

1 **Ignition Thresholds and Initiation of Pyrolysis from High Flux Exposures**

2 Alexander L. Brown^a*, Jeffrey D. Engerer^b, Allen J. Ricks^c,

3 ^aSandia National Laboratories, PO Box 5800, Albuquerque, 87185, USA, albrown@sandia.gov

4 ^bSandia National Laboratories, PO Box 5800, Albuquerque, 87185, USA, jdenger@sandia.gov

5 ^cSandia National Laboratories, PO Box 5800, Albuquerque, 87185, USA, ajricks@sandia.gov

6

7 *Corresponding author

8

9 **Highlights:**

10 • Historical cellulose-based ignition thresholds are evaluated for additional materials
11 • Prior to ignition, solids are observed to release pyrolytic gases
12 • With a Martin-based model, the initiation of pyrolysis can represent ignition uncertainty
13 • A theoretical construct trends well with data, suggesting a good potential model for
14 ignition and the start of pyrolysis

15

16 **Abstract:**

17 Ignitions of solid materials from very high heat fluxes ($>200 \text{ kW/m}^2$) are differentiated from
18 more common lower flux ignition because the required total energy input can be lower, and the
19 process is much faster. Prior work has characterized ignition thresholds via thermal properties of
20 the solids, flux, and fluence. The historical data, however, neglect to provide similar focus on
21 the initiation of pyrolysis. The initiation of pyrolysis is of key relevancy because it represents an
22 absolute threshold below which ignition is of zero probability. It is also a metric of potentially
23 higher reliability for assessing material response because surface material properties such as
24 absorptivity, conductivity, and density tend to change upon initial pyrolysis due to charring or
25 other transformations. Recent data from concentrated solar flux for a variety of materials and
26 exposures are analyzed here to explore the nature of trends and thresholds for onset of pyrolysis
27 at high heat flux. This work evaluates initiation threshold data and provides a theoretical
28 technique for further model development. The technique appears to be functionally appropriate
29 to evaluate trends to aid in predicting material response to high flux exposures.

30

31 **Keywords:** High flux fires, solid combustion, pyrolysis initiation, ignition

32

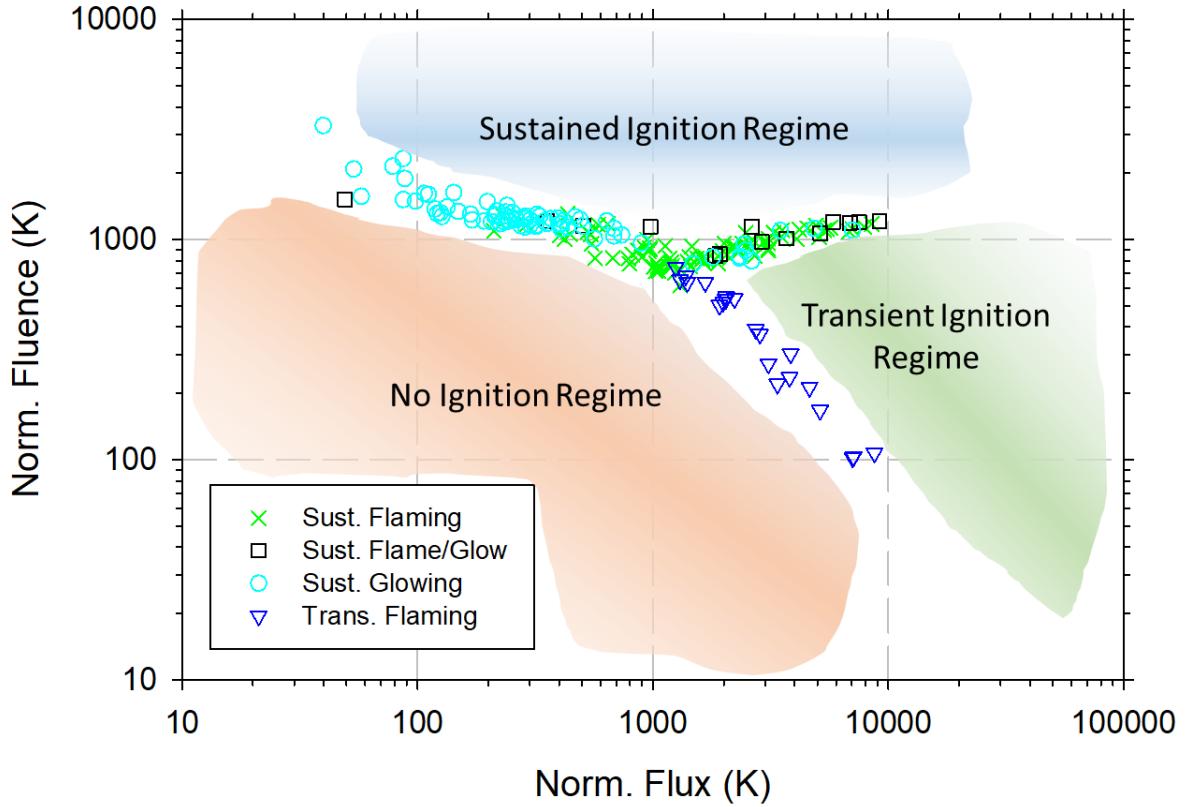
33 **1. Introduction**

34 High radiative flux ($>200 \text{ kW/m}^2$) can occur in metal fires, propellant accidents, above-ground
35 nuclear detonations, lightning strikes, etc. Historical information that appears very detailed and
36 comprehensive was centered around cellulose ignition thresholds [1-4]. A more critical
37 evaluation of this source data suggests a very detailed examination of darkened cellulose at small

38 (approximately a few centimeters in diameter) exposures, with a more cursory and often
39 questionably sourced evaluation of some other materials. Much of the historical testing of this
40 nature in the open literature was done in the 1950-1960s, with very little additional work since
41 then. There have been many changes to manufacturing and materials since that time with many
42 modern materials that lack detailed characterization in this environment. Consider also the
43 change in experimental test capabilities since the original datasets, which allows for improved
44 interrogation of the tests.

45 A helpful construct was developed historically that aided in interpreting the cellulose results [1].
46 The peak ignition flux (or irradiance) and the ignition fluence (fluence being the integration of
47 flux with time, having units of energy per unit area) were strategically scaled by the relevant
48 thermal parameters of the solids being exposed. The normalization was guided by a strategic
49 non-dimensionalization of the data with the key dimensionless parameter relating the thermal
50 and physical properties being the Fourier number ($Fo = \alpha_t t / L^2$, where α_t is the thermal diffusivity
51 $[k/\rho C_p]$, t is a characteristic time, L is a characteristic length, k the thermal conductivity, ρ the
52 density, and C_p the specific heat). By semi-nondimensionalization of the flux and fluence, the
53 ignition data from disparate tests of varying thickness and density collapsed to form relatively
54 sharp regime thresholds that delineate between several different observed ignition behaviors and
55 non-ignition. The normalized fluence Q_{norm} is given by

56
$$Q_{norm} = \alpha_o Q / \rho C_p L \quad (1)$$


57

58 Here α_o is the optical absorptivity, Q is the fluence (the flux integrated over time), and L is the
59 thickness of the sample. The optical absorptivity (α_o) is often assumed constant, but in most
60 applications can be subtly or significantly functional with the surface char fraction and
61 temperature. The normalized irradiance \dot{Q}_{norm} is given by

