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3 | Motivation: Structural Health Monitoring (SHM)

m Assess the health of an engineered
system through non-intrusive
measurement of damage signatures

m SHM is used in many fields

m Measurements may be time series
data

m We will assume pristine baseline
measurements also exist

Source: Tufts Dept. of Civil and m Can ML identify damaged structures
Envr. Eng. from SHM measurements and
include UQ?
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Support Vector Machine
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Figure: wikipedia

m Idea: hyperplane (w?z = b) to separate 2 classes
of data while maximizing the width of the

margin.

m Datapoints are represented by location (z;) and

class (y;):

. yi =1

m w is the normal vector, and the width of the

margin is given by ﬁ

O v=-1

o
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Optimization: Hard Margin

m Optimization problem:

max margin length

hyperplanes

s.t. all samples on correct side of margin

m Formally:

dim2

++ +
" JE e
in - [e]|3 e
min — Sl +
wb 2 2 +
“ + class0
. - +
st. yi(wle;—b)>1 fori=1:/¢ R :amé
diml
When y;(w?z; —b) = 1, z; is a support vector. The collection of support vectors are |

the only vectors that define the hyperplane and the margin.



6 | Optimization: Soft Margin

m Optimization problem:

max margin length 81
hyperplanes

o]
s.t.  most samples correct side of margin o]
while penalizing misclassification of samples E 2
m Formally: "
.

mlnluw”Q_i_C é’ 4] . +  + class0O

w.b 2 2 T + + class1

’ i B A S S

to oyiwle—b)>1-¢&
s yi(w' iz —b) 2 i When &; > 0, x; is in the margin

& >0 fori=1:/¢ or passed it. '



7 | Our datasets:
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Figure: Moon dataset
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8 I We need nonlinear decision boundaries!

Even though soft-margin SVM can find a linear decision boundary, it does not
perform well.
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Kernel methods

m SVM performs best on higher-dimensional data because it is more likely to be
linearly separable
m Project original data to observables in some higher dimension:
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Figure: Zhang, Grace, medium.com

m Curse of dimensionality: expensive to work directly with observables
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Kernel Trick

The kernel trick allows us to use the observables without doing any
computations in the high-dimensional space.

The kernel represents inner products between observables:

K(zi, ) = ((z:), d(x5))

Gaussian kernel: )
|zi — 2|3

K(xzal'j) = exp(— 202

)’

Polynomial kernel:
K(zi,x)) = (x] 2 + a)?,

o,a,p are adjustable parameters
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But first...

m We want to solve this (hard-margin) problem P:

1
min —w! w st. yi(wlo(xz;) —b)>1 fori=1:¢

w,b

but since w is also a vector in the feature space, solving this directly requires

working in the feature space.
m Lagrangian:

1 ¢
L(w,b,\) = QwTw - Z Ai [yi(wai —b)—1]
=1

m Since the objective function is conver and the constraint functions are also

convez, Karush-Khan-Tucker theorem states that:

B Wy, by, Ay is a saddle point of £ if and only if wy, b, is optimal for P.
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Dual Problem and KKT Conditions

mgxﬁ(w*,b*,)\) = mﬁixmiglﬁ(w,b, A). (1)

To find wy, by in terms of A\, we set

oL
5 = 0 = wy = zi:)\iy@(ffi) (2)

and
oL

5 =0 = ;)\iyizo. (3)

And the following are the constraints on the KKT multipliers (nonnegativity and
complimentary slackness):

X >0 and N [yi(w d(z) —b)—1] =0 Vi (4)




13 1 QP Simplification

After plugging in KKT conditions, this reduces to
1
max £(w,, b, A) = max > xi- 3 SN XNviyi(o(i), ¢(x;)) (5)
i i g

1
= min 5ATXTXA —17A st A>=0, ) yhi=0 (6)

where

|
X=|... yio(z)
(

When using the kernel trick, X7 Xi ;= Ker(z;,z;) and XTX is symmetric positive
(semi) definitess.
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Hard Margin Polynomial Kernel SVM

=20 -15 -1.0 -0.5 0.0 0.5 10 15 2.0 2.0 -15 =10 =05 0.0 0.5 10 15 2.0

(a) Polynomial kernel with p = 2 (b) Polynomial kernel with p =5

Figure: Note that there is not a big difference between the two parameter settings on this
data set.




