
Enabling Scalability in the Cloud for
Scientific Workflows: An Earth Science Use Case

Paula Olaya
University of Tennessee

Knoxville, USA

polaya@vols.utk.edu

Jakob Luettgau
University of Tennessee

Knoxville, USA

jluettga@utk.edu

Camila Roa
University of Tennessee

Knoxville, USA

mroa@vols.utk.edu

Ricardo Llamas
University of Delaware

Newark, USA

rllamas@udel.edu

Rodrigo Vargas
University of Delaware

Newark, USA

rvargas@udel.edu

Sophia Wen
IBM Research

Yorktown Heights, USA

hfwen@us.ibm.com

I-Hsin Chung
IBM Research

Yorktown Heights, USA

ihchung@us.ibm.com

Seetharami Seelam
IBM Research

Yorktown Heights, USA

sseelam@us.ibm.com

Yoonho Park
IBM Research

Yorktown Heights, USA

yoonho@us.ibm.com

Jay Lofstead
Sandia National Laboratories

Albuquerque, USA

gflofst@sandia.gov

Michela Taufer
University of Tennessee

Knoxville, USA

mtaufer@utk.edu

Abstract—Scientific discovery increasingly relies on interoper-
able, multimodular workflows generating intermediate data. The
complexity of managing intermediate data may cause perfor-
mance losses or unexpected costs. This paper defines an approach
to composing these scientific workflows on cloud services, focusing
on workflow data orchestration, management, and scalability.
We demonstrate the effectiveness of our approach with the
SOMOSPIE scientific workflow that deploys machine learning
(ML) models to predict high-resolution soil moisture using an
HPC service (LSF) and an open-source cloud-native service (K8s)
and object storage. Our approach enables scientists to scale from
coarse-grained to fine-grained resolution and from a small to a
larger region of interest. Using our empirical observations, we
generate a cost model for the execution of workflows with hidden
intermediate data on cloud services.

Index Terms—Intermediate data, Workflows, Cloud service,
High-performance computing, Object storage, Cost model

I. INTRODUCTION

Modern scientific workflows are growing in complexity,

comprising multiple interacting blocks that generate, prepro-

cess, and analyze large datasets. These workflows can trans-

form data using four modalities (Fig. 1). In the first modality,

workflows produce large output data from small input data. In

the second, workflows reduce data via processing a large input

and generating a small output. In the third, workflows process

the same input data with large data reuse. Last, workflows in

the fourth modality produce significant intermediate data that

another application reuses, resulting in smaller output data

products. Multistage workflows characterized by the fourth

modality hide the complexity of large intermediate data, and

their overall execution can be significantly affected by the

underlying computational infrastructure. The I/O bandwidth

of writing and reading that large intermediate data is a key

contributor to a long makespan for workflows in the fourth

modality.

Fig. 1: Modalities of data used in scientific workflows (Cour-

tesy of Frank Wuerthwein, SDSC).

To study how the cloud can better serve workflows with

large intermediate data, we select two cloud services: HPC

as a service with IBM Spectrum LSF (LSF) and cloud-native

with Kubernetes (K8s). LSF is an HPC cluster in the cloud

close to on-premise HPC but on top of an IaaS platform. K8s

is a container-based PaaS platform; we can containerize and

execute HPC workflows using K8s. When scientists compose

their workflows for these two cloud services, they must answer

critical questions regarding (i) compute orchestration: type and

number of compute instances required by the workflow and

the interaction between them; (ii) data management: RAM

size, storage technology, and its connection to the compute in-

stances; and (iii) scalability: automatic allocation of resources

383

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

2159-6190/23/$31.00 ©2023 IEEE
DOI 10.1109/CLOUD60044.2023.00052

20
23

 IE
EE

 1
6t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
lo

ud
 C

om
pu

tin
g 

(C
LO

U
D)

 |
 9

79
-8

-3
50

3-
04

81
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CL
O

U
D6

00
44

.2
02

3.
00

05
2

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 

SAND2024-08375C



as the workflow and its data grow. This paper addresses these

questions using an earth science workflow called SOMOSPIE

on the two cloud services (i.e., LSF and K8s). SOMOSPIE [1]

uses machine learning (ML) models to predict intermediate

soil moisture data from low-resolution satellite data to high-

resolution values necessary for practical use in earth sciences,

including precision forestry and agriculture, hydrology for

landscape ecology, and regeneration dynamics [2], [3]. Mainly,

we use SOMOSPIE to replicate the studies of scientists who

either scale the resolution of a region of interest up from

coarse-grained to fine-grained or scale out from a small to a

larger region of interest with a fixed resolution. In both cases,

the process translates into large intermediate data that must be

managed by the cloud services efficiently and may result in

additional costs (i.e., performance degradation and monetary

invoicing). Our contributions are:

• A description of data and scalability complexity in scien-

tific workflows with large intermediate data through the

ML-based SOMOSPIE workflow.

• A methodology to integrate scientific workflows in two

cloud services: HPC as a service with IBM Spectrum LSF

and cloud-native with Kubernetes.

• A cost model and projections based on empirical observa-

tions for workflows with hidden intermediate data through

scalability studies.

II. WORKFLOWS, RESOLUTIONS, AND PARTITIONING

A. Composable ML-based Workflows

Workflows have taken center stage in many domains of

science [4]–[8]. They allow scientists to compose complex

applications by combining heterogeneous codes; defining pa-

rameters; managing and generating input, intermediate, and

output data; and controlling dependencies. A scientific work-

flow consists of one or multiple interoperable applications with

their software stack and data (i.e., input, intermediate, and

output) that scientists can compose and run to study a scientific

problem in a well-defined execution environment. We present

an abstraction of a general workflow in Figure 2a with two

applications with input, intermediate, and output data.

