

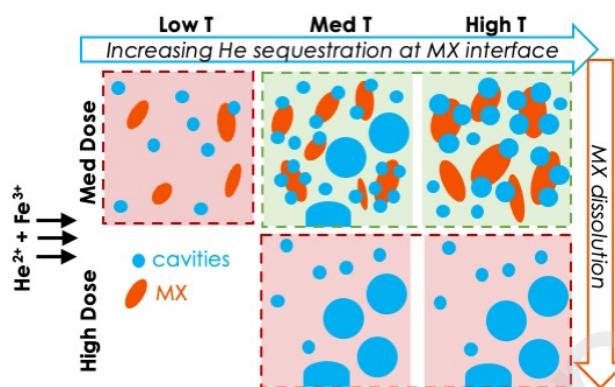
1 **MX precipitate behavior in an irradiated advanced Fe-9Cr steel: Helium sequestration and**
2 **cavity swelling performance**

3 T.M. Kelsy Green^{a*}, Tim Graening^b, Weicheng Zhong^b, Ying Yang^b, and Kevin G. Field^a

4

5 ^aUniversity of Michigan-Ann Arbor, currently at Antares Nuclear Industries

6 ^bOak Ridge National Laboratory


7 ^aUniversity of Michigan-Ann Arbor

8

9 *Corresponding Author: kelsy@antaresindustries.com

10

11 **Graphical Abstract**

12

13 **Abstract**

14 This work is the third and final part in an initial series on addressing the behavior of MX
15 precipitate stability in an advanced Fe-9Cr reduced activation ferritic/martensitic (RAFM) alloy
16 under fusion-relevant ion irradiation conditions. Here, the helium trapping properties of MX
17 precipitates are investigated across varying damage levels (15-100 dpa), temperatures (400-
18 600°C), and helium doses (10-25 appm He/dpa) using sophisticated dual ion beam experiments
19 and electron microscopy. Results indicate that MX precipitates efficiently sequester helium in the
20 form of nanoscale bubbles at the precipitate-matrix interfaces near the peak swelling temperature
21 (~5 bubbles/precipitate at 500°C). Swelling was primarily due to matrix cavities. The Fe-9Cr alloy
22 reached 2% swelling by 100 dpa, suggesting a shift to steady-state swelling around 50 dpa at

23 500°C. However, MX precipitate dissolution beginning at 15 dpa did not coincide with this onset
24 of steady-state swelling.

25

26 **1.1 Introduction**

27 Reduced activation ferritic/martensitic (RAFM) steels are able to achieve superior
28 mechanical properties and reduced radioactivity during operation for fusion applications [1]. An
29 important microstructural feature in RAFM steels is MX precipitates (M=metal, X=C/N), which
30 is produced in the microstructure through compositional tailoring and thermomechanical treatment
31 (TMT) as a means to improve high temperature mechanical properties [1,2]. MX precipitate-
32 matrix interfaces may also serve the dual purpose of being trapping sites for point defects and
33 transmutant products such as helium [2,3]. However, traditional RAFM steels under conventional
34 processing methods, such as F82H or EUROFER97, lack a sufficient density of MX precipitates
35 to meet the demands of high-temperature creep [4] and to provide the necessary swelling resistance
36 by decreasing the steady-state swelling below ~0.2%/dpa in neutron irradiation environments [5].

37 To address this need, a new class of RAFM steels called Castable Nanostructured Alloys
38 (CNAs) was developed with computational thermodynamics and traditional manufacturing
39 methods to have an increased volume fraction of MX precipitates (~0.7 times less than the volume
40 fraction of clusters in ODS steels but ~1.3-2.5 times greater than the MX phase fraction in
41 traditional FM and RAFM steels) [6-11]. The performance and function of these MX precipitates
42 under irradiation conditions is important to understand for continual alloy improvement and
43 development for fusion applications, particularly for developing an understanding of the MX
44 precipitates' dissolution behavior and helium sequestration ability as both of these may have
45 significant effects on in-operation swelling.

46 The stability of MX precipitates in CNA steels has been the subject of recent work. Ref 12
47 and 13 addressed the stability of MX precipitation in an advanced Fe-9Cr CNA alloy called CNA9
48 under fusion-relevant ion irradiation conditions and concluded that the (i) precipitates had
49 temperature-dominated responses at intermediate damage levels (≤ 15 dpa) under single beam
50 irradiation, displaying observable ballistic dissolution effects at $\leq 400^\circ\text{C}$ and radiation-enhanced
51 coarsening $\geq 500^\circ\text{C}$; (ii) helium co-injection acted to suppress diffusion and hence suppress
52 radiation-assisted coarsening of precipitates at high temperatures (500, 600°C) at 15 dpa but had
53 no significant effect on precipitate dissolution for damage doses at and above 50; and (iii)
54 precipitates dissolved between 15 and 50 dpa in all conditions tested regardless of temperature,
55 dose, and the presence of implanted helium.

56 This work then addresses the MX precipitate population's ability to sequester helium
57 before their dissolution. Efficient helium sequestration is needed to disperse helium homogenously
58 throughout the matrix and prevent the helium-assisted growth of cavities. Though MX precipitates
59 have been previously shown to sequester helium at their interfaces in Ti-modified austenitic
60 stainless steel and delay the onset of steady-state swelling [14-16], literature lacks definitive
61 evidence that this is also the case for MX precipitates in FM and RAFM steels like CNA9. Two
62 previous generations of CNAs, CNA1 and CNA3, have been tested for helium and/or radiation
63 damage effects at the time of this work [3, 17-19]. Parish *et al.* observed that 32% of all cavities
64 in dual ion (Fe + He) irradiated CNA3 were connected to precipitate-matrix interfaces, though not
65 all precipitates examined were MX precipitates [18]. Yan [3] and Lin *et al.* [19] also examined
66 helium-filled bubble behavior in CNA1 and CNA3 with in-situ and ex-situ helium implantation to
67 $\sim 7,500$ appm at 500 and 700°C and to 10,000 appm He at 500-900°C, respectively. Though the
68 MX precipitates in the CNAs sequestered helium in the form of bubbles at their interfaces, the

69 authors concluded the MX precipitates were not present in high enough densities to suppress
70 matrix swelling. Importantly, studies conducted by Yan and Lin *et al.* only implanted helium and
71 did not co-irradiate with other ions (such as Fe) that induced large amounts of lattice damage, thus
72 not capturing the progression of precipitates and cavities with both helium implantation and
73 significant ion damage.

74 This work assesses the capability and capacity of MX-TiC precipitate-matrix interfaces in
75 CNA9 to sequester helium using high fidelity dual ion irradiations and conventional electron
76 microscopy. Additionally, matrix swelling will be examined and evaluated in relation to MX
77 precipitate stability. This work is the final part in a series assessing the co-evolution of precipitation
78 and helium in the advanced 9Cr-RAFM steel alloy CNA9.

79

80 1.2 Methods

81 All methodology for sample procurement and processing, ion irradiation experiments,
82 TEM sample preparation, and MX precipitate analysis are identical to and can be found in Refs.
83 [12] and [13]. The experiments conducted for this work are shown in Table 1.