15 I Hard Margin Polynomial Kernel SVM

(a) Polynomial kernel with (b) Polynomial kernel with (c) Polynomial kernel with
p=3 p = 3, zoomed out. p = 4, zoomed out.

Figure: Similar decision boundary for p = 3 and p = 4 near the data, but far enough out
p = 4 extrapolates wildly.
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Hard Margin Gaussian

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

(a) Gaussian kernel with o = .1

-2 0 2

(b) Same as (a)
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Hard Margin Gaussian

(a) Gaussian kernel with
o=.02

(b) Gaussian kernel with
o=.25

2 1 o 1 2

(c) Gaussian kernel with
o = .8 (less noisy data).




Soft Margin Polynomial SVM
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(a)¢=.1,p=3 (b) C=10,p=3
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Soft Margin Polynomial SVM
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Figure: Polynomial softmargin with varying penaltization for misclassification.




20 | Ensembling

Figure: Moon dataset Figure: Donut dataset

m 100 training samples (pluses) and 100 testing data (stars) selected at random
and evenly split between each class

m A model must pass with 80% accuracy on the test samples to be included in
the ensemble




21 I Ensembles

Parameters that vary between ensembles: C' (penalization for misclassification),

and kernel parameters p, o.
Intuition behind colorbar: White: Overlap (uncertainty), Red: class 1, blue: class 2

Figure: 22 Polynomial SVMs Figure: 30 Gaussian SVMs
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=10

Figure: Polynomial and Gaussian kernels on the donut dataset, varying C, o, p over 27

. . |45 5 TP FN| .
models. The confusion matrlx.[ 4 46| = [ P T N] gives the average number of

true/false positives (green stars)/negatives (blue stars) classified by the SVMs.




23 I Aleatoric Uncertainty

-20

Figure: Using the Gaussian kernel with o = .25 and C =1, we tested 20 different sets of
training data. To create a training data set, for each point x; in the the original training
dataset, a new point y; was selected from a normal distribution around z;. Then the SVM
was ran on the collection of y;s.
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In-class/out-of-class distinction

m Previous ensembles give high certainty far away from the data
m Solution: separating and surrounding each class
m Optimization problem given only one class (SVDD):

min  radius
hyperspheres

s.t. hypersphere encloses most in-class samples

while penalizing samples outside of the sphere

m Formally:

H:,ibn r?2+C Z &i (7)
stlo(x) —b|| <r?+ & (8)
& >0 9)
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Figure: Gaussian kernel for Single class SVM with o = 2




26

Single-Class SVM with negative examples

m What if we have samples that we know do not belong in the class (we do)?

min  radius
hyperspheres

s.t. hypersphere encloses most in-class samples
while penalizing positive (negative) samples outside (inside) the sphere

m Formally:
11;17ibn 2+ Z&' + Cy Z Bi (10)
st o) —oll <r?+ ¢ (11)
p(yi) — bl = r* — B; (12)
§& >0 (13)
Bi >0 (14)
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Comparisons

(a) Linear single class SVM with no
negative samples (C' = 1)

10

(b) Linear with one negative sample

(C1 =1,Cy = l)

10
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Comparisons
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20 | Ensemble of (Gaussian) Single-Class Classifiers

In addition to kernel parameters, there are 2 penalization parameters to vary:
m (] penalization for in-class outliers

m (5 penalization for out-class inliers

10

163 SVMs passed for class 1
o with average confusion matrix:
y # TP # FN| 1405 9.5
' {# FP # TN] - [5.2 44.8]'

T T T T T T T 0.0
-15 -10 -05 0.0 05 10 15




30 I Ensemble of (Gaussian) Single-Class Classifiers

Note:
m More false negatives than false positives

m There are less SVMs passing with 80% accuracy for class 2

10

114 SVMs passed for class 2
o with average confusion matrix:
" # TP #FN| (444 5.6
' {# FP # TN] - [1.6 48.4]

ro.z2

-15 -10 -05 0.0 05 10 15




31 I Combining the ensembles

Each point is associated with a vector (pi,p2):
m p; is the value from the class 1 ensemble, po from the class 2 ensemble
mp+pr#1

2D cmap legend

m White (1, 1) : indicates
uncertainty from class
overlap

m Black (0,0) : indicates
uncertainty from lack of
data

0.5
0.0 0.5 10

0.0 Classl

-0.5

-1.0

=15

-1.5 -l.0 -05 0.0 0.5 1.0 15



32 I Moon Dataset Gaussian Ensemble

—~0.50 ~0.25 0.00 025 050 075 100 125

Figure: 139 SVMs passed for class 1 with confusion matrix [412'33 4277
45.4 4.6}

2.6 474

} 129 SVMs passed

for class 2 with confusion matrix: [
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Higher Dimensional Data: Time Series

m Class overlap is less likely: easier to surround and separate a class without
using kernels

m Overfitting more likely with kernels

m New datasets!