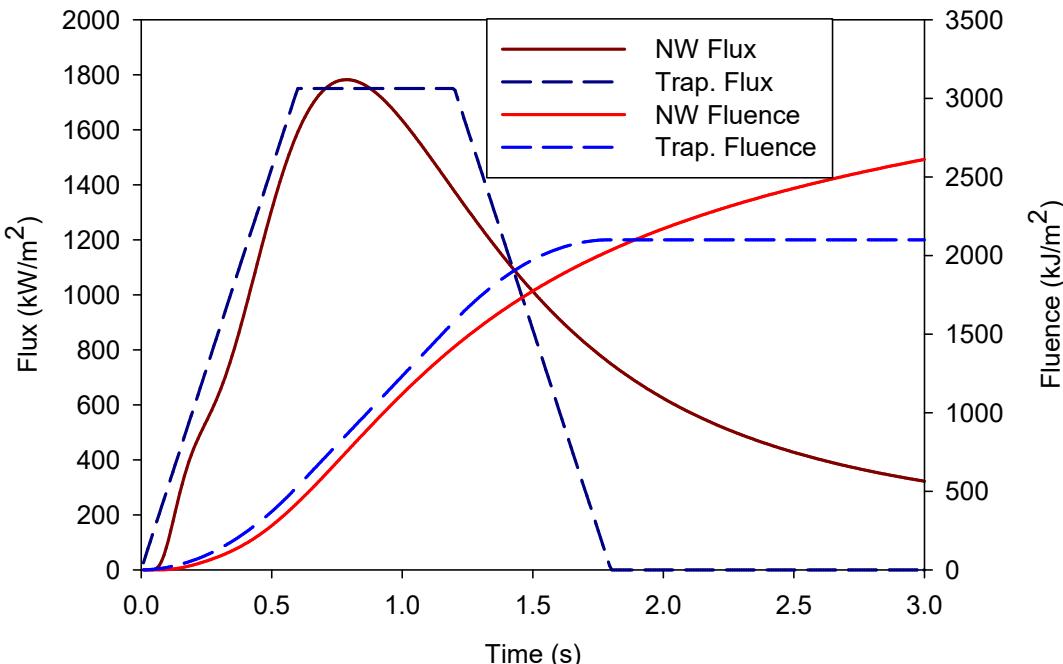
62
$$\dot{Q}_{norm} = \alpha_o \dot{Q} L / k \quad (2)$$

63 where Q is flux or irradiance, usually taken as the maximum to the object. The normalized
64 fluence and flux both have units of temperature.

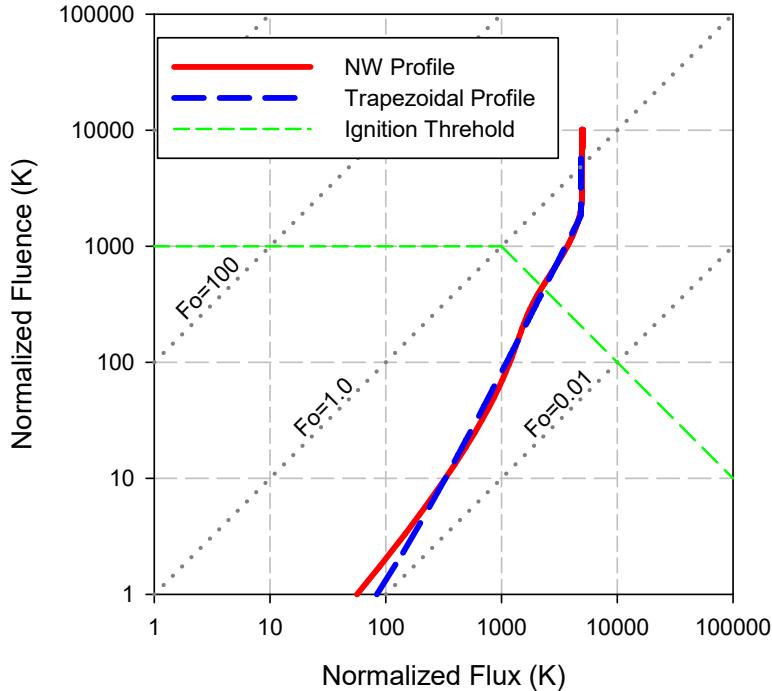
65

66
67 Fig. 1. Cellulose ignition threshold data from Butler (with Martin) et al. [4] with annotated
68 ignition regimes

69 Fig. 1 shows a reproduction of cellulose ignition threshold data from Butler (with Martin) et al.
70 square-wave exposure profile tests [4]. Starting from the left, there is a branch of data nearly
71 linear with 1000 K normalized fluence, that marks the threshold between no ignition and
72 sustained glowing. At 1000 K normalized irradiance


73 the trend branches. The upper branch is a sustained flaming branch, while the lower branch is a
74 threshold for transient flaming. Transient flaming means that flaming occurred, but only while
75 the external radiation flux source was being applied. Sustained flaming persisted past the
76 application of the imposed flux. Below a normalized flux of about 100, thermal conductivity and
77 convective losses become increasingly important, and the ignitions occur with increasing
78 normalized fluence below this threshold and become more sensitive to the material geometry. A
79 comparable plot exists for flux profiles inspired by detonations of a nuclear weapon (NW) with
80 thresholds of similar label and shapes from the same research group [2]. These datasets
81 contributed to the most comprehensive and theoretically promising ignition model for high flux
82 scenarios, when compared to other sources of tabulated ignition thresholds [3] or more empirical
83 relations developed based on the existing threshold data. Since the introduction of Martin's map,
84 other ignition modeling methods have become more widely utilized; however, we believe this
85 model is still appropriate and best suited for the high flux regime, where convective and
86 conductive losses and other effects are minimized compared to the radiative flux.

87 The work of Martin (2004) [2] provides a model for dynamic heat flux for a nuclear weapon, but
88 this flux profile can be difficult to replicate synthetically. Experimentally, a square or


89 trapezoidal flux profile is easier to achieve with concentrated solar power. To illustrate how the
 90 exposures relate to the idealized ignition threshold, examples of these two types of wave forms
 91 are plotted as flux and fluence versus time in Fig. 2 (top) and projected into normalized
 92 flux/fluence space for a posterboard exposure (bottom). The green dashed line is an
 93 approximation of Martin's model (Fig. 1). The NW exposure was taken from recommendations
 94 of prior studies [2,3]. The flux/fluence plot illustrates three selected isocontours of the Fourier
 95 number as dotted lines, which is conveniently the product of the normalized fluence to the
 96 normalized flux based on the normalization technique. The target experiences conditions from
 97 the lower-left in the plot, and as flux and fluence increase the environment transitions towards
 98 the upper-right. When the trend line passes the green dashed line, ignitions are deemed likely
 99 based on Martin's experimental work. Flux is considered maximum flux from the exposure and
 100 is not decreased with time to plot the trends. Square or trapezoidal wave forms can reasonably
 101 replicate the more complex conditions enabling imperfect experiments to still be reasonably
 102 approximate of more complex scenarios. Besides the main point of interest, the energy input and
 103 flux, there is the question of spectral content of the incident radiation. This will matter for non-
 104 gray materials. Solar flux is mostly gray with some absorption lines due to atmospheric gases,
 105 and is generally considered a reasonable approximation of most high-flux application emissions
 106 [3].

107 Recently developed datasets provide new opportunities to investigate high heat flux ignition and
 108 material response, and a new set of data from concentrated solar energy are now available that
 109 augment the knowledge basis for understanding and predicting material behavior under very high
 110 radiative heat flux exposures [5-10]. These new data can help improve upon the historical
 111 modeling and analytical techniques for estimating material behavior under very high flux
 112 conditions.

113

114

115

116 Fig. 2 NW and trapezoidal flux/fluence models plotted (top) and projected onto the normalized
117 flux and fluence map (bottom) for posterboard

118

119 This paper describes an analysis effort aimed at interpreting the recent results from several test
120 campaigns. Our test campaign is differentiated from historical work in several key ways:

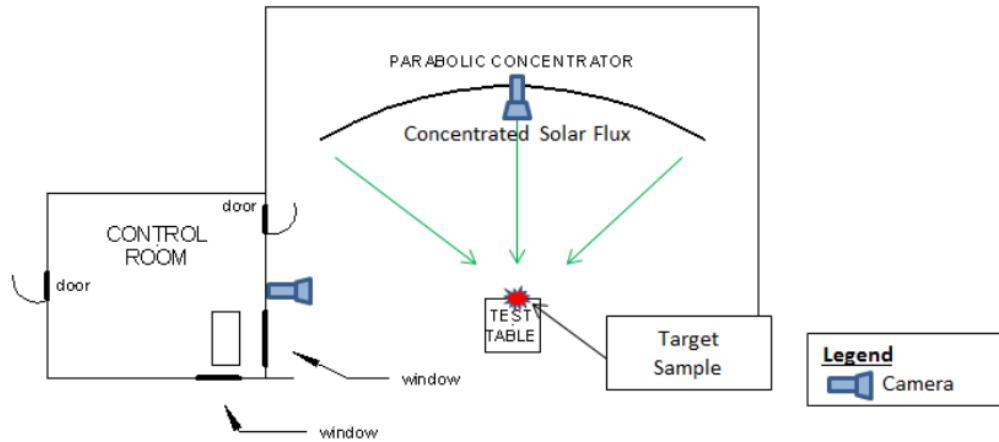
121 1. A greater variety of materials are tested at comparable and extended conditions
122 2. Video data and test characterization permits contributing threshold data from every test
123 that achieves ignition, a much more efficient data collection process than the historical methods
124 3. Data are also collected on the initiation of pyrolysis, a feature not reported in prior work.