84 Regions of interest (ROIs) in the liftouts taken from irradiated bulk specimens were
85 assessed with both scanning and conventional transmission electron microscopy (STEM, CTEM).
86 First, ROIs were compositionally mapped with STEM-energy dispersive spectroscopy (STEM-
87 EDS) to obtain size, density, and spatial location information on MX-TiC precipitation [13]. Next,
88 Fresnel contrast in off-zone CTEM bright-field (BF) imaging was used to image cavities in the
89 same ROIs, thus allowing for the location of cavities (in the matrix or on the precipitate-matrix
90 interface) to be ascertained. Under- and over-focused images at $\pm 1 \mu\text{m}$ (vendor indicated) were
91 used to help identify cavities and underfocused images at $-0.5 \mu\text{m}$ were used to estimate the size

92 and density of the cavities. Cavities correlated with MX-TiC precipitates were identified by
93 superimposing the CTEM BF images onto STEM-EDS maps of Ti. As the TEM-BF images are
94 2D projections of the 3D volume of the TEM lamellae, the distance between the cavity in the
95 matrix and the precipitate may be ‘flattened’ and lead to an incorrect identification of the cavity as
96 being attached to the precipitate. Though the precipitate-attached cavities were relatively
97 identifiable as depicting a clear ‘halo’ around the circumference of the precipitates (*i.e.*, a higher
98 localized density around a precipitate versus in the matrix), the possibility of mislabeling cavities
99 in the matrix as being attached to precipitates cannot be fully accounted for. It is assumed that this
100 error is small such as not to affect the overall results of the analysis. In addition, cavities that
101 appeared “on top” of the precipitates by being within the projected precipitate radius were counted
102 as being attached to the precipitate.

103 Spherical cavities less than 5 nm in diameter observed with CTEM are assumed to be helium-
104 containing bubbles. The 5 nm cutoff was determined by the valley in the bimodal cavity size
105 distribution at 500°C and was uniformly applied to all temperatures and conditions within. This is
106 common practice in recent literature of similar studies [20-22], deriving from literature results that
107 assume cavities populations with bimodal populations are helium filled at small sizes due to the
108 theoretical derivations for cavity growth rates in the presence of helium for sub-critical and
109 nanometer scaled cavities [23-27].

110
111 Table 1 Ex-situ dual beam irradiation parameters, showing the ‘target parameter/achieved parameter’
112 experimentally. T_{irr} = temperature of irradiation.

T_{irr} (°C)	Total dpa	Helium co-implantation rate (appm He/dpa)	Dose rate (dpa/s)
400/401.6	15/15.1	10/10.3	$7 \times 10^{-4}/7.1 \times 10^{-4}$
500/500.6	15/15	10/9.96	$7 \times 10^{-4}/7.3 \times 10^{-4}$
500/498	50/50	10/9.96	$7 \times 10^{-4}/7.3 \times 10^{-4}$
500/499.6	100/100	10/10.1	$7 \times 10^{-4}/7.3 \times 10^{-4}$
600/599.5	15/15.1	10/9.8	$7 \times 10^{-4}/7.1 \times 10^{-4}$

113

114 **1.3 Results and Discussion**

115 ***1.3.1 Temperature effects at intermediate damage level: 400, 500, and 600°C to 15 dpa with 10***

116 ***appm He/dpa***

117 This series of irradiations assesses the effects of temperature at 400, 500, and 600°C on
118 cavity behavior to 15 dpa with 10 appm He/dpa. Ref. [13] found that precipitates at 400°C
119 underwent partial dissolution, precipitates at 500°C were in a condition of stability, and MX
120 precipitates at 600°C underwent significant radiation-enhanced growth (though helium co-
121 injection suppressed this growth as compared to the single beam condition with no helium).

122 Cavity statistics for each condition are shown in Table 2. The size distributions of the
123 cavities in the matrix (labeled ‘Matrix’) and attached to precipitates (labeled ‘MX’) is shown in
124 Figure 1. The distribution of matrix cavities are also plotted on a log-log scale in Figure 2. Matrix
125 cavities displayed a temperature-dependent behavior: a unimodal distribution of small, spherical
126 cavities (~1-2 nm in diameter) was found in the 400°C (Figure 1a) and 600°C (Figure 1c)
127 conditions, but a bimodal distribution of cavities was found in the 500°C condition (Figure 1b).
128 The generally accepted mechanism that prevents cavity formation at low temperature is
129 recombination and at high temperature is the thermal disassociation of cavities [23]. It is assumed
130 that the bimodal cavity distribution at 500°C follows the generally accepted role of helium in cavity
131 growth rates: hypo-critical pressurized cavities at small sizes (< 5 nm) and unconstrained growth
132 for hyper-critical cavity sizes (>5 nm) [24-28]. In literature, a bimodal cavity size distribution
133 signifies at or near peak swelling for a material whereas unimodal distributions correspond to
134 values far-off peak swelling under common fission- and fusion-relevant irradiation conditions
135 [28]. As seen in this study, the unimodal distributions at 400 and 600°C corresponded to off-peak
136 swelling ($\leq 0.005\%$) and the bimodal size distribution at 500°C to near-peak swelling (~0.2%)

137 (Figure 2). Thus, it is assumed within that 500°C is closest to the peak swelling temperature for
138 the conditions tested. This is later confirmed based on the total swelling values observed at 100
139 dpa.

140 The general cavity behavior is shown in Figure 3 and representative STEM-EDS maps of
141 Ti overlaid on the corresponding TEM-BF micrographs in the underfocused condition are shown
142 for each condition assessed in Figure 4. The trapping ability of the MX precipitate-matrix
143 interfaces was found to be temperature-dependent. The most efficient helium sequestration
144 occurred at 500 and 600°C, with an average of number of 5.3 ± 0.4 and 4.8 ± 0.4 MX-TiC-attached
145 bubbles per precipitate, respectively (Table 2). On the other hand, a statistically significant number
146 of precipitate-attached bubbles was not found at 400°C.

147 The results at 400°C will be discussed first, centered on why bubbles did not form at the
148 precipitate interfaces. The continual erosion of a clearly defined precipitate-matrix interface due
149 to ballistic dissolution effects, which were dominant at this condition as noted in previous work
150 [13], may have caused the decreased probability of helium bubble attachment to precipitates at
151 low temperature. Such an erosion would change the local strain and misfitting dislocation
152 structure, thus altering the local diffusion and capture of helium to the interfaces [13]. Additionally,
153 the combination of low mobility for helium complexes through the matrix, enhanced point defect
154 recombination at 400°C compared to elevated temperatures, and greater interparticle spacing from
155 ballistic dissolution may have also retarded the nucleation rate of helium-filled bubbles in
156 precipitate interfaces.