34 | Olive Oil: Food Spectrographs

Task: distinguish 4 different types of olive oil given food spectroscopy data
(vibrational data from exposure to infrared radiation)

N

o

A

o} 100 00 00 400 500

s

0 100 00 00 a00 500
I f/\% /\
0 100 00 00 400 500

A

0 100 200 300 400 500

Number of classes: 4
Train size: 30

Test size: 30

Series length: 570
Ensemble: Each model
must pass with 75%
accuracy: 40 SVMs for
class 1, 44 for class 2, 41

for class 3, only 3 for
class 4




35 I Olive Oil: Average confusion matrices

. [215 285
Lo 2
(72 1.8
"5 20.5]
L [26 15
15 245
11 2.7
"4 14.3}

To note: more than 2 classes = many more positive samples than negative for a
given class. This means a model may classify all the samples as negative, and still
pass with 75% accuracy.




36 | Bird vs Chicken

Task: distinguish birds from chickens

m Data: distance from the
center while tracing the

. silhouette
N 0 100 200 300 00 500 a Train size: 20
14 m Test size: 20
ol
i m Series length: 512
)
(I) 160 260 360 460 560
Testing data: class 1 (top), class 2 (bottom). Not one SVM could pass with 75% |

accuracy.



37 I Daily Power Demand in Italy

Each time series is (centered) power usage in a day. Task: distinguish days in
Oct-March from days in Apr-Sept

m Train size: 67
m Test size: 1029
m Series length: 24

m Testing data: class 1
(top), class 2 (bottom)

o




38 I Daily Power Demand in Italy: No Kernel

m In class: red

m 94% accuracy on testing

] data!
499 17
Y 44 469

m Figure: testing data.
Dashed lines are the
data points defining the

border of the
hypersphere

—2 4

0 > w0 1 2 m Hard to visualize :(
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Daily Power Demand in Italy: Ensemble

m 42 SVMs passed for class 1, 43 for class 2.

466.9 49.1
42,5 470.5
m Again, more false negatives than false positives

m The averaged confusion matrices are [

]

415.0 49.0
36.5 430.5

|




a0 I Daily Power Demand in Italy: Ensemble

Figure: Ensemble for class 1. Class 1 testing data (left), Class 1 testing data (right).
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PCA: project onto hyperplane of best fit (ongoing work)

m PCA (Principal Component Analysis): Use singular value decomposition to
find the hyperplane of best fit (described by first and second principal
components)

m Project data onto hyperplane
m Classify before or after the projection?

m Adds uncertainty




42 | PCA: Power Demand in ltaly

Training data
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43 | PCA: Birds vs Chickens

Training data
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a4 | Percent Variance Explained

Percent variance explained, Italy Power Demand Percent variance explained, Birds & Chickens
1.00 10
0.95 4
09
0.90 4
0.85 4 08
0.80
07
0.751
0.70 06
0.65 4
0.60 4 05
] 5 10 15 20 0.0 25 5.0 75 10.0 125 15.0 175

Principal Component Principal Component




45

PCA: future work

m Experiment with number of principal components

m Variance explained vs separability: maybe the components that explain the
most variance are not the components where the data is the most separable
m Functional PCA:

m Allows for data sets with time series of different lengths
m Considers the order of the data (unlike PCA)




46 I Conclusions:

What we have addressed so far:

m Classification (SVMs)
m Uncertainty in classification due to

m Class overlap
m Extrapolation

Future plans:
m Apply fPCA
m Incorporate UQ analysis of the PCA

m Incorporate QUQ concepts to assess the accuracy of our UQ estimates
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Thank you!
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Notes

m We don’t know the observables / feature space
m We cannot solve for w (w = >, \iyid(x;))
m We cannot find the decision boundary analytically

m We can test a point by checking whether
wle —b= Z Ny Ker(zi,x) —b

is positive or negative.
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Code: 1. Formulate and Solve QP

