

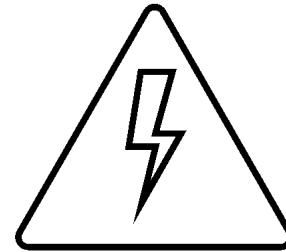
Exceptional service in the national interest

A Demonstration of the Quantitative Approach for Model Credibility on an Electromagnetic Application

Track: VVUQ and Decision Making

**Kyle Neal, Pranav Karve, Sankaran
Mahadevan, Alden Pack, Josh Mullins**

ASME VVUQ Symposium


College Station, TX | May 15-17, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Introduce application:
Electromagnetics
- Review credibility framework:
PCMM
Vanderbilt's credibility framework
- Perform credibility assessment:
Quantitative credibility scores
- Conclusions

PCMM element	Level/ M_i	E_i	R_i	w_i	$m_i(S)$	$m_i(F)$	$m_i(\{S, F\})$
Geometric fidelity	1/0.67	0.8	1	0.025	0.54	0.13	0.33
PMMF	3/0.97	0.8	1	0.2	0.78	0.19	0.03
Code verification	1/0.68	1	1	0.05	0.68	0	0.32
Solution verification	1/0.68	1	1	0.025	0.68	0	0.32
Model validation	3/0.97	0.67	0.27	0.5	0.17	0.09	0.74
UQ/SA	3/0.97	0.98	0.27	0.2	0.26	0.01	0.74
Combined BPA					0.36	0.09	0.55

Stover, O., et al. VVUQ 2023

Importance of Electromagnetic Radiation (EMR) Considerations

- 1967 US Aircraft Carrier “Forrestal”
 - Fully loaded with aircraft equipped with various bombs and missiles.
 - Aircraft missile was inadvertently deployed striking another aircraft.
 - Fuel tank on the aircraft exploded and 134 service people died.

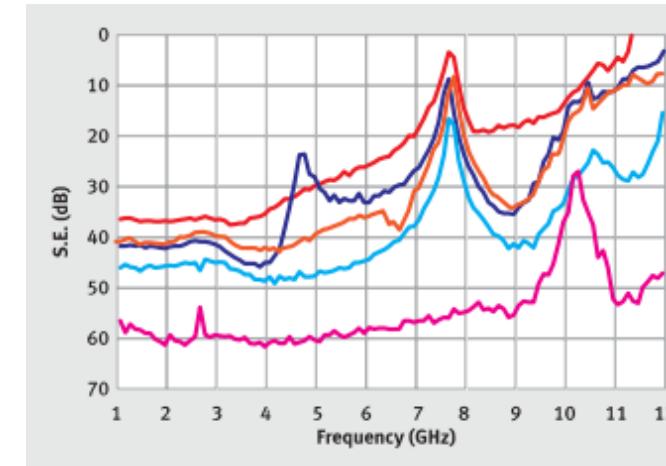
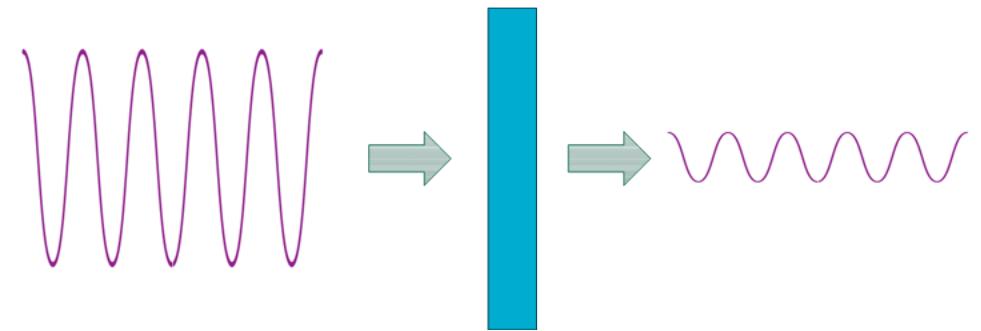
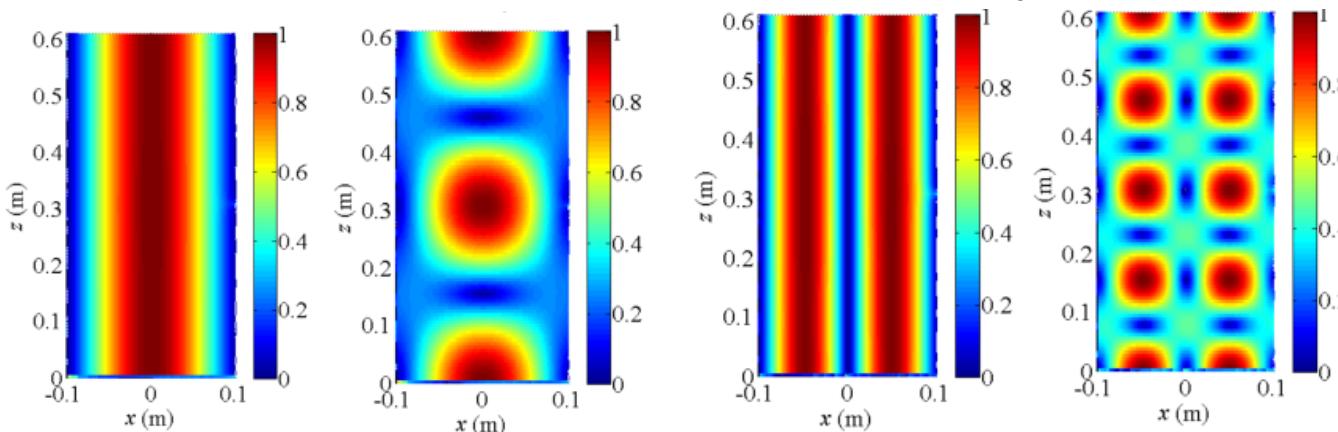
Source: [wikipedia.org/1967_USS_Forestal_fire](https://en.wikipedia.org/wiki/1967_USS_Forestal_fire)

