" in QZka Dynamic problem
nl I : I meter traction 0 ) o™ (x,t) =y on f’f»‘,i[,.(lzxzfj,c Regular Dirichlet BCs
E\ \\\ / \\ ’ //E to impose Contact PHN -_ T Dn STQZXI}": RegL”ar Neumaﬂﬂ BCS
! N / AN e : 2 = pT
Ey Y. N v Neumann BCsonT k]-'-"ﬂ;"\r = j}(ri—»FZ]xfan(nl’ t) on ['“XI, Contact Neumann BCs
()

Use implicit or explicit time
integrator to advance Q2




Schwarz alternating method for contact problems
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Contact boundaries I't and 12

k41

|r_estart the Schwarz iterative process
_______________________ ;
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(div P™ + pB = p@™
P"(x,t) =x
P'"N=T
Q" (x,t) = ?E‘t;__z_’rl)x[k{p"_l(ﬂz, t)
\
(div P + pB = p$p™
Q" (x,t) =y
P"N=T
nN — pl 1
L\JIJ N — ?(rl_,FZJ)(fan(n rt)

in Q'xI,
on 9,0 X1
on d;Q1XI,
on "%,

in .Qz'XIk
on 9,0 X1,
on a-rnzx{k
onI'?xI,

Dynamic problem

Regular Dirichlet BCs

Regular Neumann BCs

Contact Dirichlet BCs

Dynamic problem
Regular Dirichlet BCs
Regular Neumann BCs

Contact Neumann BCs

lterate until Schwarz convergence criteria are satisfied




Schwarz alternating method for contact problems
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Contact boundaries I't and 12

(div P™ + pB = p@™ in Q'XI, Dynamic problem
P (x,t) = x on d,Q' X[}, Regular Dirichlet BCs
1
L Iy, Ui +1 Q\P'N=T on 07Xy Regular Neumnann BCs
— DY -102 1
I I k‘P"(xr t) = "P(rzqu)x;kfpn (Q%¢) onT XIy Contact Dirichlet BCs
T (div P + pB = p$p™ in Q?xI, Dynamic problem
n! I : I 02, Q" (x,t) =x on a;pnthc Regular Dirichlet BCs
?0 P"N =T on 0rQ°XIy  Regular Neumann BCs
e nny — pT 1 2
qé P"N = ?(rl—»rz)xfan(n ,t) on I*XI Contact Neumann BCs
0° S k
=

lterate until Schwarz convergence criteria are satisfied




Schwarz alternating method for contact problems \
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Contact boundaries I'! and I'?

(div P™ + pB = p@™ in Q'XI, Dynamic problem
. e (x,t) =y on a,pnlek Regular Dirichlet BCs
L Iy, Ui +1 Q\P'N=T on d7 Q' Xl Regular Neumann BCs
I I ktp"(x, t) = ?g-z_;rl)x;k‘pn_l(nz’ t) onI'xIy Contact Dirichlet BCs
(div P™ + pB = p" in Q?xI, Dynamic problem
n' I i I 02 P (x,t) = x on 9,0%XI  Regular Dirichlet BCs
\P"N=T on 07 Q% X1y Regular Neumann BCs
_ pT 1 2
| LP"N - ?(Flﬂl"z)xfkim(n t) on I'"X1j Contact Neumann BCs

e

» (Can be easily coupled with different time integrators - implicit, explicit
Newmark-g, ... schemes




Schwarz alternating method for contact problems \
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N\
N\

Contact boundaries I't and 12

(div P" + pB = p@™ in Q'xI, Dynamic problem
. P (x,t) =x on 0,0 X[}, Regular Dirichlet BCs
Lk I Lk+1 Q\P'N=T ) on A7 Q' XI, Regular Neumann BCs
I I ktp"(x, t) = :sz_,rl)x;k‘pn_l(nz* t) [ onT*x1, Contact Dirichlet BCs
(div P™ + pB = p" in Q?xI, Dynamic problem
n! I : I 02 o"(x,t) =x on 0,0%XI}  Regular Dirichlet BCs
1 P"N = T” on 07 Q% X1y Regular Neumann BCs
| | | | kP“N = ?{lr‘l—»l"z)xfkjm(nl't) o1l FZXI“ Contact Neumann BCs
ﬂ I | | I

» (Can be easily coupled with different time integrators - implicit, explicit
Newmark-g, ... schemes
» Challenge: appropriate transfer operators for displacement and traction




