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Abstract—Graphics Processing Units (GPUs) offer signif-
icant potential for accelerating various computational tasks,
including Breadth-First Search (BFS). Numerous efforts
have been made to deploy BFS on GPUs effectively. To ad-
dress the dynamic nature of BFS, XBFS, the state-of-the-art
work, employs an adaptive strategy that leverages different
optimized frontier queue generation designs, accommodat-
ing the varying characteristics of levels in BFS. While
XBFS demonstrates excellent performance on NVIDIA
Quadro P6000 GPUs, it faces challenges when deployed
on AMD GPUs. In this work, we present our efforts to
implement XBFS’s adaptive approach on Frontier, the most
powerful supercomputer system, by porting XBFS to AMD
MI250X GPUs. Through targeted optimizations tailored to
the unique features of AMD GPUs, our implementation
achieves an average performance of 43 Giga-Traversed
Edges Per Second (GTEPS) per Graphics Compute Dies
(GCD). Based on these results, we observe potential for
surpassing the performance of the official Frontier results
from the Graph500 benchmark released in June 2024.

Index Terms—Breadth-First Search, AMD GPUs, Fron-
tier SuperComputer.

I. INTRODUCTION

BFS is the building block for many graph algo-
rithms, providing essential functionality for various
tasks. For instance, the Strongly Connected Compo-
nent (SCC) detection algorithm utilizes both forward
and backward BFS to identify SCCs within directed
graphs [16,28]. Other algorithms, including Between-
ness Centrality (BC) and subgraph matching, also rely
heavily on BFS [4,14,15,22,24]. Beyond algorithmic
applications, BFS is crucial in practical scenarios such
as peer-to-peer network routing [30]. BFS’s significance
is ultimately resonated by its role in the Graph 500
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benchmark, where it serves as a key evaluation metric
for the world’s most powerful supercomputers [9].

AMD GPUs are attractive platforms for accelerating
BFS thanks to their exceptional computational and mem-
ory throughput capabilities. With continuous hardware
advancements and a thriving community support, AMD
GPUs offer improved computing and memory features.
For example, the AMD MI250X GPU boasts 47.9 Tera-
FLOPS of peak single-precision (FP32) performance,
128 GB of memory, and 3.2 TB/s of memory through-
put, representing significant improvements over previous
GPU generations [1].

Conventional BFS methods typically use the status
array, which indicates the “status” (i.e., the visit level)
of each vertex, to generate the frontier queue [20,31].
To address the workload imbalance problem, existing
approaches assign different numbers of threads to ver-
tices based on their degrees or use the Single Source
Shortest Path (SSSP) algorithm to relax synchronization
requirements, thereby mitigating the penalties associated
with workload imbalance [3,20,25,27,31]. In contrast,
XBFS introduces atomic operations and employs opti-
mizations such as adaptive frontier queue generation,
which better manage workload balance and improve
overall performance [8].

In the June 2024 evaluation of the Graph500 bench-
mark, the BFS implementation on the Frontier supercom-
puter achieved a performance of 29,654.6 GTEPS [9]
across 9,248 nodes. Since this BFS implementation is
CPU-based, the average throughput per GCD is only
0.4 GTEPS (with each node containing 8 GCDs). This
highlights the significant potential for accelerating BFS
on Frontier by implementing a high-performance BFS
on AMD GPUs, which could considerably improve the
system’s Graph500 benchmark performance.

In this work, we report our work-in-progress BFS im-
plementation which achieves 43 GTEPS throughput on a
single GCD, this is around 16.2% of the hardware peak



throughput. This is notable for sparse graph algorithms
on massively parallel GPUs, according to XBFS [8].
We believe this endeavor has established a solid basis
for distributed BFS on AMD GPUs. Particularly, our
development process began with the careful porting of
XBFS to the HIP framework, ensuring compatibility with
the Frontier system. We then focused on optimizing the
code to exploit the unique architectural features of AMD
GPUs. Our optimization process involved the following
four key takeaways:

• Parameter Tuning: We conducted extensive exper-
iments to fine-tune various parameters, adapting
them to the specifics of the AMD GPU architecture.

• Control Flow Modifications: We implemented
strategic changes in the control flow to preserve and
enhance the performance benefits originally claimed
by XBFS on NVIDIA GPUs.

• Degree-Aware Neighbor Order Re-arrangement: To
further boost performance, we introduced a neigh-
bor ordering technique that optimizes memory ac-
cess patterns and improves cache utilization.

