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2 Outline:

Motivation
Structural Health Monitoring

SVMs
Toy data
Variations and Ensembles
High dimensional data
In progress: PCA

Ideas for improvement



3 Motivation: Structural Health Monitoring (SHM)

Source: Tufts Dept. of Civil and
Envr. Eng.

Assess the health of an engineered
system through non-intrusive
measurement of damage signatures
SHM is used in many fields
Measurements may be time series
data
We will assume pristine baseline
measurements also exist
Can ML identify damaged structures
from SHM measurements and
include UQ?



4 Support Vector Machine

Figure: wikipedia

Idea: hyperplane (wTx = b) to separate 2 classes
of data while maximizing the width of the
margin.
Datapoints are represented by location (xi) and
class (yi):

yi = 1 yj = −1

w is the normal vector, and the width of the
margin is given by 2

∥w∥



5 Optimization: Hard Margin

Optimization problem:

max
hyperplanes

margin length

s.t. all samples on correct side of margin

Formally:

min
w,b

1

2
∥w∥22

s.t. yi(w
Txi − b) ≥ 1 for i = 1 : ℓ

When yi(w
Txi − b) = 1, xi is a support vector. The collection of support vectors are

the only vectors that define the hyperplane and the margin.



6 Optimization: Soft Margin

Optimization problem:

max
hyperplanes

margin length

s.t. most samples correct side of margin

while penalizing misclassification of samples

Formally:

min
w,b

1

2
∥w∥22 + C

∑
i

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi,

ξi ≥ 0 for i = 1 : ℓ
When ξi > 0, xi is in the margin
or passed it.



7 Our datasets:

Figure: Moon dataset
Figure: Donut dataset

Not linearly separable :(



8 We need nonlinear decision boundaries!

Even though soft-margin SVM can find a linear decision boundary, it does not
perform well.



9 Kernel methods

SVM performs best on higher-dimensional data because it is more likely to be
linearly separable
Project original data to observables in some higher dimension:

xi ϕ(xi)

Figure: Zhang, Grace, medium.com

Curse of dimensionality: expensive to work directly with observables



10 Kernel Trick

The kernel trick allows us to use the observables without doing any
computations in the high-dimensional space.
The kernel represents inner products between observables:

K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩

Gaussian kernel:

K(xi, xj) = exp(−∥xi − xj∥22
2σ2

),

Polynomial kernel:
K(xi, xj) = (xTi xj + a)p,

σ, a, p are adjustable parameters



11 But first...

We want to solve this (hard-margin) problem P:

min
w,b

1

2
wTw s.t. yi(w

Tϕ(xi)− b) ≥ 1 for i = 1 : ℓ

but since w is also a vector in the feature space, solving this directly requires
working in the feature space.
Lagrangian:

L(w, b, λ) = 1

2
wTw −

ℓ∑
i=1

λi

[
yi(w

Txi − b)− 1
]

Since the objective function is convex and the constraint functions are also
convex, Karush-Khan-Tucker theorem states that:
w∗, b∗, λ∗ is a saddle point of L if and only if w∗, b∗ is optimal for P.



12 Dual Problem and KKT Conditions

max
λ

L(w∗, b∗, λ) = max
λ

min
w,b

L(w, b, λ). (1)

To find w∗, b∗ in terms of λ, we set

∂L
∂w

= 0 =⇒ w∗ =
∑
i

λiyiϕ(xi) (2)

and
∂L
∂b

= 0 =⇒
∑
i

λiyi = 0. (3)

And the following are the constraints on the KKT multipliers (nonnegativity and
complimentary slackness):

λi ≥ 0 and λi

[
yi(w

Tϕ(xi)− b)− 1
]
= 0 ∀i. (4)



13 QP Simplification

After plugging in KKT conditions, this reduces to

max
λ

L(w∗, b∗, λ) = max
λ

∑
i

λi −
1

2

∑
i

∑
j

λiλjyiyj⟨ϕ(xi), ϕ(xj)⟩ (5)

= min
λ

1

2
λTXTXλ− 1Tℓ λ s.t. λi ≥ 0,

∑
i

yiλi = 0 (6)

where

X =

. . . yiϕ(xi) . . .