Cause was believed to be an induced voltage across the contact of a shielded connector from the ship's high power search radar.

Importance of Electromagnetic Radiation (EMR) Considerations (2)

- Toyota Airbag Inflator
 - In 2020, Toyota recalled 3.4M vehicles because power line interference may prevent airbags from inflating.
 - 8 people died due to faulty airbag activation
 - Solution: Dealers retrofitted filters into cable harness

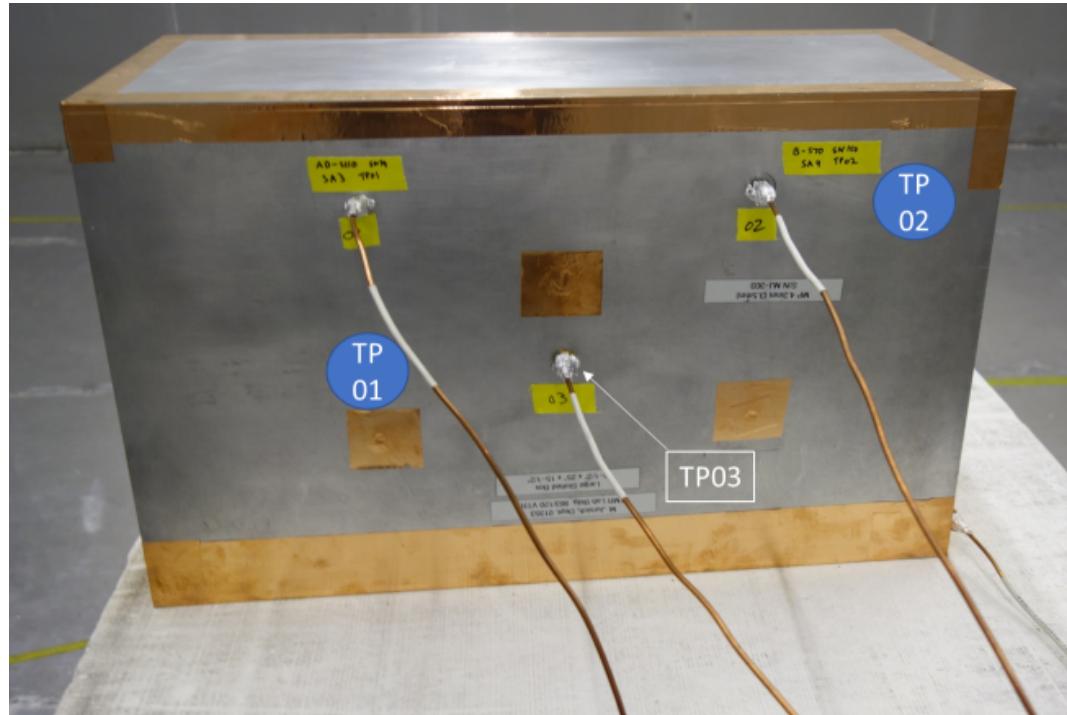
Source: Elkhorn Media Group




Hardening engineering systems against EMR

- EMR Shielding
 - Introduce a barrier that provides shielding
- Engineering objective: protect sensitive electronics
 - Design system to achieve some SE requirement
 - Notice SE varies over frequency
- Shielding effectiveness (SE):

- $$SE = 20 \log_{10} \left(\frac{|E_{internal}|}{|E_{external}|} \right)$$

Electric field spatial modes inside a cylinder



Notional SE for different shielding approaches.

