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About Myself
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• B.S. Physics from Oklahoma State University – 2017

• M.S. Nuclear Engineering from Texas A&M University – 2021

• Ph.D. Nuclear Engineering from Texas A&M University – 2024 (hopefully)



M.S. Research
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• Originally wanted to study nuclear 
security and nonproliferation

• Instead did calibration and 
validation experiments for Texas 
A&M’s parallel deterministic 
transport code PDT (now called 
OpenSn)

• Used a low-scatter HDPE “box” 
where experiments could be 
performed in a controlled 
environment

github.com/Open-Sn



M.S. Research
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• Performed neutron measurements on 
graphite configurations with increasing 
complexity

• Verified results with MCNP simulations
• Conducted a sensitivity study to determine 

issues with cadmium lining in the detector 
shroud



Sandia Internship and COVID-19
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• One of the lucky few to intern 
remotely at Sandia National 
Laboratories with the Fusion 
Experiments group

• Developed python tools to 
accurately align and 
accumulate one-dimensional 
imager of neutron (ODIN) data 
for signal-to-noise (SNR) 
improvement

• First introduction to fusion 
research, continued with 
Sandia for my Ph.D. Research Single Front scan Front and Back 

scan incorrectly 
aligned

Front and Back 
scan correctly 
aligned

S. A. Ricketts, M. A. Mangan; Data processing to improving the signal of one-dimensional neutron 
images at Sandia’s Z Pulsed Power Facility, APS Division of Plasma Physics Meeting 2021 (Poster)



Outline of Ph.D. Research
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• Overview of Z machine and Magnetized Liner Inertial Fusion (MagLIF)
• One-Dimensional Imager of Neutrons (ODIN)
• ODIN Forward Model
• Image Reconstruction Methods
• ODIN forward Model and Sensitivity Analysis
• Source Reconstruction from ODIN Data
• Final Thoughts and Conclusions



Overview of Z 
Machine and MagLIF



Z Machine

8
D. B. Sinars et al., “Review of pulsed power-driven high energy density 
physics research on z at sandia,” Physics of Plasmas., vol. 27, no. 7, 2020.



Magnetized Liner Inertial Fusion (MagLIF)
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•Magnetization stage applies a 
magnetic field around the target 
to reduce radial thermal 
conduction loss
• Laser Preheat stage raises the 

fuel temperature to reduce the 
required compression for fusion 
conditions
• Compression stage implodes 

the target from the magnetic 
field of the electrical pulse

P. F. Knapp et al., “Effects of magnetization on fusion product trapping 
and secondary neutron spectra,” Physics of Plasmas., vol. 22, no. 5, 2015.



One-Dimensional Imager 
of Neutrons (ODIN)



One-Dimensional Imager of Neutrons (ODIN)
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• Images neutrons emitted by MagLIF experiments on the Z facility

•Yields range from ~1X1012 to ~1X1013 from ~1cm tall target which are recorded as tracks on 
CR-39 pieces

David J. Ampleford, et al. "One dimensional imager of neutrons on the 
Z machine", Review of Scientific Instruments 89, 10I132 (2018)



Aperture
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•The aperture is 10 cm long, with a nominal spacing of 250 μm



CR-39 Nuclear Track Detector
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B. Lahmann et al. “CR-39 nuclear track detector response to inertial 
confinement fusion relevant ions,” Rev Sci Instrum 1 May 2020; 91 (5): 
053502. https://doi.org/10.1063/5.0004129

•DD Neutrons elastically scatter and produce 
recoil protons which leave destructive tracks

•High density polyethylene is placed in front of 
the CR-39 to increase the detection efficiency

•Microscope scans provide information on track 
location, diameter, contrast, and eccentricity



Track Discrimination
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•Track information is used to 
discriminate incident 
neutrons

•Diameter indicates the 
energy and type of charged 
particle

•Eccentricity (how circular the 
track is) indicates the angle 
of interaction

•Contrast indicates the depth 
of the track



1D Data Generation
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• Non-incident neutrons are filtered 
out, data rebinned to ODIN’s 
resolution