We use an example of ML-based earth science workflow

(SOMOSPIE) that follows the same dataflow structure in

Figure 2b. Our SOMOSPIE workflow is composed of two

applications. The first uses ML modeling techniques to down-

scale the 27 km resolution satellite data from the ESA-CCI

soil moisture database [9] to higher resolutions necessary for

practical use in earth sciences, including precision forestry and

agriculture, hydrology for landscape ecology, and regeneration

dynamics [2], [3]. The second application performs analytics

(e.g., time series, statistical analysis, data-pattern findings)

and visualization. SOMOSPIE follows a data transformation

in the fourth modality, where it has large input data (i.e.,

low resolution, satellite-generated soil moisture values and

terrain parameters) and produces significant intermediate data

(i.e., high-resolution soil moisture predictions) that then is

processed, resulting in a smaller output (i.e., images and

statistics). We focus on ML modeling of the first application

as the large intermediate data brings challenges in terms of

resources and performance, resulting in sudden system crashes

or unexpected costs. In the first application, the satellite and

terrain parameter data are used to train and test an ML

model with K-nearest neighbors, random forest, surrogate-

based modeling, and other hybrid methods. The generated soil

moisture predictions have high resolution (up to 1 m) and are

fed into visualization tools to create geographic soil moisture

maps and statistics.

(a) General scientific workflow

(b) SOMOSPIE workflow

Fig. 2: Structure of (a) a general scientific workflow with one

or multiple interoperable applications with input, intermediate,

and output data; and (b) the mapping structure of the SOMO-

SPIE workflow that follows the fourth modality with large

input and intermediate data.

B. Scaling Resolutions and Regions

For ML-based workflows, data is crucial in obtaining better

predictions. As data scales, scientists can test the limits of

their scientific discovery. We present two ways in which data

can scale. The first deals with data that grows because we

move from low to high resolutions in a given region (scale

up); the second is where data expands as we cover a larger

region (scale out). We investigate these scalability scenarios

for our SOMOSPIE workflow.

Satellite soil moisture data is collected daily at 0.25 degrees

spatial resolution, approximately 27 km [9]. This ESA-CCI

database includes records of soil moisture from 1996 until

2020. Scientists input soil moisture and terrain parameter data

combinations into SOMOSPIE across time to create different

models. Depending on the target resolution of predictions (i.e.,

from 27 km satellite soil moisture data to 10 m soil moisture

predictions) and the region of interest (i.e., from a state to

a continent or worldwide), the intermediate data (i.e., soil

moisture points on the map) generated by the ML model may

384

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



(a) Midwest at 27 km (satellite resolution), 2× 1 data
points grid in the selected area

(b) Midwest at 90 m, 453× 227 data points grid in
the selected area

(c) Midwest at 10 m, 8926× 4539 data points grid in
the selected area

Fig. 3: Example of satellite resolution at (a) 27 km, (b) low

resolution of 90 m, and (c) a lower resolution at 10 m for a

selected area in the Midwest region. (Scalability: Same region

but higher resolution.)

increase exponentially. Scalability studies using SOMOSPIE

or similar workflows in earth sciences target two dimensions:

resolution and region scalability. When scaling the resolution

of soil moisture, scientists define a region of interest and scale

the resolution up to generate finer-grained soil moisture values,

resulting in more points of soil moisture values over the same

region. For example, Figure 3 shows (a) an example of a

satellite resolution of 27 km, (b) a higher resolution of 90

m, and (c) a finest-granularity resolution of 10 m for a region

centered around Oklahoma (the Midwest region). We move

from 450 to 36 M to 2.9 B data points as we increase the

resolution at which we aim to predict soil moisture. When

scaling the region, scientists define a resolution and scale out

on the map to select a larger area. In Figure 4, we scale

from the Midwest region at 10 m resolution with an area of

283,499 km2 to a much larger region, such as the Contiguous

United States (CONUS) at the same resolution with an area

of 8,080,464 km2. In this specific scenario, we move from 2.9

B to 167 B soil moisture data points.

We demonstrate the exponential growth of intermediate data

for resolution scalability in the Midwest region when scientists

predict soil moisture within the same region but scale from a

lower resolution at 90 m with 4.25 GB of total data to a higher

resolution of 10 m that increases the total data size to 420.76

GB, increasing the data by 100×. We also document the data

growth for the region scalability, where scientists scale from

the Midwest region (420.76 GB total data size) to the whole

CONUS, expanding the data to 14.93 TB while preserving

the same resolution. Table I shows three data scenarios for

SOMOSPIE that define a region of interest and a resolution at

which the scientist aims to predict the soil moisture. Each row

represents one of these scenarios: (i) Midwest region at 90 m

resolution, (ii) Midwest region at 10 m, and (iii) CONUS at 10

m. For each scenario, we break down the data transformations

(i.e., input, intermediate, and output data) and describe the

data type, number of points, and the size of each dataset. We

observe how input and intermediate data encompass most of

that total data size for all scenarios. For all data scenarios,

we train our model by using the satellite soil moisture data at

27 km. We average the soil moisture values for the month of

January 2010 to ensure the time scalability factor is constant.

The time scalability for the same regions across different

months is studied in [10].

C. Data Partitioning

Scientists apply data partitioning to process temporal and

spatial data at different scales. The partitioning enables data

parallelism, executing the same application concurrently to

different data partitions. Temporal data often exhibit dependen-

cies (e.g., predictions for one year may depend on observations

of previous years), making any partitioning along the time di-

mension often impossible without compromising the accuracy

of the ML prediction model. On the other hand, partitioning

spatial data is often feasible by considering continuity in

a region of interest; scientists can either define a buffer to

automatically add information around each partition or use

partitions with integrated overlapping neighboring information

generated during a pre-processing phase.

We leverage the second type of data partitioning for SO-

MOSPIE’s spatial data. We pre-process the USGS digital

elevation models (DEM) to generate terrain parameters of

a region of interest that can be partitioned into tiles and

deployed for predictions without needing neighbor buffers.