[i,j] = classes[i]*classes|]j]*ker(samples[i],samples[]j]
[3,1] = classes[i]*classes[]j]*ker(samples[i],samples[j]
q = (-1)*np.ones(1l)
lower = np.zeros(l)

upper = np.ones(1)*C
eq_constraint = np.array([e.])

kktmult = solve qp(XTX, q, G= » h= , A = classes, b=eq constraint, \
lb=lower, ub = upper, solver=slvr)
if kktmult
raise ValueError('QP not e")
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2. Find Support Vectors
|

ind1l = np.array([i for i in ra num) if
if len(ind1l) ==

raise ValueEr
ind2 = np.array([i for num) if

abs (kktmult[i]) >= eps

abs (kktmult[i])
ind nonzero @ = rray([i i in ind1 if classe
ind nonzero 1 .array([1i i in ind1 i

) clas
num_svs = len(ind1)

3. Solve for b

bvec = @*kktmult
for i in ind1:
WX = 0

1 in ind2:
wx += kktmult[j] * classes[j] * ker(samples[]j],samples[i])
bvec[i] += wx - classes[i]

b = np.average(bvec[ind1])

kktmult[i] <= (1-eps2)*C)])




51 | 4. Check Numerical Stability of QP solution

stable =
if len(ind_nonzero 0)>0:
for vec in samples[ind nonzero_e]:

if dec_fcn(vec, "test’) >= .1:

stable =
if len(ind nonzero 1)>@:
for vec in samples[ind nonzero 1]:

if dec fcn(vec, "test’) <= -.1:

stable =

if stable:
print(’




52 I 5. Compute Accuracy Rate and Confusion matrix ﬂ

TP

FN
T” A
total = (len(test®) + len(testl))
for vec in teste:
if dec_fecn(vec, 'test') <= o:
TH += 1

else:
FN += 1
for vec in testi:
if dec fcn(vec, 'test') »= @:
TP += 1

FP 4= 1
acc_rate = (TP+TN)/total




53 I 6. Draw Decision Boundary

if acc_rate »= desired_accuracy:

for i in r len(X)):

for j in rar len(x[@])):
Z[1i,j] = dec_fen(np.array([X[i,j]1,Y[i,3]1]1))
return z, conf




54 I Lagrangian and QP derivation for Soft Margin

The only difference in the Lagrangian dual problem between soft-margin and
hard-margin is a box constraint on the KKT multipliers in soft-margin. The
following is the lagrangian:

L(w,b,& ), @) = Hw|!2+02& ZA yi(w" ¢(zi) —b) + & — 1] Zaza

=1 =1

And the only change in the KKT conditions from hard-margin comes from

oL
9¢

=0 = C—-\—a;=0 (15)



Now, to maximize over the KKT multipliers A, o, we can remove remove the
55 dependency on «; by rewriting the above as

0< )\ <C.

And plugging in a; = C' — \;, we return to the hard margin lagrangian:

y4
L(w,b, ) = %||w||2 = 3N [ g(a) — ) — 1] (16)
i=1

1
= min §ATK)\ —17 st 0SNG D Awi=0  (17)

7

And the KKT conditions give us that

yi(who(z;) —b)+&—1=0 YN #£0
& =0 Voa; #0



Note that from the above and (15):
56

)\i<0:ai7&0:&:0
So we can compute b by averaging all of the solutions to the following:
yi(wlo(z;) —b) —1=0 ife<l<C—e¢

As C' — oo we approach the hard margin SVM.




57 | Single Class SVM ﬂ

Lagrangian dual problem:

maxmin L = maxmlnr +CZ£Z Z)\ 2+ & — |z —b|| Zalfl

Aa bt Aa 1b
(18)




For 7, b to be a minimizer, it must satisfy the KKT conditions:

58
oL
oL
5 =0 = b:zijw(xi) (20)
oL
8_520:>ai+/\i202>0§/\i§0 (21)

And complimentary slackness:

& =0, N[ +&—|lola;) —bl*] =0 (22)




After plugging in the first three KKT conditions, we arrive at the following
5

9 quadratic programming problem and can remove « from the problem entirely:

i\ _ ) e
m/\ln)\ K\ ;/\Zker(wz,xz) (23)

st. 0< )\ <C, (24)