Schwarz alternating method for contact problems
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Contact boundaries I't and 12
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(div P™ + pB = p@™ in Q'XI, Dynamic problem
. P"(x,t) =x on d,Q' X[}, Regular Dirichlet BCs
L Iy, Ui +1 Q\P'N=T on 07Xy Regular Neumnann BCs
{p? =102
I I k‘P"(xr t) = "P(rzqu)x;kfpn H(Q%4¢) ] on rix[k Contact Dirichlet BCs
(div P + pB = p$p™ in Q?xI, Dynamic problem
nt I """""""""""""""""""""" ‘( """""""" : >1< 02 P (x,t) = x on 9,0 X1y Regular Dirichlet BCs
i | i \P"N=T on 07?1, Regular Neumann BCs
| | | [>T 1 2
i i i kP“N ] ?(rl—»rz)xfan(n ,t) on "I Contact Neumann BCs
0 ——

» Information transfer in time (interpolation)




Schwarz alternating method for contact problems
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Contact boundaries 't and 12

(div P" + pB = p@™ in Q'xI, Dynamic problem
. P"(x,t) =x on d,Q' X[}, Regular Dirichlet BCs
Lk I Lk+1 Q\P'N=T ) on A7 QX1 Regular Neumann BCs
I I k‘P"(xr t) = ?ﬁz_,rl)x,kfpn_l(nzr t) | on I Contact Dirichlet BCs
(div P + pB = p$p™ in Q?xI, Dynamic problem
n! I """""""""""""""""""""" —_— a 02 P (x,t) =x on 8,Q°XI}  Regular Dirichlet BCs
m ﬁ ﬂw 1 P"N = T” on 07 Q% X1}, Regular Neumann BCs
2 | | | kP“N N ?('ﬂ_,l-.z)xfkT"(ﬂl, t) on X1 Contact Neumann BCs
0 —

» Information transfer in time (interpolation)
« Information transfer in space (transfer operators)




Schwarz alternating method for contact problems
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Contact boundaries I's™ and rdst

(div P + pB = p™
- Displacement transfer op_erator from I'SFe to rdst (pn (x t) - X
PP — [ f pydst (Ndsr).r ds] [ f pydst (vsre)T CI.S'] ﬂl 4 PnN — T
Q" (x,t) = ?g__z_’rl)xlkfp"_l(ﬂz, t)
= Traction transfer operator from I's™ to rdst ., \
PT = \ f Ndst (ysTe)T dsl \ f NsTe (gusre)T dS] .
rdse rére (div P™ + pB = p"
0? o (x,t) = x
\P"N=T
PnN — ?(rl;-l_,FZ]xfan(nlrt)
NS¢ and V95t - finite elements interpolation functions \

defined on I'sre¢ and rdst

in Q'xI,
on 9,0 X1
on d;Q1XI,
on "%,

in ﬂlek
on 9,0 X1,
on a-rnzx{k
onI'?xI,

Generic (appropriate for different geometries, mesh types, element sizes, ...)
Same operator used for all Schwarz iterations within one controller time step

Dynamic problem
Regular Dirichlet BCs
Regular Neumann BCs

Contact Dirichlet BCs

Dynamic problem
Regular Dirichlet BCs
Regular Neumann BCs

Contact Neumann BCs




Schwarz alternating method for contact problems \

After the contact phase:
 solve PDEs in each body separately (different solvers, discretization techniques, time integrators, ...)

« check contact criteria at each controller time step (overlap/distance conditions, compression condition, ...)

e —

I Iy - 1| Controller
| — - : | time stepper
Iy—1 Iy

| C Time discretization
I r r — === — | of the domain Q!

Time discretization
-+t ---- _|_|_|_| of the domain 02




Impact of two 1D linear elastic prismatic rods

1
’-!.?D___)

» Analytical solution available in [Carpenter et al., 1991]

» Newmark-g time integrator

* Numerical comparison: Schwarz method vs conventional contact methods
o implicit and explicit Lagrange multiplier methods
o implicit and explicit penalty methods

o explicit-explicit, implicit-implicit, implicit-explicit Schwarz methods




Contact point position

Impact time Release time

0.00

[ ~nalytical solution
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Contact point position N\
AN

»

0.002 - 10 r \
0.001 |
8 r . .
[ ~nalytical solution
5§ 0.000 B .
= e Implicit LM
%] -
S o001 | S 6 | Explicit LM
E S B Implicit penalty
O (5] .
5 -0.002 - @4 L B Explicit penalty
E © Exp-Exp Schwarz
O )
S -o0.003 - L
! B mp-imp Schwarz
-0.004 B mp-Exp Schwarz
4,00x107* 4.50x107" 5.00x10"" 5.50x10™"

