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, | Motivation for Coupling in Solid Mechanics

Concurrent multiscale coupling for predicting failure

» Large scale structural failure frequently originates from small
scale phenomena such as defects, microcracks, inhomogeneities and
more, which grow quickly in unstable manner

» Failure occurs due to tightly coupled interaction between small
scale (stress concentrations, material instabilities, cracks, etc.) and
large scale (vibration, impact, high loads and other perturbations)

» Concurrent multiscale methods are essential for understanding
and prediction of behavior of engineering systems when a small
scale failure determines the performance of the entire system

Simplification of mesh generation

* Creating a high-quality mesh for a single component can take
weeks, making it “the single biggest bottleneck in analyses” [Sandia
Lab News, 2020]!

Goal: develop a concurrent multiscale coupling method that is
minimally-intrusive to implement into large HPC codes and can
simplify the task of meshing complex geometries.

Roof failure of Boeing 737 aircraft due to
fatigue cracks. From imechanica.org
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Schematic of difficult-to-mesh ratcheting mechanism with
multiple threaded fasteners. From Parish et al., 2024.
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Requirements for Multiscale Coupling Method

Coupling is concurrent (two-way)
Ease of implementation into existing massively-parallel HPC codes

“Plug-and-play” framework: simplifies task of meshing complex geometries

> Ability to couple regions with different non-conformal meshes, different element types and
different levels of refinement

> Ability to use different solvers/time-integrators in different regions

Scalable, fast, robust (we target real
engineering problems, e.g., analyses
involving failure of bolted components!)

Coupling does not introduce nonphysical
artifacts

Theoretical convergence properties/
guarantees




« I Schwarz Alternating Method for Domain Decomposition {

* Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:
* Solve PDE by any method on Q, w/ initial guess for transmission BCs on TI}.
Iterate until convergence:

« Solve PDE by any method on Q, w/ transmission BCs on I, based on values

just obtained for (,. non-overlapping
* Solve PDE by any method on Q, w/ transmission BCs on I'; based on values o, )F o,
just obtained for (,. \
oY) i
» Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods |
to solve linear algebraic equations.
Idea behind this work: using the Schwarz alternating method as a discretization

method for solving multi-scale or multi-physics partial differential equations (PDEs).



7 I How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM
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. Quasistatic Solid Mechanics Formulation

« Energy functional defining weak form of the governing PDEs

D] = J.n A(F,Z)dV — fﬂ pB - @dV

» A(F,Z): Helmholtz free-energy density

» F:= V¢: deformation gradient

» Z: collection of internal variables (for plastic materials)

» p: density, B: body force, P = dA/dF: Piola-Kirchhoff stress
« Euler-Lagrange equations, obtained by minimizing ®|¢]: {DivP +pB=0,in 0

Q=Y on d{}
« Quasistatics solves sequence of problems in which loading (body force) B is incremented
quasistatically w.r.t. pseudo time t;:

Fori=1,..,n
Solve Div P + pB(t;) = 0 with appropriate boundary conditions (BCs)
Increment pseudo time t; to obtain t;,



Spatial Coupling via (Multiplicative) Alternating Schwarz

10

Overlapping Domain Decomposition

Div P\""" 4+ pB(t) =0, inQ,

(P;Enﬂ) =X on d(;\I'
‘p§n+1) _ t’pgn} on I
Div P + pB(t;) = 0, inQ,
o) = x, on d{l,\I
‘PEHI) _ fPEIHl} an 1.2

Model PDE:
DivP+pB =0,in ()
Q =YX, on dQ)

Dirichlet-Dirichlet
transmission BCs [Schwarz,
1870; Lions, 1988]

Non-overlapping Domain Decomposition

r
Div P 4 pB(t) =0, in

1o =1, on 9, \T
+1
L 'Pgn ) = Ans1 on I’
(. (n+1) .
Div P, + pB(t;)) =0, in{),
3 rpg"'“} =X, on dQ,\I
P;n-l-l)ﬂ — P?Hl}ﬂ, on T
\

App1 =8+ (1-8)4,,0on Iforn=1

M

2

(29

Relevant for multi-material and
multi-physics coupling
Alternating Dirichlet-Neumann

transmission BCs [Zanolli et al.,
1987]

Robin-Robin transmission BCs also
lead to convergence [Lions,1990]

0 € [0,1]: relaxation parameter
(can help convergence)



Spatial Coupling via (Multiplicative) Alternating Schwarz

11

Overlapping Domain Decomposition

Div P\""" 4+ pB(t) =0, inQ,

(P;ERHJ =X on d(;\I'
‘p§n+1) _ t’p‘gn} on rz

Div P + pB(t;) = 0, inQ,
o) = x, on d{l,\I

‘PEHI) _ fPEIHl} an 1.2

Model PDE:
DivP+pB =0,in ()
P =YX, on dQ)

 Dirichlet-Dirichlet
transmission BCs [Schwarz,
1870; Lions, 1988]

Part 1 of talk

Part 2 of talk



2 I Additional Parallelism via Additive Schwarz

Model PDE:
Multiplicative Overlapping Schwarz Additive Overlapping Schwarz {iw_ P; pB = Oén”:a* g
(i p(n+1) : (i, p(n+1) _ ,
Div P, + pB(t;) =0, inQ, Div P, +pB(t;) =0, infy
\ @§n+1) =X, on aﬂl\rl A (pgn_l_lj =X on 69.1 \Fal
Lo = 9V on T, Lo = o on T,
( (i p(+1) . e b >F1 =
Div Pgnﬂ) +pB(t;) =0,inQ, DivP, " +pB(t;)) =0, infl, \
(n+1) _
LMY =y, on 80, \I% 19 =1, on 9, \I, »
k‘ fP;{;H” _ q)&n+1] on T, \ £H+1J _ rin) on T,

* Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
« Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

» Typically requires a few more Schwarz iterations, but does not degrade accuracy
» Parallelism helps balance additional cost due to Schwarz iterations