Where
KZ’J' = ker(wi,xj) = ker(xj, 1’1) = Kj,i
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KKT derivation for Single Class w Negative Examples

mibnT2 +Cy Z&' +Co Zyz
st |lo(z) — bl <r*+&
l¢(y) = bl = r? = B
& >0
Bi >0




Lagrangian dual problem:
61

max min L
Ao,y b€

= maxmmr +012§l + CQZ@

Aa?’y T? 7

—Zw?m p(a:) — b]1?] sz r+/3z-+u¢><yz-)—b\|2]

l m
= il =Y vibi
i—1 i=1

(31)




For 7, b to be a minimizer, it must satisfy the KKT conditions:

62

oL : m

E—Oﬁ;Ai—;pizl (32)

oL l m

o =0 = bZZAi¢($i)—ZPi¢(yi) (33)
=1 =1

oL

8—520:>a¢+)\¢201:>0§)\i§01 (34)

oL

—=0= v+pi=0C = 0<p; < (35)

op




And complimentary slackness:
63

;& =0

7iBi =0

pi [-r% + Bi + |é(wi) — b]|*)] =0
Xi [r? 4+ & = |lg(zi) = b]?] =0




For the sake of notation, we convert to using only A\ and z: let
64

ANtj =Djs  Tiyj = Yj for j=1:m.

After plugging in the first three KK'T conditions, we arrive at the following
quadratic programming problem and can remove «,y from the problem entirely:




65

l l+m
m}%n Mox - ; Niker(z;, x;) + izl;l Niker(z;, x;)
l+m
ZA - > n=1 (41)
i=l+1
OS)\igclforz:l:l (42)
0< N <Cyfori=1l+1:1+m (43)

Where
Qi = ker(x;,x;) = ker(zj,z;)) =Qj; fori=1:1,j=1:1

Qi j = ker(z;,zj) = ker(zj,x;) = Qi fori=14+1:14+m,j=1+1:14+m
Qi = —ker(zi,xj) = —ker(zj,x;) =Qj fori=1:1,j=1+1:14+m
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QP Solvers

1. DAQP: Dual active set solver for embedded quadratic programming
[Arnstrom2022: daqp|

2. ECOS: Interior-point solver for second-order cone programming (SOCP), ie
convex quadratically constrained problems. [Domahidi2013: ecos|

3. OSQP: Operator splitting solver for quadratic programs [Stellato2020: osqp|

DAQP and ECOS are both faster than OSQP. DAQP is more catered to our QP,
and both are more accurate than OSQP. However, they require X7 X to be strictly
positive definite. In the linear case, X is often not invertible, especially when the
number of data points is larger than the dimension. When using the kernel, X is
almost always invertible and DAQP or ECOS are most ideal.



https://ieeexplore.ieee.org/document/9779534
https://web.stanford.edu/~boyd/papers/pdf/ecos_ecc.pdf
https://arxiv.org/abs/1711.08013

67 I Active Set Method

m Simplex is an active set method
m Idea:

m Guess the set of active constraints
m Reduce the number of unknowns
m Solve an unconstrained subproblem

How to guess at the active set?




68 I Dual Active Set Solver for QPs

General formulation of a QP:
1
min 2 Hz + fTa
z 2
st. Az <b
Dual problem:
min 1ozTMMTa +d'a=min D
a>0 2 a

Maintain complimentary slackness («; # 0 <= [Az]; = b;), aim for dual feasibility
and primal feasibility.




69 I 1: Dual Feasibility

m At iteration k, working set of indices wyg, solve the new unconstrained problem
on those indices. Since this is quadratic, we can take the gradient and solve a
linear system:

V Dy, (o, ) =0

m If o, <0, for some index, we do a line search (towards dual feasibility):

a

/o
[ |

m Until 1 component of o}, becomes nonnegative, and we remove that index from
the active set.




70 I 2: Primal Feasibility ﬂ

m Check primal feasibility by checking if the gradient of the inactive constraints
is positive:
VDg, >0

m Add the most negative component of this term to the active set.




71

LDLT Decompositions

m Solving VD,, = 0 means solving a linear system involving
MMl =LDLT

m Between steps and iterations, only 1 index is added or removed to the active
set i.e. only 1 row is added or removed from M

m Easy to update LDL” recursively.




72 | Results |
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Figure: Comparison with QPNNLS on QPs with varying condition number, n = 25
m = 100.
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Figure: Comparison with other solvers as QPs grow over time.
n=2N+1,m =N +2(N —1). One of the limitiations with DAQP is that it doesn’t scale
well with large QPs (order n = 1000+).
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