Time

« Lagrange Multiplier methods: under-predict the release time
« Penalty methods: over-predict the contact point position and under-predict the release time

« Schwarz methods: accurately predict the contact point position and release time




Kinetic energy

Potential energy
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Potential energy

Potential energy

Potential energy
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Lagrange Multiplier methods: under-predict the
maximum potential energy peak and over-predicts
the energy after release

Penalty methods: similar behavior as LM methods
Schwarz methods: accurately predicts the
maximum energy peak and better capture the

energy after release
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[ ~nalytical solution
Implicit LM
Explicit LM

B Implicit penalty

B Explicit penalty
Exp-Exp Schwarz

. Imp-Imp Schwarz

. Imp-Exp Schwarz
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Total energy conservation
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9 % 2 Exp-Exp Schwarz
= T = B mp-imp Schwarz
o
1 B mp-Exp Schwarz
-10.0 1 1 1 1 1 1 O L _ -
-2.0x107* 0 2.0x107* 4.0x10°* 6.0x10°" 8.0x10™"

Time

 Lagrange Multiplier methods: important energy loss up to 7% (explicit) and 10% (implicit)

« Penalty methods: important energy loss up to 8% (implicit) and 9% (implicit)

« Schwarz methods: remarkable energy conservation properties — energy loss less than 0.3%
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Contact point force
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Contact point force

Contact point force

Contact point force
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Lagrange Multiplier methods: important artificial
oscillations during the contact phase (implicit LM),
reasonably smooth solution with few undesirable
artefacts (explicit LM)

Penalty methods: reasonably smooth solution with
few undesirable artefacts

Schwarz methods: artificial oscillations during the
contact phase and after the release
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Contact point velocity
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Contact point velocity
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Lagrange Multiplier methods: artificial oscillations
during the contact phase and after the release
Penalty methods: artificial oscillations during the
contact phase and after the release

Schwarz methods: artificial oscillations during the
contact phase and after the release
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Techniques for reducing artificial oscillations

150
Y 100}
—
L
—
£
o
(o 50
-
o
©
4o
c
@]
)
o F
-50
0 2.50x107 5.00x107 7.50x107* Exp-Exp Schwarz
fime B mp-imp Schwarz
. Imp-Exp Schwarz
100 |
>
=
o
o
2 op
4o
=
o
a
4
O
©
3
C -0
(@]
U
—200 L ' :
—2.0x107% 0 2.0x107% 4.0x107 6.0x107" 8.0x107

Time

B 12




Techniques for reducing artificial oscillations

Standard Schwarz: Standard Schwarz:

relative error norm 28% relative error norm 17% *  Contact enforcement methods: contact laws in

terms of the velocity [M. Jean (1999) | JJ. Moreau.

(1999)] or position [L. Paoli at al. (2001, 2002)]
| % * Mass redistribution methods: reconstruct the
2 \ = mass matrix with zero mass assigned to nodes
5 S on the contact boundaries, keep unchanged
a 7 S . . . .
o 5 the invariants of original mass matrix [H. Khenous
g 1 g atal. (2008) | C. Hager et al. (2008)]
S 9 r '" ' + Time integrators introducing numerical
. _ _ _ ; _ _ _ dissipation: modified variants of the Newmark-
' T ' T|m o beta scheme [A. Chaudhary et al. (1986) | J. Chung et
ime al. (1994) | B. Tchamwa et al. (1999) | T. C. Fung et al. Exp-Exp Schwarz
(SZOOé)'{' . Hods: malke the | . H B mp-imp Schwarz
Standard Schwarz: Standard Schwarz: tabilization metho S make the inertia on the
relative error norm 49% relative error norm 30% contact boundary vanish [C. Kane et al. (1999) | P.
Deuflhard et al. (2008) | D. Doyen et al. (2009)]
? 100 F ? 100 |
S s
) (@)
> ok L A Y S A B R > ot
= =
8 g
% 100 '\_ Ll g -100 b
[ C
@) @)
U U

o -4 -4 ~4
o 250%10 % 5.00x10Y 7.50%10°% Z.50%10 5.00=10 7.50% 10
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Techniques for reducing artificial oscillations

Naive-stabilized Schwarz: Naive-stabilized Schwarz:

relative error norm 8% relative error norm 10% *  Contact enforcement methods: contact laws in

terms of the velocity [M. Jean (1999) | JJ. Moreau.