When using the kernel trick, XTXi,j = Ker(xi, xj) and XTX is symmetric positive
(semi) definitess.



14 Hard Margin Polynomial Kernel SVM

(a) Polynomial kernel with p = 2 (b) Polynomial kernel with p = 5

Figure: Note that there is not a big difference between the two parameter settings on this
data set.



15 Hard Margin Polynomial Kernel SVM

(a) Polynomial kernel with
p = 3

(b) Polynomial kernel with
p = 3, zoomed out.

(c) Polynomial kernel with
p = 4, zoomed out.

Figure: Similar decision boundary for p = 3 and p = 4 near the data, but far enough out
p = 4 extrapolates wildly.



16 Hard Margin Gaussian

(a) Gaussian kernel with σ = .1 (b) Same as (a)



17 Hard Margin Gaussian

(a) Gaussian kernel with
σ = .02

(b) Gaussian kernel with
σ = .25

(c) Gaussian kernel with
σ = .8 (less noisy data).



18 Soft Margin Polynomial SVM

(a) C = .1, p = 3 (b) C = 10, p = 3



19 Soft Margin Polynomial SVM

(a) C = .1, p = 3 (b) C = 10, p = 3

Figure: Polynomial softmargin with varying penaltization for misclassification.



20 Ensembling

Figure: Moon dataset Figure: Donut dataset

100 training samples (pluses) and 100 testing data (stars) selected at random
and evenly split between each class
A model must pass with 80% accuracy on the test samples to be included in
the ensemble



21 Ensembles

Parameters that vary between ensembles: C (penalization for misclassification),
and kernel parameters p, σ.
Intuition behind colorbar: White: Overlap (uncertainty), Red: class 1, blue: class 2

Figure: 22 Polynomial SVMs Figure: 30 Gaussian SVMs



22

Figure: Polynomial and Gaussian kernels on the donut dataset, varying C, σ, p over 27

models. The confusion matrix:
[
45 5
4 46

]
=

[
TP FN
FP TN

]
gives the average number of

true/false positives (green stars)/negatives (blue stars) classified by the SVMs.



23 Aleatoric Uncertainty

Figure: Using the Gaussian kernel with σ = .25 and C = 1, we tested 20 different sets of
training data. To create a training data set, for each point xi in the the original training
dataset, a new point yi was selected from a normal distribution around xi. Then the SVM
was ran on the collection of yis.



24 In-class/out-of-class distinction

Previous ensembles give high certainty far away from the data
Solution: separating and surrounding each class
Optimization problem given only one class (SVDD):

min
hyperspheres

radius

s.t. hypersphere encloses most in-class samples

while penalizing samples outside of the sphere

Formally:

min
r,b

r2 + C
∑

ξi (7)

s.t∥ϕ(xi)− b∥ ≤ r2 + ξi (8)
ξi ≥ 0 (9)



25

Figure: Gaussian kernel for Single class SVM with σ = 2



26 Single-Class SVM with negative examples

What if we have samples that we know do not belong in the class (we do)?

min
hyperspheres

radius

s.t. hypersphere encloses most in-class samples

while penalizing positive (negative) samples outside (inside) the sphere

Formally:

min
r,b

r2 + C1

∑
ξi + C2

∑
βi (10)

s.t ∥ϕ(xi)− b∥ ≤ r2 + ξi (11)

∥ϕ(yi)− b∥ ≥ r2 − βi (12)
ξi ≥ 0 (13)
βi ≥ 0 (14)



27 Comparisons

(a) Linear single class SVM with no
negative samples (C = 1)

(b) Linear with one negative sample
(C1 = 1, C2 = 1)



28 Comparisons

(a) Gaussian kernel with no negative
examples (b) Gaussian kernel with negative examples



29 Ensemble of (Gaussian) Single-Class Classifiers

In addition to kernel parameters, there are 2 penalization parameters to vary:
C1 penalization for in-class outliers
C2 penalization for out-class inliers

163 SVMs passed for class 1
with average confusion matrix:[
# TP # FN
# FP # TN

]
=

[
40.5 9.5
5.2 44.8

]
.