125 The governing hypothesis for this analysis is that the pyrolysis initiation threshold that was not
126 reported in prior work trends similarly to the historically determined ignition thresholds. The
127 initiation of pyrolysis may be a cleaner threshold than ignition for material characterization in
128 high flux exposure conditions because it is less subject to wind, charring, and radiation shielding
129 issues than ignition. The initiation of pyrolysis should fall below the ignition threshold because
130 it is a pre-ignition requirement. Since prior work omitted mention or description of this feature,
131 this observation represents to our knowledge the first exploration of such a threshold for high
132 flux conditions. Definition of this regime provides new information relevant to predictive
133 capabilities, and the location and shape helps define a new regime.

134

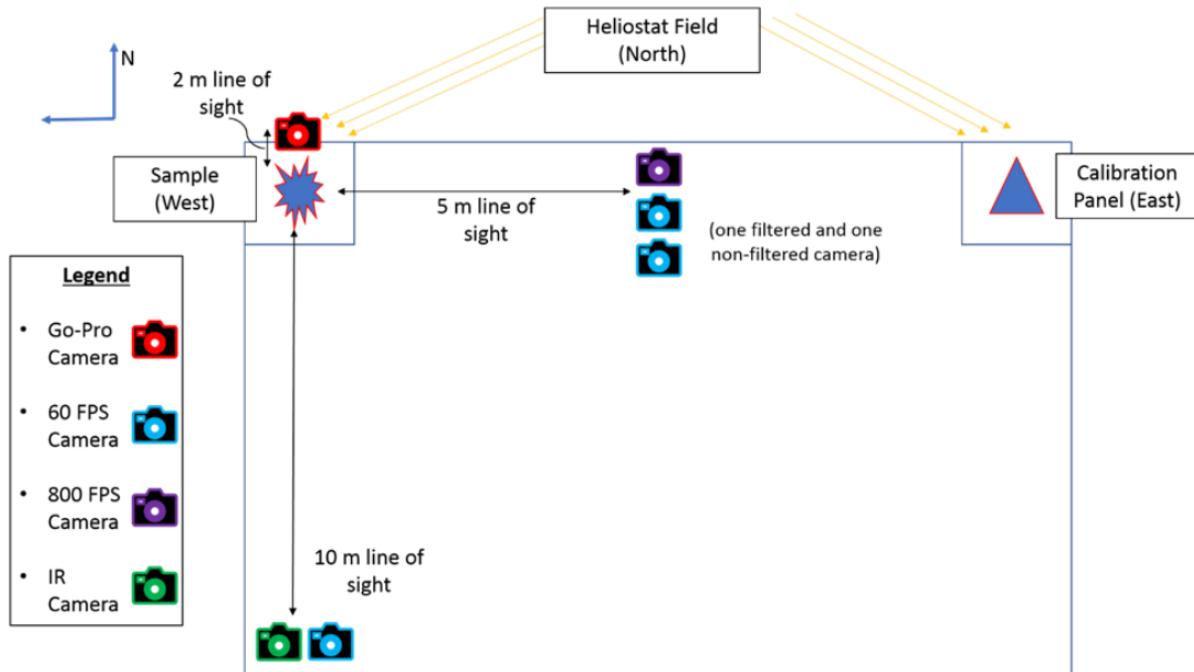
135 **2. Methods**

136 The National Solar Thermal Test Facility at Sandia National Labs in Albuquerque has two main
137 facilities that concentrate solar energy to generate high flux conditions illustrated in Fig. 3. One
138 is the Solar Tower, which uses a heliostat field (an array of large mirrors with fine motor control
139 that actively track the sun to maintain a relatively constant target location for the rays) to achieve
140 a concentration factor greater than 2000 suns (1 sun is approximately 1 kW/m^2), and a power of
141 6 MW at length scales of 0.3-1 m. The other is the smaller Solar Furnace which uses a single
142 heliostat and a parabolic dish for smaller length-scale testing (5-7 cm diameter). Several
143 hundred high flux ignition tests have been conducted at these facilities including varying
144 material types, thicknesses and shapes, while also varying flux, fluence, and length-scale.
145 Additional variable parameters include ambient conditions such as wind, humidity, and
146 temperature. Fig. 4 and Fig. 5 show layout sketches suggesting the general arrangement for the
147 tests. Fig. 6 illustrates the pre- and post-test configuration of the shutter system used to create a
148 rapid exposure on test objects. The shutter was used to begin the exposure because the precision
149 mirror adjustments were comparatively slow. At the end of the exposure, the motorized mirrors
150 on the heliostat field were used to end the exposure, being faster for low-precision movement.


151

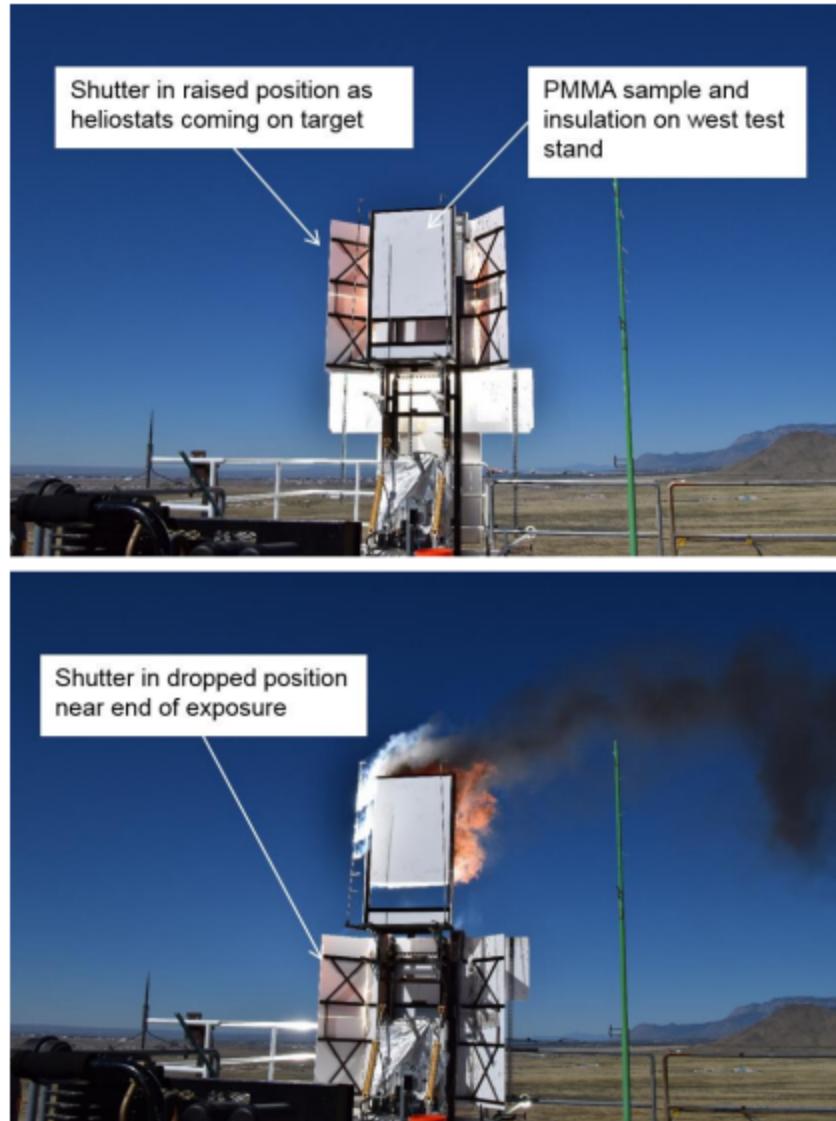
152

153


Fig. 3. Annotated photographs of the SF (left) and ST (right) facilities

154

155


Fig. 4. A general arrangement illustration for the SF tests

156

157

Fig. 5. A general arrangement illustration for the ST tests

158

159 Fig. 6. Photographs illustrating the shutter before (top) and after an exposure on the ST

160 The data for this study were a component of a test program that involved four phases of testing,
 161 three at the Sandia Solar Furnace and one at the Solar Tower. The broader program was not
 162 specifically focused on obtaining these data; however, they were available and extracted to
 163 support this type of analysis that could not be found in the documentation of the previously taken
 164 datasets. The focus of the data from the test phases was broadly defined to support three main
 165 objectives. Some data were intended for model validation, in which case samples were tested
 166 with a high degree of replicates to capture the aleatoric uncertainties. A report on the data that
 167 were focused on this objective was previously published [5]. Other objectives included
 168 exploring a range of material types and exposure conditions, in which case the tests were not
 169 conducted with as much of a focus on replicates.