• Data is integrated along the resolving 
axis to produce an axial detector 
measurement 

• A subset of the data is used to 
remove the pinholes and tag number



ODIN Previous Analysis
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David J. Ampleford, et al. "One dimensional imager of neutrons on the Z machine", 
Review of Scientific Instruments 89, 10I132 (2018)

•Objective: Use image reconstruction methods to improve imaging of the spatial 
distribution of neutron emissions from the stagnation column

•No further reconstruction has been attempted



Image Reconstruction - Fredholm Integral Equation of the First Kind 
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ODIN Forward Model



Analytical Forward Model
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•Rays from source points are generated towards interaction points along the detector plane

•Neutrons can attenuate through the tungsten or pass freely through the aperture

•The flat tops of each function is proportional to the direct line of sight opening through the aperture



Analytical Forward Model Validation
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•Fluence amplitude is in agreement with Monte Carlo N-Particle Transport Code (MCNP) 
simulations (J. D. Vaughan et al.)

•For a uniform source, ~635 tracks/cm2 (D. J. Ampleford et al. ~650 tracks/cm2)



IRF Matrix Generation
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•To better approximate a line source, IRFs used in reconstructions are averaged over multiple 
points sources in each bin



Synthetic Data Generation
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A B

C D

•A) Define a synthetic 
source profile 

•B) Pass source 
profile through ODIN 
Forward Model

•C) Poisson sample 
Nominal Detector 
Response to 
generate 2D data set

•D) Integrate across 
non-resolving axis to 
generate 1D axial 
profile



Image Reconstruction 
Methods



Fredholm Integral Equation of the First Kind
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Image Reconstruction Methods
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• Least Squares Fit
• Selects a solution which minimizes the square of 

the residual

• Non-Negative Least Squares Fit
• Implements non-negativity constraint for Least 

Squares Fit

• Maximum Likelihood Estimation
• Iterative algorithm which converges to a solution 

that maximizes a likelihood function
• Can factor in the type of noise (Gaussian or 

Poissonian)
• Poissonian has non-negativity constraint

• Generalized Expectation Maximization
• Iterative algorithm with a regularization parameter 

1/β which implements a smoothing to the solution
• Low β smooths the solution
• Large β has no smoothing and approaches 

Maximum Likelihood Poissonian



Chosen Synthetic Sources

26Low Frequency (LF) High Frequency (HF) Mixed Frequency (MF)



LSF and NNLSF Synthetic Source Reconstructions
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•LF and MF reconstructions have no difference in solutions

•HF reconstruction has negative source contributions in LSF

•Over-fitting smooth solutions due to noise



MLE_Gauss and MLE_Poiss Synthetic Source Reconstructions
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•HF reconstruction has negative source contributions in MLE_Gauss

•MLE_Poiss performs slightly better in smooth areas



GEM Regularization - Effect of β
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•As β increases, the influence of the Gibbs prior is reduced

•As B approaches + ∞, solution approaches MLE_Poiss



β Selection Method: k-Fold Cross Validation
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1. Randomize order of 1D data 
points

2. Split data into k sections
3. First section becomes 

validation data, remaining 
sections are used as training 
data to generate a solution 
with a given β

4. Solution is forward propagated 
and compared to validation 
data

5. Iterate through each k section
o Allows each data point to be 

part of training and testing

6. Repeat steps 3 - 5 over a range 
of β values



GEM Synthetic Source Reconstructions
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ODIN Forward Model 
Sensitivity Analysis



ODIN Model Parameters
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•Each parameter has some variability when fielding ODIN

•Reconstructions with synthetic data can determine the sensitivity of each parameter



Sensitivity Study Methodology
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Forward Model 
with 

perturbation

Synthetic 
source

Perturbed 
Synthetic data

Image 
Reconstruction 

Perturbed IRF Nominal IRF

Reconstructed 
Source

Varying source profiles 
representing 
experimental 
possibilities 

Perturbed IRF represents 
some type of error in 
experimental setup, 
changes in model 
parameter space