Source: XGR Technologies

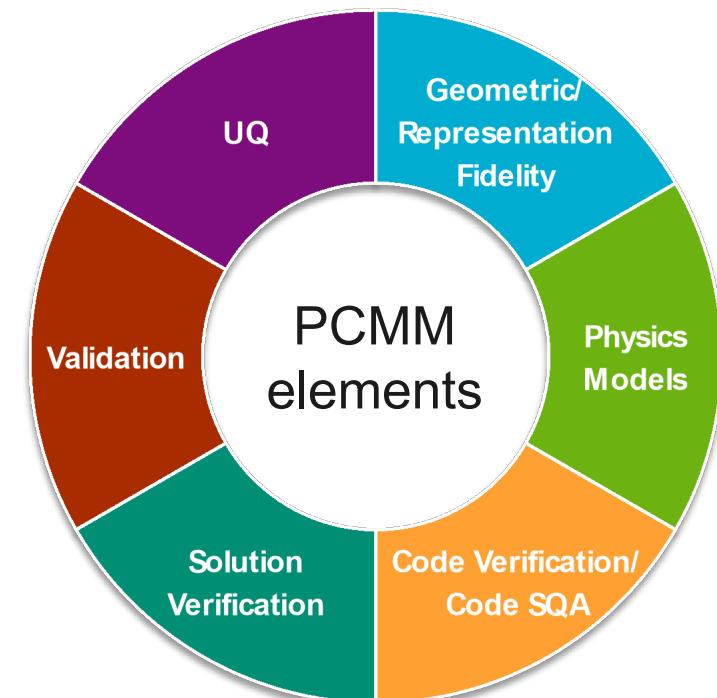
Application: Large Slotted Box

- An aluminum box with a small slot cut into the top face
- Experimentation:
 - The box is placed in an EM reverberation chamber
 - 3 probes measure the internal EM fields
- Objective:
 - Compare measured SE with simulation predictions of SE

Jursich, M. (2015). *EMR Coupling into Systems: Calibration of the Sandia Reverberation Chamber and Validation of the Single Slot Aperture Gain Model* (No. SAND2015-10109). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

Outline

- Introduce application:
Electromagnetics
- Review credibility framework:
PCMM
Vanderbilt's credibility framework
- Perform credibility assessment:
Quantitative credibility scores
- Conclusions


Credibility Framework

- How do we assess the credibility of a computer model?
 - **Model Credibility:** the degree to which a decision maker believes that a model is acceptable for the target application ASME V&V 40

- Predictive Capability Maturity Model (PCMM)
 - Objective: Assess the maturity level of 6 elements for a “Modeling & Simulation” activity

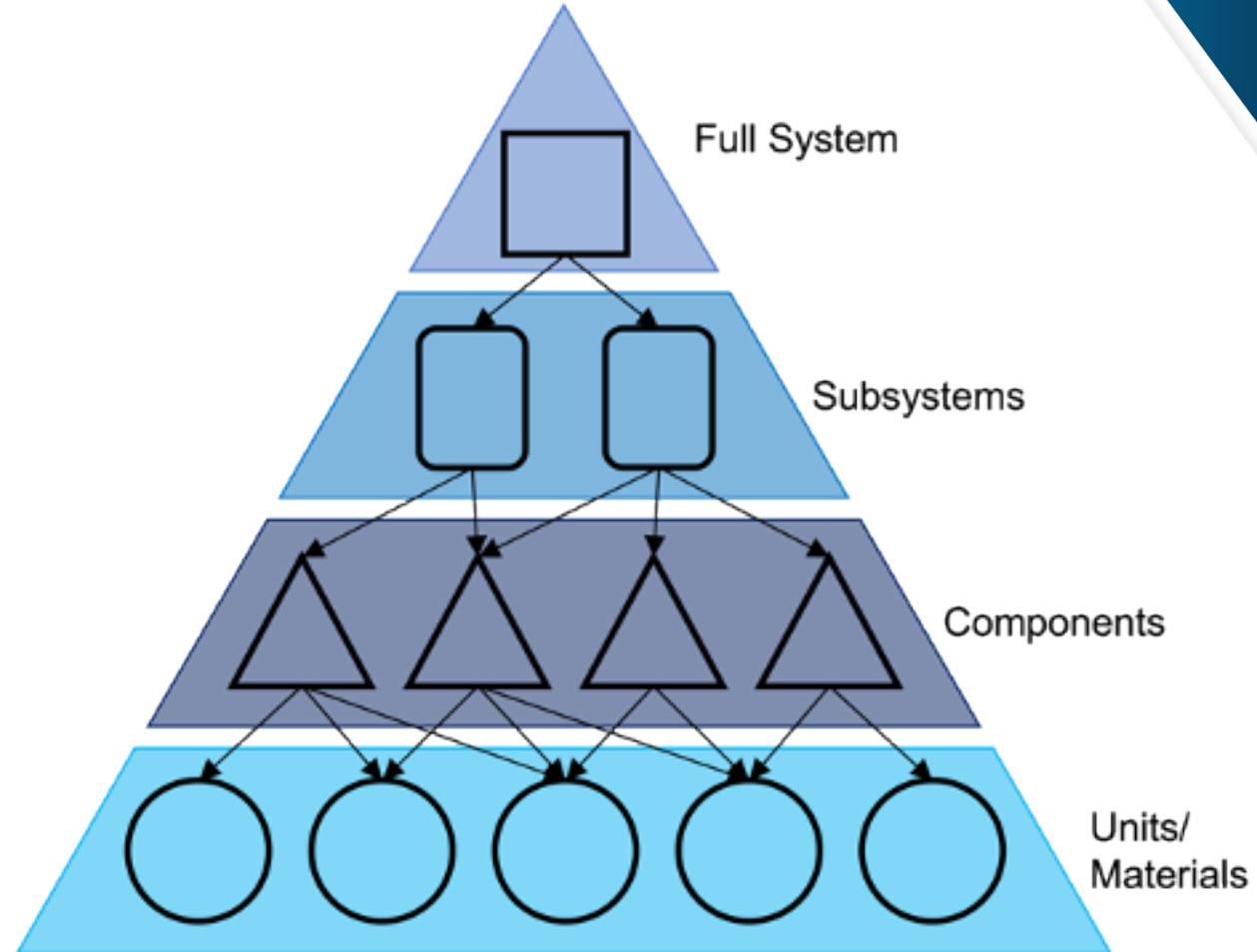
Oberkampf et al. (2007),
Hills et al. (2013),
Mullins (2017)