170 Table 1 shows some details of the samples tested. Flat rectangular samples were 23×11.5 cm at
 171 the solar furnace, and 90×120 cm at the solar tower. All flat samples were oriented vertically in
 172 a sample holder of the same size, with the focal point centered horizontally on the samples.

173 Solar tower samples were typically exposed at the center of the sample vertically, and solar
 174 furnace samples were typically exposed 5-6 cm below the top of the samples. Many other
 175 samples were more variable and applied forms of the materials suited to a similarly scaled
 176 exposure. The samples included variable thicknesses and other parameters, some of which are
 177 indicated in Table 1. Solar furnace tests were conducted in a partial enclosure with ambient
 178 openings at the top and at the front face that reduced the influence of wind on the samples.
 179 Samples were generally not backed by insulation, and in some cases back-side IR imagery was
 180 taken or thermocouples were attached giving a sense of the temperatures generated by the
 181 exposure. Solar tower tests were exposed to ambient winds. PMMA and HIPS samples were
 182 backed by insulation to minimize convection and radiation on the backside and simplify the
 183 thermal transport to enable modeling. Posterboard, canvas fabric, and aluminum samples were
 184 mounted with the back exposed. The tires, trees, trashcans, patio chairs, and upholstered chairs
 185 were mounted free-standing on custom support structures. Further details on the shape, size,
 186 characterization, and orientation of the samples are available in the test documentation and in
 187 other reports detailing results from this test series [5-9].
 188

189 Table 1. Sample details regarding the reported Solar Tower (ST) and Solar Furnace (SF)
 190 experiments

Category	Sub-category	Details	Absorptivity
Cellulosic	Biomass	Green pine needles (bundle or mat, collected from a ponderosa pine less than a day before exposure, approximately 95% moisture content);	0.46
		Dry pine needles (bundle or mat; collected from the ground under a ponderosa pine, approximately 6% moisture content)	0.34
		Wheat (approximately 6% moisture content)	0.35
		Dry tumbleweed (approximately 12% moisture content)	0.64
		Soaked tumbleweed collected from a dead specimen (approximately 20% moisture content)	0.64
		Green tumbleweed (cut immediately before exposure, approximately 260% to 400% moisture content);	0.76
		Pinon pine tree (well-watered; cut within two hours of exposure)	0.6
	Paper	Posterboard	0.55 to 0.65
		Bundled paper	0.13
		Cellulose*	0.16
	Fabric	Olive canvas fabric, flame retardant and rain retardant	0.92
	Wood	Walnut veneer	0.5

Synthetic polymer	PMMA	Poly-methyl methacrylate (Plexiglas), black*	0.96
	HIPS	High impact polystyrene, black*	0.94
	Mixed Polymers	Vinyl siding, black	0.66
		Polypropylene chair	0.92
		Polyethylene trash can	0.95
		Synthetic rubber tires	0.9
		EPDM rubber swing seats	0.94

191 *Naturally white cellulose was blackened with a light coating of carbon consistent with Martin's
 192 methods; the polymer materials selected were made with black pigments mixed into the plastic

193 The solar and IR reflectivity of the samples were measured using a Surface Optics Corporation
 194 410-Solar Visible/NIR Portable Reflectometer and a Surface Optics Corporation ET-100
 195 Thermal Handheld Emissometer, respectively. The solar reflectometer measures the 20° incident
 196 total reflectance at seven sub-bands of 335–380, 400–540, 480–600, 590–720, 700–1100, 1000–
 197 1700, and 1700–2500 nanometers of a sample. Similarly, the thermal emissometer measures
 198 directional reflectance at two incidence angles, 20° and 60°, in six thermal sub-bands of 1.5–2.0,
 199 2.0–3.5, 3.0–4.0, 4.0–5.0, 5.0–10.5, and 10.5–21.0 micrometers.

200 Some materials, including PMMA and some of the biomass samples, were observed to transmit
 201 some of the incident radiation through the samples. These materials absorb radiation in-depth
 202 within the material. Our absorptivity measurements cannot distinguish between surface and in-
 203 depth absorption.

204 **2.1 Instrumentation**

205 A variety of instrumentation was deployed for the tests. For this paper, highlights of the
 206 instrumentation are outlined only. Details on the instrumentation are available in the
 207 corresponding test phase documentation [6-9]. Each test included the following:

- 208 1 Pre- and post-test flux measurements to confirm the imposed thermal environment, and
 209 characterization of the day, time, and configuration of the flux source
- 210 2 Multiple angle fiducially accurate video imagery from standard, high-speed, and filtered
 211 optical cameras
- 212 3 Atmospheric data from weather stations to confirm the ambient conditions
- 213 4 Pre- and post-test photography
- 214 5 A temporal fiducial to allow post-test synchronization of instrumentation results from
 215 various sources
- 216 6 Controls output containing data on the temporal sequence for each test
- 217 7 Pre- and post-test weight of samples

218 Additional measurements/sensors were included in some tests to provide test information that
 219 can be utilized for determination of ignition and test characterization. These include:

- 220 1 Strategically mounted thermocouples for temperature measurements
- 221 2 IR camera imagery for thermal response
- 222 3 Witness strings as local air flow indicators

223 4 Post-test 3D scanning for digital re-construction of the thermal crater

224 Ignition and burn times are key to the analysis presented in this paper. These were deduced
225 through post-test analysis of the video imagery. Ignition was often discernable through the
226 observed flames in the video output. In some tests, the pyrolysis emissions obscured direct
227 views of the ignition. The ignition event usually included a rapid increase in the motion of the
228 pyrolysis gases/emissions, in which case the flames were not directly observed but inferred based
229 on the motion of the opaque gases/emissions and the presence of flaming later in the video.
230 Pyrolysis initiation was potentially confounded by a water vapor cloud created by evaporation
231 from water content in some source materials. Mindful of this potential, analysts used judgement
232 to interpret the pyrolysis initiation time by examining the coloration, chronology, and form of the
233 cloud and the surface using video frame images such as those later shown in Figure 7.

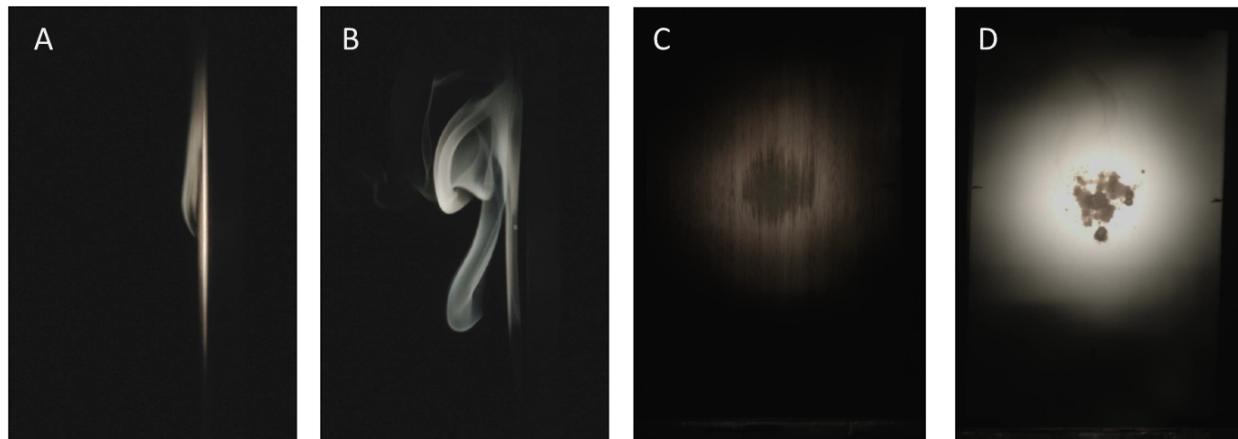
234

235 **2.2 Characterization of the Environment**

236 Tests were conducted within a few hours of solar noon on clear (nearly cloudless) days with
237 constant direct normal irradiation with variation of less than 3% as measured by a normal
238 incident pyrheliometer. The environment was characterized using pre- and post-test analysis of
239 heat flux instrumentation to verify the test conditions. Because of the response time of the test
240 facility hardware, the imposed flux was a ramp to a constant hold, and a ramp back down to
241 ambient.