Consequently, given a region, we partition it into the number

of tiles (tilestotal). The tiles are independent of each other,

as they already include neighboring information in the terrain

parameters and thus can be fed independently into the ML

model. Table II presents the number of total tiles and the size

of the tiles for the Midwest region and CONUS at the two

resolutions (i.e., 90 m and 10 m). When we scale up for the

Midwest region, we use up to 225 tiles and predict at a higher

resolution such as 10 m. The data processed in the execution

scale is up to 388.98 GB. Similar data growth occurs when we

scale out up to 1,156 tiles, meaning that we go into a larger

area, such as CONUS, with the same 10 m resolution, where

385

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



(a) Midwest at 10 m (b) CONUS at 10 m

Fig. 4: Example of (a) a state region, Midwest at 10 m and (b) whole country region, Contiguous United States (CONUS) at

10 m. (Scalability: Same resolution but a larger region.)

TABLE I: Data scenarios for SOMOSPIE. Resolution scalability: from the Midwest region at 90 m to the Midwest region at

10 m. Region scalability: from the Midwest region at 10 m to CONUS at 10 m.

Data CharacterizationRegion Resolution Data Type Data Description Points [#] Size [B]
Input Satellite data, 27 km x 27 km 450 44,198
Input Terrain params (4 params), 90 m x 90 m 36,073,181 2.43 G
Intermediate 1 prediction, Midwest, 90 m x 90 m 36,073,181 1.42 G

Midwest, 90 m x 90 m

Output 1 visualization, Midwest, 90 m x 90 m - 438,126
Total Midwest 90 m x 90 m 4.25 G

Input Satellite data, 27 km x 27 km 450 44,198
Input Terrain params (4 params), 10 m x 10 m 2,921,927,661 248.51 G
Intermediate 1 prediction, Midwest, 10 m x 10 m 2,921,927,661 135.90 G

Midwest, 10 m x 10 m

Output 1 visualization, Midwest, 10 m x 10 m - 4.57 M
Total Midwest 10 m x 10 m 388.98 G

Input Satellite data, 27 km x 27 km 8,214 985,600
Input Terrain params (4 params), 10 m x 10 m 99,925,046,500 9.00 T
Intermediate 1 prediction, CONUS, 10 m x 10 m 99,925,046,500 5.12 T

CONUS, 10 m x 10 m

Output 1 visualization, CONUS, 10 m x 10 m - 21.14 M
Total CONUS 10 m x 10 m 14,934.00 G

TABLE II: Data partitioning for SOMOSPIE scenarios.

Region,
Resolution Data Type Data

Description Tilestotal Size per tile [B]

Input Terrain params 1 2.43 GMidwest,
90 m x 90 m Intermediate 1 prediction 1 1.42 G

Input Terrain params 225 900 M - 1.6 GMidwest,
10 m x 10 m Predictions 1 prediction 225 350 M - 800 MB

Input Terrain params 1,156 1.1 G - 11 GCONUS,
10 m x 10 m Predictions 1 prediction 1,156 650 MB - 6.1 G

the workflow encompasses 14.9 TB of input, intermediate, and

output data. Figure 5 shows an example of tile distribution for

152 tiles used for the Midwest region and CONUS at 10 m

resolutions in our experiments. Each tile has the same number

of points.

III. INTEGRATING WORKFLOWS IN HPC ON CLOUD

A. HPC on Cloud Services

Traditionally, scientists deploy workflows with large data

transformations in HPC systems. However, as these workflows

have evolved and the focus has shifted toward scalability,

accessibility, and flexibility, the HPC systems show some lim-

itations. For example, the required resources to execute large

workflows exceed all resources available in most institutional

HPC settings, limiting scientific discovery. To overcome these

limitations, we explore two cloud services. These two services

aim to bridge the gap between HPC and cloud systems.

Our first service is an HPC service on the cloud. We select

the IBM Spectrum load sharing facility (LSF) cluster close to

on-premises HPC but on top of an IaaS platform. It provides

a fully automated and configurable deployment of LSF-based

HPC clusters in the cloud. Our second service is a cloud-

native HPC service using Kubernetes (K8s), where we have

a container-based PaaS platform on top of which we can

containerize and execute HPC workflows. K8s provides an or-

chestration solution for scheduling and automating container-

ized applications’ deployment, management, and scaling. We

execute the same application on both platforms (LSF and K8s).

On K8s, the application is containerized. LSF and K8s run on

top of a Virtual Private Cloud (VPC) with a secure software-

defined network on which scientists can request, configure,

and deploy resources on demand. For LSF, virtual machine

(VM) instances (nodes) are directly configured inside the VPC.

For K8s, Kubernetes runs on all VM instances (nodes) and

includes the control plane responsible for managing the Kuber-

netes objects (e.g., VM instances, pods, PVCs, and PV). A VM

instance hosts one or more pods, the most straightforward unit

Kubernetes object model. We run one pod per VM instance.

LSF has two VM instances: worker and admin (i.e., login

386

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



(a) 152 tiles of the same size for the Midwest at 10 m

(b) 152 tiles of the same size for CONUS at 10 m

Fig. 5: Tile distribution for Midwest at 10 m and the Contigu-

ous United States (CONUS) at 10 m.

instance, LSF management instances, and storage instances).

On the other hand, K8s has worker instances only. In LSF,

we use a conventional LSF batch system to schedule our

jobs; in K8s, we use the standard Kubernetes scheduler. The

standard Kubernetes scheduler ensures pods are attached to

worker nodes given the resource limitations (i.e., one pod per

worker node) but does not support batch scheduling as LSF

does.

B. Data Transformations with Cloud Technology Solutions

In traditional HPC systems, the large intermediate data

generated by workflows is typically pushed to parallel file

systems or scratch space. When dealing with this data in

cloud environments, cloud technology solutions can be used to

support the data transformations. We choose the cloud object

storage (COS) service, which like a distributed file system,

also grants data distribution over multiple instances to provide

proportional capacity and throughput scalability. Both LSF and

K8s operate with the same COS solution, and we leverage its

distributed property to host the input, intermediate, and output

data of our workflow into independent COS buckets. There

are different packages for mapping object storage into POSIX

namespaces, as studied in [11]. We use S3FS [12] for LSF and

K8s to map the data in object storage as a file system. S3FS

is a FUSE-based (Filesystem in USErspace, white box) file

system that enables the users to read and write data in object

storage as if they were from local or HPC file systems. When

the application calls the virtual file system (VFS), the VFS

invokes the FUSE kernel module that maps the COS bucket

data into the VM instance’s underlying file system. In LSF, we

mount the COS bucket directly to the VM instances through

S3FS. In K8s, we use Kubernetes objects, such as a PVC

(Persistent Volume Claim) and a PV (Persistent Volume) with

an S3FS storage class underneath, to mount the COS bucket

into the VM instances. We put all the computation and storage

layers together and present the architecture for LSF and K8s

with COS for a single VM instance in Figure 6.