Synthetic 
experimental data 
from perturbed 
model

Image reconstruction 
with nominal IRF 
using various 
methods

Reconstructed 
source variation 
will quantify how 
sensitive 
perturbed 
parameter is

• In addition, the sensitivity to noise variations will be tested by generating 
multiple synthetic detector responses from the nominal IRF matrix



Noise Variation
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•10 synthetic detector 
responses were generated for 
each source type (1E13)

• Increased deviations in 
reconstructions when sources 
contain lower frequencies

•GEM solutions under predict 
peaks, have low variation (this 
is a common issue with 
regularization)



D_slit Variation
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•D_slit alters the magnification of the image onto the detector plane

•Moving the aperture closer to the source increases the magnification

•The edge nominal IRFs can no longer account for increases in signal toward the edges



D_slit Variation Reconstruction Effects
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• Increases in 
magnification cause the 
outermost source 
points to try and 
compensate for signal 
near the edge of the 
detector
•This is a mathematical 
property of searching 
for the best forward fit, 
edges must 
compensate
•This effect is not seen in 
HF synthetic source 
reconstructions due to 
having less tracks near 
the edge of the detector



h_slit Variations
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• Increasing or decreasing the aperture size has little effect on the IRFs

•Alters the flat top widths by an insignificant amount

•No variations in reconstructions (GEM still underpredicts peaks)



Z_offset Variations

39

•Shifts the location of each IRF

•Flat tops get wider or smaller as the direct line of sight changes

•Variation is symmetric in +/- direction



Z_offset Variation Reconstruction Effects
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•Detector response 
peaks shift in location 
due to all IRFs being 
altered

•Edge effects appear 
due to outermost IRF 
shifts

•Has larger standard 
deviation in HF 
features (peak areas) 
compared to D_slit



Theta
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•Changes the shape of each IRF

•Source points near the top of the stagnation column see a larger aperture opening 

•Source points near the bottom eventually have no direct line of sight through the aperture



Theta Variation Reconstruction Effects
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• Increases the 
contribution from 
positive source points

•Edge effects appear 
once again due to 
outermost IRF 
compensation, but 
appear 
asymmetrically



Error Estimation - Latin Hypercube Sampling (LHS)
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• LHC is a sampling is used to avoid biasing in parameter selection, to create more uniform 
sampling in the parameter space

Preece, Robin & Milanović, Jovica. (2015). Efficient Estimation of the 
Probability of Small-Disturbance Instability of Large Uncertain Power 
Systems. IEEE Transactions on Power Systems. 31. 1-10. 
10.1109/TPWRS.2015.2417204. 



Low Frequency LHS Reconstructions
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•Provides a range of 
possible detector 
responses from our 
parameter 
uncertainties

•Reconstructions 
represent an 
estimated error 
propagation from the 
accumulation of 
parameters



LHS + Yield Noise
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•Synthetic yields of 2E12, 1E13, 
and 5E13 (5X multiples)

• Increasing yields increases the 
signal to noise (SNR)

• It is clear the standard 
deviation is reduced with 
increased yield, approaching 
only the parameter error 
propagation

•GEM appears to be the best 
performing algorithm

2E12 1E13 5E13



Error Estimation - Bootstrapping
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•LHS error propagation 
is difficult to 
implement into real 
data, as well as 
computationally 
expensive

•An quick alternative 
approach to estimate 
error, is by 
bootstrapping the data

•This method 
resamples the original 
data based on the 
central limit theorem, 
and generates multiple 
data sets



Source Reconstruction 
from ODIN Data



z3289 and z3926 CR-39 Data
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DD Yield~1.1E13

DD Yield~1.9E13



z3289 Reconstruction
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•Edge effects appear in all methods

•There is clear compensation in the forward fit



Issues of Background
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•Addition of a uniform background to MF synthetic 
response recreates the edge effects seen in z3289

•There is an unknown background in the CR-39 data not 
being accounted for in the reconstructions