242 Fluence magnitude was a target condition, which explains the regularity of intervals in some of
243 the fluence conditions imposed on the samples. Fluence targets were usually round numbers,
244 however post-analysis sometimes adjusted these away from the target values. For this paper,
245 exposures are simplified to a fluence condition. Solar Furnace fluence was applied over a
246 roughly 4-6 cm diameter spot [8], Solar Tower exposures varied spatially, but spanned the
247 samples. Peak flux and fluence were centered on each sample. Efforts were made to account for
248 spatial and temporal variations in the transient flux environment.

249 Tests were conducted at different times of the year in an outdoor environment. Ambient
250 temperatures for two Solar Furnace test series conducted in July/August were 20-35°C. The
251 second Solar Furnace phase was conducted in February/March, and mid-day ambient
252 temperatures were between 5-25°C. The Solar Tower tests were conducted from August-
253 November, and ambient temperatures varied between 10-30°C. Post-processing of the data has
254 not suggested a significant effect of the initial ambient temperature on any resultant parameters
255 over the range of variation.


256 Repeatability of the tests was characterized for many of the detailed outputs from the tests. As a
257 rule of thumb, we generalize about a 10% accuracy on flux, fluence, and thermal property data
258 relating to these tests. A more detailed assessment of uncertainties can be found in other
259 documentation sources relating to these datasets [5-9].

260

261 **2.3 Video Analysis**

262 Digital imagery were taken from both filtered and non-filtered cameras that were synchronized
263 temporally with the exposures, which provides evidence of the material response beyond just

264 ignition, which was point of focus in historical work. Two additional features or events were
265 common to most materials and were extracted from the data. These features include the
266 initiation of pyrolysis, which was evidenced by visible ejecta from the surface, and initiation of
267 charring, evidenced by a change in coloration of the exposed samples. Fig. 7 shows examples of
268 each of these observations. Cameras were positioned normal to the sample exposure, as well as
269 perpendicular. The normal cameras were in an opening at the center of the parabolic mirror
270 field. The perpendicular cameras were at the height of the exposure about 4 m away from the
271 exposure. The video results were synchronized and were examined together to aid in the
272 deduction of the timing of pyrolysis related events that are key to this analysis.

273
274 Fig. 7. Pyrolysis of walnut veneer (A) and high-impact polystyrene (B) as observed from the
275 filtered side-view camera. Charring of walnut veneer (C) and cellulose pulp (D) samples as
276 observed by the front-facing filtered camera. All images were captured after (≈ 100 ms)
277 observed behavior began.

278 Key parameters were deduced from the time synchronized video and the characteristic exposures
279 (as illustrated in Fig. 2) for parameter analysis. Fluence was the integrated flux for the full
280 exposure from opening of the shutters to closing them. Flux was taken as the peak (maximum)
281 flux. Time to pyrolysis and ignition were in most cases easily identified from review of the time
282 coordinated images. Absorptivity was normally selected to be the un-charred value as deduced
283 either from reference tables, or deduced from measurements taken with Surface Optics
284 Corporation 410-Solar Visible/NIR portable Reflectometer and a ET-100 Emissometer. Heat
285 flux and fluence were based on shutter calibrations, and the characterization flux measurements
286 detailed in the prior section.

287 Onset of pyrolysis was captured by noting the time from test start at which the plume began to
288 emerge from the high-speed imagery. This could be related to the exposure flux and fluence
289 through the characterized exposures for each shot as illustrated for two shots in Fig. 2.

290 **2.4 Ignition and Pyrolysis Thresholds**

291 We have previously used a thermal surface temperature model for predicting the general ignition
292 threshold shape of the Martin et al. work. The derivation is found in [9]. The derivation is based
293 on a Green's function-based expression for the non-dimensional surface temperature of an inert
294 solid heated by a constant load (q_o'') [11]:

295
$$\frac{k[T(x=0, F_O) - T_i]}{\alpha_o q_o'' L} = F_{Oth} + \frac{2}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} (1 - e^{-m^2 \pi^2 F_{Oth}}) \quad (3)$$

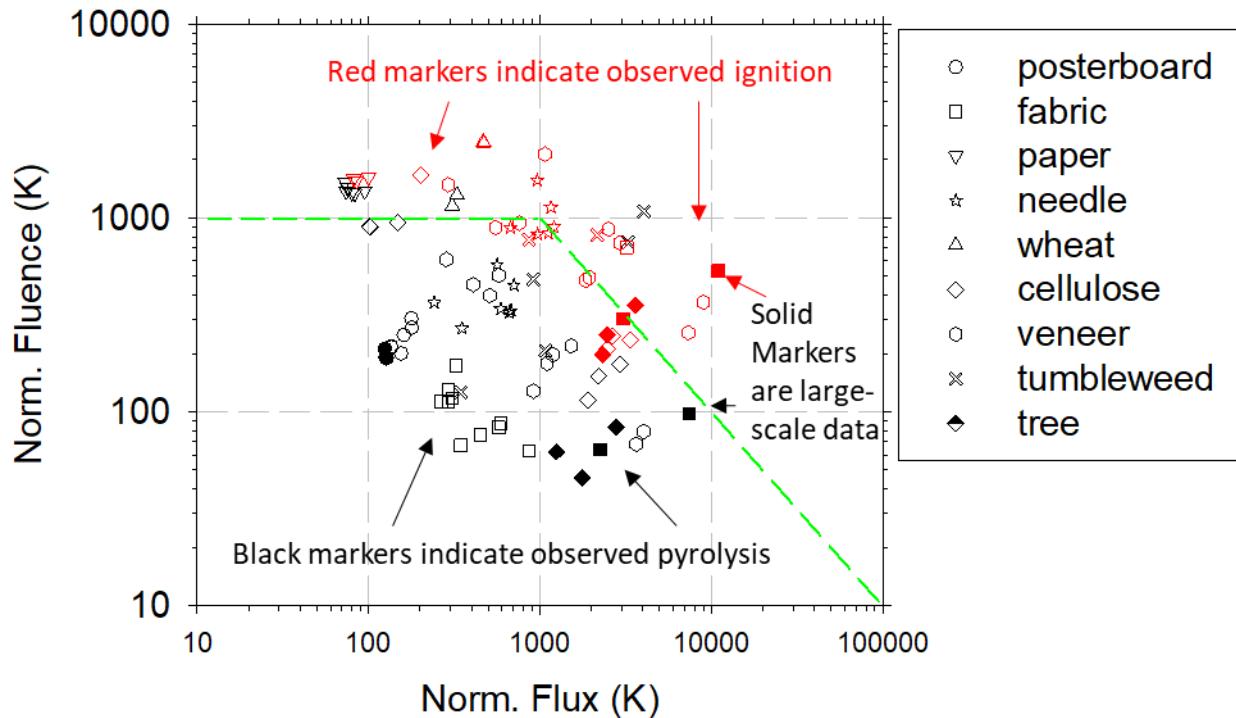
296

297 The threshold normalized fluence (Q_{th}^*) is a function of the threshold temperature rise (ΔT_{th}) and
 298 a function uniquely dependent on the threshold Fourier number (F_{Oth}), which can be expressed
 299 as:

300
$$Q_{th}^* = q_{th}^* F_{Oth} = \Delta T_{th} f(F_{Oth}) \quad (4)$$

301 where the function is derived from Green's function as:

302
$$f(F_{Oth}) = \frac{F_{Oth}}{F_{Oth} + \frac{2}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{m^2} (1 - e^{-m^2 \pi^2 F_{Oth}})} \quad (5)$$


303 Here q_{th}^* is the normalized flux, and m is the index of summation. This theory represents a
 304 possible form for a predictive semi-empirical model for both ignition and for pyrolysis initiation.
 305 It has been shown to reasonably reproduce ignition thresholds originally determined by Martin et
 306 al. and could also represent the initiation of pyrolysis threshold at lower temperature rise
 307 conditions.

