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Abstract
Traffic simulation is an effective tool for urban planners, traffic engineers, and researchers to study traffic. In particular,
microscopic traffic simulation, which simulates individual vehicles’ movements within a transportation network, has
demonstrated its importance in analyzing and managing transportation systems. However, integrating data from various
sources, generating traffic scenarios, and importing information into traffic simulators to conduct microscopic simulations
have always been a challenge. This paper presents a solution to overcome this challenge: RealTwin, a comprehensive
tool for automated scenario generation for microscopic traffic simulation. Following a streamlined scenario generation
and calibration workflow, RealTwin effectively bridges gaps between traffic data from various sources and traffic
simulators, making microscopic traffic simulation more accessible for researchers and engineers across various levels of
expertise. Using RealTwin to generate a real-world traffic scenario in SUMO, VISSIM, and AIMSUN, RealTwin’s ability is
demonstrated in the construction of realistic and consistent traffic scenarios in different simulators. Furthermore, this paper
introduces and illustrates RealTwin’s capability for technology (e.g., autonomous vehicle) scenario generation. This feature
can contribute to more comprehensive microscopic simulations, facilitating the analysis of potential effects of various
technological innovations on mobility, energy efficiency, and safety. Finally, RealTwin is used to calibrate a simulation in
SUMO. The calibration module enhances RealTwin’s ability to generate consistent simulations across different platforms
and more realistic simulations that reflect real-world traffic operations.
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Traffic simulation is an effective tool for urban planners,
traffic engineers, and researchers to study traffic. In
particular, microscopic traffic simulation, which provide
high-fidelity modeling by simulating the movements of
individual vehicles within a transportation network, has
demonstrated its importance in analyzing and managing
transportation systems. By modeling each element of traffic
separately and considering how they interact with each
other, microscopic traffic simulation enables a realistic
representation of the traffic system (1–3).

Microscopic traffic simulators are computer-based tools
that provide a user-friendly platform to develop microscopic
traffic simulation models to study attributes of transportation
entities or systems. Numerous traffic simulators are available
today, each offering different features. Choosing a particular
tool depends heavily on the specific requirements of the
project (4). Examples of such tools include Simulation of
Urban Mobility (SUMO) (5), VISSIM (6), SimTraffic (7),
TransModeler (8), and AIMSUN (9). These traffic simulators
differ from each other in terms of user input requirements,

driving behavior models (e.g., car-following model and lane-
changing model), simulation output, and other parameters
(10).

To carry out a traffic simulation in a traffic simulator, a
traffic scenario needs to be constructed first. Some of the most
essential elements of a traffic scenario include network (e.g.,
geometry, road type, and lane configuration), traffic demand
(e.g., trips between origin and destination [OD]), and traffic
infrastructure (e.g., traffic signals) (5). These components
must be well defined to create a realistic traffic scenario.

1Buildings and Transportation Science Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA
2School of Environmental, Civil, Agricultural and Mechanical Engineer-
ing, University of Georgia, Athens, GA 30602, USA

Corresponding author:
Guanhao Xu, xug1@ornl.gov
This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The publisher acknowledges the US government license to provide public
access under the DOE Public Access Plan (https://www.energy.
gov/doe-public-access-plan).

Prepared using TRR.cls [Version: 2020/08/31 v1.00]

https://www.energy.gov/doe-public-access-plan
https://www.energy.gov/doe-public-access-plan


2 Transportation Research Record XX(X)

However, such process is often not straightforward because
these elements come from different data sources, thus making
the integration of data from multiple sources and their post-
processing to generate a traffic scenario a challenging and
time-consuming task (11–13). Even after data integration
is complete, importing them into the traffic simulator poses
another set of challenges. On one hand, different simulators
may require specific formats or data structures, so that
converting raw data into the format supported by the
simulator may take considerable effort (10, 14, 15). On the
other hand, an element in a traffic scenario may not have a
corresponding direct input in a traffic simulator. For example,
having 50% of Level 2 (partial driving automation defined
in the SAE J3016 standard (16)) autonomous vehicles in a
traffic scenario is not a direct input into any simulator but
may affect other elements input into the simulator, such as
road capacity and car-following behavior. The conversion of
traffic scenario elements into inputs that can be taken by
different simulators can dramatically increase the complexity
of the process. Due to these complexities, building a traffic
simulation for a simple intersection with traffic lights can take
30 minutes, while developing complex simulations for large
regions can take weeks or even months (17).

Furthermore, once a traffic scenario is constructed and
simulated in a simulation platform, it is challenging for
other research teams to reproduce or extend the same
scenario, say in a different simulator, for analyzing different
technologies. This makes it difficult to cross-validate the
simulation results in different simulators, weakening the
conclusions drawn from the simulation. Besides, consistent
and comparable simulation (e.g. similar vehicle composition,
traffic and control characteristics, similar vehicle behavior,
etc.) can be particularly important for energy analysis; lack of
such consistency and transferability among simulation tools
prevents researchers and transportation and energy agencies
to gain a critical understanding of the potential positive
and/or negative impacts of emerging mobility technologies
(e.g., connected and autonomous vehicles.)

The complexities of scenario generation for microscopic
traffic simulation, along with the challenges of ensuring
scenario consistency across different simulators, have given
rise to a great demand for tools that automate and streamline
the scenario generation process and construct scenarios that
lead to realistic and comparable simulation scenarios in
different simulators.Therefore, this work aims to introduce
a tool, i.e., RealTwin, which addresses the aforementioned
challenges in the generation of microscopic traffic simulation
scenarios.