(a) IBM Spectrum LSF (LSF)

(b) Kubernetes (K8s)

Fig. 6: Architectures of the LSF (HPC) and K8s (cloud-native)

services with object storage to handle the data transformations

for a single VM instance.

HPC on the cloud and cloud-native services come with

default settings that scientists use in good faith, assuming

the infrastructure is tuned for their workflow. Unfortunately,

these services are tuned for different workflows (i.e., HPC

for compute-intensive applications and the cloud for web

services). Out-of-the-box settings are not optimal for scien-

tific workflows but tuning the platform’s I/O parameters can

optimize scientific workflows performance. We recommend

tuning the I/O parameters at a single instance level to ensure

performance at a large scale. I/O parameters exposed by S3FS

include parallel count, multisize part, and caching. The parallel

count refers to the number of concurrent threads requesting

the object storage. The multisize part is the size in MB of

the chunks transferred from and to the object storage. The

cache has two options: location for LSF (i.e., off-instance

block storage, RAM) and retention policy for K8s (i.e., auto-

cache and kernel-cache).

387

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



C. Scalability in the Cloud
We select cloud services built with the scalability needs of

workflows in mind. We leverage the scalability in our cloud

infrastructure configuration to map the parallel data nature of

a workflow (Sec. II-C). We map each data partition into an

independent VM instance to obtain ideal performance when

we have the same number of VM instances as the number

of data partitions. Figure 7 illustrates mapping each input

data partition to an independent VM instance and writing the

intermediate data into a separate COS bucket. We model the

trade-off between the number of VM instances vs. the total

execution time of the application vs. cost.
We schedule our parallel jobs using the LSF batch system

for LSF. However, the standard scheduler in K8s does not sup-

port traditional batch scheduling. To address this, we schedule

the parallel jobs based on a common template, and by using

expansions, we define which partition of the data each job

processes. As we increase the number of VM instances reading

and writing data, we leverage COS’s proportional capacity

and throughput scalability to host our input, intermediate, and

output data. In Figure 7, we present the composition of a

workflow in the fourth modality (large intermediate data). We

make a representation at the VM instance level connected to

three COS buckets for the input, intermediate, and output data,

which are common resources for LSF and K8s. We provide

insights about the I/O scalability as more VM instances read

and write concurrently into independent COS buckets.

IV. SCALABILITY AND COST ON THE CLOUD

A. Tuning I/O Parameters
We integrate SOMOSPIE into two cloud services: an HPC

service in the cloud (i.e., IBM Spectrum LSF) and an open-

source cloud-native (K8s) service. We study the scalability

and the cost of running the SOMOSPIE workflow on the two

cloud services. In particular, we want to understand the effects

of scaling up the resolution (i.e., low to high) and scaling out

the region (i.e., from a state to the entire CONUS).
We tune I/O parameters for a single tile execution because

the tile is the basic data unit we process in each independent

VM instance. We define the number of cores in a VM instance

and its RAM size based on the SOMOSPIE requirements (i.e.,

data and application). For the Midwest region at 90 m, we

require a RAM size of a minimum of 32 GB, and we select

a VM type of 4 cores and 32 GB. The default settings for

the S3FS I/O parameters: parallel count is set to 5 threads,

multisize part is 10 MB, and caching is off-instance for LSF

and auto-cache for K8s respectively. We tune the performance

on a single instance using the Midwest region at a 90 m

resolution because the region has a single tile for reading (2.43

GB) and writing (1.42 GB), fitting in a single node. We use

FIO (Flexible IO tester) [13] to explore the parametrical space

quickly and inexpensively. We run the FIO benchmark for the

write operation because it is the most time-consuming I/O

operation. We set the FIO jobs to have one sequential write

file of 1.4 GB with a block size of 52 MB to match the I/O

operation of our application.

We run the benchmark 10 times on a large VM instance

with a profile of 48 cores and 192 GB with an Intel Xeon

Processor (Skylake, IBRS). We perform an exhaustive search

with different combinations of the three S3FS parameters.

The parallel count ranges from 5 to 20 threads, the multisize

part ranges from 5 MB to 54 MB in size for the transferred

chunks to the COS, and the caching considers both a and b

for LSF and c and d for K8s. Table III presents the write

bandwidth obtained by the FIO benchmark when using the

default parameters (i.e., five threads, 10 MB chunk size for

both services, and caching off-instance for LSF and auto-cache

for K8s) and for the tuned S3FS parameters generating the best

empirically observed I/O performance (i.e., 12 threads, 10 MB

chunk size, and caching in RAM for LSF; 20 threads, 40 MB

chunk size, and kernel cache retention policy for K8s).

TABLE III: Write bandwidth statistics obtained when running

the FIO benchmark ten times with the default and the tuned

S3FS parameters generating the best empirically observed I/O

performance. PC: Parallel count. MP: Multisize part.

Cluster Default
Parameters

Write
Bandwidth
[MB/s]

Tuned
Parameters

Write
Bandwidth
[MB/s]

LSF
PC = 5
MP = 10 MB
Off-instance cache

median=255
mean=252
stdev=13

PC = 12
MP = 10 MB
Cache in RAM

median=423
mean=406
stdev=54

K8s
PC = 5
MP = 10 MB
Auto cache

median=200
mean=196
stdev=14

PC = 20
MP= 40 MB
Kernel cache

median=350
mean=338
stdev=39

Based on the results from the FIO benchmark, we make an

informed decision regarding the S3FS parameters for execut-

ing our SOMOSPIE workflow on the Midwest region at the

90 m resolution on both clusters (i.e., LSF and K8s). We use

the same instance type used for the benchmark [i.e., 48 cores

and 192 GB with an Intel Xeon Processor (Skylake, IBRS)] to

run the workflow. We run our application 10 times, measuring

the read and write bandwidth.