Evidence Theory-based Quantitative Credibility Approach

- For each of six PCMM elements, a quantitative score (0, 1, 2, or 3) reflects the maturity of evidence (M).
- In addition, compute/assign scores for relevance (R) and strength (E) of evidence.
 - Compute BPAs based on the M, R, and E scores for each PCMM element.
- Basic probability assignment (BPA) for $m(S)$, $m(F)$, $m(\{S,F\})$ (Evidence theory)
 - S: model is acceptable for intended use
 - F: model is not acceptable for intended use
 - $\{S,F\}$: uncertainty about the model's acceptability
- Evidence combination
 - Use Dempster-Shafer combination rule
 - Assign weights to PCMM elements
 - Compute overall BPA scores
- Model credibility score is 3-dimensional
 - $m(S)$, $m(F)$, $m(\{S,F\})$

PCMM element	Level/ M_i	E_i	R_i	w_i	$m_i(S)$	$m_i(F)$	$m_i(\{S,F\})$
Geometric fidelity	1/0.67	0.8	1	0.025	0.54	0.13	0.33
PMMF	3/0.97	0.8	1	0.2	0.78	0.19	0.03
Code verification	1/0.68	1	1	0.05	0.68	0	0.32
Solution verification	1/0.68	1	1	0.025	0.68	0	0.32
Model validation	3/0.97	0.67	0.27	0.5	0.17	0.09	0.74
UQ/SA	3/0.97	0.98	0.27	0.2	0.26	0.01	0.74
Combined BPA					0.36	0.09	0.55

Outline



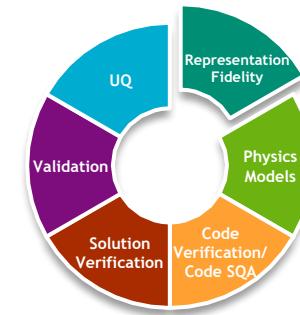
- Introduce application:
Electromagnetics
- Review credibility framework:
PCMM
Vanderbilt's credibility framework
- Perform credibility assessment:
Quantitative credibility scores
- Conclusions

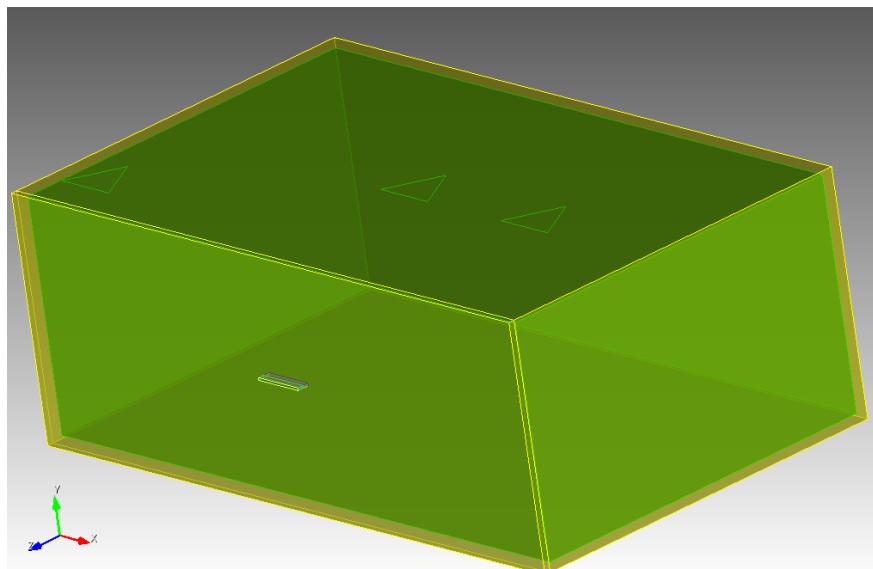
Mullins, Josh, et al. 2020. "Predictive Capability Maturity Model (PCMM)." Technical Presentation, SAND2020-9688 TR. Unclassified Unlimited Release.