The key contribution of this paper is to demonstrate a
tool that is enabled by several key elements proposed by the
authors:

• a highly automated scenario generation and calibration
workflow that bridges the gaps between data from
different sources and simulators. This capability

not only significantly saves the time and effort
needed for developing and calibrating microscopic
traffic simulations, but also makes microscopic
traffic simulations more accessible to researchers and
engineers with different levels of expertise. Users with
limited simulation experience can access Real-Twin’s
basic functionality by simply providing the required
inputs to generate simulation-ready scenarios while
advanced users with deeper simulation knowledge can
directly call Real-Twin’s scripting functions to refine
scenarios or customize the simulation setup;

• a database and pipeline to enable the generation of
traffic scenarios to study the presence of emerging
technologies, with current support for AV scenario
generation in SUMO and planned extensions to
VISSIM, AIMSUN, and other emerging technologies
such as CAVs and EVs. This feature, once fully
developed and extended to different simulation
platforms, can contribute to the development of
more comprehensive microscopic traffic simulation
scenarios that incorporate the presence of emerging
technologies to examine their impacts on mobility,
energy efficiency, and safety;

• a scenario definition and generation workflow to
generate comparable simulation scenarios across
different microscopic traffic simulators. Real-Twin
currently supports SUMO, VISSIM, and AIMSUN,
providing users the ability to conduct benchmarking
and cross-validation that are crucial for ensuring the
reliability and reproducibility of simulation results.

The rest of the paper is organized as follows. The next
section provides a review of the literature on microscopic
traffic simulations. This is followed by a detailed explanation
of the RealTwin workflow and functions. Next, a case study is
conducted to illustrate the use of RealTwin and its capability
for application modeling and simulation calibration. Finally,
the conclusion summarizes the main contributions of the
RealTwin tool to the field of traffic simulation and discusses
future research directions.

Literature Review on Microscopic Traffic
Simulation

Microscopic Traffic Simulation
RealTwin currently focuses on the scenario generation for
microscopic traffic simulations. Microscopic traffic simula-
tion captures the dynamics of all vehicles and their interac-
tions in intricate detail. Typically, each vehicle is depicted
using driver behavior models (e.g., car-following model,
lane-changing model) with various parameters—such as
desired speed, acceleration capabilities, driver aggressive-
ness, and reaction times (18). Owing to the high level of
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detail, microscopic traffic simulations are ideal for traffic
operation analysis enabling the evaluation of complex traffic
dynamics (19–22). In safety studies, microscopic traffic sim-
ulations provide critical insights into near-misses, collisions,
and conflict points, allowing for the assessment of advanced
safety interventions and environmental impacts on driver
behavior (23–25). Moreover, microscopic traffic simulations
also support testing traffic and vehicle control technologies
like traffic signal control (26, 27), Eco-Driving strategies
(28–30), Connected and Automated Vehicles (CAV) (31–
33), offering a controlled environment for safe and cost-
effective experimentation.

Microscopic Traffic Simulation Software

Microscopic traffic simulation software provides detailed
and dynamic modeling of traffic systems by simulating
the individual behaviors of drivers and vehicles. Some
commonly used microscopic traffic simulation software
include SUMO, AIMSUN, PTV VISSIM, Corsim, Paramics,
and TransModeler. Each software has distinct strengths; for
example, SUMO excels in flexibility and extensibility owing
to its open-source nature, allowing users to modify and
expand its features to suit specific project requirements.
VISSIM and AIMSUN have user-friendly interfaces and
offer versatility with their ability to switch between
microscopic and mesoscopic simulations, enabling efficient
handling of both detailed traffic behavior studies and broader
traffic pattern analyses over large areas. Currently, RealTwin
supports the generation of scenarios for SUMO, AIMSUN,
and VISSIM.

SUMO is an open-source, highly portable platform that
supports detailed modeling of vehicular, pedestrian, and
bicycle traffic. It allows for extensive customization and
scripting through the use of extensible markup language
(XML) documents, making it adaptable for a range of
scenarios from small roads to entire cities (34, 35).

AIMSUN is a commercial traffic simulation software
used in transportation planning and engineering, providing
a single, united network representation of how people move
in various modes and at various scales. It responds to the
complexity or simplicity of various projects and comes with
an extensive built-in toolkit that can be further enhanced
and extended with Python scripts, APIs, and software
development kits (9).

PTV VISSIM is also a widely used commercial
microscopic traffic simulation tool developed by the PTV
Group. It comes with built-in Wiedemann car-following
models and rule-based algorithms for lateral vehicle
movement (36). In addition, it offers a VISSIM component
object model (COM) interface that allows access to the object
model hierarchy, with network elements such as vehicles,
links, and vehicle inputs using various programming
languages such as C, C++, Python, and VB.Net (36, 37).

Microscopic traffic simulations in PTV VISSIM are time-
step-oriented discrete event simulations, while microscopic
traffic simulations in SUMO and Aimsun are discrete-time
simulations. In time-step-oriented discrete event simulation,
updates occur at fixed time steps, triggered by events, while
in discrete-time simulation, updates are triggered only at
regular, fixed time intervals.

Automated Microscopic Traffic Simulation
Generation Tools
Although many tools and platforms have been developed
to streamline the microscopic traffic simulation generation
process, very few tools have emerged to automate it.

SUMO OpenStreetMap (OSM) Web Wizard is one of the
most popular microscopic traffic simulation creation tools
and has been widely used in many studies (38–41). OSM
Web Wizard enables users to configure a randomized traffic
demand and run and visualize the scenario in the sumo-gui
(5). However, OSM Web Wizard has many limitations.