30 Ensemble of (Gaussian) Single-Class Classifiers

Note:
More false negatives than false positives
There are less SVMs passing with 80% accuracy for class 2

114 SVMs passed for class 2
with average confusion matrix:[
# TP # FN
# FP # TN

]
=

[
44.4 5.6
1.6 48.4

]



31 Combining the ensembles

Each point is associated with a vector (p1, p2):
p1 is the value from the class 1 ensemble, p2 from the class 2 ensemble
p1 + p2 ̸= 1

White (1, 1) : indicates
uncertainty from class
overlap
Black (0, 0) : indicates
uncertainty from lack of
data



32 Moon Dataset Gaussian Ensemble

Figure: 139 SVMs passed for class 1 with confusion matrix
[
42.3 7.7
1.3 48.7

]
. 129 SVMs passed

for class 2 with confusion matrix:
[
45.4 4.6
2.6 47.4

]



33 Higher Dimensional Data: Time Series

Class overlap is less likely: easier to surround and separate a class without
using kernels
Overfitting more likely with kernels
New datasets!



34 Olive Oil: Food Spectrographs

Task: distinguish 4 different types of olive oil given food spectroscopy data
(vibrational data from exposure to infrared radiation)

Number of classes: 4
Train size: 30
Test size: 30
Series length: 570
Ensemble: Each model
must pass with 75%
accuracy: 40 SVMs for
class 1, 44 for class 2, 41
for class 3, only 3 for
class 4



35 Olive Oil: Average confusion matrices

1:
[
2.15 2.85
0 25

]
2:

[
7.2 1.8
.5 20.5

]
3:

[
2.6 1.5
1.5 24.5

]
4:

[
11 2.7
1 14.3

]
To note: more than 2 classes =⇒ many more positive samples than negative for a
given class. This means a model may classify all the samples as negative, and still
pass with 75% accuracy.



36 Bird vs Chicken

Task: distinguish birds from chickens

Data: distance from the
center while tracing the
silhouette
Train size: 20
Test size: 20
Series length: 512

Testing data: class 1 (top), class 2 (bottom). Not one SVM could pass with 75%
accuracy.



37 Daily Power Demand in Italy

Each time series is (centered) power usage in a day. Task: distinguish days in
Oct-March from days in Apr-Sept

Train size: 67
Test size: 1029
Series length: 24
Testing data: class 1
(top), class 2 (bottom)



38 Daily Power Demand in Italy: No Kernel

In class: red
94% accuracy on testing
data![
499 17
44 469

]
Figure: testing data.
Dashed lines are the
data points defining the
border of the
hypersphere
Hard to visualize :(



39 Daily Power Demand in Italy: Ensemble

42 SVMs passed for class 1, 43 for class 2.

The averaged confusion matrices are
[
466.9 49.1
42.5 470.5

]
,
[
415.0 49.0
36.5 430.5

]
Again, more false negatives than false positives



40 Daily Power Demand in Italy: Ensemble

Figure: Ensemble for class 1. Class 1 testing data (left), Class 1 testing data (right).



41 PCA: project onto hyperplane of best fit (ongoing work)

PCA (Principal Component Analysis): Use singular value decomposition to
find the hyperplane of best fit (described by first and second principal
components)
Project data onto hyperplane
Classify before or after the projection?
Adds uncertainty



42 PCA: Power Demand in Italy



43 PCA: Birds vs Chickens



44 Percent Variance Explained



45 PCA: future work

Experiment with number of principal components
Variance explained vs separability: maybe the components that explain the
most variance are not the components where the data is the most separable
Functional PCA:

Allows for data sets with time series of different lengths
Considers the order of the data (unlike PCA)



46 Conclusions:

What we have addressed so far:
Classification (SVMs)
Uncertainty in classification due to

Class overlap
Extrapolation

Future plans:
Apply fPCA
Incorporate UQ analysis of the PCA
Incorporate QUQ concepts to assess the accuracy of our UQ estimates



47

Thank you!



48 Notes

We don’t know the observables / feature space
We cannot solve for w (w =

∑
i λiyiϕ(xi))

We cannot find the decision boundary analytically
We can test a point by checking whether

wTx− b =
∑
i

λiyiKer(xi, x)− b

is positive or negative.



