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Atmospheric aerosol directly and indirectly influence
climate and air quality

Phase state <> water content
— morphology
—> size

Optical Properties

Cloud formation
__ Hydrologic Cycle

;

Atmospheric Lifetime



Inorganic ions are abundant in atmospheric aerosol m
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Atmospheric aerosol can exist in a highly
supersaturated state

Aqueous NaCl:H,O at 45% RH

Insufficient water
for full solvation
shells

l

Solvent sharing,
lon pairing
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Aqueous NaCl:H,O at 75% RH (brine)

Homogeneous ERH Deliquescence RH
~45% 75%
0 -'< 1 | ) T | T - 1
0 20 40 60 80

Relative Humidity (%)




| Organic compounds are abundant in the atmosphere [[i
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Organic aerosol respond to changes in relative humidity
° T but tend to not have discrete phase transitions

Water content
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Aerosol viscosity is a topic of interest in
materials/atmospheric chemistry

Viscosity (n): resistance to deformation

glass pitch peanut ketchup honey
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Aerosol phase state and viscosity influence
atmospheric chemistry

Non-viscous aerosol

Relating viscosity (n) to o< l
diffusion constants (D): N D
e
\\ ) Relationship to diffusional 1

mixing time (t,,,,):

TmixOCEOCn

Viscous
A Relationship 1
) to reaction rates: k XD X —

n

Reid et al., Nature Comm., 201 8|

Large uncertainty exists regarding the viscosity of aerosol particles!
— Fundamental laboratory studies are necessary :




Consensus: Viscosity of organic aerosol increases with
decreasing relative humidity (RH) m

Aerosol optical tweezer measurements:

Field studies coupled with lab-generated proxies
Model aerosol compounds
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| Organic compounds are abundant in the atmosphere [[i
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Inorganic compounds are often internally-mixed with organic
compounds m

K,SO,
‘ KCl

CacCl,
NaCl NaBr
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General consensus: the viscosity of organic-inorganic mixtures
Is reduced relative to the binary organic

Laboratory model compounds:
Sucrose-NaNO5; mixture

Simple mixing approximation: | % (b)
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Rovelli et al. Analytical Chemistry, 2019 -



General consensus: the viscosity of organic-inorganic mixtures
Is reduced relative to the binary organic

Mixing approximations do
not consider supramolecular, Laboratory model compounds:
: .. : Sucrose-NaNO5 mixture
jon-organic interactions
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General consensus: the viscosity of organic-inorganic mixtures
Is reduced relative to the binary organic

Supramolecular assemblies include non-covalent interactions between two species

Example: marine microgels crosslinked by Ca?*
\ :

Annealing

v}
Ly
N

DOC polymers Nanogels Microgels
~5-50 nm ~100-200 nm ~3-6 um

Fragmentation

Verdugo, Annu. Rev. Marine Sci., 2012
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Low water content may facilitate solute-solute interactions

Research question: to what extent does ion-molecule clustering
influence the properties of aerosol?
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Aerosol levitation enables the study of molecular interactio
under highly concentrated supersaturated conditions
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7 1 Micro-rheology provides a macroscopic observable that [[i
can be related to micro-structure

i
Rheological observations Less resistant to flow |

Micro-structure

More resistant to flow I

o



Aerosol rheology was studied in a electrodynamic balance m

by merging particles

Droplet
dispenser

Dual-balance linear

Induction

quadrupole cletrode
electrodynamic balance -
(DBQ-EDB)

' Quadrupole electrodes

T Vac
n

Humidified
N2 flow i/ i -
RH probe 1 o

Top balance
0 Vg

A new system developed by:
Kristin Trobaugh Josefina Hajek-Herrera

—— Vg,
iBottom balance

. N2 flow out/
el D > RH probe 2

At a constant RH:

1.