First, although it is excellent for quick and easy scenario
creation, it struggles with generating long-period, larger-
scale simulation scenarios. This is partly due to the request
limitations on the OSM database side, which can result
in connection issues for large areas, requiring multiple
smaller requests that significantly extend the processing time.
Second, OSM Web Wizard generates synthetic traffic demand
using SUMO’s randomTrips.py, which does not incorporate
daily or periodic flow curves, reducing the representativeness
of long-term traffic demand. Third, OSM Web Wizard lacks
certain elements of traffic scenario; for instance, it does not
allow users to set traffic signals in its automated scenario
generation process, and users need to rely on separate tools
like netedit for this purpose. Finally, OSM Web Wizard is
designed exclusively for SUMO and does not support other
simulators.

Flow is a traffic control benchmarking framework and it
provides a suite of traffic control scenarios (benchmarks),
tools for designing custom traffic scenarios, and integration
with deep reinforcement learning and microscopic traffic
simulation libraries (42). However, this tool is designed
specifically for generating traffic control scenarios and does
not provide functions that automate the ingestion of other real
world data such as network and traffic demand.

Another recently available tool comprises the two pack-
ages “osm2gmns” and “CAMLite” proposed in (43).
The “osm2gmns” package automatically processes Open-
StreetMap transport networks in the General Modeling Net-
work Specification (GMNS) format, whereas “CAMLite”
supports connected and automated mobility (CAM) system
modeling. However, these tools only support the creation
and simulation of the transportation networks in the GMNS
format.

There are also some existing tools that support automated
microscopic traffic simulation calibration. For example, a
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genetic algorithm tool in MATLAB was designed in (44) to
automatically calibrate microscopic traffic simulation models
based on speed–density relationships in Aimsun. Another
example is the methodology proposed in (45) that trains
an artificial neural network (ANN) to learn the behavior of
the transport network of interest and automatically calibrate
microscopic traffic simulations.

The crucial aspects that often need to be handled manually
by users include data integration from diverse sources, filling
in missing or incomplete information (e.g., traffic signal plan)
to build a traffic scenario, importing the traffic scenario into
microscopic traffic simulators (e.g., configuring simulator
parameters to reflect the traffic scenario), and calibrating
the scenarios based on real-world data (e.g., calibrate
driving behavior parameter) (5, 6, 46). These existing
tools automate only specific processes in developing traffic
scenarios for microscopic traffic simulations, leaving other
crucial aspects to be handled manually by users. In addition,
none of these tools support the generation of scenarios ready
to be simulated in multiple prevailing traffic simulators.
Supporting multiple simulators is important because users
may be familiar with only one simulator, and if the tools
do not support that specific simulator, it becomes unusable
for them. Moreover, supporting multiple simulators provides
flexibility in choosing the best tool for specific research or
practical needs and ensures robustness by allowing cross-
validation of results. Without this support, the tool’s usability
is significantly restricted.

RealTwin workflow

Overview

Constructing a simulation scenario based on real-world data
can be time-consuming due to complexity in the integration
of various data formats and in the post-processing needed
to align with specific simulation parameters. In addition,
the need for specialized knowledge in traffic simulation
presents a challenge for researchers who do not have a
simulation background to successfully use traffic simulation
for developing solutions for traffic management and urban
planning. This paper aims to overcome these challenges by
offering an automated way for simulation scenario generation
that reduces the amount of effort required, thereby making
traffic simulations accessible to a broader audience.

We present RealTwin, a comprehensive tool for automating
the process of scenario generation and calibration for
microscopic traffic simulation. RealTwin accommodates
user-customized input, processes that input to construct
abstract and concrete scenarios, imports the input to multiple
simulation platforms, and calibrate the generated simulation.
The RealTwin workflow is shown in Figure 1 and is discussed
in detail in subsequent sections. This workflow is designed
to be modular, allowing for the extension and modification

Figure 1. RealTwin workflow.

of different modules to meet diverse research and simulation
needs.

RealTwin.UserInputs: Module for Ingesting User
Inputs
Element of User Input
The RealTwin.UserInputs module serves as the initial
module of RealTwin. It contains the “IngestUserInput”
function that reads user-supplied data and converts it into
a format that RealTwin can understand. Once converted,
these data are then stored in an intermediate variable called
RealTwin.UserInputs.Data and passed along to the
subsequent module in the workflow.

Format of User Input for Minimum Requirement
The RealTwin user input interface is a YAML file that stores
scenario parameters or data file paths. YAML, short for yet
another markup language, is a lightweight human readable
serializing language designed primarily to be easy to read and
edit; therefore, it is often used to create automation processes
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(47). An example of a YAML file that meets the minimum
user input requirements is depicted in Figure 2.

For the “traffic” category, RealTwin currently support
traffic volume and intersection turning ratio as inputs. The
input for volume should be a comma-separated value (CSV)
file that contains at least the name of the road, the starting
and ending intervals of each measurement, and the count
of vehicles in each measurement interval. The turning ratio
contains the name of the intersection, the starting interval of
each measurement, the ending interval of each measurement,
and the vehicle count or turning percent for each turning
movement in the corresponding interval. If the input for
TurningRatio is missing, RealTwin can still proceed with
the workflow assuming [0.8,0.1,0.1] for a [thru,left,right]
approach, [0.8,0.2] for a [thru,left/right] approach, and
[0.5,0.5] for a [left,right] approach. However, TurningRatio
input is highly recommended. Currently, RealTwin can
directly accept output files from GRIDSMART (48), an
innovative smart camera system that provides intersection
volume and turning ratios at fixed intervals (e.g., 15 minutes).
Users may also transform their own data into this format
to be ingested by our tool. In future expansions, we plan
to support additional data sources and formats, including
origin-destination data and vehicle trajectory data, to further
enhance RealTwin’s versatility.