157 The following interconnected conclusions can be drawn on the helium-precipitate behavior
158 near peak swelling temperature at 500°C: (1) the precipitate-attached cavities were all designated
159 as bubbles and remained below the critical bubble radius of ~4 nm (Supplemental A); (2) unlike

160 the matrix cavities, the precipitate-attached bubbles did not display a bimodal size distribution;
161 and (3) virtually all swelling was derived from matrix cavities evidenced by the smaller sizes of
162 the precipitate-attached bubbles versus the matrix cavities – the MX precipitates were not sites of
163 enhanced vacancy collection [29]. This indicates that MX-TiC precipitates may effectively capture
164 helium in FM and RAFM steels before undergoing dissolution at elevated damage levels (>15 dpa)
165 during irradiation near the peak swelling temperature. To the authors knowledge, this is the first
166 work to systematically observe helium sequestration capabilities for MX-TiC precipitates in the
167 CNA class of materials under fusion-relevant ion irradiation conditions near peak swelling
168 temperature.

169 Unlike the matrix cavities at 600°C, the precipitate-attached bubbles did not thermally
170 disassociate with increasing temperature nor did they de-trap from the interface at 600°C. Rather,
171 precipitate-attached bubbles grew in size, suggesting that helium had significant binding with the
172 Ti and C in the MX precipitates or binding to the interface itself which prevented the thermal
173 release of helium and vacancies into the matrix. This observation aligns with previous studies on
174 CNA1 and CNA3, where MX precipitates effectively trapped helium at their interfaces at
175 temperatures greater than 600°C under elevated temperature helium implantation [3, 19]. The
176 binding of helium to the interfaces in combination with enhanced matrix diffusion of helium
177 complexes may be responsible for the growth in precipitate-attached bubbles at 600°C as compared
178 to 500°C. These results suggest the centrality of diffusion as the mechanism responsible for helium
179 migration to precipitate-matrix interfaces traps.

180

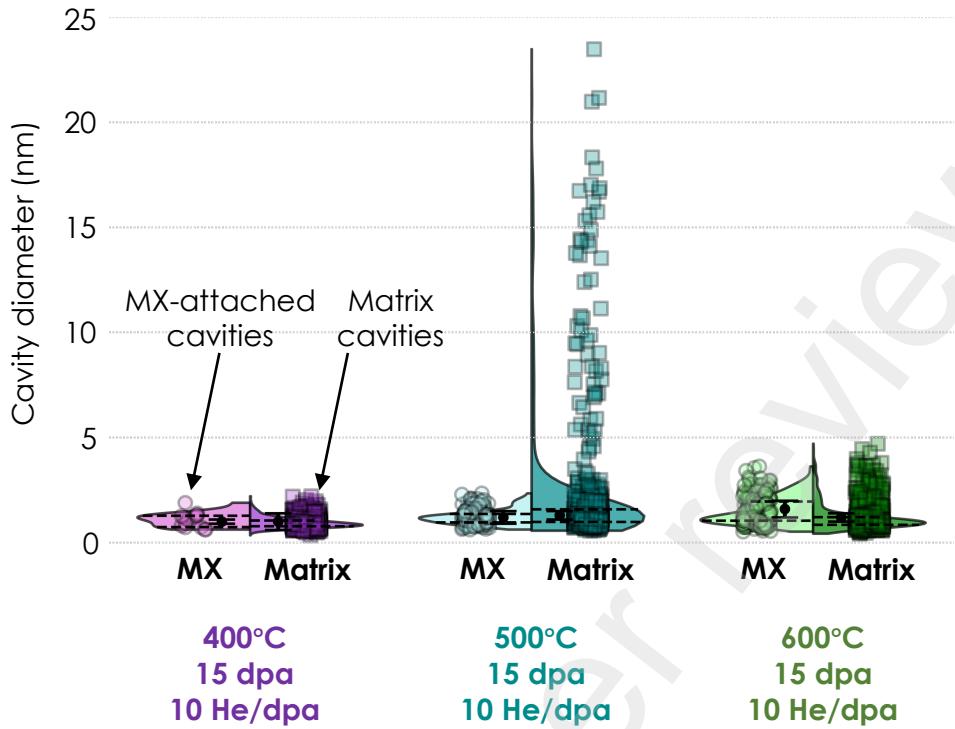


Figure 1 Comparison of precipitate-attached bubbles (circle symbols) to matrix cavities (square symbols) for the dual beam conditions at 400°C (purple), 500°C (blue) and 600°C (green).

181

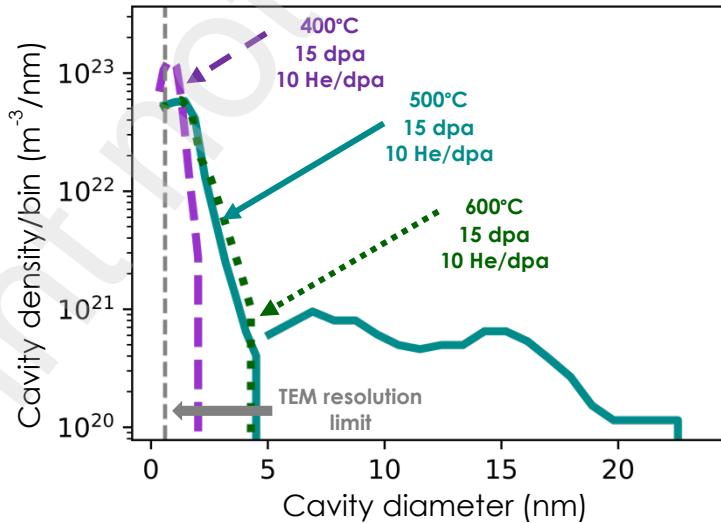


Figure 2 Cavity density versus cavity diameter for the conditions irradiated at 400 (dashed purple line), 500 (solid blue line), and 600°C (dotted green line), with 10 appm He/dpa to 15 dpa.

182

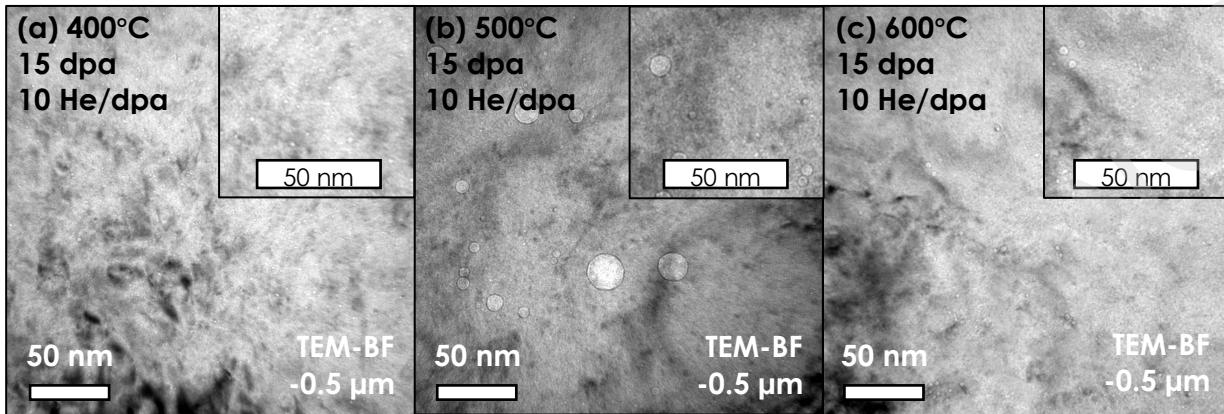


Figure 3 CTEM-BF underfocused images showing the general cavity behavior in the nominal damage region for the conditions irradiated to 15 dpa with 10 appm He/dpa series at (a) 400°C, (b) 500°C, and (c) 600°C.