» Applicable to both overlapping and non-overlapping Schwarz



3 1 Additional Parallelism via Additive Schwarz

Part 1 of talk Part 2 of talk Model PDE:
Multiplicative Overlapping Schwarz {zw_ Px+ pB = Oc;n“:':i ﬁ

I"
Div PV 4+ pB(t) =0, inQ,
‘Pgﬁﬂ} =X on 30 \I'

(n+1) _ (n)

e,

(P =9 on I3

)
Div PV 4+ pB(t) =0, inQ,

) ‘Péﬁl} =X on 3, \I;

(n+1) _ (n+1)
¢, =@ on I3

\

* Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
« Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

» Typically requires a few more Schwarz iterations, but does not degrade accuracy
» Parallelism helps balance additional cost due to Schwarz iterations

» Applicable to both overlapping and non-overlapping Schwarz



Overlapping Schwarz Coupling in Quasistatics

14
1: O —idx in Qy > initialize to zero displacement or a better guess in {1,
2:n<+1
3: repeat > Schwarz loop
r
Ou.te ti 4: @™« x on 0,0 > Dirichlet BC for ;
quaS]Sta 1C 5 ‘p(n) — PQj_).I‘i [rp(n_l)] onI; 0 T kT 0O, > Schwarz BC for €2;
loop 6: p™  arg mig ;] in ; > solve in 2;
PES;
7: n<n+1l
8: until converged
Advantages:

« Conceptually very simple.

* Allows the coupling of regions with different non-conforming meshes, different element types, and
different levels of refinement.

» Information is exchanged among two or more regions, making coupling concurrent.
» Different solvers can be used for the different regions.

» Different material models can be coupled if they are compatible in the overlap region.
« Simplifies the task of meshing complex geometries for the different scales.



" ‘ Convergence Proof*

A Mas | Toums © Mwan o e

2 Formulstion of the Schwarz Alermating Method

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) P[] > o[V = ... > P[E" V] = d[p™] = --- > D[], where @ is the minimizer of P[] over S.

(b) The sequence {{}5{”) } defined in (39) converges to the minimizer @ of @[] in S.

(¢) The Schwarz minimum values ®[p"™] converge monotonically to the minimum value ®[) in S starting from any
initial guess @'

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics”, CMAME 319 (2017), 19-51.



« | Implementation in Albany-LCM and Sierra/SM HPC Codes

The overlapping Schwarz alternating method has been
implemented in two Sandia HPC codes: Albany-LCM and Sierra/SM

Albany-LCM’

-LCM
* Open-source parallel, C++, multi-physics, finite element code
that relies heavily on Trilinos? libraries i
» Parallel implementation of Schwarz alternating method uses the &

=, | HR)

Data Transfer Kit (DTK)3

Sierra/Solid Mechanics (Sierra/SM)

» Sandia proprietary production Lagrangian 3D code for finite
element analysis of solids & structures

Data Transfer Kit (DTK)

« Schwarz alternating method was “implemented” in Sierra/SM
using Arpeggio loose coupling framework

We did not have to write any code in
Sierra/SM to implement Schwarz!

Thttps: //github.com/sandialabs/LCM.git. 2http://github.com/trilinos/Trilinos.git. 3https://github.com/ORNL-CEES/DataTransferKit.



https://github.com/sandialabs/LCM.git
http://github.com/trilinos/Trilinos.git
https://github.com/ORNL-CEES/DataTransferKit
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s | Cuboid Problem

..........

« Coupling of two cuboids with square base (above).
 Neohookean-type material model.

Schwarz Iteration




o ‘ Cuboid Problem: Convergence and Accuracy
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« Top right: convergence of the cuboid problem for
different mesh sizes and fixed overlap volume fraction.
The Schwarz alternating method converges linearly.

Lo B e L e L L L
L o e

Increment Norm ||Agy(™+1)||
Ol == = Do &lH ol =

ol L el L e e

+ Bottom right: convergence factor u as a function of
overlap volume and different mesh. There is faster

] . . . .
linear convergence with increasing overlap volume
fraction.
ﬂ}? I:?‘]'E + 1:] E 'u.ﬂ};, [?‘]‘E:] Increment Norm ||Ay(™)]]
« Below: relative errors in displacement and stress w.r.t.

single-domain reference solution. Errors are on the order
of machine precision. <

Subdomain  wg relative error o33 relative error F 08

04 1.24 x 10~ 14 2.31 x 10713
Qs 730 x 10710 3.06 x 1013

01f---= .

0.0

Overlap Volume Fraction



20 ‘ Notched Cylinder
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(a) Schematic

(b) Entire Domain 2

(c) Fine Region 27

(d) Coarse Region €29

* Notched cylinder that is stretched along its axial direction.
« Domain decomposed into two subdomains.
* Neohookean-type material model.




Notched Cylinder: TET - HEX Coupling

« The Schwarz alternating method is capable of coupling different mesh topologies.
« The notched region, where stress concentrations are expected, is finely meshed with
tetrahedral elements.

« The top and bottom regions, presumably of less interest, are meshed with coarser hexahedral [
elements.




Notched Cylinder: TET - HEX Coupling

U3 anor

(@) £ (h) £z

Uz relative error
Absolute residual tolerance 4 5

1.0 x 10714 0.27 x 1072 3.70 x 1073

» Relative errors in displacement
w.r.t. single-domain reference
solution are dominated by
geometric (rather than coupling)
error.




;3 | Laser Weld #1

Laser weld specimen Single domain discretization

Cauchy_Sirass 05
Co0e+01

g2z Aloany

Coupled Schwarz discretization
(50% reduction in model size)

* Problem of practical scale. ot

 Isotropic elasticity and J, plasticity with
linear isotropic hardening.

» Identical parameters for weld and base
materials for proof of concept, to become
independent models.