For the “network” category, the minimum requirement
is the longitudes and latitudes of a set of vertices of the
polygon that bounds the network. Using these coordinates,
RealTwin queries OpenStreetMap (49), downloads the .osm
network bounds by the polygon, and converts it to an
OpenDRIVE network. The ASAM OpenDRIVE format, with
the file extension “.xodr”, provides a common standard
for describing road networks using the Extensible Markup
Language (XML) syntax (50). It can be easily imported
to many popular traffic simulation software (e.g., SUMO,
VISSIM, and AIMSUN). Therefore, the OpenDRIVE
network is used as the network file for scenario generation.

For the “IntersectionControl” in the “control” category,
RealTwin currently supports processing the universal traffic
data format (UTDF), an open standard data specification
for traffic signals and traffic-related data for intersections
promoted by Cubic Trnasportation Systems’ Trafficware, the
developer of Synchro (51). A detailed description of UTDF
data can be found in (52).

Format of User Input for ApplicationLoader—Function for
Technology Scenario Generation
The RealTwin tool is also designed to include technology
applications that aim to enable users to generate simulation
scenario for the selected technology. With the emergence of
AV and connected AV (CAV) (53) technologies, a simulation
scenario often needs to be further tailored to be able to
study the effects of these applications. In this work, we
focus on illustrating the capabilities of the RealTwin tool and
demonstrate the capability of generating AV scenarios as an

example first step. Based on technology-specific parameters
provided by users, the developed AV technology scenario
extension generates a simulation scenario with AV in the
fleet. The generated AV scenario consists of a vehicle type for
AV with corresponding driving behavior model parameters
to represent it. Figure 3 shows the part of parameters of
user input for the AV technology scenario in the user input
interface YAML.

Example Application—AV Scenario
The key user input parameters for a technology scenario are
technology scenario identifier name, vehicle types preferred
in the fleet, penetration level of the technology, and car-
following model parameters for the vehicle types. Currently,
RealTwin supports the scenario generation for AV, but we
plan to expand the capability to enable scenario generation
for CAVs and electric vehicles (EVs) in the near future.

AV User Input: If driver behavior parameters are not
provided by the user, as in the case in Figure 3,
RealTwin generates driver behavior parameters based on
values suggested in the literature for the corresponding car-
following model to represent AV driving behavior described
under AV Parameter Database next. The default value
for “VehicleTypes” is set to “Human” and “AVnormal”
to represent human-driven vehicles and AV vehicle types.
In addition, “carFollowingModelforVehicleTypes” is set to
the user-defined car following model. It is to be noted
that for simulation software that do not provide access
to multiple car following model the default car following
model will be used even if the user provides a different
user-defined car following model for the vehicle type. For
“PenetrationLevelPercent,” the default value is set to 100
percent. This user interface design for the AV application
can be extended to add more vehicle types in the future,
such as “AVSafe” or “AVAggressive” to represent safe or
aggressive driving behaviors of AVs. To ensure the tool to
quickly identify inputs needed, the naming of parameters in
YAML will be consistent with those of each simulator, and
detailed documentation of RealTwin will be provided.

AV Parameter Database: We create an AV Parameter
Database for RealTwin that stores the parameter values
to define the AV and human driving behavior. The
AV Parameter Database includes parameters for the car-
following model, cooperative driving, lane-changing model,
and speed distribution parameter values. It is developed based
on the parameter values used in the literature to simulate AV
driving behavior in the simulation software of choice.

The AV Parameter Database currently supports AV
scenario generation in VISSIM and SUMO. This will
be extended to AIMSUN in the future. For VISSIM,
the Wiedemann 99 car-following parameter values used
primarily in VISSIM to define AV driving behavior based on
previous studies (54–65) are provided next. The magnitude of
these values for AV in comparison to human driving behavior
is provided in italicized text.
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Figure 2. A sample YAML file that meets minimum requirements for user input.

Figure 3. Example YAML file extension for an AV scenario.

• CC0—Standstill distance (m): 1 (lower)
• CC1—Headway time (s): 0.5 (lower)
• CC2—“Following” variation (s): 1.66 (lower)
• CC3—Threshold for entering the following phase (s):
−10 (lower)

• CC4—Negative “following” threshold (m/s): −0.35
(no change)

• CC5—Positive “following” threshold (m/s): 0.35 (no
change)

• CC6—Speed dependency of oscillation (1/ms): 0
(lower)

• CC7—Oscillation acceleration (m/s2): 0.33 (higher)
• CC8—Standstill acceleration (m/s2): 3.8 (higher)
• CC9—Acceleration at 80 km/hr (m/s2): 1.8 (higher)

For SUMO, the AV Parameter Database contains
parameter values to represent AV driving behavior for
Krauss—the default car-following model in SUMO (5). To
define human driving behavior, the default values of the
car-following behavior parameter for Krauss in SUMO are
used. The parameter values to define the driving behavior of

an AV considered based on previous efforts (66–68), along
with comparisons of their magnitude with respect to human
driving behavior, are:

• minGap—Minimum gap when standing (m): 0.5
(lower)

• tau—The driver’s desired (minimum) time headway
(s): 0.4 (lower)

• sigma—The driver imperfection where 0 denotes
perfect driving: 0 (lower)

• accel—The acceleration ability of vehicles of this type
(in m/s2): 3.8 (higher)

• decel—The deceleration ability of vehicles of this type
(in m/s2): 4.4 (no change)

• emergencyDecel—The maximum deceleration ability
of vehicles of this type in case of emergency (in m/s2):
9 (no change)
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Figure 4. Abstract scenario definition.

RealTwin.AbstractScenario: Module for
Generating Abstract Scenario
Abstract Scenario Definition
When researchers come up with a scenario to study a
technology or application, they essentially have a definition
of an abstract scenario. The abstract scenario definition can
be descriptive. It is a direct transformation of user inputs into
RealTwin that is composed of four sets of elements, listed in
Figure 4.