Trap droplet (~30 pm) in bottom
balance

Trap droplet (of opposite polarity)
in top

Equilibrate both droplets
Merge

Determine micro-rheological
properties

Richards et al., Analytical Chemistry, 2020
Richards et al., Science Advances, 2020
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Aerosol rheology was studied in a electrodynamic balance by

merging particles

Dual-balance linear
quadrupole
electrodynamic balance
(DBQ-EDB)

Radial confinement (top view)

Charged

Particle + V(t) = sin(wt)

@
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9)" (@

= v

+ V(1)

Metal Rods

Hart et al. (2015) Applied Optics
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At a constant RH:

1.

balance

in top
Equilibrate both droplets

Merge
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Trap droplet (~30 pm) in bottom

Trap droplet (of opposite polarity)

Richards et al., Analytical Chemistry, 2020
Richards et al., Science Advances, 2020
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Aerosol rheology was studied in a electrodynamic balance by

merging particles

Dual-balance linear
quadrupole
electrodynamic balance
(DBQ-EDB)

Induction

electrode
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Humidified
N: flow in/

RH probe 1 ) o

Droplet
dispenser

' Quadrupole electrodes

T Vac
n

Top balance

iBottom balance

. N2 flow out/
el D > RH probe 2

At a constant RH:

1. Trap droplet (~30 pm) in bottom
balance

2. Trap droplet (of opposite
polarity) in top

3. Equilibrate both droplets
4. Merge

5. Determine micro-rheological
properties

Richards et al., Analytical Chemistry, 2020
Richards et al., Science Advances, 2020
20




Aerosol rheology was studied in a electrodynamic balance by

merging particles

Dual-balance linear
quadrupole
electrodynamic balance
(DBQ-EDB)

Induction

electrode
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Humidified
N: flow in/

RH probe 1 ) o

Droplet
dispenser

' Quadrupole electrodes

T Vac
n

Top balance
0 Vg

—— Vg,
iBottom balance

; N: flow out/
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At a constant RH:

1. Trap droplet (~30 pm) in bottom
balance

2. Trap droplet (of opposite polarity)
in top

3. Equilibrate both droplets
4. Merge

5. Determine micro-rheological
properties

Richards et al., Analytical Chemistry, 2020

Richards et al., Science Advances, 2020
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dimers as a function of time

Optical microscopy was used to monitor the fluid flow of merged m

Pre-merging

Droplet
Induction dispenser
electrode
\V4 v
dc _\
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N: flow in/ - —— Ve
RH probe 1 ) " :

Top balance
0 Vg

G - Blue LED

— e,
iBottom balance

Camera

. ‘ : . N2 flow out/
el D > RH probe 2

At a constant RH: ‘

1. Trap droplet (~30 pm) in bottom
balance

2. Trap droplet (of opposite polarity)

in top
3. Equilibrate both droplets |
4. Merge
5. Determine micro-rheological I
properties

Richards et al., Analytical Chemistry, 2020
Richards et al., Science Advances, 2020
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dimers as a function of time

Optical microscopy was used to monitor the fluid flow of merged m
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Richards et al., Analytical Chemistry, 2020
Richards et al., Science Advances, 2020
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Optical microscopy was used to monitor merged dimer micro-
rheology as a function of time

Droplet o .
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rheology as a function of time

Optical microscopy was used to monitor merged dimer micro- ml
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explore the effects of ion-molecule interactions

O rgan ICS: D-glucose: D-glucuronic acid:

Model atmospheric/ marine aerosol compounds were used to [[ml
|

Inorganics: o M o N-acetylneuraminic acid:
HOM
: : OH
Ca C | 2 HCEJ H%
D-sorbitol:
OH EH
HD\/!\/g\/\
: : - I
Richards et al., 2020, Science Advances oM OH 26 I



Model atmospheric/ marine aerosol compounds were used to |
explore gel formation m

Binary monosaccharide Ternary NaCl-monosaccharide Ternary CaCl,-monosaccharide
droplets droplets droplets

1:1 (by mole) NaCl:sugar 1:1 (by mole) CaCl,:suga

Richards et al., 2020, Science Advances



Ternary Ca?* - organic droplets are more viscous than binary

organic droplets

E

Data collection by
David Richards

Ca%*-organic phase |
behavior is not

predicted by simple |

mixing approximations | |
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Ternary CaCl,-organic droplets transition to rigid micro-

0.4

Norm. intensity (au)

structures
0,
- __Raman, 40% RH . COO- - Ca2+
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More water, more rigid, and evidence for ion pairing — long range networks?

Richards et al. (2020) Sci. Adv. I



Cooperative ion-solute interactions facilitate gelation of low-
mass molecules in concentrated droplets

lon-organic complex
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Long-range assembly with decreasing

RH via ion-paired networks

Gelation
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Symons et al, 1982, J. Chem. Soc. Faraday Trans.

Richards et al. (2020) Sci. Adv.