9y ‘ Laser Weld # 1 : Strong Scalability of Parallel Schwarz with DTK

* Near-ideal linear speedup (64-1024 cores).

64 T
------ Ideal
— Fine
32 F N T e— Medium ||
«—— (Coarse
= 16} :
=,
=
= 8} i
-
=
= 4
L. i

]32 64 128 256 512 1024 2048
Number of Processors

Data Transfer Kit (DTK)




- | Laser Weld #2: Uniaxial Tension-Test Models

Single domain:
123,425 elements AVAVAVA - — single domain
- — Schwarz (16 iters)

LIRKK
VAVAVAVAY:

Stress (Pa)

SRR L SRLnESSs,
29,254 coarse, 78,549 fine elements = L

* The domains for Schwarz coupling are meshed independently

This provides the ability to try different meshing schemes for each subdomain

* No need to re-mesh entire domain

Schwarz gives accurate prediction of stress states if tight enough Schwarz tolerance is used
» Tight Schwarz tolerance needed due to large disparity between element sizes

« For now, Schwarz is slower on this problem, but we are optimizing this




6 | Tensile Bar

The alternating Schwarz method can be used as part of a homogenization
(upscaling) process to bridge gap b/w microscopic and macroscopic regions

» Microstructure embedded in ASTM
tensile geometry (right).

* Fix microstructure, investigate
ensemble of uniaxial loads.

 Fit flow curves with a macroscale J,
plasticity model (below).

350

true stress (MPa)

¢ 10 CP ensembles
)2 fit

1 0 L 1 L L L " L
8.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
equivalent plastic strain(mm/mm)

Goal: study strain localization in microstructure.

macro- :
scale ;

micro-
structure

Macro-

scale
Work by C. Alleman, J. Foulk,

D. Littlewood, G. Bergel
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28

Solid Dynamics Formulation

1 .
» Kinetic energy: I(@):= EL pe - @dv
» Potential energy: V(p) = J’ A(F,Z)dV — f pB - @ dV
9] Q
- Lagrangian: L(g, ) =T(p)—V(p)
[
« Action functional: Sle] = L(p, @) dt
I
 Euler-Lagrange equations: (DivP+ pB =pp,  inQxI
¢ (p(‘x: t{]) = x{]; lnﬂ
(p(X: t{]) = v{]; in -Q-
k‘p(X! t) = x; on a.ﬂ. X I

* Semi-discrete problem following FEM discretization in space:

Mit + fin (U, ) = fexy



29 I Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for (2,

M+ fine(w, ) = fext

Model PDE: { u(x,0) = 11




3 I Time-Advancement Within the Schwarz Framework

I Ty 'T

I Integrate using Aty I

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Step 1: Advance (1, solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using

solution in (), interpolated to I'; at times T; + nAt;.

Model PDE: {

M+ fine(w, ) = fext
u(x,0) = u,




31 I Time-Advancement Within the Schwarz Framework

I Ty 'T

Controller time stepper
| |

| Time integrator for (2,

I\ o / | Interpolate

fromQ, to [},

Q, > Time integrator for 2,
' Integrate using At, '

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (; with time-step 4t;, using
solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in Q, interpolated to I, at times T; + n4t,.

Model ppE:  {MEF [int@ 1) = fex
u(x,0) = u,




2 I Time-Advancement Within the Schwarz Framework

Controller time stepper

| Time integrator for (2,

Q, | | Time integrator for 2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in Q, interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;,; using time-stepper in (), with time-step 4t,, using
solution in (; interpolated to I, at times T; + nAt,.

Step 3: Check for convergence at time T}, . Mii + N
Model ppE: M Fint(t 1) = fext
u(x,0) =u,
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Time-Advancement Within the Schwarz Framework

Q, I Ty ' T
Controller time stepper
r, I Integrate using At, |
r interpolate [from Time integrator for (2,
| | AT iflz tol; |
Q, | | Time integrator for (2,
|

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step At,, using
solution in , interpolated to I; at times T; + n4t,.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in £, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T}, ;.

Mit + fo (i)
» If unconverged, return to Step 1. Model PDE: { Ut fine(W ) = fext

u(x,0) = u,
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Time-Advancement Within the Schwarz Framework

Step O: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Can use different integrators with

different time steps within each domain!

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in (), interpolated to I'; at times T; + n4t,

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

L

» |If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model ppE:  {MEF Tint(W ) = fext
u(x,0) =u,
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Time-Advancement Within the Schwarz Framework

Step O: Initialize i = 0 (controller time index).

Q, Tl
T Integrate using At,
T Interpolate from
Q,t6T, AN |
Q, | I

T,

Controller time stepper

Time integrator for (2,

Time integrator for 2,

Time-stepping procedure is equivalent to doing

Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in (), interpolated to I'; at times T; + n4t,

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (1, interpolated to I, at times T; + n4t,

Step 3: Check for convergence at time T, .

L

» |If unconverged, return to Step 1.
» If converged, set i = i + 1 and return to Step 1.

Model ppE:  {MEF Tint(W ) = fext
u(x,0) =u,




% | Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

 Like for quasistatics, dynamic alternating Schwarz method converges provided each single-
domain problem is well-posed and overlap region is non-empty, under some conditions on At.

« Well-posedness for the dynamic problem requires that action functional S[¢] :=
I, |, L (@, @)dvdt be strictly convex or strictly concave, where L(g, ¢) = T(p) + V(¢) is the
Lagrangian.
> This is studied by looking at its second variation §2S[¢},]

« We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

§2S[@y] = x7 M — K]x

s
(BAL)*

> 6%S[¢y] can always be made positive by choosing a sufficiently small At

» Numerical experiments reveal that At requirements for stability/accuracy
typically lead to automatic satisfaction of this bound.

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics”, IJNME, 2022.
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;s | Elastic Wave Propagation

« Linear elastic clamped beam with Gaussian initial condition for the z-displacement.