• Performance Profiling: Utilizing rocProfiler, AMD’s
performance analysis tool, we meticulously exam-
ined the code’s behavior under various conditions.
This allowed us to estimate optimal parameters for
peak performance across different graph structures
and sizes.

Through these optimizations and careful analysis,
our HIP-based XBFS implementation has achieved a
remarkable performance of 43 GTEPS on the Frontier
system. To the best of our knowledge, this makes our
implementation the fastest end-to-end BFS code ever
developed for AMD GPUs across all platforms. The
significance of this achievement extends beyond raw
performance metrics. It demonstrates the potential of
HIP as a framework for developing high-performance
graph algorithms on AMD GPUs, potentially paving the
way for future advancements in graph processing on
exascale systems. In the following paper, we will delve
deeper into the technical details of our implementation
and provide a comprehensive analysis of our perfor-
mance results compared to existing state-of-the-art BFS
implementations.

II. RELATED WORKS

Various methods were applied to improve BFS perfor-
mance, but significant challenges remained, particularly
in frontier queue generation and workload balancing.
Different BFS levels require different approaches to
frontier queue generation, and using a single strategy
for the entire traversal is often inadequate.

• Hierarchical Queue Method: This method, as
discussed in [23], performs well at levels with
very few frontiers but suffers from enormous space

consumption and inefficient strided memory access
at levels with substantial frontiers.

• Edge Frontier Filtering: Techniques such as those
used in B40C [25] and Gunrock [31] also struggle
with excessive space consumption and duplicated
frontiers at high-frontier levels, explaining Gun-
rock’s difficulties with the FR graph as shown in
Table 2.

• Scan Approach: Employed by Enterprise [20], this
approach is designed for levels with a large number
of frontiers but incurs noticeable overhead at levels
with fewer frontiers.

While previous work [13,19] has explored adaptive
graph traversal concepts, XBFS is distinct in focusing
its adaptive approach specifically on frontier queue gen-
eration, a crucial step in graph traversal.

In terms of workload balancing, the runtime workload
of each vertex in bottom-up BFS is determined dynam-
ically. Most existing methods assume a vertex’s degree
indicates its associated workload. To accommodate var-
ious frontiers, [12] divides thread warps into sub-warps
with different numbers of threads. B40C [20,25] extends
this idea by assigning a cooperative thread array (CTA)
to each frontier, followed by a warp and thread. Further
efforts [6,17,18,26] propose pre-calculating the workload
of each frontier and dividing them into segments to
achieve balanced workloads. However, while the degree-
workload association rule holds in top-down BFS, early
termination in bottom-up BFS disrupts this association,
rendering existing workload balancing optimizations in-
effective. GraphGrind [29] also challenges the degree-
workload tie in different graph algorithms, suggesting
that various edges may yield different amounts of work.

Finally, SSSP-based asynchronous BFS can introduce
excessive redundant work [10,27]. By employing the
SSSP algorithm [3,5,27] for BFS traversal, synchro-
nization among threads is eliminated. However, this
design results in multiple updates of vertices across
iterations, leading to redundant vertex revisiting. SIMD-
X [21] identifies this redundant checking as a key factor
contributing to SSSP’s slower performance compared to
BFS.

In addition to the graph operation-based approaches,
linear algebra-based GraphBLAST [32] focuses on load
balancing, memory management, and a simple program-
ming model that performs comparable to Gunrock and
other libraries. Authors accelerated GraphBLAST with
bit-level optimizations of graph computations suitable
for modern GPUs [7]. TurboBFS [2] also uses linear
algebra and can achieve up to 40 GTEPs for irregular
graphs with a smaller depth. Another recent scalable im-
plementation, FSGraph [33] claims more than a hundred
GTEPS on V100 GPU, using a GPU-friendly CSR, but
not an open-source library.



Unlike traditional methods, XBFS adaptively applies
various optimized and novel frontier queue generation
techniques to address dynamic challenges throughout
the BFS traversal [8]. Key strategies include scan-
free, single-scan, and bottom-up approaches. The scan-
free and single-scan methods challenge the conven-
tional use of prefix sums [11] to merge frontiers across
threads [20,25,31], showing that atomic operations are
faster during the initial BFS levels. To tackle load
balancing in the bottom-up phase, XBFS incorporates
dynamic workload balancing to handle the unpredictable
workloads caused by frequent early terminations. Ad-
ditionally, during the bottom-up phase, XBFS checks
whether the neighbors of unvisited nodes were updated,
allowing it to proactively update frontier points for the
next layer, further boosting efficiency.