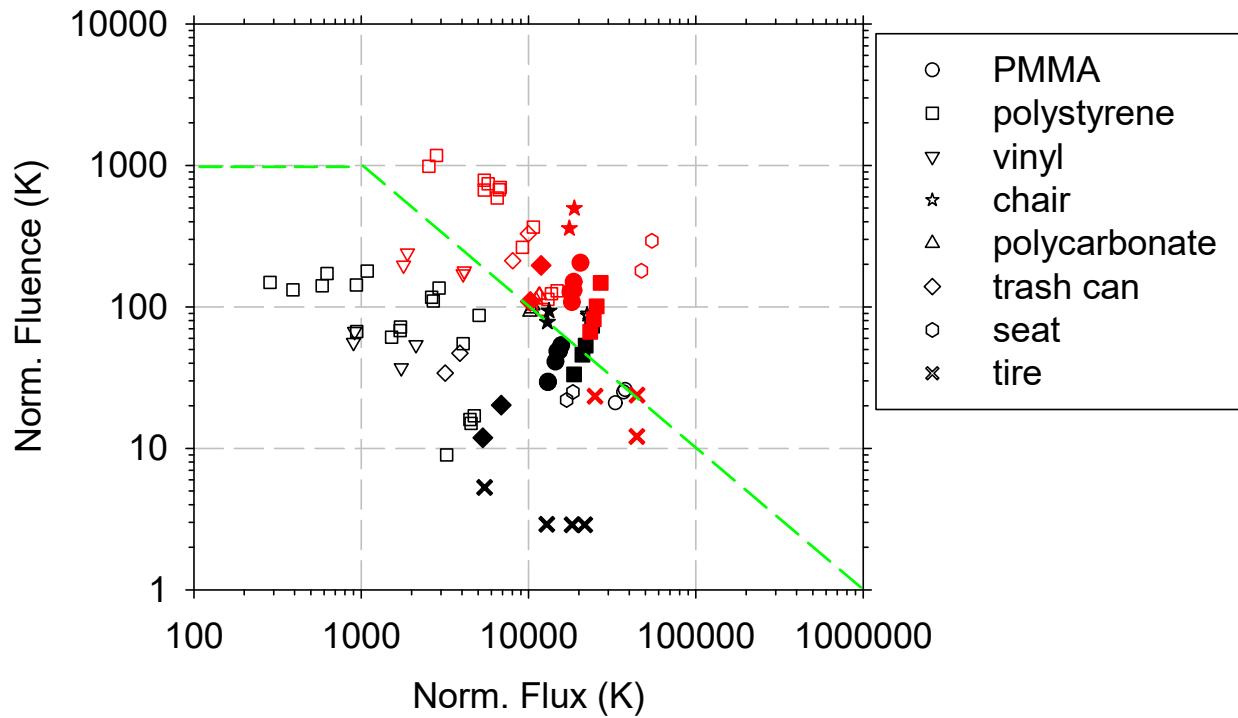
308 Some samples were observed to transmit some of the incident flux through the back of the
 309 samples. This was the case for some not fully opaque polymers, and some of the paper and
 310 biomass samples. Thinner samples also were more prone to exhibit this behavior. The analysis
 311 is done here assuming full absorption of the incident flux, which in some isolated cases may be a
 312 source of error. Occurrences of this were generally avoided by selecting samples not prone to
 313 these issues.

314 3. Results

315 Fig. 8 shows cellulosic material ignition events (red) and initiation of pyrolysis events (black).
 316 There is not always a corresponding ignition marker (red symbol) for every pyrolysis initiation
 317 marker (black symbol). There were tests that did not achieve ignition. They contribute pyrolysis
 318 initiation data, but do not contribute to the ignition data. Solid markers indicate tests that were
 319 performed at larger scale at the Solar Tower. The green dashed trend line is a rough
 320 approximation of the cellulose ignition threshold deduced by Martin's historical work, above
 321 which ignition is anticipated (as shown in Fig. 1). Keep in mind that the Martin data plotted in
 322 Fig. 1 are for thresholds and that each of their data points represents a compendium of many
 323 shots. The ignition markers in this work in Fig. 8 generally follow this same trend, although
 324 there are a fair number of cases where the ignition measurements deviate from the expected trend
 325 by as much as a factor of 3-4. The variability in the samples (color, size, moisture) is believed to
 326 be the most significant contributor to the spread. For example, the paper that ignited at the
 327 highest scaled fluence was white and bundled, whereas other darker paper-like materials ignited
 328 more readily. Since replicate tests were run, there is indication of the test variability inherent in
 329 the plots. Shot-to-shot variability is generally lower than observed in the spread due to materials.
 330 The fabric, one of the other most significant outliers from the trend lines, was treated with a fire
 331 retardant which is also expected to delay ignition.

332

333


334 Fig. 8. Cellulosic material test results mapped to scaled flux/fluence.

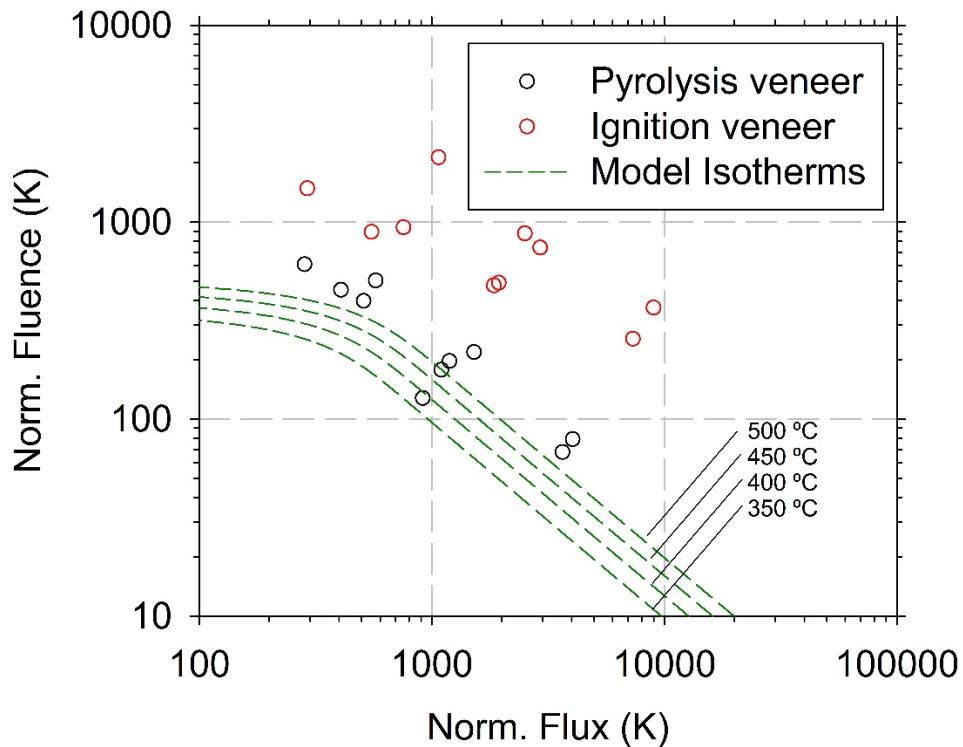
335 The initiation of pyrolysis is shown with black markers. These generally fall below the green
 336 cellulose-based ignition trend lines with a few exceptions. The blackened cellulose paper.
 337 Ignition often followed very shortly thereafter. Two of the tumbleweed samples also did not
 338 start to pyrolyze until well above the Martin threshold, and these were green, moist samples.
 339 The dry and moistened tumbleweed samples behaved more consistently with the expected trends
 340 including the trends of Martin et al. and of the rest of the dry cellulosic materials.

341
 342 Note the general trend of pyrolysis initiation to ignition is mostly upward and slightly to the right
 343 in these plots, much like illustrated in the bottom plot of Fig. 2. This can be seen more easily in
 344 the more sparse dataset data such as trees, needles, and paper. Another noteworthy observation
 345 is that the initiation of pyrolysis is not generally a uniform distance separated from the ignition
 346 threshold in the plots. The general spread of these data is best illustrated in the variety of walnut
 347 wood veneer tests performed. Thickness and exposure were varied to achieve significant
 348 spreading of the data across the mapped regions of this plot. The ignition points generally follow
 349 the cellulose trends with some of the ignitions occurring a little above the ignition threshold
 350 lines. The initiation of pyrolysis is similarly grouped, and trend with a similar slope as the
 351 Martin et al. transient ignition branch. These are examined in more detail a little later in this
 352 paper.

353 Fig. 9 shows a similar plot of synthetic polymeric ignition events (red) and initiation of pyrolysis
 354 events (black). Solid markers (filled) indicate tests that were performed at larger scale at the
 355 Solar Tower. These tests were almost all performed with ignitions in a regime to the right of the
 356 inflection point for the ignition trend suggested by the dashed green line. Even though Martin's
 357 construct for the ignition threshold was derived uniquely for cellulose, the general trending

358 appears to hold for many of the synthetic polymers as well. Ignitions for vinyl and tires are
 359 slightly inside the cellulose trends, while the remainder of the synthetic polymers were more
 360 resistant to ignition compared with cellulose, igniting beyond the general cellulose trend. The
 361 general downward diagonal trend found for cellulosic materials is also evident in the synthetic
 362 polymer results. There are insufficient data here to deduce trends for specific materials, but the
 363 general diagonal trending above 1000 K Normalized Flux for some of the polymers is apparent.