« Simple problem with analytical exact solution but very stringent test for
discretization methods.

« Test Schwarz with 2 subdomains: Q, = (0,0.001) x (0,0.001) x (0,0.75),Q4 =
(0,0.001) x (0,0.001) x (0.25,1).

Clamped Beam Gaussian Z Prnhlllem
T=o 1. Left: Initial condition
(blue) and final solution
(red). Wave profile is
negative of initial profile
at time T =1.0e-3.

0.01

0.008 r

0.006 |

0.004 r

0.002 1

z-disp
[

-0.002 i
0.004 L | Time-discretizations:

Newmark (implicit, explicit).

-0.006

-0.008 | T Meshes: HEX, TET

-0.01




Elastic Wave: Different Integrators, Same Ats

39

0.01 ,Ti'“e_‘=° , | 500, | Time=0_
0.008 1 Dynamic Schwarz coupling introduces vl
L . no dynamic artifacts that are -
| | pervasive in other coupling methods!
0.002 | | Luwv

-:? 0 | 2 0

) -0.002 + a -100 ¢
0.004 f z-displacement ! 200 z-velocity
-0.006 4 -300 |
-0.008 | b -400
-0.01 - . ! ! -500

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Z Fd
Table 1: Averaged (over times + domains) relative errors in and z-

velocity (green) for several different Schwarz couplings, 50% overlap volume fraction

Implicit-lmplicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal HEX - HEX 2.79e-3 | 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2
Nonconformal HEX - HEX | 2.90e-3 | 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3
TET - HEX 2.79e-3 | 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2
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Elastic Wave: Different Integrators, Different Ats

Displacement Velocity Acceleration
%107

0.010 200 3

2.
N A /\ /\ /\ l[m/\ A /\ /\ /J\/\
= oo K “\v\/\)\/\/y\/v\/\/\/\\/\/
0 02 04 0.6 08 1
Position

—24

3 = e z
E = e
: =
1 -
—0.005 1 —100 1
02 04 0.6 0.8 |

-3
0 0

—0.010 - ! } ! —200
0.0 0.2 0.4 0.6 0.8 1.0 0.0
Position Position

.0

Figures above: Plots of displacement, velocity and acceleration for the
elastic wave propagation problem using different time integrators (implicit
and explicit) and different time steps (1e-2s and 2e-7s) for each
subdomain, superimposed over the analytic single domain solution.

The analytic solution is indistinguishable from Schwarz solutions
(hidden behind the solutions for () (red) and (), (green))!
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.| Tension Specimen

» Uniaxial aluminum cylindrical tensile

specimen with inelastic J, material model.

« Domain decomposition into two
subdomains (right): Qy = ends, (), = gauge.

* Nonconformal HEX + composite TET10
coupling via Schwarz.

* Implicit Newmark time-integration with
adaptive time-stepping algorithm
employed in both subdomains.

« Slight imperfection introduced at center of

gauge to force necking upon pulling in
vertical direction.




Tension Specimen: Expected Result

| Ultimate tensile strength _NeCkIn8
Fracture strength " | = "~ Fracture
Yield ;
| strength

|

|

|

|

|

|
Necking, Fracture Young’s Modulus I
= slope '
|

|

|

l

|

|

|

|
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Stress

|
|
I
|
|
|
[
. |
= stress/strain :
|
|
|

1 - |

________ y . . >
_________ J Total Strain [ I

Non-Uniform |
Elastic Uniform Plastic Plastic |
Deformation Deformation Deformation ,
A | Elastic : Plastic Stra:in ' Strain
| | Strain |



. | Tension Specimen: Displacement & EQPS*

Time: 0.000000

*EQPS = Equivalent Plastic Strain

y-displacement

1.008=02

o
g

1.47e9

5
5

m'il||||||||||||||||||||||||rm

-1.008=02

Average of ~3 Schwarz
iterations/time step required
for convergence to Schwarz

tolerance of 1e-6.

M'T|_||||||||||||||||||||||||fH

EQPS*

2.226e+00

:

11132

g

0.000e+00
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Bolted Joint Problem: Displacement

lirryez: 0.000000

Single ()

o

o
v

w

Schwarz
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Bolted Joint Problem: Equivalent Plastic Strain (EQPS)

Single [0 Schwarz



. | Bolted Joint Problem: Convergence Rate

Relative error "/

10°
103
10 10 L
N 1st timestep
o I 2nd timestep
————— 10th timestep
1000th timestep
last timestep
slope = -1
1020 | I I
7 1015 1p-10 107

. i
Relative error '™

10"

Linear convergence rate is
observed for dynamic
Schwarz algorithm, as for the
quasistatic Schwarz
algorithm.

Figure above: Convergence behavior of the dynamic
Schwarz algorithm for the bolted joint problem




Bolted Joint Problem: Performance

48

CPU times (64 Avg # Schwarz Max # Schwarz
procs?*) iters iters

Single 3h 34m

Domain

Schwarz 2h 42m 3.22 4
Single 17h 00m

Domain
(finer)

Schwarz 29h 29m 3.28 4

(finer mesh
of bolts)




. | Bolted Joint Problem: Performance

CPU times (64 Avg # Schwarz Max # Schwarz
procs?®) iters iters
Single 3h 34m
Domain
Schwarz 2h 42m 3.22 4
Single 17h 00m
Domain
(finer)
« Despite its itSitMasznature, SAWScan actually b&Faster than single*domain
run for discr@t‘ﬁ?ﬂ@)ﬁ@ having comparable # of elements in the bolts.
of bolts




., | Bolted Joint Problem: Performance

CPU times (64 Avg # Schwarz Max # Schwarz
procs?*) iters iters
Single 3h 34m
Domain
Schwarz 2h 42m 3.22 4
Single 17h 00m
Domain
(finer)
* Despite its itStMasznature, SAWEcan actually b&Faster than single*domain
run for discr@t‘ﬁ?ﬁ@f@ having comparable # jof elements in the bolts.
of bolts

» Even if the method is more computationatty expensive for some
resolutions, it may be preferred for its ability to rapidly change and
evaluate a variety of engineering designs (our typical use case).