Figure 8 presents a boxplot of the measured bandwidth over

the 10 runs. We observe an improvement in write bandwidth of

25% for LSF when using the S3FS tuned parameters (Fig. 8a),

and 1.3% for K8s (Fig. 8b). As a consequence of tuning the

write operation, we also improve the read bandwidth of 17.8%

for LSF (Fig. 8c) and 28.4% for K8s (Fig. 8d). With the

parameter tuning, we can reduce the read and write bandwidth

variability for LSF and K8s and bring the read and write

performance closer to each other, closing the gap between

platforms. With the distributed nature of our predictions, in

which regions are cut in tiles (Sec II-C), we can use the tuned

I/O parameters to study predictions at a large scale.

B. Soil Moisture Predictions at the Large Scale

Predicting soil moisture at high resolutions or for large

regions requires scalable platforms to enable data growth.

Cloud platforms allow scientists to scale resources to support

their workflow requirements. However, the scalability conse-

quences in terms of performance for a given platform are often

388

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7: Composition of a workflow with large intermediate data (fourth modality) using the cloud services (i.e., VM instances

from each HPC on cloud service connected to three different COS buckets through S3FS).

(a) Write bandwidth on LSF (b) Write bandwidth on K8s

(c) Read bandwidth on LSF (d) Read bandwidth on K8s

Fig. 8: SOMOSPIE write and read bandwidth comparison on the LSF and K8s deployment clusters before and after tuning the s3fs
parameters when executing for the Midwest region at 90 m resolution. The smaller images zoom into the boxplots to outline the difference
in I/O performance.

unknown to application teams. We study the I/O performance

of the object storage as we scale the soil moisture predictions

in resolution (from 90 m to 10 m in the Midwest region) and

region (from Midwest to CONUS at 10 m).

We decompose the data into tiles, 225 for Midwest at 10

m and 1,156 for CONUS at 10 m (Table II). We process each

tile in an independent VM instance. We use 2 cores and 16

GB for Midwest at 10 m, and 8 cores and 64 GB VM type

for CONUS at 10 m. Figure 9 presents the multi-instances

configuration.

389

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9: Multiple VM instances configuration for the Midwest

region and CONUS at 10 m resolution.

As we scale the number of VM instances to match the

number of tiles to process them in parallel, we increase the

number of I/O requests to the two COS buckets. We measure

the I/O performance as we read multiple tiles at the time

from the terrain parameters COS bucket and write multiple

tiles with the soil moisture predictions to the SM predictions

COS bucket. We do a weak scaling test for the object storage

solution. In other words, we measure how the read and write

bandwidth varies with the number of VM instances processing

a tile with the same size per instance.

We present the weak scaling results for the Midwest region

at 10 m resolution in Figure 10. We consider up to 225

tiles that read 1.2 GB of data per tile and write 685 MB

(Figure 5a). The number of tiles, and the associated number

of VM instances, range as follows: 8, 16, 24, 32, 48, 94,

152, and 225 (the entire Midwest region). We apply some

resource constraints on the HPC service in the cloud to mimic

the scientists having access to on-premise HPC systems (i.e.,

limited allocations and computational nodes). On LSF, our

experiments are constrained to 200 cores that can be split

between the worker and admin instances. We use a worker

VM instance of 2 cores and 16 GB; by eliminating the cores

for the admin VM instances, we scale up to 94 VM instances

in LSF. Instead, in the cloud-native service, K8s, we do not

have any restrictions in terms of computational resources,

so we can scale up to the number of VM instances. For

LSF, the COS bucket maintains I/O performance when we

write 64.4 G (Figure 10a) and read 112.8 GB (Figure 10c)

of data in parallel from 94 nodes for LSF for the Midwest

region at 10 m resolution. For K8s, we observe that the I/O

performance of the object storage scales as we write 135.9

G (Figure 10b) and read 248 GB (Figure 10d) of data in

parallel from 225 nodes. We translate the performance into

accumulated bandwidth across all VM instances. For LSF,

we reach 864.8 MB/s write bandwidth and 5.6 GB/s read

bandwidth, having 94 VM instances. For K8s, we reach 2.4

GB/s write bandwidth and 11.2 GB/s read bandwidth having

225 VM instances. Overall, we observe no I/O performance

degradation in the object storage as we increase the number of

instances of reading and writing in parallel for LSF and K8s.

We note higher bandwidth variability (Figures 10b and 10d)

in the K8s service that is attributed to the additional layers in

the cloud-native service architecture and the virtualization of

resources.

We increase the tile size to demonstrate I/O performance

with a similar number of VM instances (i.e., 8, 16, 24, 32,

48, 94, 152) but a larger problem size (larger tiles) using the

CONUS at 10 m scenario. We increase the tile size by 4 and

now read tiles of size 5.1 GB and write 2.8 GB soil moisture

predictions for each tile. We use a worker VM instance of 8

cores and 64 GB for this scenario. By eliminating the cores for

the admin VM instances, we can scale up to 24 VM instances

in LSF before hitting the platform’s resource constraints. We

scale to 152 for the CONUS and stop because of budget

allocation limits. We observe that the I/O performance of the

object storage scales up when writing 425.6 GB of SM data

point in parallel with 152 VM instances in K8s (Figure 11b).

For LSF, the object storage I/O performance scales as we write

67.2 GB (Figure 11a) and read 122.4 GB (Figure 11c) of data

in parallel from 24 nodes for CONUS at 10 m resolution. The

reading in K8s (Figure 11d) scales up to 94 VM instances

(479.4 GB); when we reach 152 VM instances (775.2 GB),

the performance drops from 80 MB/s to 65 MB/s. This is an

empirical trend that can be further investigated in future work.