364
 365 Fig. 9. Synthetic polymer material test results mapped to scaled flux/fluence.
 366

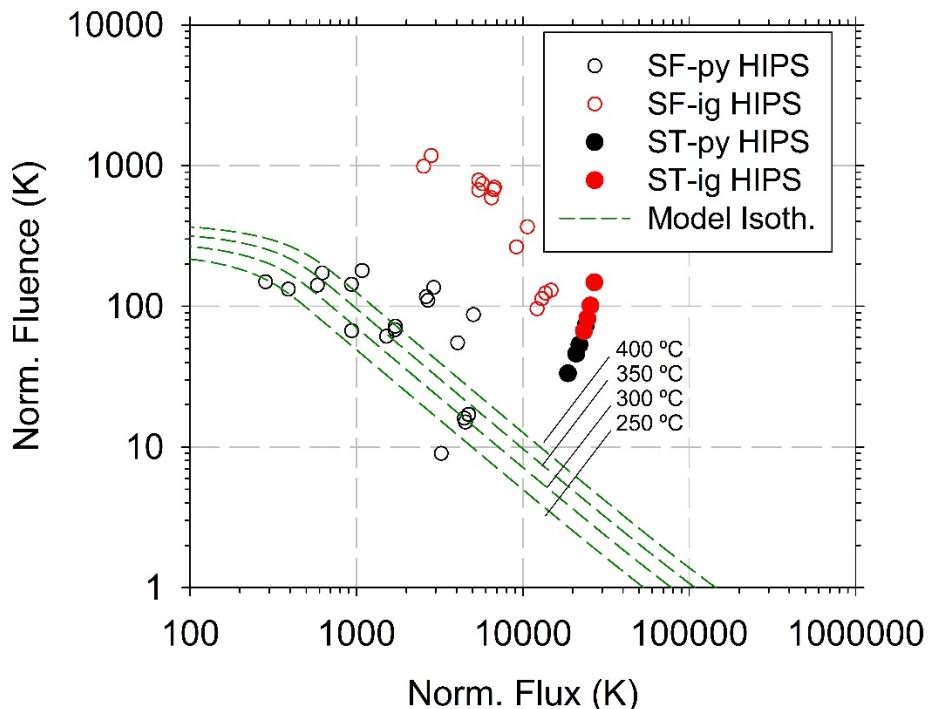

367 Polystyrene for the synthetic polymers was treated like the veneer for the cellulosic materials, in
 368 that it was varied across the range of the map to a greater degree for a larger number of samples.
 369 The Solar Furnace ignitions are 10-20% above the cellulose ignition threshold. The Solar Tower
 370 ignitions fall in line similar to the smaller-scale solar furnace tests relatively well. The initiation
 371 of pyrolysis data follow a similar diagonal trend, with the Solar Tower data outside the main
 372 trend of the rest of the Solar furnace data. A prior analysis [5] has noted a propensity for scale
 373 effect for ignition of some materials, a feature not identified in the historical datasets. This is not
 374 particularly apparent in this figure, as the large-scale solar tower tests tend to align relatively
 375 well with the general trends of the solar furnace data from smaller-scale tests. Note that the
 376 PMMA tests exhibited pyrolysis initiation at small-scale, but never ignition. At the large-scale at
 377 similar exposure conditions, ignitions were observed.

378 At a minimum, the test matrix generally involved duplicate testing of each sample at each
 379 condition (this or a ramp in flux conditions with one test at each increment to establish a trend).
 380 Certain tests involved more than two repeats. While test data here contribute to the identification

381 of ignition and pyrolysis initiation thresholds, more extensive testing is needed to form a
382 comparable map to that found in Fig. 1 from Martin et al.'s work.

383 Isotherms for temperature rise plotted onto the normalized construct suggest possible model
384 thresholds that follow the critical temperature rise model (Equations 1-2) that appears to
385 successfully reproduce ignition thresholds for cellulose. A few material types with a large
386 number of tests are specifically examined. Figure 10 shows the veneer ignition and pyrolysis
387 initiation data isolated and plotted with candidate threshold temperatures ranging from 350-
388 500°C in increments of 50°C. Ignoring one outlier, the 500°C threshold curve appears to capture
389 what may be a good pyrolysis initiation threshold for the existing data. The ignition data appear
390 to trend similar to the cellulose data of Martin et al., with an inflection at both 1000K normalized
391 fluence and flux. One might deduce from this trend that the threshold for initiation of pyrolysis
392 is in the 350-400°C range taking the most extreme datum, or about 500°C if that point is deemed
393 an outlier. This threshold could then be used with Equations 4 and 5 to deduce a threshold
394 normalized flux for pyrolysis initiation via the relation relating normalized flux, normalized
395 fluence, and the Fourier number shown in the first relation from the left in Equation 1.

396


397

398 Fig. 10. Wood veneer data compared to model isotherms from 350-500°C

399 Similarly, the HIPS polystyrene data can be evaluated for pyrolysis initiation thresholds as
400 shown in Fig. 11. Here the range of candidate curves vary from 250-400°C. The smaller-scale
401 SF data suggest a threshold of $\approx 250^\circ\text{C}$ depending on whether the lowest datum is an outlier, but
402 the larger-scale data appears to fall close to the limits of the spread of the smaller-scale data, with

403 a bias towards the upper-right in Fig. 11. The ignition threshold appears to be shifted outward
 404 from what was found for cellulose via the Martin data, and trends more consistently with scale
 405 than did the pyrolysis initiation data. The outward trend is not unexpected given that the
 406 polymer materials are different than the cellulose. One would expect the possible need to adapt
 407 the ignition thresholds to the specific materials being exposed via the temperature rise parameter.
 408 We refrain from attempting a more formal fit to the data given the general sparsity of our current
 409 dataset compared to the historical ignition data for cellulose. The data are sufficient, however, to
 410 note that the general trend of the data is largely consistent with the model trend, and that with
 411 additional targeted data, one might recommend temperature thresholds that match ignitions for
 412 various material types to enable a specific ignition threshold curve for any number of candidate
 413 materials for ignition modeling. This might involve an increasing number of realizations with
 414 more sample thicknesses and exposure environments.

415

416

417 Fig. 11. Polystyrene data compared to model isotherms from 250-400°C.

418

419 **4. Discussion**

420 The recent ignition data from the concentrating solar facilities at Sandia provide updated
 421 perspective on the response of materials subjected to high flux exposures. Figs. 8-9 show
 422 individual test results grouped as cellulosic and engineered polymers. These figures illustrate the
 423 general variety of response of materials to the high-flux environment. While the normalization
 424 of flux and fluence and the general construct found from the historical cellulose tests appears to
 425 collapse data from a single material, the variety of real materials potentially involved in an

426 ignition event are expected to exhibit a more widely ranging response. Cellulosic materials
427 tended to generally follow the ignition trends of the historical data with variations depending on
428 moisture, shape, and treatments. The polymers were generally more uniform materials from
429 sample to sample, but still exhibit a significant spread. Engineered polymers exhibit a range of
430 ignition thresholds depending presumably on constituency of the polymer.

431 The initiation of pyrolysis was extracted from the same tests and falls inside (lower and to the
432 left) of the ignition data on the normalized flux/fluence plots. An effort was made to produce a
433 range of data spanning the plot across the two linear regimes by varying the exposure
434 magnitudes and material thicknesses. Our data predominantly fell to the right of the inflection
435 point on the diagonal near 1000 K normalized flux, and largely follows the same diagonal slope
436 as does the historical cellulose ignition data. A similar diagonal trend is discernable in the
437 pyrolysis initiation data results from both our tests and from Martin's work, which suggests
438 pyrolysis initiation thresholds trend similarly to the ignition thresholds for high-flux exposures.
439 This feature is better illustrated in the isolated veneer and HIPS data in Figs 10-11, where the
440 Green's function-based model shows promise for producing a generalized trend for a pyrolysis
441 initiation threshold in the high flux regime. The scatter in these data is relatively high. For
442 threshold determination, one would focus on the inner-most datapoints among replicates to
443 define an inner-threshold. This approach is presumably what was done by Martin et al., as their
444 data points that are shown in Fig. 1 are threshold values determined from replicate tests, and not
445 individual test results as are the subsequent data in similar plots. The Martin data presumably
446 exhibited scatter much like the present results, although the contributing data to the thresholds
447 were not as extensively reported.