.. | Bolted Joint Problem: Performance

CPU times (64 Avg # Schwarz Max # Schwarz
procs?*) iters iters
Single 3h 34m
Domain
Schwarz 2h 42m 3.22 4
Single 17h 00m
Domain
(finer)
. Despite ity Schwarz 29h 29m 3.28 4
run for dig (finer mesh
| of bolts)

» Even irtne metnoa 15 more computationatty eXpensive TOT SOMme .
resolutions, it may be preferred for its ability to rapidly change and .
evaluate a variety of engineering designs (our typical use case). /.

overlap region

« Dynamic Schwarz converges in between 2-4 Schwarz iterations
per time-step despite the overlap region being very small for
this problem.

* On SNL ascicgpuls, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.
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53 ‘ Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple physics components.
* Most existing coupling frameworks are based on traditional discretization methods.
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Complex System Model Traditional Methods Coupled Numerical Model
» PDEs, ODEs * Mesh-based (FE, FV, FD)  « Monolithic (Lagrange multipliers)
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling
* Classical DFT * Implicit, explicit » |terative (Schwarz, optimization)
* Atomistic, ... * Eulerian, Lagrangian...
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Th

frameworks for coupled multi-scale and multi-physics problems.

Motivation

e past decades have seen tremendous investment in simulation

r “ . /
Nl
Y X
i o <
e
. J i
Complex System Model Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods
* PDEs, ODEs * Mesh-based (FE, FV, FD)  « Monolithic (Lagrange multipliers) * PINNs
* Nonlocal integral * Meshless (SPH, MLS) » Partitioned (loose) coupling * Neural ODEs
* Classical DFT * Implicit, explicit » Iterative (Schwarz, optimization) * Projection-based ROMs, ...

Atomistic, ... Eulerian, Lagrangian, ...

« There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to
handle plug-and-play integration of non-traditional, data-driven models!



= | Flexible Heterogeneous Numerical Methods (fHNM) Project Cin
& RD
Principal research objective: LA L
» Discover mathematical principles guiding the assembly of standard and data-driven numerical models
in stable, accurate and physically consistent ways.

Principal research challenges: we lack mathematical and algorithmic understanding of how to

« “Mix-and-match” standard and data-driven models from three-classes

» Class A: projection-based reduced order models (ROMs) | This talk.

» Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

» Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

» Ensure well-posedness & physical consistency of resulting
heterogeneous models.

» Solve such heterogeneous models efficiently.

N
Q3 \
High-fidelity \
--4- mesh-free )

Three coupling methods:

| » Alternating Schwarz-based coupling l This talk.

« Optimization-based coupling
» Coupling via generalized mortar methods




s | Projection-Based Model Order Reduction via the POD/LSPG*

Method Full Order Model (FOM):

1. Data Acquisition

Number of

time steps

<+—>
A

Variables

Number of State

v

Solve ODE at different
design points

Save solution data

2. Learning of Reduced Basis

Proper Orthogonal Decomposition (POD):

XI IIU }: )

9
a_(: = f(q.t; n) *Least-Squares Petrov-Galerkin
3. Projection-Based Reduction
1scretize
FOM in time 4
r'(q;p) =0, n=1,..,T
Reduce the q(t) =~ q(t) = 2q(t)
number of |
unknowns

Apply hyper-
reduction and
minimize residual

=2

r(@0)ll;

minimizeg; || A

Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM

I i Em B
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. ‘ Schwarz Extensions to FOM-ROM and ROM-ROM
C hoic(e:’ %}U (B)Irlnggrsdecomposition
* Overlapping vs. non-overlapping domain decomposition?
» Non-overlapping more flexible but typically requires more Schwarz iterations
* FOM vs. ROM subdomain assignment?
» Do not assign ROM to subdomains where they have no hope of approximating solution

Snapshot collection and reduced basis construction
* Are subdomains simulated independently in each subdomains or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
» Strong vs. weak BC enforcement?

» Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)
 Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?
Choice of hyper-reduction
* What hyper-reduction method to use?

» Application may require particular method (e.g., ECSW for solid mechanics problems)
 How to sample Schwarz boundaries in applying hyper-reduction?

» Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz
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2D Inviscid Burgers Equation

Popular analog for fluid problems where shocks are possible, and
particularly difficult for conventional projection-based ROMs

X

u 1 { j
i?+ E( ;,x 5 ) = 0.02exp (p2x)
o ( ) r) o
2 ﬂx F}y
u(0,y, tip) =,
u(x,y,0)=v(x,y0)=1

100

M

1?0

Problem setup:

= (0,100)?, t € [0, 25]

Two parameters u = (uq,1,). Training: uniform sampling
of = [4.25,5.50] x [0.015,0.03] by a 3 x 3 grid. Testing:

query unsampled point u = [4.75,0.02]

FOM discretization:
Spatial discretization given by a Godunov-type scheme with N =

250 elements in each dimension
Implicit trapezoidal method with fixed At = 0.05

t=0.0 t=06.2

t =12.5 t=18.8

25 50 75 20 50 75

Figure above: solution of u
component at various times



.. | Schwarz Coupling Details

Choice of domain decomposition

* Solution in Q, is most difficult to capture by ROM b’
n
Snapshot collection and reduced basis construction | :

« Single-domain FOM on Q) used to generate snapshots/POD modes

1(?0

« Overlapping DD of ) into 4 subdomains coupled via multiplicative Schwarz | i
i

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
« BCs imposed strongly using Method 1 of [Gunzburger et al., 2007] at indices ip;,
q(t) =~ q+ Pq(t) |
» POD modes made to satisfy homogeneous DBCs: @ (ip;.,:) =0
» BCs imposed by modifying q : q(ip;;) < x4
Choice of hyper-reduction

« Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction
« All points on Schwarz boundaries are included in the sample mesh



3 ‘ FOM-HROM-HROM-HROM Coupling
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« FOMin Q, as thisis “hardest” subdomain for ROM

« HROMs in Q,, O3, Q4 capture 99% snapshot energy

« Method convergesin 3 Schwarz iterations per controller time-step
« Errors 0O(0.1%) with 0 errorin Q4

« 2.26x speedup achieved over all-FOM coupling

Further speedups possible via code optimizations,

additive Schwarz and reduction of # sample mesh points.