(1999)] or position [L. Paoli at al. (2001, 2002)]
S g * Mass redistribution methods: reconstruct the
2 b mass matrix with zero mass assigned to nodes
5 . S . on the contact boundaries, keep unchanged
o = the invariants of original mass matrix [H. Khenous
2 L__ § . : at. al. (2.008) | C Haggr etal. (20@8)] .
S O + Time integrators introducing numerical
. | - . - | - - - dissipation: modified variants of the Newmark-
' T ' Time beta scheme [A. Chaudhary et al. (1986) | J. Chung et
ime al. (1994) | B. Tchamwa et al. (1999) | T. C. Fung et al. Exp-Exp Schwarz
(2003)]

. Imp-Imp Schwarz

Naive-stabilized Schwarz;

» Stabilization methods: make the inertia on the
relative error norm 13%

Naive-stabilized Schwarz: .
relative error norm 7% contact boundary vanish [C. Kane et al. (1999) | P.
Deuflhard et al. (2008) | D. Doyen et al. (2009)]

100 | ———— » naive-stabilized approach: setting the
contact accelerations to zero
IR « Global relative error smaller than the conventional methods
« Schwarz method's accuracy and energy conservation properties
. . . . - - - — preserved

] 250%10°% 5.00x10°% 7.50%107% Z.50%10 5.00=10 7.50% 10

» Significant reduction of artificial oscillations

=100

Contact point velocity
Contact point velocity
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3D benchmark
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3D benchmark

Contact boundaries I't and I'?
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3D benchmark
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3D benchmark

Contact boundaries I't and I'?

.Analytical solution
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3D benchmark

Contact boundaries I'* and I'?

.Analytical solution

AN

Elements type Mesh size Number of nodes Time step Average number of \
Schwarz iterations
= ot 02 ot 0 0! 02 ot 02
. Imp-Imp Schwarz HEXS8 HEXS8 1/2. 104 189 1.10-8 7 \
B coopschwarz | TETRA4 | TETRA4 1/2-10°% 199 1,109 6 \
. 1.0e-04
Imp—Exp Schwarz HEX8 TETRA4 1/2 . 10-4 189 199 1/2 . 10-3 1 . 10-9 6 8e-5
Sch 8 4 02 4 8 e
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1
' TS LI ESEHEIEIEIEHEHEHEIEIETTHE = == 285
: R e e e e e e e e e e e s s
. 0
: — -2e-5
1
: -de-5
X 665
Displacement field in x 8ot
-1.0e-04

Contact point velocity, P € 0!

1.0x10°

-1.0x10° |

—2.0x10° |

a
Contact point position, P € Q!
o R TITE N
'-.'\I
-2.50%10°° |
—5.00x107° |
—1.50x10°° F
~roox10t b ! ) |
-1.0%x107% 0 1.0%10°° 2.0x10°%
Time

501077 |

40%107° F

3.0%107° F

20%107° F

1ox107" |

3.0%10°% -1.0x107%

Potential energy, 0!

5.00%1077 b

1.00x10°2 F

1.50x107% |

2.00%1072

Relative total energy error, %

LWWM.’M%WMH'—

1.0%10°° 2.0%107% 3.0%107%

Time

13




.Analytical solution

AN

3D benchmark

Elements type Mesh size Number of nodes Time step Average number of \
Schwarz iterations
ol 0 0! 02 0! 02 o 02
—= Imp-Imp Schwarz HEX8 HEX8 1/2. 104 189 1.10-8 7 6
. Exp-Exp Schwarz TETRA4 TETRA4 1/2. 104 199 1.10° 6 5 \
h Imp—Exp Schwarz HEX8 TETRA4 1/2 . 10—4 189 199 1/2 . 10—8 1 . 10—9 6 5
Na’l\/e_sta bilized Schwa F-)fflmp Schwarz HEX8 TETRA4 1/4 , 10—4 1/3 , 10—4 1025 745 1 10—9 1/2 . 10—8 8 7
* Reduces the artificial oscillations
« Schwarz method’'s accuracy and energy conservation properties preserved
« Decrease the average number of Schwarz iterations
Contact point position, P € Q! Contact point velocity, P € 0! Potential energy, Ot Relative total energy error, %
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Summary

« Schwarz contact method: a promising alternative to conventional contact methods
o Accurate predictions of quantities of interest
o Remarkable energy conservation
o Different integrators, time steps, mesh resolutions and mesh types !

Ongoing/future work

 Julia prototype for multidimensional Schwarz methods: https./github.com/Ixmota/norma
o Schwarz-based contact method
o Schwarz-based coupling/multiphysics algorithm (overlapping and non-overlapping approaches)

« Adding friction, rolling, sliding conditions, ...
* Implementation in the Sandia's production codes (Sierra/SM, Albany)
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https://github.com/lxmota/norma
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