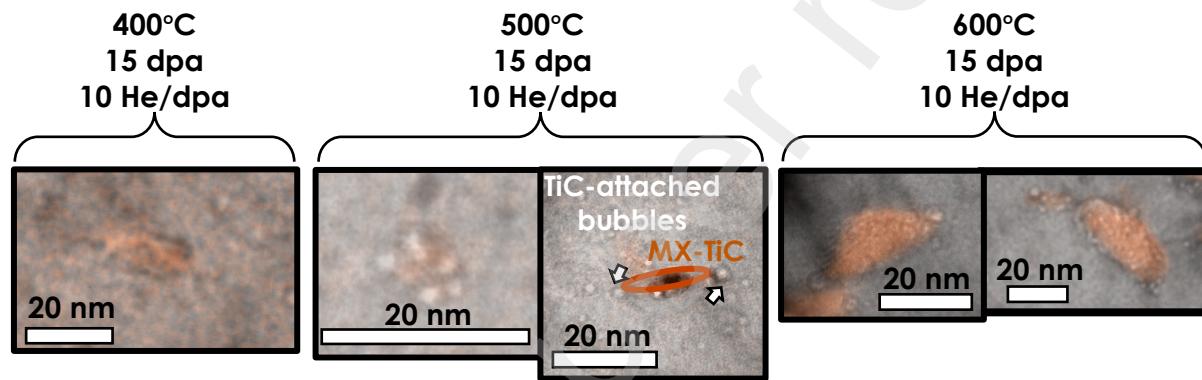


Figure 4 Representative STEM-EDS maps of Ti with corresponding TEM-BF micrographs in the underfocused condition overlaid for the 15 dpa 10 appm He/dpa series at 400, 500, and 600°C.

183

184 Table 2 Statistics of cavity analysis for dual beam irradiations at 400, 500, and 600°C to 15 dpa with 10 appm
185 He/dpa and 7×10^{-4} dpa/s. N.O. means not observed.

Parameter	400°C	500°C	600°C
Number of total cavities studied	856 total	792 total	926 total
Number of TiC-attached cavities	14 (<5nm) 0 (>5nm)	162 (<5nm) 0 (>5nm)	366 (<5nm) 0 (>5nm)
Number of matrix cavities	842 (<5nm) N.O. (>5nm)	576 (<5nm) 54 (>5nm)	560 (<5nm) N.O. (>5nm)
Diameter of TiC-attached cavities	1.0 ± 0.1 nm (<5nm) N.O. (>5nm)	1.2 ± 0.03 nm (<5nm) N.O. (>5nm)	1.6 ± 0.04 nm (<5nm) N.O. (>5nm)
Diameter of matrix cavities	1.0 ± 0.04 nm (<5nm) N.O. (>5nm)	1.3 ± 0.02 nm (<5nm) 10.1 ± 0.4 nm (>5nm)	1.2 ± 0.02 nm (<5nm) N.O. (>5nm)

Density of TiC-attached bubbles	$(0.06 \pm 0.02) \times 10^{22} \text{ m}^{-3}$ (<5nm)	$(0.5 \pm 0.05) \times 10^{22} \text{ m}^{-3}$ (<5nm)	$(0.8 \pm 0.07) \times 10^{22} \text{ m}^{-3}$ (<5nm) 0 (>5nm)
Density of matrix cavities	$(3.3 \pm 0.1) \times 10^{22} \text{ m}^{-3}$ (<5nm) N.O. (>5nm) (>5nm)	$(1.7 \pm 0.06) \times 10^{22} \text{ m}^{-3}$ (<5nm) $(0.1 \pm 0.01) \times 10^{22} \text{ m}^{-3}$ (>5nm)	$(1.3 \pm 0.08) \times 10^{22} \text{ m}^{-3}$ (<5nm) N.O. (>5nm) (>5nm)
Ratio of TiC-attached bubbles to the number of TiC precipitates observed	0.4 ± 0.1	5.3 ± 0.4	4.8 ± 0.4
Fraction of precipitate-attached bubbles to total bubble count	0.02 ± 0.006	0.3 ± 0.03	0.5 ± 0.04
Swelling from all cavities	$0.002 \pm 0.0002\%$	$0.2 \pm 0.01\%$	$0.005 \pm 0.0002\%$

186

187 **1.3.2 Helium co-implantation effects: 500°C to 15 dpa with 25 appm He/dpa**

188 Ref. [13] found that there were no differences in MX precipitate behavior between the
 189 conditions irradiated at 500°C to 15 dpa with either 10 or 25 appm He/dpa. The general cavity
 190 behavior and the sequestration of helium at the precipitate-matrix interfaces of the condition with
 191 25 appm He/dpa is shown in Figure 5. Comparing Table 2 to Table 3 shows that there is no
 192 statistically significant difference in the density or size of matrix or precipitate-attached cavities in
 193 the 25 appm He/dpa condition versus in the 10 appm He/dpa condition. Hence, the MX-TiC
 194 precipitates remain efficient helium sequestration sites at 25 appm He/dpa condition. As explained
 195 in Ref [13], a greater difference in helium rate is most likely needed to cause any significant
 196 differences in overall precipitate or cavity behavior.