448 Predictivity of material response to a high flux environment for a variety of materials is
449 challenging. Ignition thresholds are well characterized for blackened cellulose, but few other
450 materials have similar depth of information. Figs. 8-9 suggest a range over which ignitions and
451 pyrolysis initiations occur for a more general suite of materials. Assuming the physical
452 mechanistic drivers remain similar, this construct may be applicable for a range of materials.
453 Thus, model determination may be accelerated by reliance on a verified model form and fewer
454 tests to characterize the relative scaling of the threshold curve. This general theoretical construct
455 may work for many more materials than cellulose and enhance the ability to formulate a
456 comprehensive ignition model. There are some exceptions, as we have observed our PMMA
457 samples would not ignite at the solar furnace regardless of the flux/fluence. When we scaled up
458 to the solar tower, PMMA ignited readily [6]. PMMA appears to rely on a gas-phase ignition
459 that is enhanced in thicker pyrolysis plumes.

460 Ignitions in more common fire conditions (low-flux by the convention of this paper) will not be
461 widely expected to trend according to the model form of Equation 5, as the historical data
462 suggest that ignitions further to the left in the normalized flux/fluence plots reach a regime where
463 convection and conductivity become an increasingly important factor to ignition. This transition
464 could be linked to a Fourier number, with the data and models suggesting at present that the
465 regime of validity will be for all scenarios with $Fo < 1.0$ and possibly for scenarios with $Fo < 10-100$.
466 A greater variety of data are required for more precise recommendations, as the Martin et
467 al. datasets focused to a much greater extent on ignitions in the higher Fourier number regimes.

468 While the utility of the current model is limited to the high-flux regime, it represents an
469 improvement on the prior state of the theory. Ignitions in Figure 1 were largely determined from

470 the same scale, and we have since shown that there are clear scale effects for some materials that
471 manifest as different flux ignition thresholds [6]. These effects likely relate to the plume
472 dynamics of the pyrolysis gases being different for the different scales, and the thickness of the
473 pyrolysis gas layer relating to ignition through attenuation of the incident flux.

474 At larger scales, the pyrolysis plumes can be larger and thicker, absorbing more incident
475 radiation, and providing a larger area and volume over which ignitions can start. Indeed, videos
476 suggest varying opacities for the pyrolysis plumes emitted from exposed samples depending on
477 material type, and this variability most likely has some relation to the thresholds and if not then
478 certainly the mechanisms whereby ignitions occur. Videos also suggest at large-scale that the
479 ignition phenomena might be more than just a result of surface temperatures reaching ignition
480 thresholds, with some indications of gas-phase ignitions in a few of the test videos. These
481 dynamics that relate to additional test factors cannot be represented in the ignition thresholds
482 using the normalized flux and fluence constructs alone, but the pyrolysis and char initiation
483 thresholds will be less affected by scale and possibly environmental issues. Consequently, the
484 pyrolysis initiation represents an improved indicator of the state of the exposed material trending
485 towards ignition and could be a feature of lower uncertainty to evaluate when trying to
486 characterize the response of materials to high flux scenarios. The pyrolysis initiation threshold
487 also represents an indication of the start of thermal damage of the materials due to an exposure.
488 It may additionally be relevant to forensic analysis when trying to determine the magnitude of an
489 exposure based on material response, or fire propagation modeling. Propagation modeling will
490 depend on the absorptivity of the local materials to accurately predict flaming spread through
491 non-ignited but previously exposed materials.

492

493 **5. Conclusions**

494 Recent high heat flux datasets from concentrated solar exposures on a variety of materials
495 provide new data for the response of materials to very high ($>200 \text{ kW/m}^2$) radiant exposures.
496 Using the historically suggested construct of normalized flux and fluence, the data from the
497 current tests are shown to be mostly consistent with the historical work in regard to cellulose
498 ignition. Like ignition, the initiation of pyrolysis (a feature not measured in historical datasets)
499 appears to follow a trend of lower energy required at high flux conditions. Temperature rise
500 isotherms from a Green's function-based model for surface response to an exposure seems to fit
501 the general trend of both the ignition and pyrolysis initiation thresholds, providing a promising
502 theoretical construct for capturing material variations and grounds for future modeling. More
503 data are needed for complete and accurate fits that include increased variations in exposures and
504 material types.

505

506 **Acknowledgements**

507 This article has been authored by an employee of National Technology & Engineering Solutions
508 of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE).
509 The employee owns all right, title and interest in and to the article and is solely responsible for
510 its contents. The United States Government retains and the publisher, by accepting the article for
511 publication, acknowledges that the United States Government retains a non-exclusive, paid-up,

512 irrevocable, world-wide license to publish or reproduce the published form of this article or
513 allow others to do so, for United States Government purposes. The DOE will provide public
514 access to these results of federally sponsored research in accordance with the DOE Public Access
515 Plan <https://www.energy.gov/downloads/doe-public-access-plan>.

516

517 References

518 [1] Martin, S., 1965, January. Diffusion-controlled ignition of cellulosic materials by intense
519 radiant energy. In *Symposium (International) on Combustion* (Vol. 10, No. 1, pp. 877-
520 896). [http://dx.doi.org/10.1016/S0082-0784\(65\)80232-6](http://dx.doi.org/10.1016/S0082-0784(65)80232-6)

521 [2] Martin S. B. "Fire setting by nuclear explosion: A revisit and use in nonnuclear
522 applications," *Journal of Fire Protection Engineering* Vol. 14 No. 4, 2004, pp. 283-97.
523 <http://dx.doi.org/10.1177/1042391504044541>

524 [3] Glasstone, S. and Dolan, P.J., 1977. *The effects of nuclear weapons*. DEPARTMENT OF
525 DEFENSE WASHINGTON DC.

526 [4] Butler, C.P., Martin, S.B. and Lai, W., 1956. *Thermal Radiation Damage to Cellulosic
527 Materials. Part II. Ignition of Alpha Cellulose by Square-wave Exposure* (No. USNRDL-
528 TR-135; AFSWP-906; Project NS 081-001). Naval Radiological Defense Lab., San
529 Francisco.

530 [5] Brown, A.L., Engerer, J.D., Ricks, A.J., Christian, J., Yellowhair, J., "Datasets for
531 Material Ignition from High Radiant Flux," Vol 120, *Fire Safety Journal* 2021, p. 103031.
532 <https://doi.org/10.1016/j.firesaf.2020.103131>

533 [6] Brown, A.L., Engerer, J.D., Ricks, A.J., and Christian, J.M., "Scale Dependence of
534 Material Response at Extreme Incident Radiative Heat Flux," The 2018 ASME/AIAA
535 Joint Thermophysics and Heat Transfer Conference, Atlanta, Georgia, June 25-29, 2018.

536 [7] Brown, A.L., Engerer, J.D., Ricks, A.J., and Christian, J.M., (2019) "Ignition from High
537 Heat Flux for Flat Versus Complex Geometry", 9th Symposium on Fire and Explosions
538 Hazards, April 21-26, St. Petersburg, Russia, pp. 970-979.

539 [8] Ricks, A.J., Brown, A.L., and Christian, J.M. "Flash Ignition Tests at the National Solar
540 Thermal Test Facility," The 2018 ASME/AIAA Joint Thermophysics and Heat Transfer
541 Conference, Atlanta, Georgia, June 25-29, 2018.

542 [9] Engerer, J.D., Brown, A.L., and Christian, J.M. "Ignition and Damage Thresholds of
543 Materials at Extreme Incident Radiative Heat Flux," The 2018 ASME/AIAA Joint
544 Thermophysics and Heat Transfer Conference, Atlanta, Georgia, June 25-29, 2018.

545 [10] Zepper, E.T., Brown, A.L., Scott, S.N., "Model Validation Exploration for Reacting
546 Solids Exposed to High Heat Flux Environments," 2019 WSSCI Fall Technical Meeting
547 Organized by the Western States Section of the Combustion Institute October 14-15,
548 2019 Albuquerque, New Mexico.

549 [11] Cole, K., Beck, J. V., Haji-Sheikh, A., and Bahman, L., Heat Conduction Using
550 Green's Functions, Taylor & Francis, 2011.