49 Code: 1. Formulate and Solve QP



50
2. Find Support Vectors

3. Solve for b



51 4. Check Numerical Stability of QP solution



52 5. Compute Accuracy Rate and Confusion matrix



53 6. Draw Decision Boundary



54 Lagrangian and QP derivation for Soft Margin

The only difference in the Lagrangian dual problem between soft-margin and
hard-margin is a box constraint on the KKT multipliers in soft-margin. The
following is the lagrangian:

L(w, b, ξ, λ, α) = 1

2
∥w∥2 + C

ℓ∑
i=1

ξi −
ℓ∑

i=1

λi

[
yi(w

Tϕ(xi)− b) + ξi − 1
]
−

ℓ∑
i=1

αiξi.

And the only change in the KKT conditions from hard-margin comes from

∂L
∂ξ

= 0 =⇒ C − λi − αi = 0 (15)



55
Now, to maximize over the KKT multipliers λ, α, we can remove remove the
dependency on αi by rewriting the above as

0 ≤ λi ≤ C.

And plugging in αi = C − λi, we return to the hard margin lagrangian:

L(w, b, λ) = 1

2
∥w∥2 −

ℓ∑
i=1

λi

[
yi(w

Tϕ(xi)− b)− 1
]

(16)

= min
λ

1

2
λTKλ− 1Tℓ s.t. 0 ≤ λi ≤ C,

∑
i

λiyi = 0 (17)

And the KKT conditions give us that

yi(w
Tϕ(xi)− b) + ξi − 1 = 0 ∀λi ̸= 0

ξi = 0 ∀αi ̸= 0



56
Note that from the above and (15):

λi < C =⇒ αi ̸= 0 =⇒ ξi = 0

So we can compute b by averaging all of the solutions to the following:

yi(w
Tϕ(xi)− b)− 1 = 0 if ϵ < λi < C − ϵ

As C → ∞ we approach the hard margin SVM.



57 Single Class SVM

Lagrangian dual problem:

max
λ,α

min
r,b,ξ

L = max
λ,α

min
r,b,ξ

r2 + C
∑

ξi −
∑
i

λi

[
r2 + ξi − ∥ϕ(xi)− b∥2

]
−

l∑
i=1

αiξi

(18)



58
For r, b to be a minimizer, it must satisfy the KKT conditions:

∂L

∂r
= 0 =⇒

∑
i

λi = 1 (19)

∂L

∂b
= 0 =⇒ b =

∑
i

λiϕ(xi) (20)

∂L

∂ξ
= 0 =⇒ αi + λi = C =⇒ 0 ≤ λi ≤ C (21)

And complimentary slackness:

αiξi = 0, λi

[
r2 + ξi − ∥ϕ(xi)− b∥2

]
= 0 (22)



59
After plugging in the first three KKT conditions, we arrive at the following
quadratic programming problem and can remove α from the problem entirely:

min
λ

λTKλ−
∑
i

λiker(xi, xi) (23)

s.t. 0 ≤ λi ≤ C, (24)∑
i

λi = 1 (25)

Where
Ki,j = ker(xi, xj) = ker(xj , xi) = Kj,i



60 KKT derivation for Single Class w Negative Examples

min
r,b

r2 + C1

∑
ξi + C2

∑
yi (26)

s.t ∥ϕ(xi)− b∥ ≤ r2 + ξi (27)

∥ϕ(yi)− b∥ ≥ r2 − βi (28)
ξi ≥ 0 (29)
βi ≥ 0 (30)



61
Lagrangian dual problem:

max
λ,α,γ

min
r,b,ξ

L

= max
λ,α,γ

min
r,b,ξ

r2 + C1

l∑
i=1

ξi + C2

m∑
i=1

βi

−
∑
i

λi

[
r2 + ξi − ∥ϕ(xi)− b∥2

]
−
∑

pi
[
−r2 + βi + ∥ϕ(yi)− b∥2

]
−

l∑
i=1

αiξi −
m∑
i=1

γiβi

(31)



62
For r, b to be a minimizer, it must satisfy the KKT conditions:

∂L

∂r
= 0 =⇒

l∑
i=1

λi −
m∑
i=1

pi = 1 (32)

∂L

∂b
= 0 =⇒ b =

l∑
i=1

λiϕ(xi)−
m∑
i=1

piϕ(yi) (33)