Workflow of RealTwin.AbstractScenario
In the RealTwin.AbstractScenario module, user
input data will be converted to a complete definition of an
abstract scenario. Specifically, functions in the four classes—
“TrafficLoader,” “NetworkLoader,” “ControlLoader,” and
“ApplicationLoader”—will transform the raw data stored
in “RealTwin.UserInputs.Data” into intermediate variables
that fit into each of the elements defined in the abstract
scenario definition. Then, the “ElementCheck” function will
check if all elements required for simulation construction
are fulfilled. If any element is not provided by the user,
the RealTwin.Database, which is composed of open-source
datasets, will be queried to complete the abstract scenario
definition via the “ElementComplete” function, as shown in
Figure 5. Finally, all elements of the abstract scenario will be
stored in RealTwin.AbstractScenario.Data.

RealTwin.ConcreteScenario: Module for
Generating Concrete Scenario
Concrete Scenario Definition
In the RealTwin.ConcreteScenario module, an

abstract scenario is converted into a concrete scenario, which
describes all the critical attributes of traffic and will be used
as direct inputs to different traffic simulators. The major
differences between an abstract scenario and a concrete
scenario are the following.

• In an abstract scenario, some elements, though critical
to a simulation, cannot be used as direct inputs
into simulation tools due to their lack of specific
information or tangible characteristics. However, in a
concrete scenario, all elements are well-defined and
can be used as direct input into different simulation
platforms. For instance, in a concrete scenario, cars
and buses are considered as road users to be simulated.
However, the concept of “road user” itself might not
be a direct input that can be fed into simulation tools.
Therefore, in the corresponding concrete scenario,
the properties are well defined and are input into
simulators (e.g., maximum acceleration/deceleration,
desired speed distribution).

• In an abstract scenario, elements come from
different data sources and thus are independent.
However, in a concrete scenario, all elements
are interconnected through the functions in the
RealTwin.ConcreteScenario module. For
example, in an abstract scenario, the variable that
stores volume may contain the volume of the entire
city, depending on what users provide. By contrast,
in a concrete scenario, volume is assigned to each
specific road within the area of interest, as detailed in
the network file.

Prepared using TRR.cls



8 Transportation Research Record XX(X)

Figure 5. Workflow for filling in missing elements.

Workflow of RealTwin.ConcreteScenario
In the RealTwin.ConcreteScenario module, the key
task is to link all elements together. This integration is
realized using functions in the class “NetworkGenerator,”
which finalize the network geometry and properties
and encapsulate them in an OpenDRIVE (.xodr) file.
OpenDRIVE object identifiers, such as road IDs and
junction IDs, are correlated with the corresponding IDs
in each of the other abstract scenario elements by
matching the latitude and longitude. This builds a
connection between the network and all other elements.
Next, the functions in the classes “TrafficGenerator,”
“ControlGenerator,” and “ApplicationInterpreter” are called
to finalize all remaining concrete scenario elements.
These consolidated components are finally stored in
RealTwin.ConcreteScenario.Data.

RealTwin.Simulation: Module for Generating
Simulation in Different Simulators

The next phase of the RealTwin workflow is to load the
concrete scenario into different simulators (e.g., SUMO,
VISSIM, and AIMSUN) and create simulation runs. This
process occurs as follows: The “ImportNetwork” function
is first called to import the OpenDRIVE network into
the simulator of choice. Then, the “MatchJunctionID,”
“MatchRoadID,” and “MatchMovementID” functions are
used to create an object ID mapping table between
the OpenDRIVE network and the simulator of choice.
Next, “ImportSpeedLimit” updates the road speed limit
inside the simulation platform. This is followed by the
generation of demand using the “ImportDemand” function.
Finally, “GenerateSimulation” functions are used to conduct

simulation runs with different random seeds. Table 1
shows the details of the RealTwin functions in the
RealTwin.Simulation module.

RealTwin.Calibration: Module for Calibrating
Simulations in Different Simulators
The final phase of RealTwin is to calibrate the simulation
scenario generated. Calibration is an important element
of microscopic traffic simulation development. It ensures
model accuracy by optimizing model parameters to achieve
the closest possible match between simulated outputs and
real-world traffic measurements (e.g., flow, speed, and
travel time) (69). Techniques such as Genetic Algorithms
(GA), Simulated Annealing (SA), and Tabu Search (TS)
are commonly used to optimize calibration, addressing the
complexities of high-dimensional parameter spaces (70, 71).
Recent advancements such as the use of vehicle trajectory
data have further enhanced calibration precision (72, 73).

RealTwin currently has the capability of calibrating: 1)
turning ratios and traffic inflows at minor intersections
(with turning ratios and traffic inflows at major intersections
provided by the user);2) driving behavior parameters, chosen
based on a literature review (70, 74–80), which we identify
as widely used parameters in microscopic traffic simulation
calibration. Detailed examples for each calibration are
provided in a case study in the next section.

Prepared using TRR.cls



X
u

etal.
9

Table 1. Functions in RealTwin.Simulation
Function Purpose Input Output

ImportNetwork
Import the OpenDrive
(.xodr) network to the
simulator

.xodr network
• SUMO: .net.xml network
• VISSIM: .inpx network
• AIMSUN: .ang network

MatchJunctionID
Match junction ID from
OpenDrive network with
junction ID in simulator

.xodr network Junction ID mapping tables

MatchRoadID
Match road ID from Open-
Drive network with junction
ID in simulator

.xodr network; junction ID
mapping table Road ID mapping tables

ImportSpeedLimit Import speed limit .xodr network; road ID
mapping table

• SUMO & AIMSUN: updated speed limit
• VISSIM: “Desired Speed Decision” objects created and placed at the

corresponding network locations

ImportStopControl Import intersection stop con-
trol

.xodr network; traffic con-
trol; junction&road ID map-
ping tables

• SUMO: updated junction type and edge priority
• VISSIM: “StopSign” object placed at the location(s)
• AIMSUN: updated warning and priorities in each node configuration