Subdomains

M

120
60
66

in 1: PROM Reduced Mesh

99% SV Energy

K_A:_\%i CPU time (s)
0.0 95
0.26 26
0.43 17
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Subdomain 2: PROM Reduced Mesh
0 20 40 60 80 100 120 140
0

cell index

nain 3: PRC

ubdomain 3 M Reduced Mesh
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63 ‘ 2D Shallow Water Equations (SWE)

Hyperbolic PDEs modeling wave propagation below a pressure
surface in a fluid (e.g., atmosphere, ocean).

oh o(hu) d(hv)
otV Tox T oy TV

00 4 9 (2 + L gn2 ) + 2 (huv) =
ac ox\ v 29 5y (v) = —Hv
d(hv) @

+ 2 (huvy + 2 (ho? + S gh? ) =
ot T ax )t | v A5 ght =

Problem setup:

« O =(-5,5)%t€|0,10], Gaussian initial condition

» Coriolis parameter u € {—4,-3,—-2,—1,0} for
training, and u € {—3.5,—2.5,—1.5,—0.5} for testing

FOM discretization:

A A
| 1.024 (1024

Lol& LO1E

e

LO16 = Lole B
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1014y
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roto M

o
104G
otz T
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[
1 ncng
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'l'.'IERE

LO0sG

Lagd ]

Figure above: FOM solutions to SWE for u = —0.5
(left) and u = —3.5 (right).

« Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300 elements

in each dimension

* Implicit first order temporal discretization: backward Euler with fixed At = 0.01
* Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

|'?r’ressio




.. | Schwarz Coupling Details

Choice of domain decomposition

Green: different from Burgers’ problem

« Non-overlapping DD of Q into 4 subdomains coupled via additive Schwarz
» OpenMP parallelism with 1 thread/subdomain

Fi ight: non-
»  All-ROM or All-HROM coupling via Pressio* gure right: non

overlapping DD w/ ghost

Snapshot collection and reduced basis construction cells creating overlap

« Single-domain FOM on () used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

IF-’-’ressio

I

« BCs are imposed approximately by fictitious ghost cell states
» Implementing Neumann and Robin BCs is challenging
* Ghost cells introduce some overlap even with non-overlapping DD
» = Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction

« Collocation for hyper-reduction: min residual at small subset DOFs

« Assume fixed budget of sample mesh points at Schwarz boundaries

*https://github.com/Pressio/pressio-demoapps

Ghost
cells

Figure above: sample mesh
(yellow) and stencil (white) cells


https://github.com/Pressio/pressio-demoapps

o ‘ Schwarz All-ROM Domain Overlap Study

Study of Schwarz convergence for all-ROM coupling as a function of N, :=
cell width of overlap region (not including ghost cells).

Water Helght
Lo 1L.002 1.00¢ Lo 1008 1010 L0112 1.018 Lous Lm18 1020 1oEz 1022
Schwarz PROM, N, = 0 Schwarz PROM, N, = 20

2
1]

-2 a ] 4 -4 -2 ] 2 4 -4 -2 [ 2 4

Fl

ol

a

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping
Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz
(right) for predictive SWE problem with y = —0.5. All ROMs have K =
80 POD modes.

« Schwarz iterations decrease (very roughly) with
N2-25 (figure, right) whereas evaluating r(q) scales
with N2

» = there is no reason not to do non-
overlapping coupling for this problem

Relative I error

« Dirichlet-Dirichlet coupling with no-overlap
(N,= 0) performs well with no convergence
issues (movie, left) and errors comparable to
Dirichlet-Dirichlet coupling with overlap
(figure below, left)

‘Water Height

10° — K =20, Ny =0
—— K=20,N; =10
— K= 20, Ny = 20
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P
un

1
10 -= K=60,Ny=0

- K=80,Ny =10
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Average Schwarz iterations
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Figures above: relative error and average # Schwarz iterations as a
function of u and N,. Black u: training, red u: testing.




o ‘ Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

Schwarz HPROM, N =5

Schwarz HPROM, N, =10 .
op-defe-oesg
o“. - * *

i —d -2 o 2 a

-
-
oh’

Figure above: example sample

Movie above: FOM (left), all HROM with N, = 5% (middle) and all HROM with N, = 10% mesh with sampling rate N, = 10%

(left). ROMs have K = 100 modes and N; = 0.5%N sample mesh points.

Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior

« For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)



., | Coupled HROM Performance

Water Height Water Height, u = -0.5
10° 5 —e— Mono PROM, various K
: —e— Mono HPROM, K = 80
—e8— Schwarz PROM, various K
10-1 - —&— Schwarz HPROM, K = 80
| = ] | - 1{]—3
o o
= = L & & —¢
U ) v
¥ 10 L
v Solid:  N,= 0.5%N g
® 10-3 Dashed: N, = 1%N ©
& & 1074
107 1 A
| coizsees=zzziiizessoooriTiae—— 0255 S2ans
1{]_5 T T T T T T T T T -:_1 ) o IID ' S Ill ) S '|2
-40 -35 =30 -25 =20 -15 -1.0 -05 0.0 10 10 10 10
u Speedup vs. Monolithic FOM

» For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!
* There are noticeable cost savings relative to monolithic FOM!