Analogous to mechanism of MgSO, gelation

 [#1],, network i
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Cooperative ion-solute interactions facilitate gelation of low- |
mass molecules in concentrated droplets m

. Long-range assembly with decreasing
lon-organic complex . .
RH via ion-paired networks
i Gelation
o ° Hzitg)
. -t' ® o,
‘ . X
— ® = )
e e o 4 Decreasing RH
HS (E)H ® ' + ©
* Provides a pathway for assembly of molecules that do not form networks in bulk |

» Not predicted from simple mixing rules of individual components
» Diffusion expected to be hindered

Richards et al. (2020) Sci. Adv. B I



Ammonium sulfate-raffinose mixtures exhibit complex phase |
behavior at low RH m

OH OH NH4+ NH4+
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Non-Newtonian flow indicates inhomogeneities

For example, a slurry exhibits non-Newtonian flow

Possibilities:

Clusters or aggregates? Discontinuous network

33




Ammonium sulfate- citric acid mixtures also show deviations
3 ¥ from behavior expected based on bulk predictions

Citric acid: a common proxy for
oxidized atmospheric aerosol
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o @) CN4C)
£ 1% NHe sop NHS
HO OH

Addition of ammonium sulfate increases viscosity and hinders water diffusion in citric acid mixtures
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lon pairing at low RH may be responsible for deviations
from bulk expectations

» The Stokes-Einstein relationship is commonly used to predict diffusion rates based on
viscosity:

D kT 1.2
67T77Rdiff .. . .
14 T lon pairing, clustering is
> The fractional Stokes-Einstein relationship likely responsible.
is better suited for this system: E 081 4
£ H‘.‘” 0.6 1
D _ (1 : |1 {
Dy \7 ®% .4 Citric acid 3
1S0,*
» The exponent related to the size of the diffusing 0.2q{NH,"
molecule and the size of molecules in the ]
matrix (¢ = 1 indicates purely S-E behavior) : 0 : : — : :

0.5 0.6 0.7 0.8 0.9 1

_ g xorg
E=1—-Ae

Sheldon et al. (2023) Env. Sci. Atmos. Slide courtesy of Prof. James Davies, UCR



Molecular dynamics simulations suggest a (generally) well
36 I mixed solution at intermediate RH that has fluid properties
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| At low RH, MD simulations show clustering and a viscous state

Mole fraction Mole fraction Mole fraction Mole fraction
of water of citricacid of NH4+ of sulfate

9 130 218 408 204

Simulations by Yi He, UNM



Supramolecular interactions are likely influencing the phase and
viscosity of atmospheric aerosol

Diffusive limitations O3

.
o /S O,

% Transport, aging
<

Gelation with decreasing RH

3

AL ™ AN

- Low water content in aerosol facilitates solute-solute interactions
4 on-molecule clustering can lead to hindered diffusion in aerosol
B - Long-range networks can develop from such interactions

- Micro-rheology combined with computational tools can elucidate

molecular-level details




Thank you for your time
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Back up slides
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All CaCl,-organic mixtures exhibited a

gel transition
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timescale (and viscosity) with decreasing RH

' Binary gluconic acid

Binary organic droplets gradually increase in coalescence [[ml

20T Hr - 104 -+
= 41g4d ﬁt 10% RH o 3 | —@— 107Pas Data collection by
c ° o 1007 David Richards
CzJ_ 16T E 102 -+ E
S 44t % 10" T I
e 2 . 103 Pa s
a 127 1504 RrH £ 107 ~$- ; |
4 -1 ] Gluconic acid I
10 : I “-} L 10 1 1 | | | |
1 1 I 1 | I 1 | |
1 10 100 1000 0 5 10 15 20 25 I
Time (S) RH (%)

Richards et al., 2020, Science Advances 42 I



Binary organic droplets gradually increase in coalescence time (an

viscosity) with decreasing RH

10° T
'y 7
) 10
: 4t TE
w .l —P—
2 10
b}
= 10°+ 103Pas +$-
10—1 __IGIucolnic aclid | | |
1 1 1 i ] }
0 5 10 15 20 25
1000
9 K
2 1004+
s °T @
3 14 HE
[
0.1 -+ Glucuronic acid '-f'
L L L \

30 40
RH (%)

o0

10° T
3 L

102 '@’@1

10°T B,

10"+ @a

10° T CY
11

10 :Glu?osel | . '—{—'