Caveats to this credibility assessment

- The target application
 - The large slotted box is low on the validation hierarchy
 - The target application is intentionally left ambiguous
 - Therefore, the relevance will be assumed as 1
- Strengths/weaknesses of the EM simulation software will not be identified
 - So we will assume the strength of evidence about the EM simulation software exclusively supports belief in the model

Representation and Geometric Fidelity

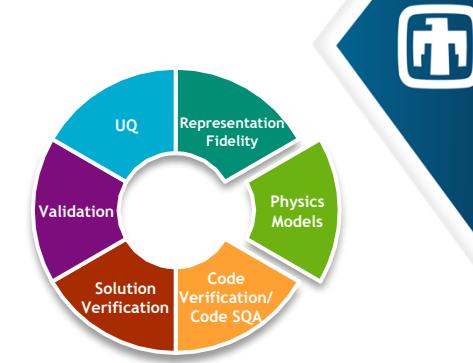

- Aluminum box is welded along the seams
 - The welds are not included in the simulation


As-Modeled

As-Designed

How are geometric feature simplifications influencing simulation results and Qols?

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)
Geometric Fidelity	2	0.7	1
PMMF			1
Code Verification			1
Sol. Verification			1
Model Validation			1
UQ/SA			1

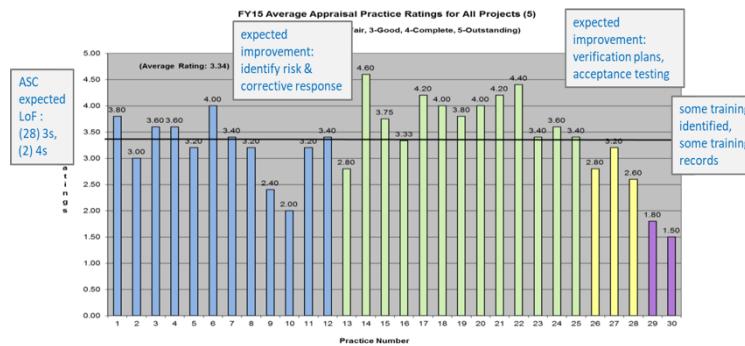

Physics and Material Model Fidelity (PMMF)

- Completed a PIRT (Phenomena Identification and Ranking Table)
 - Actual results intentionally not shown
- The physics phenomena (e.g. slot model, wave propagation, interior wave reverberation) have been rigorously tested previously
- The box is made of aluminum which is well understood

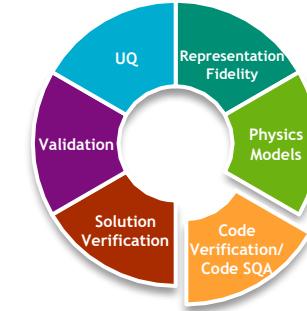
PIRT

Phenomena	Importance	Adequacy for Intended Use			
		Math Model	Code	Validation	Model Parameter
Phenomena 1	H	H	M	L	L
Phenomena 2	M	H	M	L	L
Phenomena 3	L	H	M	L	L

Are important physics models adequate?
Key gaps mitigated?



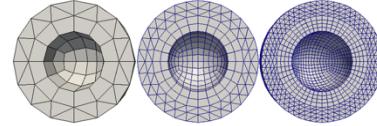
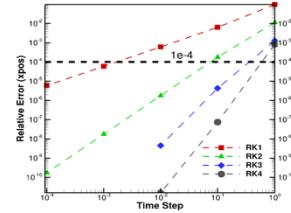
PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)
Geometric Fidelity	2	0.7	1
PMMF	3	1.0	1
Code Verification			1
Sol. Verification			1
Model Validation			1
UQ/SA			1


Code Verification

- Extensive use of unit testing in EM software
- Brian Freno has done extensive code verification using the governing equations

Summary of Verification Test Coverage

What is the evidence for code credibility?