We translate the performance into accumulated bandwidth

across all VM instances. For LSF, we reach around 240 MB/s

write bandwidth and 1.8 GB/s read bandwidth, having 24

VM instances. For K8s, we reach 1.6 GB/s write bandwidth

and 10.6 GB/s read bandwidth having 152 VM instances. We

obtain limited scalability performance results when we limit

the number of VM instances for LSF, mimicking the limited

access to educational resource allocations. Alternatively, we

demonstrate scalability with K8s (cloud-native service) as we

stretch the resources under stress conditions.

C. Modeling Costs for Soil Moisture Prediction

As we scale the data in the workflow, the prediction costs

grow. When scaling to higher resolutions or larger regions, a

workflow like SOMOSPIE allows for saturating all resources

available in most institutional settings. The consequence of

this limit is that we have to preprocess the tiles in multiple

batches one after another. A benefit of cloud environments

is that we can assume virtually infinite resources, allowing

us to preprocess all tiles in parallel in constant time. We

aim to understand the tradeoff between time and cost for

all the resources. We develop a model for calculating the

costs of predicting soil moisture in LSF and K8s. Our model

measures the total cost for the computational, I/O, and storage

resources. The storage cost for the object storage technology

is coststorage =
$USD
hour ∗ capacity, where capacity is the total

data stored in the bucket. The storage cost is the same for LSF

and K8s.

We establish our computational and I/O cost model with

ttile as our basic unit. This is the time in hours that it takes to

390

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



(a) Weak scale write bandwidth for Midwest at 10 m on LSF. (b) Weak scale write bandwidth for Midwest at 10 m on K8s.

(c) Weak scale read bandwidth for Midwest at 10 m on LSF. (d) Weak scale read bandwidth for Midwest at 10 m on K8s.

Fig. 10: I/O bandwidth scalability as we increase the number of VM instances (from 8 to 225) for reading a size 1.2GB tile and writing
685MB soil moisture predictions for each tile for the Midwest region at 10 m resolution.

(a) Weak scale write bandwidth for CONUS at 10 m on LSF. (b) Weak scale write bandwidth for CONUS at 10 m on K8s.

(c) Weak scale read bandwidth for CONUS at 10 m on LSF. (d) Weak scale read bandwidth for CONUS at 10 m on K8s.

Fig. 11: I/O bandwidth scalability as we increase the number of VM instances (from 8 to 152) for reading a tile of size 5.1 GB and writing
2.8 GB soil moisture predictions for each tile for the CONUS at 10 m resolution.

TABLE IV: Modeling costs apply to our three SOMOSPIE data scenarios: Midwest 90 m, Midwest 10 m, and CONUS 10m

on the two deployment clusters: LSF and K8s. We list the times in seconds for readability purposes, but when calculating the

cost, we convert them into hours.

Cluster Data Scenario tilestotal NworkerV Ms Ncores RAMsize ttile[s] ttotal[s] costtotal[$]

LSF

Midwest 90m 1 1 4 32 331.5 331.5 0.5

Midwest 10 m 225 94 2 16 155.7 466.8 16.0

CONUS 10 m 1156 24 8 64 868.4 42483.0 1484.1

K8s

Midwest 90m 1 1 4 32 330.9 330.6 0.2

Midwest 10 m 225 225 2 16 153.5 153.5 12.3

CONUS 10 m 1156 1156 8 64 984.8 984.8 1638.7

read, infer high-resolution soil moisture values (computation),

and write the predictions for a single tile (Eq. 1).

ttile = tread + tcompute + twrite (1)

We establish the cost of a VM as in Eq. 2. Depending on

the size of the tile, we define a VM type for our worker

instances in terms of the number of cores (Ncores) and the

391

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



RAM capacity (RAMsize). Each cloud vendor has a $USD
hour

rate for the CPU and memory in the VM instance.

costVM = (
$USDcpu

hour
∗Ncores +

$USDmem

hour
∗RAMsize)

(2)

When we scale to all the tiles for a region of interest, we

consider the number of tiles in the region (tilestotal) and the

number of worker VM instances available in the LSF and

K8s clusters (NworkerVMs). With these two variables, we can

calculate the ratio of batches of tiles that will be processed

in parallel as
⌈

tilestotal

NworkerV Ms

⌉
. We multiply this ratio by the

ttile to obtain the total time (ttotal) that it takes all worker

VM instances in the cluster to execute the application. We

determine the computational cost once we have the time for

all tiles. To this end, we use the cost for the VM type we define

for our worker instances (costworkerVM ) and the number of

worker instances available (NworkerVMs). Combining the time

it takes to execute all tiles, the cost of a worker VM, and the

number of worker instances, we define the computational cost

for all tiles in a region as in Eq. 3.

costcompu =NworkerVMs ∗ costworkerVM

∗
⌈

tilestotal
NworkerVMs

⌉
∗ ttile

(3)

The computational cost in K8s for all tiles is the same as

K8scosttotal = costtotal because the K8s cluster has only

worker instances. However, the LSF cluster and the worker

instances include the admin instances. Our LSF cluster has

one login, two management, and one storage instance. We

have the same VM type for all of them and refer to its cost

as costadminVM . Therefore, we define the computational cost

for LSF as the sum of the worker instances and the LSF admin

VMs, as in Eq. 4.

LSFcosttotal =(4 ∗ costadminVM

+NworkerVMs ∗ costworkerVM )

∗
⌈

tilestotal
NworkerVMs

⌉
∗ ttile

(4)

We apply our model to the three data scenarios and present

the computational costs for LSF and K8s in Table IV. Each

cloud vendor provides a rate for their instances in terms

of CPU (
$USDcpu

hour ) and memory ( $USDmem

hour ). After checking

different cloud vendors rates, we define
$USDcpu

hour = 8cents/h

and $USDmem

hour = 7cents/h. For LSF, we establish the same

type of VM for our admin VM instances with two cores and

8 GB of RAM. We calculate the ttile by taking the geometric

mean across all tiles and different runs for each stage (i.e.,

read, compute, and write) and data scenario. We observe that

given the worker VM instances in the clusters, the total time

processing all the tiles is higher in LSF than in K8s since in

K8s we can run all tiles in parallel. A second remark is that the

computational cost for K8s is lower than LSF for Midwest at

90m and 10 m. As there are more tiles, like in the CONUS at

10 m example, two factors seem to penalize the cost for K8s,

making it higher than for LSF. The first factor is the time per

tile because 1156 instances in parallel in the cloud augment the

variability and decrease the compute performance. The second

factor is the number of VM instances; even though in LSF the

24 worker VM instances would take around 11.8 hours, there

is a tax for the amount of worker VM instances in K8s.