20 30 40

10%
6T
T
2.-
st
1% '_!_'
6F
4 | i |
2
0.1+, S(I)rblto! . | . |
I ! 1 T 1 T 1
0 10 20 30

RH (%)

D-glucose: D-glucuronic acid:

D-gluconic acid:

HO HO o]

N-acetylneuraminic acid:

D-sorbitol: Hou,
4
10 7T
.| @
10
2 "@"
10 T
1
10 T @
0
10 7T
-1
10 7T
2 N-acetylneuraminic acid
10 T4 l L L L I

50 55 60 65 70 75
RH (%)

Richards et al.
(2020) Sci. Adv. I

43 I



Binary organic droplets gradually increase in coalescence time
(and viscosity) with decreasing RH

For binary mixtures: As water content decreases, coalescence time
(viscosity) increases
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(and viscosity) with decreasing RH

Binary organic droplets gradually increase in coalescence time [[ml
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Ternary NaCl-organic droplets gradually increase in viscosity

with decreasing RH
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timescale with decreasing RH

Ternary CaCl,-monosaccharide

Ternary NaCl-organic droplets gradually increase in coalescence [[ml

1:1 by mole

0.5
< ~ [ Ternary NaCl-monosaccharide
°. 047 <7« [1:1 by mole
E o &
S Binary monosaccharide |
=
o
o
g
©
- |

0.0% . : : : : :

10 20 30 40 50 60 70 I

RH (%)

AIOMFAC 7 |



Ternary CaCl,-organic droplets transition to rigid micro-
structures m
o Rigid. No
1:1 (by mole) CaCl,: gluconic acid coalescence
20T M 3 10T Temary,/ ‘
2 5 @ 4 4+ Binar -
g 18T 46% RH = 10 g . Abrupt
5 . 3 10’1t -
o 16T - , | v . transformation
%) - .
° 141 ¢ P |
g 2 0T P
5 12+ 2 10°+ ¥ e
o1 %. RH HEJ 1 1 Gluconic acid e I
O L T |
10 10' 10> 10> 10° 0 20 40 60
Time (s) RH (%) I

Richards et al. (2020) Science Advances b I



structures

Ternary CaCl,-organic droplets transition to rigid micro-

‘ 1:1 (by mole) CaCl,: gluconic acid

@
Rigid. No

coalescence

e

Abrupt
transformation

20T M T 107 :|: Ternary,/ ‘
'% 184 8 e £ 410" + Binary :_
8 16+ .
& RH-dependent gel transitionin |
— 14+ 2+ ° %
2 Ca“*-organic droplets ,.
o 12 N
51% RH
[ . S R
10° 10" 10° 10° 10° o 20 4060
Time (s) RH (%)

Richards et al. (2020) Science Advances
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Gelation of gluconic acid was observed with a range of divalent
ions (in ternary droplets)

D-gluconic acid: NO, vs Cl for Ca2*

HO HC=) O
HOM
z s OH
o Ho
MgSOy B

A 10° T A I'I ,., Ca(NO3);  Inorganic= 121
® % (NHy)pS04 CaCl —
= 1007 A | @ : o 10+
3 3] = MgClh: % % o

10 X ; =
- - = 8+
E 102 1 & @@} *%‘
2 10t 8. ﬁi*‘ w4 8 6T
8 10 @j _______ @ l*l S .

[ = -
E 10T R g
P o™ 4 1:1 gluconic acid: inorganic 24 . . .
I I I I I I ! ! ' '
0 10 20 30 40 50 0.0 0.2 0.4 0.6
RH (%) (H20)

Richards et al. (2020) Sci. Adv.
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Gel formation is related to organic molecular functionality as

well as ion speciation

1:1 organic:CaClz
N-acetylneuraminic acid: -OH, -COOH &

60 1 -NH, -CO
X 50T Glucurgnlc gm? _OH. -COOH §_:,
o Gluconic acid o
f’ 40 1 T
o’ o

30 T _

# Sorbitol _OH
20+ 1 GILljcose . |

200 240 280 320

Organic molecular weight (g/mol)

Richards et al. (2020) Sci. Adv.