∂L

∂ξ
= 0 =⇒ αi + λi = C1 =⇒ 0 ≤ λi ≤ C1 (34)

∂L

∂β
= 0 =⇒ γi + pi = C2 =⇒ 0 ≤ pi ≤ C2 (35)



63
And complimentary slackness:

αiξi = 0 (36)
γiβi = 0 (37)

pi
[
−r2 + βi + ∥ϕ(yi)− b∥2

]
= 0 (38)

λi

[
r2 + ξi − ∥ϕ(xi)− b∥2

]
= 0 (39)



64
For the sake of notation, we convert to using only λ and x: let

λl+j = pj , xl+j = yj for j = 1 : m.

After plugging in the first three KKT conditions, we arrive at the following
quadratic programming problem and can remove α, γ from the problem entirely:



65

min
λ

λTQλ−
l∑

i=1

λiker(xi, xi) +

l+m∑
i=l+1

λiker(xi, xi) (40)

s.t.

l∑
i=1

λi −
l+m∑
i=l+1

λi = 1 (41)

0 ≤ λi ≤ C1 for i = 1 : l (42)
0 ≤ λi ≤ C2 for i = l + 1 : l +m (43)

Where
Qi,j = ker(xi, xj) = ker(xj , xi) = Qj,i for i = 1 : l, j = 1 : l

Qi,j = ker(xi, xj) = ker(xj , xi) = Qj,i for i = l + 1 : l +m, j = l + 1 : l +m

Qi,j = −ker(xi, xj) = −ker(xj , xi) = Qj,i for i = 1 : l, j = l + 1 : l +m



66 QP Solvers

1. DAQP: Dual active set solver for embedded quadratic programming
[Arnstrom2022: daqp]

2. ECOS: Interior-point solver for second-order cone programming (SOCP), ie
convex quadratically constrained problems. [Domahidi2013: ecos]

3. OSQP: Operator splitting solver for quadratic programs [Stellato2020: osqp]
DAQP and ECOS are both faster than OSQP. DAQP is more catered to our QP,
and both are more accurate than OSQP. However, they require XTX to be strictly
positive definite. In the linear case, X is often not invertible, especially when the
number of data points is larger than the dimension. When using the kernel, X is
almost always invertible and DAQP or ECOS are most ideal.

https://ieeexplore.ieee.org/document/9779534
https://web.stanford.edu/~boyd/papers/pdf/ecos_ecc.pdf
https://arxiv.org/abs/1711.08013


67 Active Set Method

Simplex is an active set method
Idea:

Guess the set of active constraints
Reduce the number of unknowns
Solve an unconstrained subproblem

How to guess at the active set?



68 Dual Active Set Solver for QPs

General formulation of a QP:

min
x

1

2
xTHx+ fTx

s.t. Ax ≤ b

Dual problem:

min
α≥0

1

2
αTMMTα+ dTα = min

α
D

Maintain complimentary slackness (αi ̸= 0 ⇐⇒ [Ax]i = bi), aim for dual feasibility
and primal feasibility.



69 1: Dual Feasibility

At iteration k, working set of indices wk, solve the new unconstrained problem
on those indices. Since this is quadratic, we can take the gradient and solve a
linear system:

∇Dwk
(α∗

wk
) = 0

If α∗
wk

< 0, for some index, we do a line search (towards dual feasibility):

Until 1 component of α∗
k becomes nonnegative, and we remove that index from

the active set.



70 2: Primal Feasibility

Check primal feasibility by checking if the gradient of the inactive constraints
is positive:

∇Dwk
≥ 0

Add the most negative component of this term to the active set.



71 LDLT Decompositions

Solving ∇Dwk
= 0 means solving a linear system involving

MkM
T
k = LDLT

Between steps and iterations, only 1 index is added or removed to the active
set i.e. only 1 row is added or removed from Mk

Easy to update LDLT recursively.



72 Results I

Figure: Comparison with QPNNLS on QPs with varying condition number, n = 25
m = 100.



73 Results II

Figure: Comparison with other solvers as QPs grow over time.
n = 2N + 1,m = N + 2(N − 1). One of the limitiations with DAQP is that it doesn’t scale
well with large QPs (order n = 1000+).



74 Results III



75 Thanks!