III. BACKGROUND

In this section, we introduce the algorithm and core
concepts of XBFS, which utilizes three distinct frontier
generation strategies: scan-free, single-scan, and bottom-
up [8]. The choice of strategy is governed by a parameter,
α. If the total number of neighbors for all vertices in the
frontier queue is sufficiently large—specifically, if the
ratio of neighbors to the total number of edges in the
graph exceeds α—XBFS selects the bottom-up strategy.
Otherwise, it switches between the scan-free and single-
scan strategies based on the growth rate of the number
of nodes in the frontier queue.

Here we use the graph in Figure 1 as an example to
explain these frontier generation strategies.
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Fig. 1: Example graph and frontier queue.

A. Scan-free

The scan-free frontier queue generation method is
mainly based on atomic operations, recognizing that even
a single scan through the status array can be costly. This
approach generates the frontier queue concurrently with
the graph traversal. Specifically, the scan-free method
uses atomic operations to update the status of each
neighbor. If the status update is successful, indicating
that the neighbor is being visited for the first time,
an atomic operation is used to enqueue this neighbor
into the next frontier queue. In summary, the scan-free
approach employs atomic operations in two key phases:
status updates and frontier enqueuing.
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Fig. 2: Scan-free of example graph.

As shown in Figure 2, at the beginning of XBFS,
we get vertex v0 from the frontier queue and find its
neighbor v1. Then we atomic check and update v1, since
its status is this level, we atomic put it into the next
frontier queue.

B. Single-scan

The single-scan frontier queue generation strategy also
builds upon the aforementioned observations to enhance
graph traversal. During traversal, each thread first loads
the neighbors of the current frontiers and updates the
status array with the first-time visited neighbors. Once
the traversal is complete, the algorithm scans the entire
status array and uses atomic operations to add those
newly updated vertices to the next frontier queue.

It should be noted that the single-scan strategy has a
variant that XBFS refers to as the No Frontier Gener-
ation approach. This variant uses conditional judgment
to omit the unnecessary frontier queue generation stage
when transitioning from the scan-free and bottom-up
strategies to the single-scan strategy. Instead, the existing
frontier queue is directly used for inspection and updates.
This optimization eliminates the need for one or two
scans and reduces the time required to generate the
frontier queue, significantly improving performance on
graphs with shorter diameters.
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Fig. 3: Single-scan of example graph.

As shown in Figure 3, at the second level of XBFS,
we get vertex v1 from the frontier queue and find its
neighbor v0, v2 and v3. Then we normally check and
update them. since the status of v2 and v3 is this level,
we atomic put them into the next frontier queue. And



note that here actually this frontier queue construction
can be skipped.

C. Bottom-up

XBFS calls its bottom-up frontier queue generation
strategy double-scan frontier queue generation because
it involves two scans of the status array. The double-scan
method partitions the status array into multiple segments.
The length of each segment is made evenly divisible by
the size of the warp, which is the number of threads in
a warp. In the first scan, an individual thread scans its
assigned segment and obtains the number of frontiers
vertex in it. Next, it performs a prefix sum to compute
the global offsets for each segment to place the frontiers
vertex to generate globally sorted frontiers. It then places
those frontiers from each segment into the next frontier
queue based on the global offsets.
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Fig. 4: Bottom-up of example graph.

As shown in Figure 4, when the ratio becomes larger,
the XBFS chooses a bottom-up strategy. Here we double
scan the status array and get the bottom-up queue, which
are all unvisited vertex. Then check the adjacency list
for each vertex and update the status. Here we can see
almost all vertex find neighbors of the last level at the
beginning and early terminated. And note that here since
v7 is updated in this phase, so v8, which belongs to the
next level, can be updated in this bottom-up.

IV. PORTING AND OPTIMIZATION

XBFS, initially developed for NVIDIA GPUs, demon-
strated excellent performance on systems equipped with
NVIDIA Pascal Quadro P6000 GPUs. However, to
harness the capabilities of the more powerful Frontier
supercomputer and achieve higher performance, porting
XBFS to AMD GPUs was imperative. This transition
presented several porting challenges and necessitated
a series of optimizations to ensure both compatibility
with the HIP framework and performance enhancement
on the AMD architecture. Additionally, we introduced
new optimizations specifically tailored to AMD GPUs to
further improve the performance of XBFS on Frontier.