1:1 gluconic acid: inorganic

50 -
40 -
30 -
20 -
10

0_

¢

¢

Ca2*/ Ca2*/ Mg2*t/ Mg2t/ NH4%/
Cl- NO3~ SO042- CI S042-

Inorganic (cation/anion)
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Ca?* induced thickening at 10:1

10
10
10
10
10

Viscosity (Pa-s)

10 T

10:1 sorbitol:Ca

-
—— 3 5
Sorbitol ——  HH
10 20 30 40
RH (%)

Richards et al. (2020) Sci. Adv.

ratio of sorbitol:Ca?* [EJI

Short-range coupling increasing the effective M
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Tj’ﬂ or more ion binding sites are likely necessary for long-rangﬁql

networks
One binding site may facilitate ion-induced thickening

Gelation potential Increase in viscosity predicted No significant ion influence predicted
. OH HO
o \N\(\O.H HOWOH
OH OH
OH !
“.___." lon binding
sites
. OH o
HO\/L\/\)J\OH o I
Richards et al., (2020) Sci. Adv. I
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networks

Tj/o or more ion binding sites are likely necessary for long-ran

One binding site may facilitate ion-induced thickening

Gelation potential

OH

"

O\WO‘H
OH

“.___." lon binding

sites

OH o}

H \)\/\)J\ 3
O OH

Richards et al., (2020) Sci. Adv.

Timescale (1 or {y,) (sec)

Increase in viscosity predicted

HO\/\/\(\O.H

OH

1,2,6-hexanetriol

o 4x104 Pa-s

10 -
T with Ca2t (1:1)
1+ {
01 T4 e
5 10 15 20 25
RH (%)

No significant ion influence predicted

Ca?* does increase the viscosity
relative to 1,2,6-hexanetriol
alone

Under arid conditions:
4x104 Pa-s with Ca?4t,
2.6 Pa-s for pure hexanetriol*

54
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Optical microscopy was used to monitor merged dimer micro- |
rheology as a function of time m

Viscous fluids: Microgel:
Binarization
' ~30% RH
2.0 F | Mo snrampan
o 187 [ >
T 416- 4 Observation time (t,,})
B ]
Q 44t T
< ]
1.2 - T i
1.0 L | | |
-10 0 10 20 30 0 5000 10000
Time (sec) Time (sec) I

Richards et al., 2019, in review I



Droplet
Induction dispenser
electrode
Ve _\

Far-field images

Humidified : Quadrupole electrodes

N: flow 1n/ ) T T Vac
RH probe 1 "o

‘ Laser scatter imaging ml

Defect images
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Gelation with carboxylic acids
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Gelation in the presence of NaCl(S)

1:1:1 (by mole)
NaCl:CaCl,:sorbit
ol
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Njn-Newtonian flow: viscosity is
not constant with applied force

Example at right: a saltwater-beach
sand slurry exhibiting shear-induced
thickening

Why would we care if
atmospheric aerosol exhibit non-
Newtonian flow?




N;Ln-Newtonian flow is indicative of a non-uniform or two-phasm

system
3a
-~ ‘a ‘
4 —>
. Merge
Example: a partially-effloresced slurry of
NaCl solid in a sorbitol-CaCl, viscous liquid — (—
b. 20F
2 1.8- |
©
S 1.6
Q.
(7))
O 1.4-
()
g - |
QO 2 ! I
1.0 —+——+++H : :::::.:Ii —t——HH
2 4 6 8 2 4 6 8 2 4 6 8
10 100 1000
Time (sec) I
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Consensus: Viscosity of organic aerosol increases with

decreasing RH

Poke-flow method for viscosity of
B-Caryophyllene SOA

Field studies coupled with lab-generated proxies

1.0 7
5 0.8 g
© \
o \
< 0.6 - .
© Laboratory experiments
g - - a-pinane
Q | — Isoprene
’8 0.4 — |soprene a-pinene mixture
o :

Amazonia
0.2 ® 71014 Feb 2013
B 191022 Aug 2013
B0 l | | | |
0 20 40 60 80 100
Relative humidity (%)

Bateman et al., Nature Geosci., 2016
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Maclean...Shiraiwa...Nizkorodov, Bertram (2021) ACS Earth Space Ch



Many techniques have been developed to explore viscosity of
atmospherically-relevant organic aerosol m

