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What are granular metals (GMs)?
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Grimaldi, Phys. Rev. B 89, 214201 (2014)




Applications of Granular Metals

Magnetic Materials

Superconducting Circuits
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Nanosecond high-voltage transients threaten electrical grid reliability

Power (f = 60 Hz)

— vulnerable
Lightning > infrastructure
(f < MHz) Nanosecond transients
LSA (f > MHz)
Sources:
e * Power electronics and
B 1 gas-insulated substation
- switching events b a
zi 10s cm * I|nsulation faults
—— * Nuclear EMPs
- 7 An additional ns arrester is needed with
Lightning surge arresters’(LSAs) * High breakdown strength for compact devices
response time is ~100 ns * Low conductivity, o, at grid voltages and frequencies

* High o at MHz/GHz frequencies and with overvoltages
e High thermal stability
» Large current carrying capacity (>1 kA/cm?)




Granular metals are promising for ultrafast grid protection.

Insulator

Metal Nanoparticles

Insulating
Matrix

Grimaldi, Phys. Rev. B 89, 214201 (2014)

Below ¢, conduction occurs via electron tunneling and capacitive transport.
Conduction from electron tunneling increases at higher electric fields.

Conduction from capacitive transport increases at higher frequencies.




GMs have desired low DC conductivity.
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Figures: Grimaldi, Phys. Rev. B 89, 214201 (2014)

Conductivities of <10 S/cm are desired to reduce leakage currents.



Co-YSZ and Mo-YSZ synthesized by RF co-sputtering in Ar
Volumetric Metal Fraction
20% 30% 40%

Sample
stage

Mo-YSZ

Co-YSZ

Metal island diameters between 1-3 nm.
Particle separation distances are ~0.2 - 0.6 nm

SJ. Gilbert et al,, J. Phys. Condens. Matter 34, 204007 (2022)




Quantum Tunneling
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Quantum tunneling in granular metals
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Co-YSZ and Mo-YSZ have high DC conductivities.
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Potential tunneling mechanisms
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Conductivity depends on defect density, temperature and electric field.

Fu-Chien Chiu, Advances in Materials Science and Engineering, 2014, 578168, (2014)



Normalized Intensity

Normalized Intensity
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X-ray photoemission spectroscopy shows metal-oxide formation
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P /d Noble Metal GMs have desired low DC conductivity.
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Noble metals are expensive and have lower than desired thermal stabilities.

Nearly all granular metals utilize oxide insulators.




/ Metal-oxide formation reduces GM performance.
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Co-SiN, and Mo-SiN, GMs were synthesized by RF co-sputtering.

Volumetric Metal Fraction
20%

5,

WP uras
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Ty BN

-}~_“|A‘10- nm
S.J. Gilbert et al., Nanotechnology, 34, 415706 (2023)

Nanoparticle diameters and separations are similar to YSZ GMs.




Conductivity still too high for electrical grid integration.
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/ Mo-SiN, exhibits Mo-nitride formation.
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/ Nitrogen vacancies cause metal-silicide formation and increase conductivity.
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Insulator can be repaired by
depositing in Ar/N,.




Sputtering metals in N, results in metal-nitrides.

X-ray diffraction
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Deposition in N, Reduces Nanoparticle Size
Co-SiN, (¢$=0.3)

100% Ar 100% Ar

Co-SiN, (¢$=0.35)

LETY

M. McGarry et al., submitted S.J. Gilbert et al., in progress




Significant insulator improvements when deposited N,
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Low conductivities previously only seen with noble metals. A



// Deposition in N, greatly increases activation energy
/~ Hopping Conduction
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/" Field enhanced tunneling is observed at higher electric fields
/ Mo-SiN, grown in 10% N,
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P/

Poole-Frenkel emission for electric fields >20 kV/cm
Mo-SiN, grown in 10% N,
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Annealing Increases Nanoparticle Size and Separation

Co-SiN, grown in 50% N, ($=0.35)
400 °C

unannealed

S.). Gilbert et al., in progress




Mo-SiN, is stable up to ~800 °C
Mo-SiN, grown in 10% N, ($=0.4)
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Deposition in N, and Annealing Reduce Metal-Silicide Content
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Annealing further improves insulator quality.
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/Fowler-Nordheim tunneling enhances current carrying capacity

Mo-SiN, grown in 10% N,
7 ¢ = 0.3, 1050 °C anneal
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GMs follow Jonscher’s universal power law
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/ Material advances result in extraordinarily o, response

High o(w) at MHz
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Material advances result in extraordinarily o,-response
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/ Conclusion: Granular Metals are promising for nanosecond high voltage
transient protection

7 /ﬂ/ compact * >1 MV/cm breakdown strength

ﬁ/ insulating at 60 Hz and low electric fields Conductivities of 10~-107 S/cm

E/ high thermal stability * Mo-SiN, stable to ~800 °C

ﬂ/ conducting for 1 GHz voltage spikes * >10° conductivity increase at 1 MHz

?EI large current carrying capacity (>1 kA/cm?) Coupled high frequency/electric-field

measurements needed.

sjgilbe@sandia.gov
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