A. Porting challenges

Differences in APIs from CUDA to HIP: To port
XBFS from NVIDIA to AMD GPUs, we employed the
hipify tool to convert the code from CUDA to HIP. How-
ever, certain CUDA APIs, such as __any_sync and
__shfl_sync, which are integral to warp operations,
are not directly supported by hipify. In CUDA, these
APIs use a warp mask, but on AMD GPUs, this mask
is unnecessary for their HIP equivalents, __any and
__shfl. Due to the difference in warp and wavefront
sizes between NVIDIA and AMD GPUs (32 threads per
warp versus 64 threads per wavefront), we had to modify
all warp-based code accordingly. This involved changing
the mask type from unsigned int to unsigned
long and ensuring that 64 threads work together to
maintain optimal performance. Additionally, functions
like __popc needed to be replaced with __popcll
to handle the unsigned long mask on AMD GPUs.

Adaptive frontier queue generation on AMD
GPUs: As the main contribution of XBFS, adaptive fron-
tier queue generation continues to demonstrate signifi-
cant performance improvement on AMD GPUs. Adap-
tive frontier queue generation can select one of three
strategies—scan-free, single-scan, or bottom-up—based
on the proportion of edges that need to be explored at
the current level. At the beginning of the traversal, when
the number of edges to be explored is small, the atomic
update and construction of the frontier queue using the
scan-free strategy are more advantageous. In the middle
of the traversal, when a large number of frontiers need
to be explored, the bit status check and update of the
bottom-up strategy can achieve good results due to its
fast termination. We port this optimization to AMD
GPUs to achieve its significant benefit.

Warp-centric dynamic workload balancing and
status update: After porting to AMD GPUs, the warp-
centric approach performs well in both the scan-free and
single-scan strategies by dividing vertices based on their
degree. This method, combined with warp-centric and
block-centric updating, allows for more efficient use of
threads. However, in the bottom-up strategy, warp-centric
dynamic workload balancing and status updates did not
yield further improvements and even degraded overall
performance. The reason of such degrade is due to the
early termination in the bottom-up phase. High degree
vertices that assigned with multiple threads terminate as
quickly as the low degree vertices in practice, causing
several threads in the warp remain idle. Furthermore,
on AMD GPUs, the warp (wavefront) size is increase
from 32 to 64, resulting even more wasted computing
resources.

Compiler and register spilling: Regarding compilers,
we tested both the clang and hipcc compilers on
AMD GPUs. We found that clang delivered a better



performance for the bottom-up part of XBFS because
it used fewer registers. On the Rmat25 dataset, it can
reduce 17% of the runtime of an iteration of bottom-
up. Additionally, we noticed that omitting the -O3
optimization flag caused the code to run up to 10 times
slower, primarily due to register spilling.

B. Optimizations
Cost of device synchronization: We found that de-

vice synchronization costs on AMD GPUs are signifi-
cantly higher than on NVIDIA GPUs. To address this, we
aimed to minimize device synchronization in the project.
In the CUDA-based XBFS, three different streams were
used to handle frontier queues with small, medium,
and large degree frontier vertices. However, due to the
high synchronization cost in HIP and the necessity of
synchronizing different streams, we consolidated these
streams into a single stream to process all frontier queues
together.

Degree-Aware Neighbor Order Re-arrangement:
By re-arrangement of the adjacency list of each vertex
based on its degree, XBFS can achieve better perfor-
mance. In the bottom-up strategy, early termination can
effectively improve its performance by halting the search
once a single neighbor with the target status is found.
Ideally, we would like to re-arrange the adjacency list
such that the first neighbor always has the lowest level.
However, this is unachievable since the level is data
and source vertex dependent. Instead, we use a re-
arrangement based on neighbor degrees, moving neigh-
bors with larger degrees to the front of the adjacency
list. The intuition behind this approach is that high-
degree vertices are more likely to be visited before low-
degree vertices. A simple yet effective probability model
supports this intuition: Given a graph G with m edges,
assuming at level k, mk edges have been visited, the
probability of vertex i with degree di being visited is
1−[C(m−di,mk)/C(m,mk)]. Here, C(a, b) represents
the number of ways to choose b items from a items. This
formula indicates that, in general, vertices with larger
degrees have a higher likelihood of being visited earlier.

TABLE I: Comparison of performance with Not Re-
arranged and Re-arranged graph.