Water Honey Peanut butter

A A A

Pitch Glass marble

A A
Bulk | Bulk viscometer/rheometer (typically T=—-20 to 100 °C)
100 5 ;
E | Bead maobility (‘:."= ambient) Poke flow (T = ambient)
E 10{
@ = Aerosol optical tweezers (T = ambient)
o § ]
Ea :
= m 1.D 9 5
oo é . SEM: |
Q.= . SEM: i EEM: o H
® = ; — L billiard |
S8 - flat dome ball -
w : :
£ 5 0.11 L shape shape |
o i { A :
g Particl 5 |
— | e “~Shape-factor |
0.01{  rebound — /T ' Light  Relaxation |
& (T=ambient) scattering (T=-20
Molecular | FLIM (T = ambient) (T'=ambient) LR,

103 102 10~ 1 10" 102 10° 10* 10° 108 107 108 109 10" 1072

Viscosity (Pa s)
Reid et al., Nature Comm., 2018

Recall:

Relating viscosity (n) to
diffusion constants (D):

Relating diffusion constants
(D) to diffusional mixing
time (t,,;,):

1
(x_
%D

Tmix X

1
D

Tmix X n I
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Is supramolecular chemistry influencing aerosol phase in the
atmosphere?
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SeIarching for clues...

Sea spray aerosol:

Ca, Mg can be present
with organics in
amorphous regions of
aerosol (but not always)

100 nm

TEM images (dark field) and elemental maps ot common particle types observed below 1 pm: (a) 5S-OC with
Ca and S not isolated to any specific region within the particle, (b) SS-OC with Ca-S rod structure (CaS04), (c)
SS-OC with S and other cations distributed homogeneously throughout the particle, and (d) an OC particle I
which also contains inorganic elements including Na, Mg, Ca, and S but not Cl. ~ From Ault...Grassian(2013) I
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Selarching for clues...

Urban and rural
aerosol:

Sulfate can be
homogeneously mixed
with organic in aerosol
(or phase separate)

Microscopic Evidence for Phase Separation of Organic Speci
Inorganic Salts in Fine Ambient Aerosol Particles

Weijun Li,* Lei Liu, Jian Zhang, Liang Xu, Yuanyuan Wang, Yele Sun, and Zongbo Shi*




qualitatively infer phase state

— Particle rebound

P 3 Particle rebound:

10- 5 L eR: identifies liquids vs. non-liquids
RH %

< | 95 /i

2 0.8 20 Cg

E 06| | g .,

é 044 |'Lag &

o . . .
024 | |-20 150mm 3 Large uncertainty exists regarding

W 240 nm . . . .

odes TE g the viscosity of ambient atmospheric

1014 102 1010 108 108 104 102 100 10-2 aerosol particles!
Viscosity / Pa s

Particle rebound is the most common field-based technique to [[JI
|

Solid | Semi-solid | Liguid

Bateman...Martin, JCPA, 2015 67 I




Rebound fraction

Particle rebound

1.2
E:J Sucrose
1.0 4 (8)) -
RH %% N
e 8
0 7 =
80 @
0.6 60 &
|
0.4 'L 40 &
0.2 20 ® 190 nm [
W 240 nm
D'{] 1 | 1 1 1 1 1 L‘-r
104 1072 100 108 10% 104 102 10% 102
Viscosity / Pa s
Solid | Semi-solid | Liguid

Bateman...Martin, JCPA, 2015

Particle rebound is the most common field-based technique to
qualitatively infer phase state

Particle rebound:
identifies liquids vs. non-liquids

Fundamental laboratory studies are
necessary to develop predictive
models for aerosol viscosity

68
Koop et al., PCCP, 2011
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Marine microgels have been observed in the
Arctic atmosphere

Process begins with large
Orellana et al, PNAS, 2011 macromolecules (polysaccharides)

Micmge_lAnnealing Nanogels

- Assemol
e PR LULDA
Fragmentation Dispersion




Arctic atmosphere

R

Marine microgels have been observed in the ml

HO
Expected to disassemble % 0
P A

due to aging, UV cracking 5 @f

Orellana et al., 2003 - -n )

Microge_lAnneaﬁng Nanogels Polymers

| Assembl

«—=
Fragmentation Dispersion




in sea spray aerosol

,% Monosaccharides
,% do not form gels in

Monosaccharides and small oxygenated organics are abundant ml

%_ o bulk solution
Expected to disassemble 0
P A

due to aging, UV cracking 5 @f

Orellana et al., 2003 - -n )

Microge_lAnneaﬁng Nanogels Polymers
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«—=
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