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P M.S. Research

Originally wanted to study nuclear
security and nonproliferation

* Instead did calibration and
validation experiments for Texas
A&M's parallel deterministic
transport code PDT (now called
OpenSn)

« Used a low-scatter HDPE “box"
where experiments could be
performed in a controlled
environment

github.com/Open-Sn
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P M.S. Research

Performed neutron measurements on
graphite configurations with increasing

complexity

+ Verified results with MCNP simulations

« Conducted a sensitivity study to determine
issues with cadmium lining in the detector
shroud
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P Sandia Internship and COVID-19

1-D axial image, amplitude re-scaled 1-D axial image, amplitude re-scaled 1-D axial image, amplitude re-scaled

One of the lucky few to intern
remotely at Sandia National
Laboratories with the Fusion
Experiments group

« Developed python tools to
accurately align and
accumulate one-dimensional
imager of neutron (ODIN) data
for signal-to-noise (SNR)
Improvement

e First introduction to fusion
research, continued with

ffffffffffffffffffffffffffff Number of tracks

Sandia for my Ph.D. Research Single Front scan Front and Back Front and Back
scan incorrectly scan correctly
aligned aligned

S. A. Ricketts, M. A. Mangan; Data processing to improving the signal of one-dimensional neutron
images at Sandia’s Z Pulsed Power Facility, APS Division of Plasma Physics Meeting 2021 (Poster) ‘



P Outline of Ph.D. Research

Overview of Z machine and Magnetized Liner Inertial Fusion (MagLIF)
* One-Dimensional Imager of Neutrons (ODIN)
« ODIN Forward Model
* Image Reconstruction Methods
* ODIN forward Model and Sensitivity Analysis
« Source Reconstruction from ODIN Data
* Final Thoughts and Conclusions




Overview of Z
Machine and MagLIF
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Z Machine
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D. B. Sinars et al., “Review of pulsed power-driven high energy density

physics research on z at sandia,” Physics of Plasmas., vol. 27, no. 7, 20




/"« Magnetization stage applies a
magnetic field around the target
to reduce radial thermal
conduction loss

* Laser Preheat stage raises the
fuel temperature to reduce the
required compression for fusion
conditions

« Compression stage implodes
the target from the magnetic
field of the electrical pulse

/" Magnetized Liner Inertial Fusion (MagLIF)

Laser Preheat

Magnetization

D+D —3He (0.8 MeV)+ n(2.45 MeV) 50%
- p(3.02 MeV) + T(1.01 MeV) 50%

D+T - a (3.6 MeV) +n(14.1 MeV)

Compression

P. F. Knapp et al., “Effects of magnetization on fusion product trapping

and secondary neutron spectra,” Physics of Plasmas., vol. 22, no. 5, 2015.‘



One-Dimensional Imager
of Neutrons (ODIN)



ensional Imager of Neutrons (ODIN)

P/One-Dim

il = —

Primary
Detector

Detector

*Images neutrons emitted by MagLIF experiments on the Z facility

*Yields range from ~1X10'? to ~1X10'3from ~1cm tall target which are recorded as tracks on
CR-39 pieces

David J. Ampleford, et al. "One dimensional imager of neutrons on the
Z machine", Review of Scientific Instruments 89, 101132 (2018)



*The aperture is 10 cm long, with a nominal spacing of 250 um




< CR-39 Nuclear Track Detector
/

/4 "+DD Neutrons elastically scatter and produce
recoil protons which leave destructive tracks

*High density polyethylene is placed in front of
the CR-39 to increase the detection efficiency

*Microscope scans provide information on track
location, diameter, contrast, and eccentricity

B. Lahmann et al. “CR-39 nuclear track detector response to inertial
confinement fusion relevant ions,” Rev Sci Instrum 1 May 2020; 91 (5):
053502. https://doi.org/10.1063/5.0004129
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(a) Original Scan and Binning (b) Cut Data

80
< 1D Data Generation
60
Z -+ Non-incident neutrons are filtered w0i
out, data rebinned to ODIN’s &
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/" ODIN Previous Analysis

/ (a) Scanned CR-39 (b) Rebinned data
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*No further reconstruction has been attempted

(a) 2D x-ray image (b) Axial Neutron/x-ray structure
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*Objective: Use image reconstruction methods to improve imaging of the spatial
distribution of neutron emissions from the stagnation column

David J. Ampleford, et al. "One dimensional imager of neutrons on the Z machine",
Review of Scientific Instruments 89, 101132 (2018)