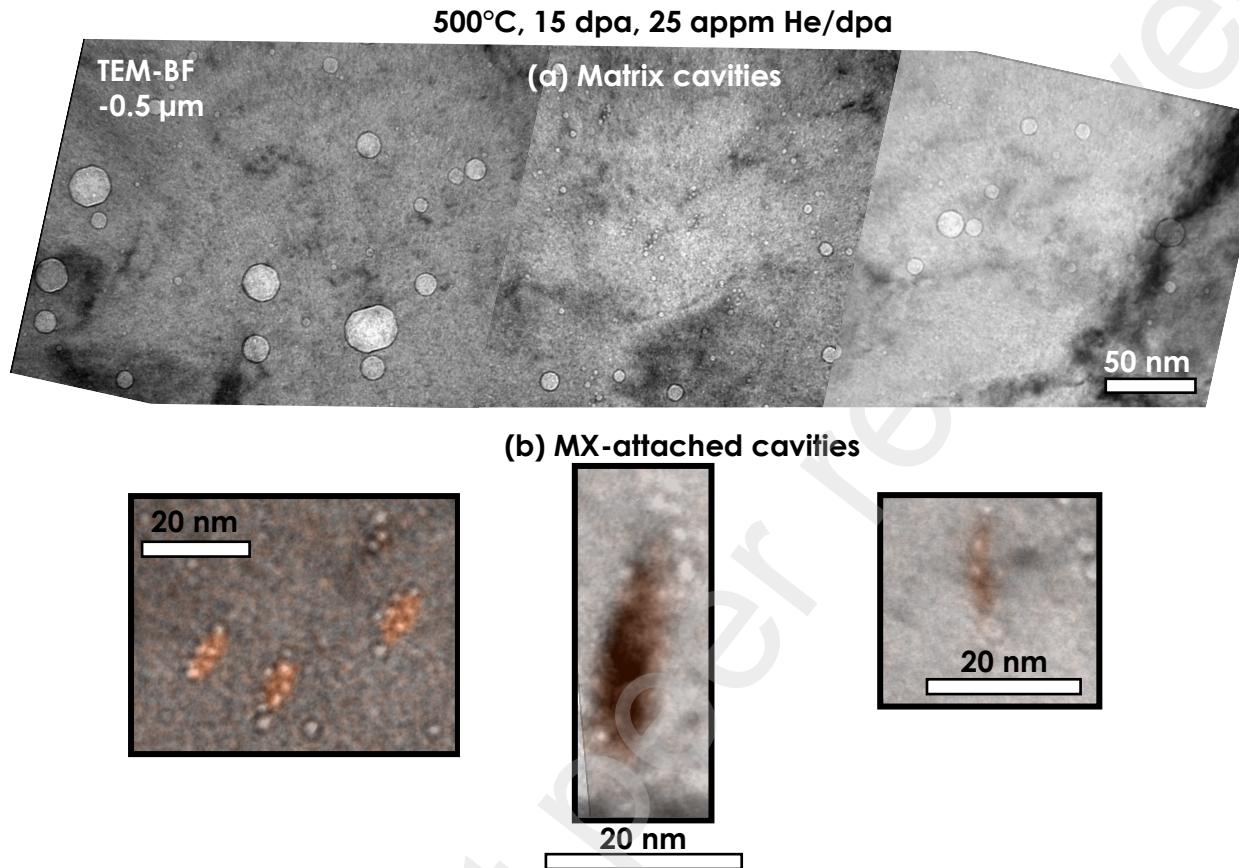


Figure 5 (a) TEM-BF underfocused images showing the general cavity behavior and (b) representative STEM-EDS maps of Ti with corresponding TEM-BF micrographs in the underfocused condition in the nominal damage region of the 500°C, 15 dpa, 25 appm He/dpa condition.

197

198 Table 3 Statistics of cavity analysis for select dual beam irradiations at 500°C to 15 dpa with 25 appm He/dpa and
199 7×10^{-4} dpa/s.

Parameter	15 dpa 25 appm He/dpa
Number of total cavities	896 total
Number of TiC-attached cavities	173 (<5nm) 0 (>5nm)
Number of matrix cavities	670 (<5nm) 53 (>5nm)
Diameter of TiC-attached cavities	1.4 ± 0.04 nm (<5nm) N.O. (>5nm)
Diameter of matrix cavities	1.5 ± 0.01 nm (<5nm) 11.7 ± 0.4 nm (>5nm)

Density of TiC-attached bubbles	$(0.7\pm0.1)\times10^{22} \text{ m}^{-3} (<5\text{nm})$
Density of matrix cavities	$(3.1\pm0.1)\times10^{22} \text{ m}^{-3} (<5\text{nm})$ $(0.2\pm0.03)\times10^{22} \text{ m}^{-3} (>5\text{nm})$
Ratio of TiC-attached bubbles to the number of TiC precipitates observed	5.6 ± 0.3
Fraction of precipitate-attached bubbles to total bubble count	0.2 ± 0.007
Swelling from all cavities	$0.3\pm0.05\%$

200

201 **1.3.3 Damage level effects at high damage levels: 500°C to 50 and 100 dpa with 10 appm He/dpa**

202 Figure 6 shows representative TEM-BF micrographs of matrix cavities for the dual beam
 203 irradiations at 500°C to 15, 50, and 100 dpa with 10 appm He/dpa and 7×10^{-4} dpa/s. MX
 204 precipitates were dissolved by 50 dpa and remained dissolved at 100 dpa. Hence, no analysis of
 205 MX-attached cavities could be conducted in those conditions. The cavity statistics and swelling
 206 values are given in

207

208

209

210

211

212

213

214 Table 4. All conditions at 500°C exhibited bimodal cavity distributions (Figure 7). While
 215 the distributions of matrix bubbles remained largely unaltered between 15 and 100 dpa, there was
 216 an observable increase in the size of matrix voids as the damage level increased indicating
 217 continued growth with increasing dose.

218

219

220

221

222

223

224

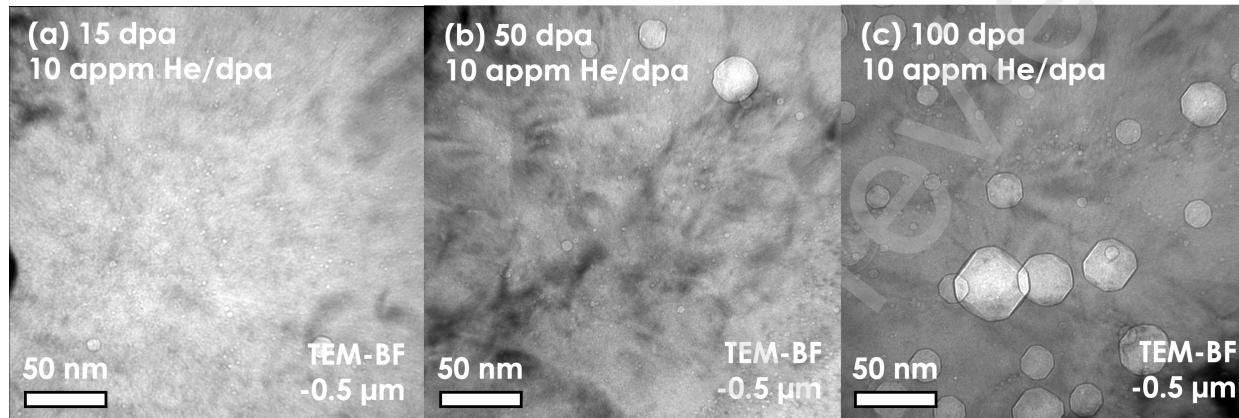


Figure 6 Cavity results for dual beam irradiations irradiated to (a) 15, (b) 50, and (c) 100 dpa. All conditions irradiated with 10 appm He/dpa at 500°C with a dose rate of 7×10^{-4} dpa/s. Images are TEM-BF micrographs in the $-0.5 \mu\text{m}$ underfocused condition.