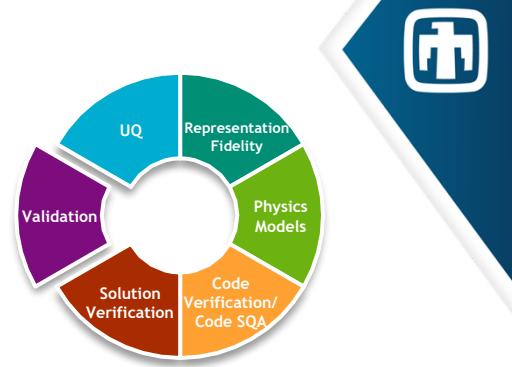
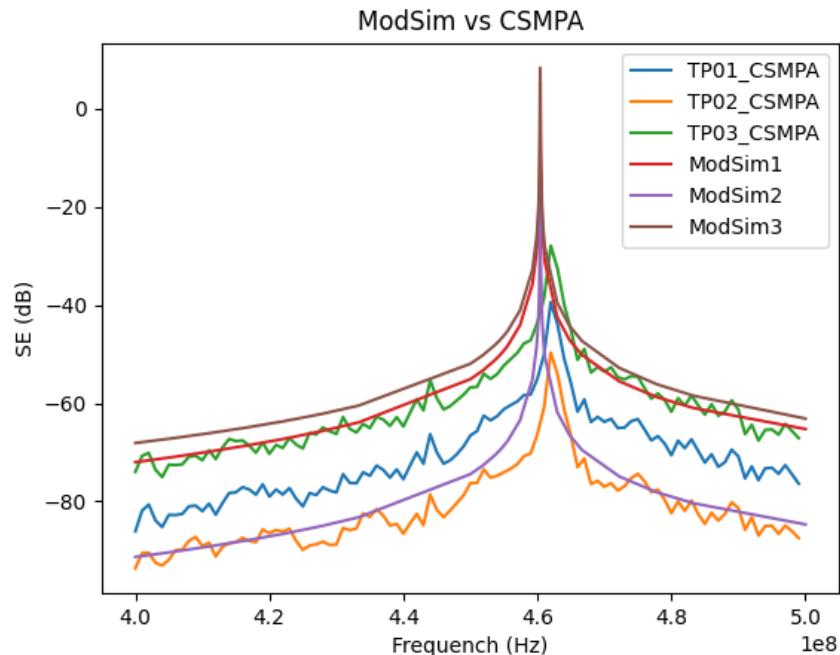
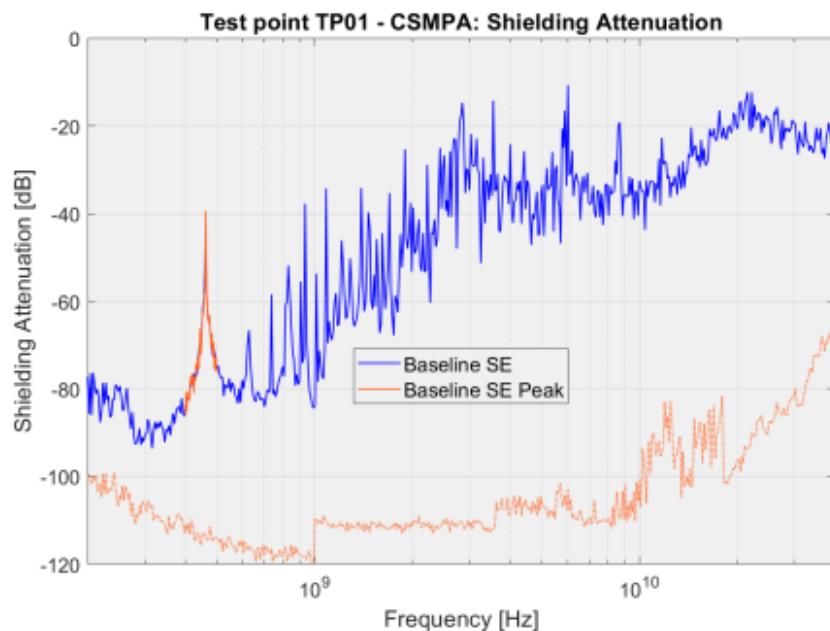



PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)
Geometric Fidelity	2	0.7	1
PMMF	3	1.0	1
Code Verification	3	1.0	1
Sol. Verification			1
Model Validation			1
UQ/SA			1