» Accuracy similar for predictive u (red) and non-predictive u (black) cases.
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o | Summary

The Schwarz alternating method has been developed for concurrent
multi-scale coupling of conventional and data-driven models.

© Coupling is concurrent (two-way).
© Ease of implementation into existing massively-parallel HPC codes.

© “Plug-and-play” framework: simplifies task of meshing complex geometries!

© Ability to couple regions with different non-conformal meshes, different element types
and different levels of refinement.

© Ability to use different solvers (including ROM/FOM) and time-integrators in different
regions.

© Scalable, fast, robust on real engineering problems

© Coupling does not introduce nonphysical artifacts.

© Theoretical convergence properties/guarantees.
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‘ Ongoing & Future Work

Development fundamentally new approach for simulating multi-
scale mechanical contact using the Dirichlet-Neumann Schwarz
alternating method

» Contact constraints are replaced with boundary conditions
applied iteratively at contact boundaries

Implementation of non-overlapping Schwarz in Sierra/SM

Working with analysts to apply Schwarz
to problems of interest to Sandia missions

> Laser welds
» Fastener modeling for joints _
» Salt caverns for oil storage From Murugesan et al., 2020.

Rigorous analysis of why Dirichlet-Dirichlet BC “work” when
employing non-overlapping Schwarz with discretizations that
employ ghost cells

Extension to coupling of non-intrusive ROMs (dynamic mode
decomposition, operator inference, neural networks)

Development of automated criteria to determine appropriate use
of less refined or reduced-order models w/o sacrificing accuracy,
enabling real-time transitions between different model fidelities

Contact boundaries I'* and *

Impact of two 3D beams having different meshes with
Schwarz contact method. From [Mota et al., 2023].

0

Q4
ML Model
(Physics 2)

I3

no

High-fidelity

==~ mesh-free
model

(Physics 3)

Q;
High-fidelity
FEM model
(Physics 2)

ROM FOM ROM  FOM ROM FOM Time

u(x, ty_1) u(x, ty) u(x, leyq)

FOM FOM . FOM . Time

u(x, ty_q) u(x, ty) u(x, bpyq)
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3 Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

« S.L. Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

« S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

« P.-L. Lions (1988): studied convergence of Schwarz for nonlinear S.G. Mikhlin
monotone elliptic problems using max principle. (1908 - 1990)

« A. Mota, |I. Tezaur, C. Alleman (2017): proved convergence of the
alternating Schwarz method for finite deformation quasi-static P.- L. Lions (1956-)
nonlinear PDEs (with energy functional ®@[¢]) with a geometric

convergence rate.

A(F,Z)dV—f B-@dV
B .
V-P+B=20 A. Mota, |. Tezaur, C. Alleman

olol = |

B

I i Em B
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Notched Cylinder: Coupling Different Materials

The Schwarz method is capable of coupling regions with different material models.

Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.
Coarse region is elastic and fine region is elasto-plastic.

The overlap region in the first mesh is nearer the notch, where plastic behavior is expected.

Overlap far from notch. Overlap near notch.

Coupled regions

Coarse, elastic region

Fine, elasto-plastic
region




_. | Notched Cylinder: Coupling Different Materials

Need to be careful to do domain decomposition so that
material models are consistent in overlap region.

* When the overlap region is far from the notch, no plastic deformation exists in it: the coarse and
fine regions predict the same behavior.

* When the overlap region is near the notch, plastic deformation spills onto it and the two models
predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.



| Single Domain Predictive ROM 0 x 100
« Uniform sampling of D = [4.25,5.50] x [0.015, 0.03] by a 3 x 3 grid i
= 9 training parameters characterized by Ay, = 0.625, Au, = 0.0075 &
» > 200 POD modes required to capture 99% snapshot energy 8l

* Queried but unsampled parameter point y = [4.75,0.02]
« Reduced mesh resulting from solving non-negative least squares problem defining ECSW

gives n, = 5,689 elements (9.1% of N, = 62,500 elements). ,
Energy ‘ (%) ()
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* Numbers in table are w/o hyper-reduction
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F’gure above: Reduced mesh of F’g ure above: HROM and FOM 1 200 400 600 800 1000
single domain HROM results at various time steps Singular value index j L



. | All-ROM Coupling

95% Singular Value (SV) Energy Retention

99% Singular Value (SV) Energy Retention

§
= 5.0
o (4 .
o 0, g g. ———————_————————— ;—_
5
® 15 - 0 20 40 60 80 100 0 20 40 60 80 100
PY ﬂq. xr I
=
1SD g‘5-
=
i)
I
' 0 20 40 60 80 100 0 20 40 60 80 100
Yy Yy

* Method convergesin only 3
Schwarz iterations per
controller time-step

Subdomains

y

* Errors O(1%) or less a,

* 1.47x speedup over all-FOM 0,

coupling for 95% SV energy .
retention case To:al

95% SV Energy 99% SV Energy
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., | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?




" ‘ Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

FOM Schwarz HPROM, Np =5

-4 -2 o 2 4 -4 - 1] 2 i

X

Movie above: FOM (left) and all HROM with N, = 5% (right).

ROMs have K = 100 modes and N; = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 5%.



o ‘ Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Helght

1cazr 1004 00

FOM

Schwarz HPROM, N, =5

-4 -2 o F 4

x

Movie above: FOM (left) and all HROM with N, = 5% (right).
ROMs have K = 100 modes and N; = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 0.

* Including too many Schwarz boundary points (N;) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior
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FOM

" ‘ Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be

included in sample mesh when performing HROM coupling?

00

Water Helght

Schwarz HPROM, N, =5

Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

-4 -2 o F 4

x

Movie above: FOM (left) and all HROM with N, = 5% (right).
ROMs have K = 100 modes and N; = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N, = 5%.

* Including too many Schwarz boundary points (N;) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior
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o ‘ Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be

included in sample mesh when performing HROM coupling?