Modified GEM Method (GEM_BG)
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•Modified method computes an unknown background 
using three basis functions B (constant, ascending, 
descending), and corresponding coefficients, μ



Modified GEM z3289 Results
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•GEM_BG successfully removes edge effects

•Verified by co-registering peak-normalized time-
integrated pinhole camera (TIPC) x-ray data

S. A. Ricketts, M. A. Mangan, P. Volegov, D. N. Fittinghoff, W. E. Lewis, O. M. Mannion, J. E. Morel, M. L. Adams, D. 
J. Ampleford; Neutron source reconstruction using a generalized-expectation algorithm on one-dimensional 
neutron images from the Z Facility, American Institute of Physics - Review of Scientific Instruments, March 2024



Modified GEM z3926 Results
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•GEM_BG consistently selected low β values

•Solution and forward fit show significant oversmoothing



K-fold Cross Validation Flaw on Synthetic Data
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Randomization of Indices Problem
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•ODIN’s low resolution does not 
leave many data points to be 
split into k sections

•Different random seeds 
produce different points in 
each section k

•Here, sections k=1 and k=2 
have no data points in the high 
frequency peak



Validation Curve Effects
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•Validation curves vary without inclusion of 
peaks, leading to oversmoothing

Validation k=1,2



K-fold Cross Validation with 2-D Data
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•By splitting the 2-D data into k sections, we can integrate each 
section along the non resolving axis

•This generates k 1-D profiles, but increases noise



Validation Curves Improve with 2-D K-fold
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•No longer has an issue of randomness
•These training and validation curves will be the 
same when repeating the process



2-D K-Fold Selects β More Consistently
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•MF synthetic source 
was reconstructed 
using the 1-D and 2-D 
methods

•1-D k-fold was 
repeated (each having 
random indices)

•2-D k-fold had column 
order randomized

•β selection is more 
consistent with the 2-
D k-fold cross 
validation

MF Synthetic MF Synthetic + BG



z3289 2-D K-fold Results
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•GEM_BG 2-D k-fold results in β=100 

•Minimal change to previous of β=1000



z3926 2-D K-fold Results
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•GEM_BG 2-D k-fold results in β=7.2 and shows 
increased agreement between neutron and x-ray data

•Drop off near 0.3 in x-ray data believed to be artifact 
caused by object blocking x-rays



Experimental Results Error Estimation
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z3289 z3926

•We have developed a repeatable consistent reconstruction method for ODIN data

•This includes an error estimation via CLT bootstrapping



Final Thoughts and 
Conclusions



Future Image Reconstruction Improvements
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•Use multiple CR-39 scans
•Summation of 2-D data (increases SNR)

•Simultaneous data reconstruction (increases number of fitted points)

•Data processing improvements
•Optimize discrimination settings (front vs back and intrinsic noise tracks)

•Change detector image resolution (increases number of points, lowers SNR)

•Change source resolution (“super-resolution”)

•β optimization
•Bayesian inference (β becomes a hyperparameter solved in the iteration steps)



Fielding Recommendations
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• Alignment measurements
• Taking measurements in-chamber would allow for specific IRF matrix development

• Monolithic structure
• Would reduce possibility of misalignments between source, aperture, and detector package

• Magnification change
• Changing the magnification could reduce edge areas difficult to fit to
• Find an “optimal” magnification for ODIN



Conclusions
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• MagLIF experiments produce an ~1cm tall neutron emitting plasma region
• There is a backlog of ODIN data needed to be analyzed
• A forward model of ODIN has been developed to create IRF matrices needed for image 

reconstruction
• A forward model sensitivity analysis was conducted to understand and quantify the effects 

of fielding parameter sensitivity on multiple image reconstruction methods
• The GEM algorithm was modified to account for an unknown background and CR-39 

source reconstructions were successfully performed on two experimental data sets
• Improvements were to GEM_BG algorithm methodology generated neutron emission 

profiles from z3289 and z3926 which showed quantitative agreement with TIPC x-ray data
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