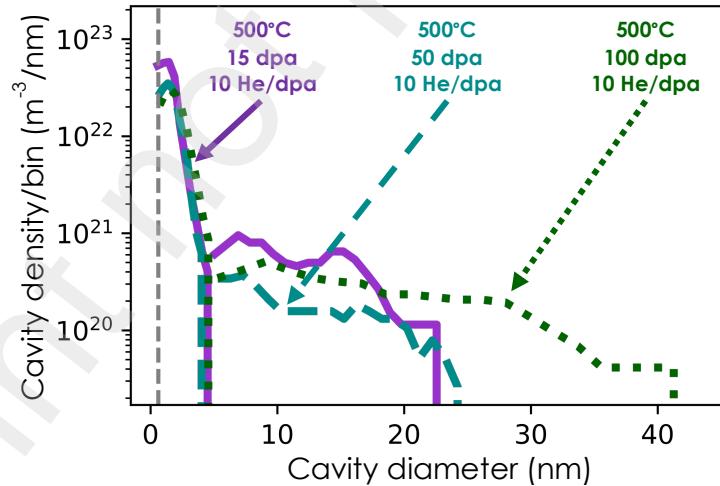


Figure 7 Cavity density versus cavity diameter for the conditions irradiated at 500°C with 10 appm He/dpa to 15 dpa (solid purple line), 50 dpa (dashed blue line), and 100 dpa (dotted green line).

225

226

227

228

229
230
231
232
233 Table 4 Statistics of cavity analysis for select dual beam irradiations at 500°C to 15, 50, and 100 dpa with 10 appm
234 He/dpa and 7×10⁻⁴ dpa/s. The 15 dpa condition includes cavities in the matrix and attached to TiC precipitates. See
235 Table 5.3 for a detailed analysis of cavities in the 15 dpa condition.

Parameter	15 dpa	50 dpa	100 dpa
Number of total cavities	792 total 738 (<5nm) 54 (>5nm)	568 total 539 (<5nm) 29 (>5nm)	619 total 548 (<5nm) 71 (>5nm)
Diameter of matrix cavities	1.3±0.01 nm (<5nm) 10.1±0.4 nm (>5nm)	1.6±0.07 nm (<5nm) 11.8±0.6 nm (>5nm)	1.9±0.02 nm (<5nm) 16.3±0.8 nm (>5nm)
Density of cavities	(2.1±0.08)×10 ²² m ⁻³ total (1.8±0.07)×10 ²² m ⁻³ (<5nm) (0.1±0.01)×10 ²² m ⁻³ (>5nm)	(2.5±0.2)×10 ²² m ⁻³ total (2.3±0.2)×10 ²² m ⁻³ (<5nm) (0.1±0.01)×10 ²² m ⁻³ (>5nm)	(3.2±0.3)×10 ²² m ⁻³ total (2.8±0.3)×10 ²² m ⁻³ (<5nm) (0.4±0.02)×10 ²² m ⁻³ (>5nm)
Swelling from all cavities	0.2±0.01%	0.2±0.03%	1.9±0.4%
Swelling/dpa	0.01±0.0007 %/dpa	0.004±0.0006 %/dpa	0.02±0.004 %/dpa

236
237 **1.3.4 Swelling behavior near peak swelling temperature**
238 Figure 8 compares the swelling data for all 500°C irradiation conditions for CNA9 to swelling
239 data from literature for FeCr steel alloys between temperatures 400-510°C [17, 18, 21, 30-36].
240 Numerical data used in Figure 8 are tabulated in Supplemental B Table S1. Generally accepted
241 trends in swelling can be observed in Figure 8, namely that engineering alloys have better swelling
242 resistance than model alloys and dual and triple ion beam irradiations caused greater swelling at
243 the same dose and temperature than single ion beam irradiations. Based on the limited swelling
244 data of CNA9, CNA9 exhibits comparable swelling behavior to other depicted FeCr steels. CNA9
245 had a swelling value of ~0.2% at both 15 and 50 dpa and a swelling value of ~2% at 100 dpa. From
246 50 to 100 dpa, CNA9 displayed a swelling rate of 0.03%/dpa. Therefore, CNA9 likely remained
247 in the incubation and transient regimes from 15 to 50 dpa and approached steady-state swelling
248 near 50 dpa.

249 Of particular interest is determining whether the MX precipitates had any impact on the
250 swelling values of CNA9. The MX precipitates dissolved at some point between 15 and 50 dpa.
251 However, CNA9 had the same swelling value at both 15 and 50 dpa, calling into question if the
252 MX precipitates had any effect on the higher dose swelling behavior. In order to effect swelling,
253 precipitates must be efficient and abundant traps for helium and/or vacancies. This work has
254 showed that the precipitate-matrix interfaces efficiently trap ~5 helium-filled bubbles near peak
255 swelling temperature, but the precipitation may not be abundant enough to divert a substantial
256 amount of helium and vacancies to prevent in-matrix clustering and eventual cavity nucleation and
257 cavity growth. Evidence for this may be that MX precipitates represent approximately only 5% of
258 the total sink strength of CNA9 at 15 dpa (see appendices in Refs. [12] and [13]). Thus, precipitate
259 dissolution may have negligible effects on the cavity evolution in the matrix when observed as an
260 overall macroscopic property such as for steady state swelling responses. Recent unpublished work
261 by Polselli *et al.* suggest that the precipitates dissolved by ~25 dpa [37].

262 The importance of a high density of precipitates, and thus a high sink strength derived from
263 precipitates, has been investigated by various researchers. Xiu *et al.* studied the relationship
264 between sink strength and swelling in three alloys of dual ion irradiated HT9, concluding that as
265 the sink strength of an HT9 alloy increased the onset of steady-state swelling was delayed and the
266 steady-state swelling rate was lowered [35]. The three datasets (ACO3-HT9, FCRD-HT9, and
267 ASB-HT9) are shown in Figure 8. Work on previous CNA generations by Yan *et al.* concurred that
268 a high sink strength of precipitates ($\sim 10^{16} \text{ m}^{-2}$) was necessary to suppress bubble growth [19].
269 Zinkle *et al.* likewise determined that particle density of 10^{24} m^{-3} (in ODS steels) is needed to
270 suppress deleterious changes in engineering properties under irradiation [2,36].

271 Based on literature and the current experimental results, the dissolution of the low-sink
 272 strength MX precipitates ($\sim 10^{13} \text{ m}^{-2}$) by 50 dpa is theorized to have a negligible impact on the high
 273 dose ($> 50 \text{ dpa}$) swelling behavior of CNA9. However, this assessment is based on a limited dataset
 274 of only three data points for CNA9 and at accelerated ion irradiation dose rates, emphasizing the
 275 need for a more detailed examination of damage levels and dose rate for a comprehensive analysis.