/7 Image Reconstruction - Fredholm Integral Equation of the First Kind
74
/

ff P(x,y)Go(y)dy = Ny (x),c <x <d
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ODIN Forward Model




/ Analytical Forward Model

Mot to Scale

Unattenuated
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Source Plane

Detector Plane

Fluence [/cm 2]
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Attenuated

Detector Plane [cm)]

*Rays from source points are generated towards interaction points along the detector plane
*Neutrons can attenuate through the tungsten or pass freely through the aperture

*The flat tops of each function is proportional to the direct line of sight opening through the aperture




/ Analytical Forward Model Validation
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*Fluence amplitude is in agreement with Monte Carlo N-Particle Transport Code (MCNP)
simulations (J. D. Vaughan et al.)

*For a uniform source, ~635 tracks/cm? (D. J. Ampleford et al. ~650 tracks/cm?)




/ IRF Matrix Generation
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/-A) Define a synthetic
source profile

F

*B) Pass source
profile through ODIN
Forward Model

*C) Poisson sample
Nominal Detector
Response to
generate 2D data set

*D) Integrate across
non-resolving axis to
generate 1D axial
profile
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Image Reconstruction
Methods



Fredholm Integral Equation of the First Kind

ff P(x,y)Go(y)dy = Ny (x),c <x <d

Kernel/ Neutron Neutron
Instrument Source Image
Response Data
Function
| | |
%107 B Original Data |
ST IFHI_'_FM,,__‘ _‘Il., ] 3500 Cut Data
3000 —
T o 7 7 2500 —
g [ % 2000 - -
o 4r — S
2 = 1500 - —
E ol ‘ ‘ ‘ B 1000 - -
0_ ] 0_ —
3 ) —1 0 1 2 3 | | | | | | |
Detector Plane [cm] B - Setector I(’)lane [cm]l ’ ’




rd

/" Image Reconstruction Methods

. Least Squares Fit LSF:minY Ri(G)*=min) (¥; - Y P;G;)’
4 » Selects a solution which minimizes the square of ¢ 4 ¢ O j=1
the residual

* Non-Negative Least Squares Fit

* Implements non-negativity constraint for Least
Squares Fit

NNLSF : min||Y - PG|},

« Maximum Likelihood Estimation

* Iterative algorithm which converges to a solution
that maximizes a likelihood function gve = argmaxlog L(g) = arg maxlogp(y|g),
g g

 Can factor in the type of noise (Gaussian or
Poissonian)

* Poissonian has non-negativity constraint

 Generalized Expectation Maximization 1

* Iterative algorithm with a regularization parameter geem = arg maxlogp(y|g) — E Z Ve(9);
1/B which implements a smoothing to the solution I

 Low 3 smooths the solution

* Large B has no smoothing and approaches
Maximum Likelihood Poissonian
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/7 LSF and NNLSF Synthetic Source Reconstructions
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MLE_Gauss and MLE_Poiss Synthetic Source Reconstructions
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*HF reconstruction has negative source contributions in MLE_Gauss

*MLE_Poiss performs slightly better in smooth areas




o
(=]
3

%

0.03

0.02

0.01

Normalized Inferred Emission [n/cm]

/

GEM Regularization - Effect of 3
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P/ B Selection Method: k-Fold Cross Validation
/’/1 n=12 . Test . Train

Randomize order of 1D data k=23

points
2. Split data into k sections Data 102 /3 /4|56 7 89 1011 12
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H H it = Synthetic Detector Response
validation data, remaining 20001 it |
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with a gIven B 1500+ e Validation Points k=4 i
4. Solution is forward propagated 2 150 N
. . s
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data ol |
5. lIterate through each k section so0- _

o Allows each data point to be
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GEM Synthetic Source Reconstructions
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ODIN Forward Model
Sensitivity Analysis




< ODIN Model Parameters
‘3 D slit

A 5 |
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Mot to Scale

Tungsten

-----------------------------

Source Plane
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Tungsten
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¥ Y

*Each parameter has some variability when fielding ODIN

*Reconstructions with synthetic data can determine the sensitivity of each parameter




/ Sensitivity Study Methodology

Forward Model

Synthetic with Perturbed Image Reconstructed
source : ‘ Reconstruction
oerturbation Synthetic data Source
Perturbed IRF Nominal IRF
Varying source profiles Synthetic Image reconstruction Reconstructed
representing Perturbed IRF represents experimental data with nominal IRF source variation
experimental some.type of errorin from perturbed using various will quantify how
possibilities experimental setup, model methods sensitive
changes in model perturbed
parameter Space parameter is