ImportSignal Import intersection signal
plan

.xodr network; traffic con-
trol; junction&road ID map-
ping tables; movement ID
mapping tables

• SUMO: .add.xml additional file defining traffic light program
• VISSIM: “Signal Controller” and “Signal Head” objects created; “Signal Heads”

for corresponding “Signal Group” placed at the network location
• AIMSUN: MasterControl Plan

ImportDemand
Import demand (currently
support inflow + turning
ratio)

Inflow; turning ratio; junction
ID mapping table; road ID
mapping table

• SUMO: .rou.xml route file
• VISSIM: Network objects “Vehicle Inputs,” “Vehicle Composition,” and

“TimeIntervals” created and set up to represent the demand for the assigned time
interval

• AIMSUN: “Traffic State” and “Traffic Demand” set up

GenerateSimulation Generate simulations with
different random seeds

.xodr network, random
seeds

• SUMO: .sumocfg configuration file
• VISSIM: Parameters for “Simulation,” “Simulation Period,” “Number of

Runs,” and “Random Seed” set up
• AIMSUN: Parameters for “Scenario,” “Experiment,” and “Replication” set up
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Workflow of RealTwin.Calibration
A detailed workflow of RealTwin.Calibration is
shown in Figure 6. It includes three primary steps:

• Verification: Check if the real-world input data match
with the input data given to the model, and verify if the
model is responding to the inputs the same way it is
expected to respond in the simulation.

• Calibration: Tune selected calibration parameters
(e.g., turn movement ratio, car-following parameters,
lane-changing parameters) so that the calibration
targets are met. This process includes a comparison of
simulated results and ground truth data (81).

• Validation: A verified and calibrated model is vali-
dated with ground truth data, comparing simulation-
generated performance measure and ground truth mea-
sure. This performance measure is usually different
from the one used to evaluate a calibration target.

Objective Function
The first objective function used in
RealTwin.Calibration is minimizing the average
Geoffrey E. Havers statistic (GEH), a widely accepted
measure to evaluate discrepancies between observed and
simulated traffic flows given by the equation below. We use
it to calibrate turning ratios and traffic inflows in RealTwin,
as it balances relative and absolute error. This is particularly
important because traffic volumes can vary widely across
locations, and GEH provides a robust measure without
overemphasizing small differences in low-flow areas.

minGEHavg =
1

N

N∑
i=1

√
2(Mi − Ci)2

Mi + Ci
(1)

where

GEHavg mean GEH
Mi metric of observation i from simulation
Ci actual metric of observation i

N total number of field observations

The second objective function used in RealTwin is to
minimize the mean absolute error (MAE). We use it
to calibrate the driving behavior parameters in RealTwin
because these parameters are often calibrated by comparing
simulated travel time/speed with real world travel time/speed,
which tend to be less variable compared to traffic
volumes. Travel time or speed differences have a more
uniform significance across scenarios, making absolute error
measures like MAE appropriate. This is particularly relevant
because travel times for long routes are typically used
for calibration, where the differences are more consistent

and meaningful across the dataset. The MAE measures the
average magnitude of the errors between the observed and
simulated traffic data and is given by:

minMAE =
1

N

N∑
i=1

|Mi − Ci| (2)

where

MAE mean absolute error
Mi metric of observation i from simulation
Ci actual metric of observation i

N total number of field observations

Measures of Effectiveness
Currently, RealTwin supports link flow and travel time as
measures of effectiveness (MOEs) for evaluating simulation
performance from the mobility perspective. In future
versions, we plan to expand the range of MOEs to include
metrics that capture detailed driving behavior (e.g., lane
change frequency, acceleration and deceleration profiles,
speed variance), safety indicators (e.g., time-to-collision), as
well as energy consumption and emissions estimates.

Calibration Target
For the simulation calibration target,
RealTwin.Calibration uses Wisconsin Department
of Transportation freeway model calibration criteria (81),
which defines calibration acceptance targets for hourly flow
and travel time. Specifically, GEH of individual link flow
should be below 5 in over 85% of cases and simulated travel
times should be within 15% of real-world travel times in
over 85% of cases.

Calibration Algorithm
Three parameter optimization algorithms are integrated for
calibration in RealTwin for users to choose from: Tabu
Search, Genetic Algorithm, and Simulated Annealing. For
each algorithm, default values for key parameters have been
provided, which can be adjusted by the user.

• Tabu Search (TS) explores new solutions by moving
from a solution to the solution with the best objective
function in its neighborhood at each iteration until
some stopping criterion has been satisfied (70, 71, 82).
Key parameters include:

– Tabu List Size: 100 (number of solutions to keep
in the tabu list to avoid revisiting them).

– Maximum Iterations: 30 (stopping criterion if no
improvement is found).

– Neighborhood Size: 50 (number of solutions
evaluated in each iteration).

• Genetic Algorithm (GA) starts from a random
population set and evaluates candidate solutions at
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Figure 6. RealTwin calibration workflow (GEH = Geoffrey E. Havers statistic).

every generation. If stopping criteria are not met,
its population is evolved by selection, crossover, and
mutation (70, 71, 82). Key parameters include:

– Population Size: 50 (number of candidate
solutions in each generation).

– Crossover Rate: 0.75 (probability of combining
two solutions).

– Mutation Rate: 0.1 (probability of mutating a
solution).

– Maximum Generations: 30 (stopping criterion if
no improvement is found).

• Simulated Annealing (SA) is inspired by the
metallurgical process of annealing, where a system
explores potential solutions by initially allowing
higher probabilities of accepting worse solutions to
escape local optima and then gradually reducing this
probability as it “cools” down (83, 84). Key parameters
include:

– Initial Temperature: 100 (starting probability of
accepting worse solutions).

