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| Electron shuttling to mediate remote entanglement

Vision: electron

shuttling to entangle
distant qubits

2-qubit CZ gate operation by shuttling

coupled state
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*Chat with Wayne Witzel about his

invited talk yesterday or read:
PRX Quantum 3, 040320 (2022)
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3-dot spin shuttling ~80 pm
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This work: 2-electron coherent
and eigenstate shuttling across
3 Si QDs in Si/SiGe
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|
I Singlet-triplet qubit in Si/SiGe Tunnel Falls device m

Intel's Tunnel
Falls 3QD device
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Singlet-triplet qubit shuttling

State preparation |S) shuttle 1S) % |TL) shuttle 1S) %
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« Rapid adiabatic transfer to (3,1,0)

. 1
) @ T @ » Singlet |S) = (M) + L))
« Sensitive to magnetic noise

L Sensitive to spin flips
» Coherent shuttling

EEEE

Shuttling

Slow adiabatic transfer to (3,1,0)
Eigenstate of field gradient |Tl)

Demonstrated shuttling of both

coherent and basis ST qubit states
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6 I Repeated spin shuttling

Total shuttling time
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= Coherent |S) shuttling limited by hyperfine
background, not shuttling itself
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Coherent shuttle dephasing
dominated by magnetic noise;
Adding more shuttles does not

increase error

6 March 2024 | Natalie D. Foster | ndfoste@sandia.gov




7 | Extending coherence using dynamical decoupling

Singlet shuttle without dynamical decoupling
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Singlet return probability
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Singlet shuttle with dynamical decoupling
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s 1 Coherent shuttling performance

f

Measurement:
Repeated shuttles with dynamical decoupling
at minimum wait time of 4 ns

Total shuttling time (s)
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Coherent shuttles completed within 1/e
decay = 20k

Coherence loss per shuttle ~=.0031%
Shuttle distance 1.2 mm can be achieved
with 10k shuttles and ~25% |S) error

Coherent shuttling distance
possible on order of millimeters

6 March 2024 | Natalie D. Foster | ndfoste@sandia.gov




o 1 Summary Acknowledgments
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Demonstrated versatile device control Sandia
National ~ team

- Coherent shuttling of an entangled .
spin state Laboratories

« Two-axis Bloch sphere control

Achieved >20k shuttles
*  Error per shuttle ~0.0031%

« Shuttling distance ~1.2 mm with 25%
coherence loss Natalie Jacob Martin Dwight  Ryan Jock

Limited by residual magnetic Foster Henshaw Rudolph  Luhman '
dephasing

Decay dynamics fits

[
o
L

Future work

« Understand decay
dynamics and loss
mechanisms
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supplementary

Same spin-valley hotspot = ST qubit shares dot PO v
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Fit parameters for f(N) = A exp (— (

A= 0.582
N* = 20294
Alpha = 0.33985
C=0.2698
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