V. RELATED WORK

Our work is part of a broader effort to develop tools and

best practices for supporting HPC and cloud convergence for

scientific workflows. Several efforts have addressed porting

scientific workflows traditionally run in HPC and HTC (high-

throughput computing) systems into the cloud across domains

such as astronomy [14], bioinformatics [15], biology [16], and

engineering [17]. In earth sciences, Pangeo [18] prototypes an

architecture composed of a cloud object storage and compute

cluster. The external cloud storage is dedicated to the easy

retrieval of large-volume datasets. K8s provisions the compute

cluster, and Dask enables computation parallelism. As cloud

technology evolves, new services in the cloud (e.g., HPC

services and cloud-native services) and storage technologies

(e.g., block storage, object storage) emerge to overcome

past challenges. One of these challenges is leveraging those

services originally tailored for applications far from those

in scientific domains. Our work studies the issue of data

movement and the associated parameter tuning. Although our

study is applied to an earth science application, the proposed

approach and model can be transferred to other applications. In

other words, our work complements theoretical studies [19],

[20] addressing significant data transformation in the cloud

by offering a practical approach for scientists to explore and

tune the cloud for their workflows. There is a growing need

for developing persistent scientific workflows to seamlessly

connect and integrate software stacks and data services across

cloud platforms supported by virtualization and data prove-

nance [21]. Containerization of scientific workflow enables

reusability, portability, and reproducibility of results [4], [22]

as well as ease of system maintenance efforts [23]–[26]. Our

work supports these efforts as the containers can be integrated

into any cloud-native services. As cloud-native services, such

as K8s, gain popularity, our work joins other approaches [27],

[28] that enable distributed computation of scientific work-

flows. We emphasize tuning the default settings and parameters

for scalability improvements and cost mitigation.

VI. CONCLUSIONS

In this paper, we study the composition of large-scale

scientific workflows that deal with large intermediate data on

two HPC on cloud services. The first one is LSF, an HPC as a

service on cloud resources, close to on-premise HPC but on top

of an IaaS platform. The second is K8s, a container-based PaaS

platform where workflows are containerized and executed. We

provide best practices on cloud infrastructure to enable the

shareability and scalability of scientific workflows, increase

the productivity of scientists, and accelerate scientific discov-

ery. We demonstrate the scalability of the cloud infrastruc-

392

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 



ture for an exemplary ML-based scientific workflow in earth

sciences called SOMOSPIE. SOMOSPIE uses ML models to

predict satellite soil moisture data to a resolution necessary

for policymaking and precision agriculture. Specifically, we

measure performance when scaling up the resolution (i.e., low

to high) and scaling out the region (i.e., from a state to the

entire CONUS). We reach an accumulated write bandwidth

of 864.8 MB/s and 5.6 GB/s accumulated read bandwidth

having 94 VM instances in LSF. We obtain 2.4 GB/s write

bandwidth and 11.2 GB/s read bandwidth having 225 VM

instances in K8s. Future work includes continuing the HPC

and cloud convergence initiative by focusing on scheduling

policies on Kubernetes and offering operators that facilitate

the automatic composition of scientific workflows.

ACKNOWLEDGMENT

The authors acknowledge the support of IBM through a

Shared University Research Award; Sandia National Labora-

tories; the National Science Foundation through the awards

#2028923, #2103845, #2103836, and #2138811; and the Ac-

cess program through the NSF grant #2138296.

REFERENCES

[1] D. Rorabaugh, M. Guevara, R. Llamas, J. Kitson, R. Vargas, and
M. Taufer, “SOMOSPIE: A Modular SOil MOisture SPatial Inference
Engine Based on Data-Driven Decisions,” in Proc. of the 15th Interna-
tional Conference on eScience (eScience), pp. 1–10, IEEE, 2019.

[2] R. M. Llamas, M. Guevara, D. Rorabaugh, M. Taufer, and R. Vargas,
“Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based
on Geostatistical Techniques and Multiple Regression,” Remote. Sens.,
vol. 12, no. 4, p. 665, 2020.

[3] M. Guevara, M. Taufer, and R. Vargas, “Gap-free global annual soil
moisture: 15 km grids for 1991–2018,” Earth System Science Data,
vol. 13, no. 4, pp. 1711–1735, 2021.

[4] P. Olaya, D. Kennedy, R. Llamas, L. Valera, R. Vargas, J. Lofstead,
and M. Taufer, “Building trust in earth science findings through data
traceability and results explainability,” IEEE Transactions on Parallel
and Distributed Systems, vol. 34, no. 2, pp. 704–717, 2023.

[5] T. Coleman, H. Casanova, K. Maheshwari, L. Pottier, S. R. Wilkinson,
J. Wozniak, F. Suter, M. Shankar, and R. F. Da Silva, “WfBench: Auto-
mated Generation of Scientific Workflow Benchmarks,” in Proc. of the
International Workshop on Performance Modeling, Benchmarking and
Simulation of High-Performance Computer Systems (PMBS), pp. 100–
111, ACM/IEEE, 2022.

[6] M. Wolf, J. Logan, K. Mehta, D. Jacobson, M. Cashman, A. M. Walker,
G. Eisenhauer, P. Widener, and A. Cliff, “Reusability First: Toward
FAIR Workflows,” in Proc. of the International Conference on Cluster
Computing (CLUSTER), pp. 444–455, IEEE, 2021.

[7] K. Tran, A. Palizhati, S. Back, and Z. W. Ulissi, “Dynamic workflows
for routine materials discovery in surface science,” Chemical Information
and Modeling, vol. 58, no. 12, pp. 2392–2400, 2018.