*In addition, the sensitivity to noise variations will be tested by generating
multiple synthetic detector responses from the nominal IRF matrix




P Noise Variation

-10 synthetic detector
responses were generated for
each source type (1E13)

*Increased deviations in
reconstructions when sources
contain lower frequencies

*GEM solutions under predict
peaks, have low variation (this
IS @ common issue with
regularization)
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D slit Variation
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*D_slit alters the magnification of the image onto the detector plane
*Moving the aperture closer to the source increases the magnification

*The edge nominal IRFs can no longer account for increases in signal toward the edgesn
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/-Increases in
magnification cause the
outermost source
points to try and
compensate for signal
near the edge of the
detector

*This is a mathematical
property of searching
for the best forward fit,
edges must
compensate

*This effect is not seen in
HF synthetic source
reconstructions due to
having less tracks near
the edge of the detector
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*Increasing or decreasing the aperture size has little effect on the IRFs
*Alters the flat top widths by an insignificant amount

*No variations in reconstructions (GEM still underpredicts peaks)




Z offset Variations
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*Detector response
peaks shift in location
due to all IRFs being
altered
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*Edge effects appear
due to outermost IRF
shifts

*Has larger standard
deviation in HF
features (peak areas)
compared to D_slit
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*Changes the shape of each IRF
*Source points near the top of the stagnation column see a larger aperture opening

*Source points near the bottom eventually have no direct line of sight through the aperturen
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P Error Estimation - Latin Hypercube Sampling (LHS)

LHC is a sampling is used to avoid biasing in parameter selection, to create more uniform

sampling in the parameter space

O Random Samples X LHS Samples

.................................................

Preece, Robin & Milanovi¢, Jovica. (2015). Efficient Estimation of the
Probability of Small-Disturbance Instability of Large Uncertain Power
Systems. IEEE Transactions on Power Systems. 31. 1-10.

10.1109/TPWRS.2015.2417204.
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4 Low Frequency LHS Reconstructions
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P/ Error Estimation - Bootstrapping

-LHS error propagation
is difficult to
implement into real
data, as well as
computationally
expensive

*An quick alternative
approach to estimate
error, is by
bootstrapping the data

*This method
resamples the original
data based on the
central limit theorem,
and generates multiple
data sets
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Source Reconstruction
from ODIN Data
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Modified GEM z3289 Results
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K-fold Cross Validation Flaw on Synthetic Data
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Validation Curve Effects

Validation curves vary without inclusion of
peaks, leading to oversmoothing
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K-fold Cross Validation with 2-D Data
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*No longer has an issue of randomness

*These training and validation curves will be the

same when repeating the process
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P 2-D K-Fold Selects B More Consistently

*MF synthetic source
was reconstructed
using the 1-D and 2-D
methods

*1-D k-fold was
repeated (each having
random indices)

«2-D k-fold had column
order randomized

*[B selection is more
consistent with the 2-

D k-fold cross
validation
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*We have developed a repeatable consistent reconstruction method for ODIN data

*This includes an error estimation via CLT bootstrapping




Final Thoughts and
Conclusions




o Future Image Reconstruction Improvements
4
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‘4
*Use multiple CR-39 scans

Summation of 2-D data (increases SNR)
- Simultaneous data reconstruction (increases number of fitted points)

*Data processing improvements
* Optimize discrimination settings (front vs back and intrinsic noise tracks)

*Change detector image resolution (increases number of points, lowers SNR)
*Change source resolution (“super-resolution”)

* [ optimization
* Bayesian inference (B becomes a hyperparameter solved in the iteration steps)




P Fielding Recommendations

« Alignment measurements
« Taking measurements in-chamber would allow for specific IRF matrix development

« Monolithic structure
*  Would reduce possibility of misalignments between source, aperture, and detector package

« Magnification change
- Changing the magnification could reduce edge areas difficult to fit to

* Find an “optimal” magnification for ODIN




P Conclusions

MagLIF experiments produce an ~1cm tall neutron emitting plasma region
* There is a backlog of ODIN data needed to be analyzed

« Aforward model of ODIN has been developed to create IRF matrices needed for image
reconstruction

« A forward model sensitivity analysis was conducted to understand and quantify the effects
of fielding parameter sensitivity on multiple image reconstruction methods

« The GEM algorithm was modified to account for an unknown background and CR-39
source reconstructions were successfully performed on two experimental data sets

* Improvements were to GEM_BG algorithm methodology generated neutron emission
profiles from z3289 and z3926 which showed quantitative agreement with TIPC x-ray data
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