00

Water Helght

Schwarz HPROM, N, =5

Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

-4 -2 o F 4

x

Movie above: FOM (left) and all HROM with N, = 5% (right).
ROMs have K = 100 modes and N; = 0.5%N sample mesh points.

Figure above: example sample
mesh with sampling rate N;, = 10%.

* Including too many Schwarz boundary points (N;) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior



.. | Schwarz Boundary Sampling for All-HROM Coupling

Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

1cazr

FOM

Key question: how many Schwarz boundary points need to be

included in sample mesh when performing HROM coupling?

00

PR}

Water Helght

Schwarz HPROM, N, =5

-4 -2 0 F 4 -4 -2 o F 4

Figure above: example sample

Movie above: FOM (left) and all HROM with N;, = 5% (right). mesh with sampling rate N, = 15%
b — .

ROMs have K = 100 modes and N; = 0.5%N sample mesh points.

* Including too many Schwarz boundary points (N;) in sample mesh given fixed budget of N, sample mesh
points may lead to too few sample mesh points in interior



85 ‘ Model Problem 3: 2D Euler Equations Riemann Prob I?Hressio
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Problem setup:

« 0=(0,1)%t € [0,0.8], homogeneous Neumann BCs

Fix P1 = 15, U, =v = 0, P3 = 0.029
« Vary py; IC from compatibility conditions*

» Training: p; € [1.0,1.25,1.5,1.75,2.0]

» Testing: p; € [1.125,1.375,1.625,1.875]

FOM discretization:

« Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300 orN

N = 100 elements in each dimension
Implicit first order temporal discretization: backward Euler with fixed At = 0.005
Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps) *Schulz-Rinne, 1993.

p1 = 0.875 p1=15

150 150
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Figure above: FOM solutions to Euler Riemann
problem for p; = 0.875 (left) and p; = 1.5 (right).

Preliminary results (WIP)

I i Em B



. | ©Schwarz Coupling Details

Choice of domain decomposition Q, Q,

via additive/multiplicative Schwarz

Ql Qz
* AIll-ROM or All-HROM coupling via Pressio* IF,-’ressio

* Overlapping and non-overlapping DD of () into 4 subdomains coupled IN, I
1
Snapshot collection and reduced basis construction I

Figure above: DD of (2 into 4

+ Single-domain FOM on Q) used to generate snapshots/POD modes subdomains
Enforcement of boundary conditions (BCs) in ROM at Schwarz o T fonoltn
boundaries 2 10l o

« BCs are imposed approximately by fictitious ghost cell states ] _m

* Dirichlet-Dirichlet BCs for both overlapping and non-overlapping

Residual POD energy, %

0.14

Choice of hyper-reduction

* Collocation and gappy POD for hyper-reduction | | , ,
« Assume fixed budget of sample mesh points at Schwarz boundaries # POD modes
Figure above: Slow decay of POD

energy for Euler problem
*https://github.com/Pressio/pressio-demoapps



https://github.com/Pressio/pressio-demoapps

Model Problem 3: AIll-ROM Coupling + Overlapping

1 Schwarz o |
* For smaller basis sizes and larger p;, monolithic ROM is

unstable whereas Schwarz ROM gives accurate solution!
* Increased overlap degrades accuracy (top right)

» Shock transmission error significantly increases with overlap
+ ~4.4 average # Schwarz iterations with additive Schwarz vs.
~3.6 for multiplicative Schwarz

* With additive Schwarz, can achieve lower error than
monolithic ROM for same CPU time (bottom right)

Prssure

[/ 1] [-¥] a4 (1] an L 12 14 L& 18

FOM

i 2.0
Monolithic PROM Schwarz PROM, N, =4

Movie above: FOM (left), K = 50 monolithic ROM (middle), and K =
50 overlapping Schwarz ROM with N, = 4 (left) for p; = 1.875.
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Model Problem 3: All-HROM Coupling + Non-Overlapping

8 ¥ Schwarz

* Hyper-reduction via collocation works better than gappy POD
» Schwarz can give improved accuracy relative to monolithic ROM

* Achieving cost-savings w.r.t. monolithic FOM is WIP

Pressure

Mono. LSPG, K = 200, N; = 5.0% Schwarz LSPG, K = 200, N; = 5.0%

Movie above: FOM (left), HROM (middle) and Schwarz All-HROM (right) solution.

HROMs have 5% sampling rate and 200 POD modes.

Preliminary results (WIP)

Pressure

10° 4 — identity
—— gappy_pod

10—1 4

Relative 12 error

10721

0.500 0.625 0.750 0.875 1.000 1.125 1.250 1.375 1.500
P1

Figure above: collocation and gappy POD
relative errors for K=200, 1% sampling rate.

Pressure, Ns = 5.0%

—— K = 200, maono.
—— K = 300, mono.
--- K =200, decomp.

Relative #2 error

10734

0.500 0.625 0.750 0.875 1.000 1.125 1.250 1.375 1.500
P1

Figure above: monolithic vs. decomposed HROM
errors with 5% sampling rate no overlap.



89 ‘ Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

re(qr,t) = WTr(i, t)
_ WTLTr, (L,+1, t)

ees

« L, €{0,1}%*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

« L.+ € {0,1}%*N selects degrees of freedom necessary for flux reconstruction

« Equality can be relaxed

Augmented reduced mesh: © represents a
selected node attached to a selected
element; and & represents an added node to
enable the full representation of the
computational stencil at the selected
node/element




920

ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snhapshots u;,i € 1, ..., n;, used to generate the state basis I/, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
Cse = WTLETE (Le+ (uref +V VT(HS - uref)) ) t) e R"
d, =n(i,t) € R", s=1,..,ny

We can then form the system
611 pew ClNe dl

Cnp1 = Cpn, dnh
Where €& = d, & € RNe, & = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
§ = arg minyecgn||Cx — d||, subjecttox = 0

Solve the above optimization problem using a non-negative least squares solver with an early
termination condition to promote sparsity of the vector ¢