– Cooling Rate: 0.99 (factor by which the
temperature is reduced in each iteration).

– Maximum Iterations: 1000 (stopping criterion if
no improvement is found).

RealTwin Demonstration Using Case Study

This section demonstrates the use of the developed RealTwin
tool to generate a calibrated traffic microscopic simulation
scenario through a case study. Specifically, the RealTwin tool
was used to automatically

• develop a complete simulation including road network,
traffic demand, routes, and traffic controls;

• generate a simulation scenario to study the effect of
AVs in traffic fleet composition on vehicle travel times
using a RealTwin application extension

• evaluate network and vehicle level metrics from the
simulation results; and

• calibrate simulation parameters using real-world data.

Implementation of RealTwin for Scenario
Development
In this section, a case study was conducted to demonstrate
the capability of RealTwin in automating microscopic
traffic simulation scenario generation in SUMO, VISSIM,
and AIMSUN. This case study demonstrates automated
microscopic simulation scenario generation of a 0.58-
mile corridor along Shallowford Road in Chattanooga,
Tennessee, USA. This network has 10 intersections: 6
intersections controlled by actuated signal controllers and 4
unsignalized intersections. The traffic simulation scenario for
a real-world historic days’ morning peak was automatically
generated using RealTwin, given user input data for “Traffic,”
“Network,” and “Control.” This scenario generation for each
simulator takes about 10-15 seconds on a system with an Intel
i9-13900 CPU and an NVIDIA RTX 4090 GPU.

Ingestion of User Input
In this case study, the user input for “network” is the
longitude and latitude of the four vertices of the polygon
bounding this corridor, as shown in Figure 7. The corridor
spans approximately 0.58 miles and includes 10 intersections
(6 signalized and 4 unsignalized). The intersection traffic
count data from GRIDSMART (48) were used as user
input for both “Volume” and “TurningRatio” in the “Traffic”
category. These data were collected between 8:00 a.m. and
9:00 a.m., with traffic flows on the major road reaching up to
1,371 veh/hr and minor roads ranging from 64 to 377 veh/hr.
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Figure 7. RealTwin generated network in different simulators.

Table 2. Form of Elements in Each RealTwin Module
UserInput AbstractScenario ConcreteScenario Simulation

Network
Longitude and lati-
tude of bounding box
vertices

OpenDrive network OpenDrive network SUMO network
(.net.xml)

Volume
Volume data from
traffic studies or
sensors (.csv)

Intermediate variables
including:

• RoadID

• RoadName

• IntervalStart

• IntervalEnd

• Volume

Updated intermediate
variable with Open-
Drive ID

SUMO route file
(.rou.xml)

TurningRatio
Turning ratio data
from traffic studies or
sensors (.csv)

Intermediate variables:

• IntersectionID

• IntersectionName

• IntervalStart

• IntervalEnd

• TurnMovement

• TurnRatio

Updated intermediate
variable with Open-
Drive ID

SUMO route file
(.rou.xml)

IntersectionControl UTDF file (.csv)
UTDF file containing
intersection control
type and signal timing

UTDF file with Open-
Drive ID

SUMO additional file
defining traffic
light program
(.add.xml)

Finally, the synchro UTDF file was used as the user input
for “IntersectionControl” in the “Control” category. This file

provides detailed TS2 actuated signal plans with a cycle
length of 120 seconds for the 6 signalized intersections. As an
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example, the current form of each element in each RealTwin
module during the SUMO simulation generation is shown in
Table 2.

Network Output of RealTwin
The OpenDRIVE network generated by
RealTwin.ConcreteScenario, SUMO network
generated by RealTwin.Simulation.SUMO,
AIMSUN network generated by
RealTwin.Simulation.AIMSUN, and VISSIM
network generated by RealTwin.Simulation.VISSIM
were compared with the network from OpenStreetMap in
Figure 7. Comparison of the three networks with the real
network from OpenStreetMap shows that RealTwin is
capable of replicating actual road geometry. This comparison
demonstrates the effectiveness of RealTwin in converting
complex real-world roadway network data into simulation-
ready formats, saving significant network creation time and
resources. This indicates RealTwin’s potential to serve as a
powerful tool for traffic simulation studies.

Comparison of Simulation in SUMO, VISSIM, and
AIMSUN Generated by RealTwin
The generated scenario was then simulated for 10 runs with
different random seeds in SUMO, VISSIM, and AIMSUN.
The network-level metrics from the simulations in SUMO,
VISSIM, and AIMSUN were first compared using box plots,
shown in Figure 8. Specifically, the average travel distance
and the average travel speed of all vehicles every 10 minutes
during the simulation run were compared. The comparison
of box plots from 10 replications shows the closeness in
the performance metric despite the stochastic nature of
different simulation runs. Good consistency in the three
software can be observed across the simulations from both
figures, demonstrating that RealTwin can generate consistent
and comparable simulations across different simulation
platforms.

In addition, the vehicle-level metrics from a single run
of simulation in SUMO, VISSIM, and AIMSUN were
compared using kernel density plots of individual vehicle
travel distance distribution and speed distribution, shown
in Figure 9. A slight difference is seen in the individual
vehicle travel speed distributions, likely due to different
car-following models and their default parameters (e.g.
maximum acceleration, maximum deceleration, minimum
headway) in different simulation software. Nevertheless,
the similar shapes in both figures further demonstrated
RealTwin’s capability of generating consistent, comparable
simulations in different simulators. This capability enables
RealTwin users to cross-validate the conclusions drawn from
different simulators when using microscopic simulations
for traffic studies (e.g., network mobility analysis, energy
efficiency analysis, and traffic impact studies). It also reduces
the time and effort needed to adapt models across different
simulation platforms.