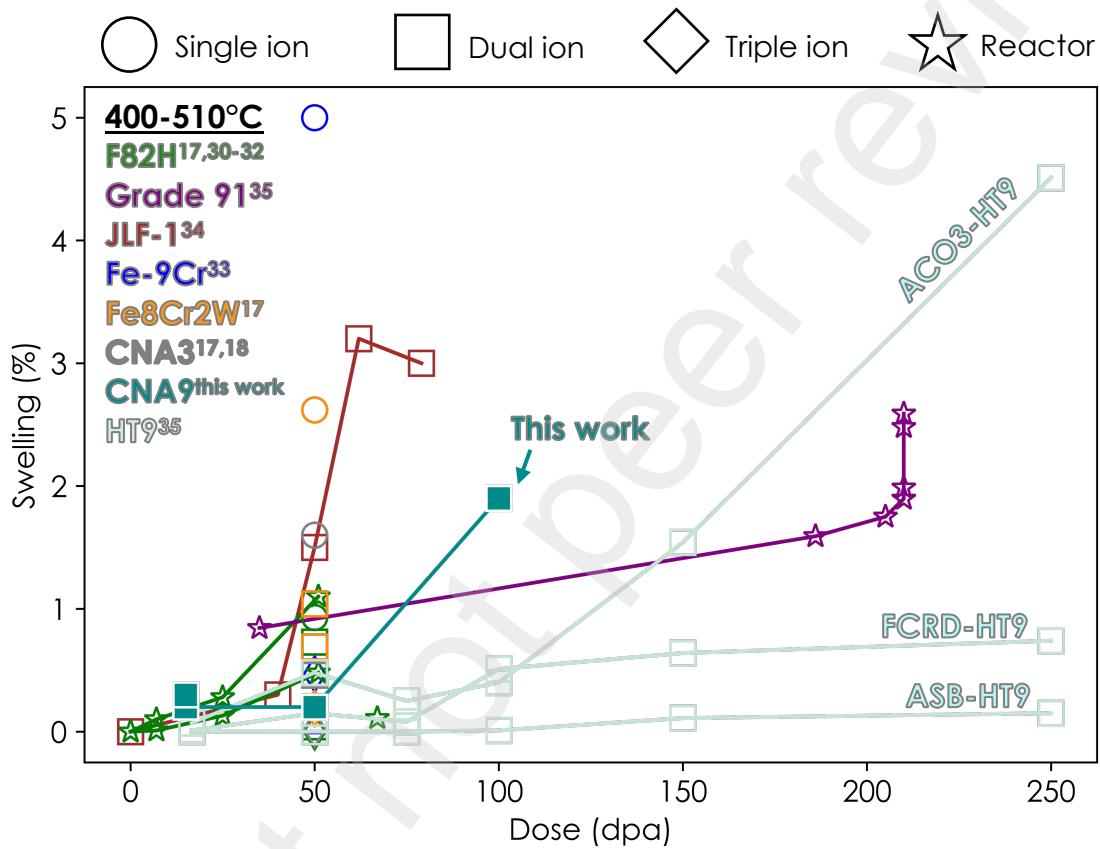


Figure 8 Comparison of swelling as a function of damage level (dpa) between CNA9 and RA/FM steels. See Table S.1 in the Supplemental section for tabulated values. Adapted from Ref. [36].

276
 277 **1.4 Conclusion**
 278 The matrix cavity behavior and the MX precipitate-attached bubble behavior in an
 279 advanced Fe-9Cr RAFM alloy called CNA9 was assessed under fusion-relevant ion irradiation
 280 conditions, leading to the following conclusions:

281 • MX precipitate-matrix interfaces efficiently sequestered helium-filled bubbles during
282 irradiations with co-injected helium at 500 and 600°C when the precipitates remained
283 stable or coarsened. Importantly, the MX precipitates contained an average of ~5 helium-
284 filled bubbles per MX precipitate near the peak swelling temperature (500°C).

285 • Elevated temperature (500, 600°C) was needed to allow for sufficient diffusion of helium
286 to precipitate-matrix interfaces to induce cavity formation and growth at said interfaces.

287 • The precipitate-attached bubbles did not thermally disassociate at 600°C unlike the matrix
288 bubbles, showing the MX-TiC precipitates have a high binding energy with helium.

289 • CNA9 displayed similar swelling to other FeCr FM and RAFM alloys at the conditions
290 assessed, though additional data points are needed for a full swelling assessment.

291 • However, the relatively low density of pre-existing MX precipitates ($\sim 10^{21} \text{ m}^{-3}$) is
292 hypothesized to not affect helium-driven swelling in the matrix at elevated doses.

293 • The precipitates also dissolved sometime between 15-50 dpa and hence could not provide
294 any sites for helium trapping at high damage levels, where swelling becomes increasingly
295 detrimental. This is also tied to Ref. [13] of this research series, where it was hypothesized
296 that the MX precipitates may have dissolved due to their low volume fraction. Hence, a
297 greater number density of precipitates may benefit swelling resistance and possibly phase
298 stability in RAFM alloys.

299 • Future FM and RAFM alloys for fusion applications need to increase the number density
300 of precipitates to suppress swelling and ensure their stability to high damage levels (> 100
301 dpa), but also must ensure the precipitates have a high binding energy for helium as the
302 MX-TiC precipitates were shown to have.

303 This work systematically showed the helium sequestration capabilities of MX precipitates in
304 an advanced RAFM steel under fusion-relevant ion irradiation conditions near peak swelling
305 temperature. In conclusion, this research in combination with Ref [SI] and Ref [DI] has laid a the
306 groundwork for understanding the fundamental behavior of MX precipitates in FM and RAFM
307 steels under dual ion irradiation conditions, including the mechanisms of their stability and their
308 ability to sequester helium and prevent swelling.

309

310 **Acknowledgements**

311 The experimental work presented here was funded by the Fusion Energy Sciences program
312 (DOE-FOA-0002173). The authors also acknowledge the University of Michigan-Ann Arbor
313 College of Engineering for financial support and the Michigan Center for Materials
314 Characterization for use of the instruments and staff assistance. Research presented here was also
315 partially supported by the Laboratory Directed Research and Development program of Los Alamos
316 National Laboratory under project number XXPV. This research was partly sponsored by US
317 Department of Energy, Office of Fusion Energy Sciences under contract DE-AC05-00OR22725
318 with UT-Battelle, LLC.

319

320 **References**

- 321 1. H. Tanigawa, E.G., T. Hirose, M. Ando, S.J. Zinkle, R. Lindau, E. Diegele, Development of
322 benchmark reduced activation ferritic/martensitic steels for fusion energy applications.
323 Nuclear Fusion, 2017. 57(092004).
- 324 2. Zinkle, S.J., et al., Multimodal options for materials research to advance the basis for fusion
325 energy in the ITER era. Nuclear Fusion, 2013. 53(10).
- 326 3. Yan, Z. and Y. Lin, The effect of sink strength on helium bubble formation at elevated
327 temperatures. Nuclear Analysis, 2022. 1(1).
- 328 4. Green, T.M.K., et al., Effect of N₂- and CO₂-containing shielding gases on composition
329 modification and carbonitride precipitation in wire arc additive manufactured grade 91 steel.
330 Additive Manufacturing, 2022. 56.

331 5. Aitkaliyeva, A., et al., Irradiation effects in Generation IV nuclear reactor materials, in
332 Structural Materials for Generation IV Nuclear Reactors. 2017. p. 253-283.

