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3 | 3D Characterization has Advanced Significantly in the last Decade
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5 | Complex 3D microstructures exhibit large orientation gradients

> Well-annealed or undeformed crystals are easily analyzed with approaches using 2D conventions
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¢ | Complex 3D microstructures exhibit large orientation gradients
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° Average orientation is not necessarily a good reference in all cases
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9 I Complex 3D microstructures exhibit large orientation gradients

Spatial
Representation

Build
Direction

11

A

001 101

Orientation

. Binning
Representation Cubochoric Space
(Cubochoric Space) (0.25° Bins)

N

Vi

/\/\ \
L

Average Orientation

Mode Orientation Bin



10 I Complex 3D microstructures exhibit large orientation gradients
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12 | In situ tensile experiment with pCT and DCT

> Sample of Al 2219 processed with T6 heat treatment

o Minimal texture

° 55 pm average grain size
° 0.3% porosity
© 0.5% Al,Cu Particles
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13 | In situ tensile experiment with pCT and DCT

> Sample of Al 2219 processed with T6 heat treatment
° Minimal texture
° 55 pm average grain size
° 0.3% porosity
© 0.5% Al,Cu Particles
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14 | In situ tensile experiment with pCT and DCT

o 8 intermittent scans taken at fixed
displacements until fracture
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15 | Ex situ analysis of fractured sample

> Understand deformation via orientation analysis

> DCT cannot handle large deformations

o Utilized destructive serial sectioning in the SEM via

TriBeam Tomography

o Ultimately want to fuse all data modalities into a

single reference frame
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16 | Backscatter Electron Image Flythrough

° Roughly 300 slices collected at a slice
thickness of 2.0 um

o EBSD data also collected on each slice

° Data collection is fully automated via
in-house codebase using python interface
with the SEM (autoscript package)

o Fracture surface shows mixture of
transgranular and intergranular
fracture

° Precipitates, voids, and cracks clearly
visible in this imaging modality




18 | Fracture Surface Profile Comparison

° Serial-sectioning captures surface profile well, but is rotated in 3D relative to the CT data
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19 | CT-Backscatter Data Fusion

> Following approach of Lenthe et al. (2015) for least-squares affine transformation using a series
of control points:
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20 | CT-Backscatter Data Fusion

> Mapping to new reference frame yields unified coordinate system

CT Surface Mapped Backscatter Surface
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21 | CT-Backscatter Data Fusion

> Mapping to new reference frame yields unified coordinate system
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22 | EBSD-Backscatter Data Fusion

° Distortions in EBSD are generally non-affine
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23 | EBSD-Backscatter Data Fusion

° Thin-plate spline enables non-linear relation of reference frames using control points
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24 | EBSD-Backscatter Data Fusion

° Thin-plate spline enables non-linear relation of reference frames using control points ‘
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5 | EBSD-Backscatter-CT Data Fusion

> Apply BS2>CT transformation to distortion-corrected EBSD volume ‘
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26 | Intragrain misorientation distributions (mode reference)

> Linkage between distance from fracture surface and total misorientation accumulation at failure
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27 | Clear changes in texture

> DCT Data (5 um resolution)

> EBSD Data (2 um resolution)

and morphology during deformation
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Sandia
| Crystal plasticity simulation initialized from DCT data i | Netiona

Laboratories I
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Grain rotation seen with CP explains change in texture
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Sandia
| Grain rotation seen with CP explains change in texture P Nationa
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34 | Grains Pairs in undeformed DCT and fractured TriBeam data
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35 | Grains Pairs in undeformed DCT and fractured TriBeam data
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36 | Grains Pairs in undeformed DCT and fractured TriBeam data
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37 | Grains Pairs in undeformed DCT and fractured TriBeam data
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38 I Conclusions

° Improvements in characterization approaches
otfers new opportunities for 3D EBSD to
understand microstructure

° For complex microstructures with large
orientation gradients, choice of reference
orientation must be considered

o Data fusion with 3D EBSD is best
approached as a combination of affine and
non-affine transformations

> Ground truth EBSD data can be used to
benchmark and improve high-fidelity
modeling approaches