Solution Verification

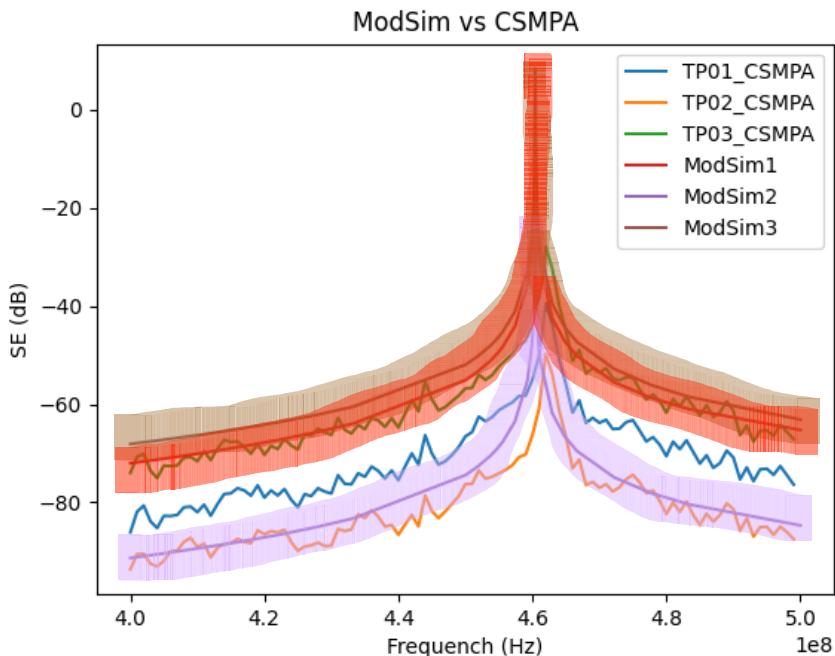
- Rational interpolation is used to handle frequency stepping
- Aaron Krueger has done extensive solution verification studies

Mesh Refinement Study




How do numerical solution or human errors affect simulation results?

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)
Geometric Fidelity	2	0.7	1
PMMF	3	1.0	1
Code Verification	3	1.0	1
Sol. Verification	3	1.0	1
Model Validation			1
UQ/SA			1

Model Validation


- General trend captured at all 3 locations
- Modeling only performed for the 1st resonant peak
- No formal validation metric employed

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)
Geometric Fidelity	2	0.7	1
PMMF	3	1.0	1
Code Verification	3	1.0	1
Sol. Verification	3	1.0	1
Model Validation	2	0.8	1
UQ/SA			1

Uncertainty Quantification

- 2 parameters
 - Slot width
 - Uniform(1e-4, 1e-2)
 - Electrical conductivity
 - Uniform(3.5e6, 3.5e8)
- Sensitivity Analysis
 - Slot width is the dominant uncertainty source
- Bayesian model calibration to experimental data is underway

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)
Geometric Fidelity	2	0.7	1
PMMF	3	1.0	1
Code Verification	3	1.0	1
Sol. Verification	3	1.0	1
Model Validation	2	0.8	1
UQ/SA	1	0.3	1

Overall credibility score

- Define weights across different PCMM elements
 - Which elements have greatest impact on credibility?
 - Discussion between credibility partner and other stakeholders
- Construct a BPA for each element

Rules for constructing BPAs

- $m_i(S) = E_i * M_i * R_i$
- $m_i(F) = (1 - E_i) * M_i * R_i$
- $m_i(\{S, F\}) = 1 - (m_i(S) + m_i(F)) = 1 - M_i * R_i$
- $m_i(S) + m_i(F) + m_i(\{S, F\}) = 1$