Level Not Re-arranged Re-arranged
FetchSize (KB) Runtime (ms) FetchSize (KB) Runtime (ms)

0 3.31 0.0383 3.31 0.0369
1 6933.38 0.8096 6941.63 1.0970
2 2,572,656.53 8.4693 1,661,800.84 6.0604
3 707,405.69 2.3868 695,144.25 2.3274
4 616,971.94 5.8313 585,538.94 1.5481
5 233,464.75 0.5510 233,398.19 0.5615
6 108.81 0.0184 108.81 0.0182

Sum 4,137,435.59 18.0862 3,182,827.16 11.6313

As shown in Table I, we use the same seed for the
Rmat25 dataset and compare the performance of re-
arranged and not re-arranged datasets. We can observe

that after re-arrangement, in the bottom-up strategy,
the amount of data read from memory is significantly
reduced, and the running time is also decreased accord-
ingly, which is consistent with our hypothesis. As shown
in Figure 8, this optimization achieves a 17.9% speedup
on the Rmat25 dataset.

Reorganization of code: The ported code initially
exhibited performance bottlenecks due to differences in
how AMD GPUs handle certain operations compared to
NVIDIA GPUs. We used the HIP toolkit to profile the
code and analyze the time costs of both CPU operations
and GPU kernels. Additionally, we used rocprofiler
to identify the bottlenecks and determine where op-
timizations were needed. Based on this analysis, we
rewrote kernels and reorganized the CPU part of the code
to better align with AMD’s performance characteristics,
leading to significant improvements in execution time.

(a)

(b)

(c)

Fig. 5: Toolkit result of XBFS.
Figure 5 shows the runtime situation of each kernel.

Figure 5(a) presents the result of the original XBFS on
Summit, which is based on the CUDA environment,
while Figure 5(b) shows the result on Frontier after
simply hipifying the code and fixing all the bugs. Figure
5(c) shows the result after optimizations and kernel
rewrites tailored to AMD’s performance characteristics.
The end-to-end time of XBFS was greatly reduced by
rewriting the kernels and improving the code based on
the performance of AMD GPUs.

V. EVALUATION

A. Graph dataset

TABLE II: Graph datasets.

Graph Vertices Edges Data size
LiveJournal (LJ) 4036538 69362378 478 MB
USpatent (UP) 6009555 33037896 268 MB

Orkut (OR) 3072627 234370166 1.7 GB
Dblp (DB) 425957 2099732 13 MB

Rmat23 (R23) 838809 134214744 1 GB
Rmat25 (R25) 33554432 536866130 4.3 GB

Graph datasets. Table II shows the six graph datasets
we used throughout the evaluation to demonstrate the
effectiveness of our optimizations.



B. Evaluation Setting

The evaluations were conducted on the Frontier su-
percomputer, a high-performance computing system op-
timized for AMD GPUs, features compute nodes that
include a single 64-core AMD EPYC 7A53 “Optimized
3rd Gen EPYC” CPU with 512 GB of DDR4 memory.
Each node houses 4 AMD MI250X GPUs, each contain-
ing 2 Graphics Compute Dies (GCDs), totaling 8 GCDs
per node. These GCDs function as independent GPUs,
each equipped with 64 GB of high-bandwidth memory
(HBM2E).

C. Test of ratio of different dataset in each level

We test the ratio of the number of edges that need
to be expanded at the next level to the total number of
edges in the graph for different data sets. This shows the
changes in the frontier queue of BFS in different data
sets. The high ratio level is more suitable for the bottom-
up strategy, while the low ratio method is more suitable
for scan-free and single–scan.

Fig. 6: Ratio of different datasets in each level.
As shown in Figure 6, here the box of each level shows

the range the ratio with different initial seed. Here the log
ratio means the logarithm of ratio with respect to 2. We
can see that the BFS of the USpatent dataset requires
more levels, followed by the Dblp dataset, while the
sparse Rmat dataset requires fewer levels, which means
that fewer cycles are needed to complete the BFS on the
Rmat dataset.

D. Test of best α

We tested the performance of Scan-free, Single-scan
and Bottom-up strategies on the Rmat25 dataset at
different ratios. Because the running time of the Bottom-
up strategy depends on the number of edges that have
been visited, here we only select the levels from the
beginning of BFS to the ratio rising to the maximum
value. The running time of these levels can tell us how
to set the optimal α value.