333 6. Tan, L., Y. Katoh, and L.L. Snead, Development of castable nanostructured alloys as a new
334 generation RAFM steels. *Journal of Nuclear Materials*, 2018. 511: p. 598-604.

335 7. Tan, L., Development of Nanoprecipitates- Strengthened Advanced Ferritic Alloys for Nuclear
336 Reactor Applications. 2019.

337 8. Tan, L., L.L. Snead, and Y. Katoh, Development of new generation reduced activation ferritic-
338 martensitic steels for advanced fusion reactors. *Journal of Nuclear Materials*, 2016. 478: p. 42-
339 49.

340 9. Tan, L., et al., Recent status and improvement of reduced-activation ferritic-martensitic steels
341 for high-temperature service. *Journal of Nuclear Materials*, 2016. 479: p. 515-523.

342 10. Tan, L., et al., Stability of MX-type strengthening nanoprecipitates in ferritic steels under
343 thermal aging, stress and ion irradiation. *Acta Materialia*, 2014. 71: p. 11-19.

344 11. Tan, L., Y. Katoh, and L.L. Snead, Stability of the strengthening nanoprecipitates in reduced
345 activation ferritic steels under Fe²⁺ ion irradiation. *Journal of Nuclear Materials*, 2014. 445(1-
346 3): p. 104-110.

347 12. T. M. Kelsy Green and Tim Graening and Weicheng Zhong and Ying Yang and Kevin G. Field,
348 "MX precipitate behavior in an irradiated advanced Fe-9Cr steel: Self-ion irradiation effects
349 on phase stability," arXiv:2407.10002 [cond-mat.mtrl-sci], 13 July 2024,
350 <https://doi.org/10.48550/arXiv.2407.10002>.

351 13. T. M. Kelsy Green and Tim Graening and Weicheng Zhong and Ying Yang and Kevin G. Field,
352 "MX precipitate behavior in an irradiated advanced Fe-9Cr steel: Helium effects on phase
353 stability," arXiv:2407.19589 [cond-mat.mtrl-sci], 22 July 2024,
354 <https://doi.org/10.48550/arXiv.2407.19589>.

355 14. L.K. Mansur, W.A.C., Mechanisms of helium interaction with radiation effects in metals and
356 alloys: A review. *Journal of Nuclear Materials*, 1983. 119: p. 1-25.

357 15. Kesternich, W., Helium trapping at dislocations, precipitates and grain boundaries, in *Radiation
358 Effects*. 1983. p. 261-273.

359 16. Maziasz, P.J., Helium trapping at Ti-rich MC particles in Ti-modified austenitic stainless steel,
360 ORNL, Editor. 1980.

361 17. Clowers, L.N., Z. Jiao, and G.S. Was, Synergies between H, He and radiation damage in dual
362 and triple ion irradiation of candidate fusion blanket materials. *Journal of Nuclear Materials*,
363 2022. 565.

364 18. Parish, C.M., et al., Helium sequestration at nanoparticle-matrix interfaces in helium + heavy
365 ion irradiated nanostructured ferritic alloys. *Journal of Nuclear Materials*, 2017. 483: p. 21-34.

366 19. Lin, Y.-R., et al., Bubble formation in helium-implanted nanostructured ferritic alloys at
367 elevated temperatures. *Acta Materialia*, 2021. 217.

368 20. Taller, S., et al., Predicting structural material degradation in advanced nuclear reactors with
369 ion irradiation. *Sci Rep*, 2021. 11(1): p. 2949.

370 21. Taller, S., The Role of Damage Rate on Cavity Nucleation with Co-Injected Helium in Dual
371 Ion Irradiated T91 Steel, in *Nuclear Engineering*. 2020, University of Michigan.

372 22. Emelyanova, O., et al., Bubble-to-void transition promoted by oxide nanoparticles in ODS-
373 EUROFER steel ion implanted to high He content. *Journal of Nuclear Materials*, 2021. 545.

374 23. Was, G.S., *Fundamentals of Radiation Materials Science: Metals and Alloys*. 2nd ed. 2017:
375 Springer.

376 24. W.A. Coghlan, L.K.M., Critical radius and critical number of gas atoms for cavities containing
377 a van der waals gas. *Journal of Nuclear Materials*, 1984. 122 & 123: p. 495-501.

378 25. A. Hishinuma, L.K.M., Critical radius for bias-driven swelling - A further analysis and its
379 application to bimodal cavity size distributions. *Journal of Nuclear Materials*, 1983. 118: p. 91-
380 99.

381 26. Kohnert, A.A., M.A. Cusentino, and B.D. Wirth, Molecular statics calculations of the biases
382 and point defect capture volumes of small cavities. *Journal of Nuclear Materials*, 2018. 499: p.
383 480-489.

384 27. R.E. Stoller, G.R.O., Analytical solutions for helium bubble and critical radius parameters
385 using a hard sphere equation of state. *Journal of Nuclear Materials*, 1985. 131: p. 118-125.

386 28. Bhattacharya, A. and S.J. Zinkle, Cavity Swelling in Irradiated Materials, in *Comprehensive*
387 *Nuclear Materials*. 2020. p. 406-455.

388 29. Mansur, L.K., Theoretical evaluation of a mechanism of precipitate-enhanced cavity swelling
389 during irradiation. *Philosophical Magazine A*, 1981. 44(4): p. 867-877.

390 30. E. Wakai, N.H., Y. Miwa, J.P. Robertson, R.L. Klueh, K. Shiba, S. Jistukawa, Effect of helium
391 production on swelling of F82H irradiated in HFIR. *Journal of Nuclear Materials*, 2000. 283-
392 287: p. 799-805.

393 31. Wakai, E., et al., Swelling behavior of F82H steel irradiated by triple/dual ion beams. *Journal*
394 *of Nuclear Materials*, 2003. 318: p. 267-273.

395 32. T. Morimura, A.K., H. Matsui, Void swelling of Japanese candidate martensitic steels under
396 FFTF/MOTA irradiation. *Journal of Nuclear Materials*, 1996. 239: p. 118-125.

397 33. Tanaka, T., et al., Synergistic effect of helium and hydrogen for defect evolution under multi-
398 ion irradiation of Fe-Cr ferritic alloys. *Journal of Nuclear Materials*, 2004. 329-333: p. 294-
399 298.

400 34. H. Ogiwara, H.S., H. Tanigawa, M. Ando, Y. Katoh, A. Kohyama, Void swelling in reduced
401 activation ferritic/martensitic steels under ion beam irradiation to high fluences. *Journal of*
402 *Nuclear Materials*, 2002. 307-311: p. 299-303.

403 35. Xiu, P., Effects of Sink Strength and Irradiation Parameters on Defect Evolution in Additively
404 Manufactured HT9, in *Nuclear Engineering and Radiological Sciences*. 2022, University of
405 Michigan.

406 36. Zinkle, S.J., et al., Development of next generation tempered and ODS reduced activation
407 ferritic/martensitic steels for fusion energy applications. *Nuclear Fusion*, 2017. 57(9).

408 37. Polselli, E., Personal Communication. 2024.

409