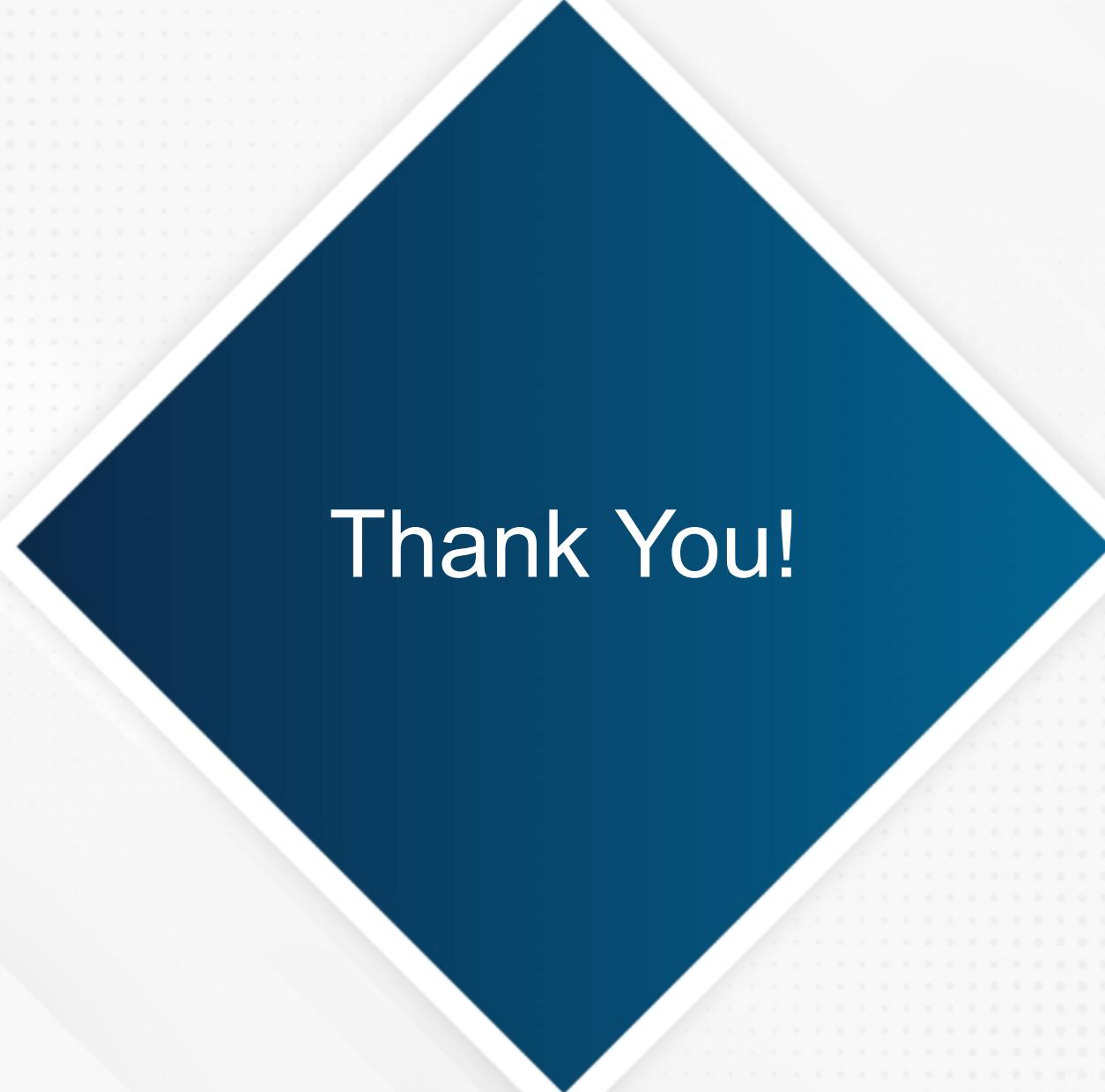
Stover, O., et al. VVUQ 2023

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)	Weight (W_i)	Support $m_i(S)$	Failure $m_i(F)$	Uncertainty $m_i(\{S, F\})$
Geometric Fidelity	2 (0.9)	0.7	1	0.1	0.63	0.27	0.1
PMMF	3 (1.0)	1.0	1	0.1	1	0	0
Code Verification	3 (1.0)	1.0	1	0.1	1	0	0
Sol. Verification	3 (1.0)	1.0	1	0.2	1	0	0
Model Validation	2 (0.8)	0.8	1	0.2	0.64	0.16	0.2
UQ/SA	1 (0.4)	0.3	1	0.3	0.12	0.28	0.6
Combined BPA					0.627	0.143	0.23

Outline

- Introduce application:
Electromagnetics
- Review credibility framework:
PCMM
Vanderbilt's credibility framework
- Perform credibility assessment:
Quantitative credibility scores
- Conclusions

Conclusions



- We demonstrated Vanderbilt's quantitative credibility approach for an EM application
 - The credibility approach is comprehensive: maturity, strength, and relevance
 - The approach nicely partitions the credibility activity
 - Scoring is useful during the credibility process to guide next steps
 - For this EM exemplar, results from the credibility assessment for the acceptability of the model for its intended application are:

Support $m_i(S)$	Failure $m_i(F)$	Uncertainty $m_i(\{S, F\})$
0.627	0.143	0.23

Future Work

- Define a target application (which will introduce relevance considerations)
- Continue to mature the credibility activities for this EM application

Thank You!

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)
Geometric Fidelity			
PMMF			
Code Verification			
Solution Verification			
Model Validation			
UQ/SA			

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)	Weight (W_i)
Geometric Fidelity				
PMMF				
Code Verification				
Solution Verification				
Model Validation				
UQ/SA				

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)	Weight (W_i)	Support $m_i(S)$	Failure $m_i(F)$	Uncertainty $m_i(\{S, F\})$
Geometric Fidelity							
PMMF							
Code Verification							
Solution Verification							
Model Validation							
UQ/SA							

PCMM Element	Maturity (M_i)	Evidence (E_i)	Relevance (R_i)	Weight (W_i)	Support $m_i(S)$	Failure $m_i(F)$	Uncertainty $m_i(\{S, F\})$
Geometric Fidelity							
PMMF							
Code Verification							
Solution Verification							
Model Validation							
UQ/SA							

Combined BPA							