As shown in Figure 7, When the ratio is very small,
that is, in the beginning stage of XBFS, the Scan-free
strategy performs best. This is because there are very
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Fig. 7: The runtime of each method with different
ratio(ms).
few edges that need to be expanded, and atomic opera-
tions have advantages in updating and establishing new
frontier queues. Then when the ratio increases slightly
and is less than 0.1, the Scan-free strategy performs best.
However, since the number of visited edges is very small
in the first few levels of XBFS, the Bottom-up strategy
actually traverses and checks all edges almost linearly, so
it is very slow. But when the ratio rises above 0.1, if the
top-down strategy (Scan-free or Single-scan) continues
to be used, the frontier queue that needs to be checked
will be very large. At this time, the Bottom-up strategy
has a greater advantage and can check and update all
unvisited points in batches.

E. Test of rocprofiler

We use rocprofiler to test the detailed operating pa-
rameters of the kernel for Scan-free, Single-scan and
Bottom-up strategies on the Rmat25 dataset.

In Table III, we show the performance counter for the
scan-free strategy. It consists of only one kernel, and
the memory access requirement depends linearly on the
calculated ratio. Since the scan-free strategy accesses
only the status and edge list of vertices in the current
and next frontier, we can see it requires only a small
amount of memory access at the lower level, O(|F |).

TABLE III: Rocprofiler result of scan-free strategy on
Rmat25. Here L2, MBusy, FS represent L2CacheHit,
MemUnitBusy, and FetchSize, respectively.

Strategy Ratio Level Runtime (ms) L2 (%) MBusy (%) FS (KB)

Scan-free

1.86× 10−9 0 20.237 96.545 0.426 2.563

1.02× 10−6 1 0.180 39.796 5.975 76.875

5.44× 10−3 2 3.124 40.379 16.458 234139.875

0.725 3 43.310 27.810 59.312 21699891.063

0.267 4 24.265 37.327 81.438 9817098.875

2.40× 10−3 5 0.540 5.574 66.119 229095.875

1.35× 10−5 6 0.150 1.866 16.118 1453.438

8.38× 10−8 7 0.140 50.685 0.189 12.938

In Table IV, we show the performance counter for
the single-scan strategy. It consists of two kernels. The
first kernel is for new frontier queue generation, which



has a memory requirement of O(|V |), and the second
kernel is for status array updates, which has a memory
requirement of O(|F |). Even though the second kernel
requires a similar amount of memory as the scan-free
strategy, the single-scan strategy eliminates the need
for synchronization and duplicate writes to the frontier
queue. We observe that the single-scan strategy has
a higher L2 cache hit rate and higher memory read
bandwidth compared to the scan-free strategy for frontier
queue generation.

TABLE IV: Rocprofiler result of scan-free strategy on
Rmat25. Here L2, MBusy, FS represent L2CacheHit,
MemUnitBusy, and FetchSize, respectively.

Strategy Ratio Level Runtime (ms) L2 (%) MBusy (%) FS (KB)

Single-scan

1.86× 10−9 0 23.032 0.043 27.124 131073.875

1.86× 10−9 0 0.299 97.668 0.188 1.750

1.02× 10−6 1 0.477 0.001 26.216 131073.750

1.02× 10−6 1 0.289 51.706 3.411 35.563

5.44× 10−3 2 0.396 0.120 27.184 131112.438

5.44× 10−3 2 1.744 48.287 16.441 139846.563

0.725 3 0.876 37.822 51.138 205496.563

0.725 3 37.788 28.582 57.616 20728852.500

0.267 4 7.851 77.140 76.238 389393.250

0.267 4 31.609 32.048 59.214 9526954.125

2.40× 10−3 5 1.028 37.566 42.694 200315.563

2.40× 10−3 5 2.711 55.466 33.885 566780.625

1.35× 10−5 6 0.449 0.984 27.308 131582.438

1.35× 10−5 6 1.789 70.360 28.566 341930.500

8.38× 10−8 7 0.433 0.012 25.910 131077.938

8.38× 10−8 7 1.764 70.591 28.653 339272.250

In Table V, we show the performance counter for
the bottom-up strategy. Unlike both top-down kernels, it
consists of five different kernels. The first kernel checks
through the status and counts the number of unvisited
vertices, which requires O(|V |) memory access. The
second and third kernels implement a prefix sum algo-
rithm that does not require much memory. The fourth
kernel generates a bottom-up frontier queue by revisiting
the full vertex status, which requires O(|V |) memory
access. The last and most important kernel traverses
the unvisited edges from all unvisited vertices, and in
the worst case, the memory requirement is O(|M |). We
observe that the L2 cache hit rate and read bandwidth
of the last kernel are not as high as in the top-down
strategy. Therefore, the bottom-up strategy should only
be used when a significant number of vertices have been
visited.

