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Introduction: Nanocrystalline Metals
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[Long et al., Acta Mater., 2019] [Kumar et al., Acta Mater., 2003]



Background: Nanocrystalline Metals — Stability and Ductility

Stability Ductility
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Improved Stability with Alloying

Ramp Anneal from 300 - 800 °C for 1 hour

[Monti et al., Acta Mater., 2022] [Heckman et al., Acta Mater., 2022]

(c) Pt

N; = 8.5x10° cycles
o, = 104 MPa

(b) Pt-10Au
N; = 7.1x10° cycles
o0,=126 MPa




Improved Stability with Alloying

Thermodynamlc
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Improved Ductility with Gradient Nanocrystalline Metals
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[Lu et al., Science, 2014] [Li et al., Nat. Rev. Mater., 2020] [Lu et al., Mater. Sci. Eng. A ., 2004] [Huang et al., Acta Mater., 2015] 6 I



Gradient Nanostructured Metals via Compositional Means

Net Au migration
away from Au rich layers
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[Barrios et al., Acta Mater., 2023]



As-deposited sample

(a) As-deposited

[Barrios et al., Acta Mater., 2023]

7 layer stack by sequential DC magnetron sputeering

=2 um thick film

Annealing experiments in a box furnace
Temperature varying from 500 - 1000 C
Times varying from 5 minutes to 50 hours

FIB cross-section and backscatter contrast images to
study microstructure in the cross-section of the films



Annealing Experiments

(a) As-deposited (b) 700 °C 30 min (c) 700 °C 120 min
3‘595"‘ g |

[Barrios et al., Acta Mater., 2023]



Annealing Experiments
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Film Characterization — SIMS/STEM/EDS
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Film Characterization - TKD

(a) As-deposited

Band Contrast

[Barrios et al., Acta Mater., 2023]
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Film Characterization - Nanoindentation
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Gradient hardness trend for
as-deposited case is a
consequence of the
gradient solute content

Steeper hardness trend for
annealed case is a
consequence of the
gradient grain size



Phase-field Modeling
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Phase-field Modeling — Expansion to Equiaxed Microstructure and
Different Temperatures

@ Initial -

- 4 Microstructure | “#Unitorm Pt, soo

= --Uniform Pt-120%Au, 8oo °C

‘S 3.5 ®-Gradient Pt-Au 800 °C, Edge (Au-rich)
c O Gradient Pt-Au 800 °C, Middle (Au-deficient)
g 3.0

©

—

£ 25

< 2.0

B

2

£ 1.5

o

© 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Simulation Time

N o 9 ©@-Gradient Pt-Au 800 °C Edge
§ @®-Gradient Pt-Au goo °C (Au-rich)
= 3.5 ®-Gradient Pt-Au 950 °C

= O Gradient Pt-Au 800 °C Middle
230 @ Gradient Pt-Au 900 °C | (A, _deficient)
O #-Gradient Pt-Au 950 °C

©

B 2.

= 5

~~

< 2.0

2

s

c 1.5

©

O

1.0

0.0 0i2 0.4 0.6 0.8 1.0
[Barrios et al., Acta Mater., 2023] Fraction of Simulation Time 15



Design Space Exploration with Phase-Field Modeling

Annealing Temperatures
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Mechanisms

Net Au migration I
away from Au rich layers

Six kinetic processes contributing to the simultaneous evolution

Phase . . .y . .
Au migration due separation/ of the grain structure and the spatial composition gradients.
to lower GB heat Precipitation/

PR jzlcr;?:;:)sition- Segregation of Au to grain boundaries is able to impede grain
I : in interior growth I
Rejection ad x . . . . . .
of excess Au due Au starts diffusing into the middle of the film, further grain "
tGOBr:f::ed growth in that region becomes suppressed.

Before the Au arrives, the grains in the middle of the film are
allowed to coarsen under high temperature

Spinodal At the edges, with high Au concentration, the grains coarsen at

fneé‘;mm‘““ much slower rates

The overarching result is a stable gradient nanostructured film
with a more uniform composition.

Net Au migration
toward Au deficient layers

[Barrios et al., Acta Mater., 2023]



Advantages of Gradient Nanostructured Metals via Compositional Means
Grain size gradient in other studies: =1-10 nm/um |

(e) 800 °C 60 min
Grain size gradient: =100 nm/um

Controlled by varying annealing times and temperatures

Confine strain localization in a smaller volume

Gradient structure via Gradient structure via Fully recrystallized microstructure

severe plastic deformation compositional means Higher degree of possible
strain hardening

Future Work: :
Tensile (explore strengthening) F
Fatigue (explore grain growth
and stability)

[Barrios et al., Acta Mater., 2023] [Zeng et al., Extreme Mech. Lett., 2016]



Conclusions
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Conclusions
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