[8] H. S. Stein and J. M. Gregoire, “Progress and prospects for accelerating
materials science with automated and autonomous workflows,” Chemical
Science, vol. 10, pp. 9640–9649, 2019.

[9] “Soil Moisture CCI.” Available at https://www.esa-soilmoisture-cci.org
[Online; accessed 02-25-2023].

[10] R. M. Llamas, L. Valera, P. Olaya, M. Taufer, and R. Vargas, “Down-
scaling Satellite Soil Moisture Using a Modular Spatial Inference
Framework,” Remote Sensing, vol. 14, no. 13, 2022.

[11] P. Olaya, J. Luettgau, N. Zhou, J. Lofstead, G. Scorzelli, V. Pascucci,
and M. Taufer, “NSDF-FUSE: A Testbed for Studying Object Storage
via FUSE File Systems,” in Proc. of the 31st International Symposium
on High-Performance Parallel and Distributed Computing (HPDC),
p. 277–278, ACM, 2022.

[12] s3fs-fuse, “s3fs.” Available at https://github.com/s3fs-fuse/s3fs-fuse,
version 1.91 [Online; accessed 02-25-2023].

[13] J. Axboe, “fio: Flexible I/O .” Available at https://github.com/axboe/fio,
version 3.33 [Online; accessed 02-25-2023].

[14] Q. Jiang, Y. C. Lee, M. Arenaz, L. M. Leslie, and A. Y. Zomaya,
“Optimizing Scientific Workflows in the Cloud: A Montage Example,”
in Proc. of the 7th International Conference on Utility and Cloud
Computing (UCC), pp. 517–522, IEEE, 2014.

[15] M. J. Rosa, C. G. Ralha, M. Holanda, and A. P. Araujo, “Computa-
tional Resource and Cost prediction Service for Scientific Workflows
in Federated Clouds,” Future Generation Computer Systems, vol. 125,
pp. 844–858, 2021.

[16] T. Reiter, P. T. Brooks†, L. Irber†, S. E. K. Joslin†, C. M. Reid†,
C. Scott†, C. T. Brown, and N. T. Pierce-Ward, “Streamlining data-
intensive biology with workflow systems,” GigaScience, vol. 10, no. 1,
2021. giaa140.

[17] M. Krämer, H. M. Würz, and C. Altenhofen, “Executing cyclic scientific
workflows in the cloud,” Journal of Cloud Computing, vol. 10, p. 25,
Apr 2021.

[18] R. P. Abernathey, T. Augspurger, A. Banihirwe, C. C. Blackmon-
Luca, T. J. Crone, C. L. Gentemann, J. J. Hamman, N. Henderson,
C. Lepore, T. A. McCaie, N. H. Robinson, and R. P. Signell, “Cloud-
Native Repositories for Big Scientific Data,” Computing in Science and
Engineering, vol. 23, no. 2, pp. 26–35, 2021.

[19] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li, “Big Data Processing in
Cloud Computing Environments,” in Proc. of the 12th International
Symposium on Pervasive Systems, Algorithms, and Networks, pp. 17–
23, IEEE, 2012.

[20] M. Barika, S. Garg, A. Y. Zomaya, L. Wang, A. V. Moorsel, and
R. Ranjan, “Orchestrating Big Data Analysis Workflows in the Cloud:
Research Challenges, Survey, and Future Directions,” ACM Comput.
Surv., vol. 52, no. 5, 2019.

[21] H. Bhatia, F. Di Natale, J. Y. Moon, X. Zhang, J. R. Chavez, F. Aydin,
C. Stanley, T. Oppelstrup, C. Neale, S. K. Schumacher, D. H. Ahn,
S. Herbein, T. S. Carpenter, S. Gnanakaran, P.-T. Bremer, J. N. Glosli,
F. C. Lightstone, and H. I. Ingólfsson, “Generalizable Coordination of
Large Multiscale Workflows: Challenges and Learnings at Scale,” in
Proc. of the International Conference for High-Performance Computing,
Networking, Storage and Analysis (SC), p. 1–16, ACM/IEEE, 2021.

[22] D. Kennedy, P. Olaya, J. Lofstead, R. Vargas, and M. Taufer, “Augment-
ing Singularity to Generate Fine-grained Workflows, Record Trails, and
Data Provenance,” in Proc. of the 18th International Conference on e-
Science (e-Science), pp. 403–404, IEEE, 2022.

[23] A. Dusia, Y. Yang, and M. Taufer, “Network Quality of Service in
Docker Containers,” in Proc. of the International Conference on Cluster
Computing (CLUSTER), pp. 527–528, IEEE, 2015.

[24] S. McDaniel, S. Herbein, and M. Taufer, “A Two-Tiered Approach to I/O
Quality of Service in Docker Containers,” in Proc. of the International
Conference on Cluster Computing (CLUSTER), pp. 490–491, IEEE,
2015.

[25] J. Monsalve, A. Landwehr, and M. Taufer, “Dynamic CPU Resource
Allocation in Containerized Cloud Environments,” in Proc. of the
International Conference on Cluster Computing (CLUSTER), pp. 535–
536, IEEE, 2015.

[26] S. Herbein, A. Dusia, Ayushvand Landwehr, J. McDaniel, Sean-
vand Monsalve, S. R. Yang, Yangvand Seelam, and M. Taufer, “Resource
Management for Running HPC Applications in Container Clouds,” in
Proc. of the International Supercomputing Conference (ISC), pp. 261–
278, Springer, 2016.

[27] B. Baliś, A. Broński, and M. Szarek, “Auto-scaling of Scientific
Workflows in Kubernetes,” in Proc. of the International Conference on
Computational Science (ICCS), pp. 33–40, Springer, 2022.

[28] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt, “MIRAS: Model-based
Reinforcement Learning for Microservice Resource Allocation over
Scientific Workflows,” in Proc. of the 39th International Conference
on Distributed Computing Systems (ICDCS), pp. 122–132, IEEE, 2019.

393

Authorized licensed use limited to: Sandia National Laboratories. Downloaded on July 03,2024 at 14:54:08 UTC from IEEE Xplore.  Restrictions apply. 