In Table VI, we show the sum of memory read
and runtime for all kernels at the same level under
three different strategies. In the initial stages of XBFS,
specifically at levels 0 and 1, the bottom-up strategy
tends to add all unvisited vertices to the bottom-up
queue. This process not only checks each vertex but also
results in significant memory read overhead. As indi-
cated in Table VI, the memory read for this strategy is
substantially higher compared to the other two strategies.

TABLE V: Rocprofiler result of bottom-up strategy
on Rmat25. Here L2, MBusy, and FS represent
L2CacheHit, MemUnitBusy, and FetchSize, re-
spectively.

Strategy Ratio Level Runtime (ms) L2 (%) MBusy (%) FS (KB)

Bottom-up

1.86× 10−9 0 20.193 3.225 31.228 133090.750

1.86× 10−9 0 0.375 68.219 2.840 31.813

1.86× 10−9 0 0.284 96.965 15.029 0.688

1.86× 10−9 0 1.960 92.632 77.467 131075.750

1.86× 10−9 0 546.222 28.297 14.531 27354527.688

1.02× 10−6 1 0.447 3.176 29.373 133088.438

1.02× 10−6 1 0.359 65.737 2.916 31.625

1.02× 10−6 1 0.281 96.954 15.218 0.688

1.02× 10−6 1 1.958 92.665 72.874 131076.563

1.02× 10−6 1 540.707 28.320 14.702 27228927.688

5.44× 10−3 2 0.464 3.167 29.734 133091.000

5.44× 10−3 2 0.359 66.667 2.888 34.250

5.44× 10−3 2 0.280 99.997 15.369 0.063

5.44× 10−3 2 1.315 92.354 72.243 131076.750

5.44× 10−3 2 46.410 28.880 36.786 7738606.125

0.725 3 0.434 3.156 30.908 133098.750

0.725 3 0.356 66.547 2.731 28.969

0.725 3 0.280 96.955 16.243 0.063

0.725 3 1.042 89.766 64.280 131076.000

0.725 3 1.951 17.286 47.357 483963.875

0.267 4 0.406 3.169 30.968 133095.188

0.267 4 0.362 65.468 3.001 26.219

0.267 4 0.290 99.997 16.206 0.938

0.267 4 0.996 89.368 62.390 131076.375

0.267 4 1.367 23.093 45.159 339673.781

2.40× 10−3 5 0.401 3.173 30.345 133083.813

2.40× 10−3 5 0.358 66.127 2.882 21.375

2.40× 10−3 5 0.286 96.955 15.611 0.688

2.40× 10−3 5 0.991 89.368 60.767 131076.313

2.40× 10−3 5 1.342 23.287 43.855 338706.406

1.35× 10−5 6 0.405 3.178 29.774 133093.188

1.35× 10−5 6 0.361 65.647 2.907 29.469

1.35× 10−5 6 0.286 99.997 15.469 0.938

1.35× 10−5 6 1.022 89.367 61.956 131076.063

1.35× 10−5 6 1.349 23.281 43.850 338691.406

8.38× 10−8 7 0.406 3.171 29.049 133099.750

8.38× 10−8 7 0.361 65.468 2.759 28.375

8.38× 10−8 7 0.286 99.997 14.924 0.063

8.38× 10−8 7 1.025 89.369 62.979 131076.438

8.38× 10−8 7 1.380 23.283 44.198 338698.063

TABLE VI: Total memory read (MB) comparison for
different strategies across levels

Level Scan Free Single Scan Bottom up
0 0.003 / 20.24 128.004 / 23.43 26971.413 / 569.25
1 0.075 / 0.18 128.036 / 0.79 26848.755 / 543.93
2 228.652 / 3.12 264.608 / 2.18 7815.242 / 48.98
3 21191.300 / 43.31 20443.700 / 38.78 730.632 / 4.20
4 9587.011 / 24.27 9683.933 / 39.59 589.719 / 3.54

*5* 223.726 / 0.54 749.117 / 3.84 588.758 / 3.51
6 1.419 / 0.15 462.415 / 2.28 588.761 / 3.53
7 0.013 / 0.14 459.326 / 2.24 588.772 / 3.58

Furthermore, the single-scan strategy incurs higher mem-
ory read than the scan-free strategy because it performs a
scan while establishing the frontier queue. Consequently,
the scan-free strategy demonstrates superior performance
during the early stages of XBFS since it doesn’t need to



scan the status queue.
At level 2, the status array has not been updated on a

large scale, and the majority of vertices are still unvisited.
Thus, the bottom-up strategy still has a high memory
read. At this point, the scan-free strategy and the single-
scan strategy have similar memory read. However, the
single-scan strategy has better performance because it
doesn’t need to use atomic operations to update the status
array, despite its higher memory usage.

When the ratio is very large, that is, at levels 3 or
4, the frontier queue becomes extremely large (this is
related to the average degree of the graph). At this point,
the scan-free strategy and the single-scan strategy have
many redundant vertices in the frontier queue, and a
large number of redundant edges need to be checked,
resulting in very large memory read. Here, the bottom-
up strategy, based on the bottom-up generation and high-
speed update of the wavefront, can achieve better re-
sults. Consequently, although the scan-free strategy and
the single-scan strategy have higher MemUnitBusy, the
bottom-up strategy still achieves the best performance.

After the bottom-up process is completed, which is at
level 5, even though Table VI suggests that the scan-free
strategy seems to have better performance, we actually
use the single-scan strategy here. This is because when
we run the XBFS, the single-scan strategy after the
bottom-up can skip the frontier queue generation, often
making it faster than scan-free at this level. Finally, in
the last few levels, where level is 6 or 7, we can observe
that the scan-free strategy has much less memory read,
so we choose to use scan-free at these levels.

This careful study helped us ensure that the correct α
value is selected for the Frontier system. It’s important
to note that using the α value allows us to estimate
the memory access requirement for each level, theoret-
ically reducing the overall memory access requirement.
However, the actual processing time depends on system-
specific features, such as the cost of atomic operations
and irregular memory access patterns. For example,
Level 2 in Table VI shows that the single-scan strategy
accesses more memory, yet its total runtime is lower than
that of the scan-free strategy. Similar considerations ap-
ply to the bottom-up strategy: if the cost of cache misses
is higher, then the bottom-up approach may require a
higher ratio of early terminations to be beneficial. Our
analysis ensured that we take into account these factors
for our XBFS implementation on the Frontier system.

F. Test of performance

We tested the performance of XBFS on Frontier, here
we set α = 0.1 and tested the n to n time and calculated
GTEPS.

As shown in Figure 8, choose Gunrock for baseline
and the performance of XBFS is much better. The
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Fig. 8: Performance on Frontier (GTEPS).

performance on USpatent and Dblp is poor because these
two datasets are more sparse, with a smaller average
degree, and require more levels to complete BFS. The
Dblp dataset is a very small dataset, so in the n to n
test, most of the time is spent on processing data or
completing the interaction between the CPU and the
AMD GPU, resulting in poor performance. On datasets
with a larger average degree, they only need fewer levels
to complete BFS and achieve better performance. Among
them, in the random dataset with a scale of 25 generated
by the Rmat generator, a performance of 43 GTEPS was
achieved.

Theoretically, the BFS algorithm requires visiting
all vertices twice and edges once to complete all
checks and updates. This means the predicted mem-
ory read is 8 ∗ 2|V | + 4 ∗ |M | bytes, for 8-
byte edge indices and 4-byte vertex indices. For the
Rmat25 dataset, we get a memory bandwidth effi-
ciency of ((16|V |+ 4|M |)/runtime)/1.6TFLOPS =
13.7%. From the results of rocprofiler, we can
also get the actual hardware bandwidth efficiency of
((3.183GB)/runtime)/1.6TFLOPS = 16.2%. This
is a rather high memory bandwidth efficiency for an
irregular memory access application. Note that the real
memory usage is larger than 16|V | + 4|M | due to the
implementation overhead.

VI. SUMMARY

In order to further explore the potential of the BFS
algorithm on the MI250X GPUs on the Frontier system,
we ported the XBFS algorithm, which performs well
on NVIDIA GPUs, to AMD GPUs and added new
optimizations, including parameter tuning, control flow
modifications, degree-aware neighborhood re-ordering
and performance profiling. This work greatly improved
the end to end runtime of XBFS. Through targeted opti-
mizations tailored to the unique features of AMD GPUs,
our implementation achieves an average of performance
of 43 GTEPS on the Rmat25 dataset, which reaching a
predicted efficiency of 13.7% and hardware bandwidth
efficiency of 16.2%.
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