(a) Average travel distance

(b) Average travel speed

Figure 8. Comparison of network metrics from SUMO, VISSIM,
and AIMSUN.

Implementation of RealTwin Workflow for AV
Scenario Development
RealTwin was then used to generate AV scenarios on the
developed network of the Shallowford Road corridor. Five
simulation scenarios for different AV penetration levels were
generated— 0%, 25%, 50%, 75%, and 100%. For this
experiment, the AV scenario was implemented in SUMO,
where the parameters of the Krauss car-following model for
AV driving behavior were considered.

Ingestion of User Input
The technology application parameters in the user input
interface were set as follows:

• Application: “AV”

• Vehicle types: “Human” and “AVnormal”

• Penetration level: 0%, 25%, 50%, 75%, and 100%

Further, it was assumed that the user did not provide any input
on the driving behavior parameter value.
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(a) Travel distance distribution

(b) Speed distribution

Figure 9. Comparison of vehicle metrics from SUMO, VISSIM,
and AIMSUN.

Updating Driving Behavior Data Using AV User Input and
Parameter Database
In RealTwin.AbstractScenario, the user input
parameter values were used along with the AV parameter
database described previously in ApplicationLoader to create
a final dataset of parameter values reflecting the Human
and AV driving behaviors. In this case study where the
AV scenario was generated in SUMO, the AV driving
behavior was defined by setting the Krauss car-following
model parameter values. Because no input was available from
users on the driving behavior parameters for the two vehicle
types—Human and AVnormal, the final set of parameter
values used the driving behavior parameter values provided
in the AV parameter database.

Finalizing AV and Human Driving Behavior Parameter
In RealTwin.ConcreteScenario, the final dataset
generated by RealTwin.AbstractScenario was
referred to set the RealTwin driving behavior parameter
variable values for Human and AV vehicle types for this

scenario. These variables were then ready to be called by
the functions in the RealTwin.Simulation module and
assigned to SUMO software-specific variables.

Generating Simulations
In the final step, the RealTwin.Simulation module
was used to generate a simulation scenario in SUMO. The
driving behavior parameter values finalized for variables in
the concrete scenario were used to define the two vehicle
types—Human and AVnormal—in the SUMO flow XML file
in which vehicle type distribution parameter was also defined.

In this case, the SUMO flow file, net file, and turn file for
the Shallowford Road corridor were already available from
the steps described in Table 2. SUMO jtrrouterwas used
to generate the route file along with the two defined vehicle
types considering their composition in the fleet. This process
was used to create five simulation scenarios with different AV
penetration levels.

Simulation Results
The simulation run results obtained from the five penetration
levels of AV in fleet composition were then analyzed. The
vehicle travel times for the two vehicle types—AVnormal
and Human—were compared for the five sets of scenarios
of different AV penetration levels. The results in Figure 10
show the distribution of travel times.

The results indicate that although differences are hardly
observed in the travel time distribution of AV and Humans
when AV penetration is low, for higher AV penetration
levels, more vehicles experience lower travel times. The
travel time distribution curves for AV shifted to the left and
have a higher peak for the higher penetration level on AV75
and AV100 compared to travel time distribution for human
vehicles. This result is in alignment with the expectation of
AV driving behavior. For example, the AVnormal driving
behavior parameter “minimum gap” is less than and the
“accel” parameter is greater than those of the Human
driving parameter. The results from this sample simulation
experiment generated by RealTwin demonstrate the potential
of RealTwin to generate multiple scenarios with significantly
reduced manual effort.

The application extension for AV scenario generation was
also developed for VISSIM and will be extended to AIMSUN
in the future. Figure 11 shows the distribution of travel times
in AV scenarios generated by RealTwin in VISSIM. Similar
to the results in SUMO, the increase in AV penetration leads
to a larger proportion of shorter vehicle travel times in the
travel time distribution for AV vehicles when compared to
the travel time distribution for human vehicles. Although the
range of vehicle travel time for both VISSIM and SUMO
scenarios are similar, differences in car-following models
and driving behavior parameter values between the two
simulators may have impacted the travel times for each
vehicle type differently. In the future, for both SUMO and
VISSIM, the AV parameter set may be calibrated to the same
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(a) Vehicle type: “Human”

(b) Vehicle type: “AVnormal”

Figure 10. Vehicle travel time distribution for different vehicle
types under varying penetration levels of AVs in SUMO.

data (real or synthetic) to ensure consistency in impact for the
same technology scenario.

Implementation of RealTwin Workflow for
Simulation Calibration
Calibrate Turning Ratios and Inflow
To demonstrate RealTwin’s calibration capability, a case
study was conducted in SUMO using the Shallowford Road
network, shown in Figure 12. The same calibration module
and algorithms can also be applied to other simulators. This
network has 10 intersections: 6 signalized intersections with
traffic demand data available through traffic cameras and
4 unsignalized intersections with no demand data (marked
by red arrows). In SUMO, no inflow was assigned to
edges without data being provided, and traffic volume will
be evenly assigned to each movement of the intersection
approach if the turning ratios were not defined by the user.
Therefore, RealTwin was used to calibrate inflow and turning

(a) Vehicle type: “Human”

(b) Vehicle type: “AV”

Figure 11. Vehicle travel time distribution for different vehicle
types under varying penetration levels of AVs in VISSIM.

ratios at those unsignalized intersections where data were
unavailable. Specifically, the average GEH of volume was
minimized at approaches where data were available using
Tabu Search (TS), Genetic Algorithm (GA), and Simulated
Annealing (SA), respectively.

The results of the three algorithms are shown in Table 3.
As shown in the table, GA outperformed TS and SA in terms
of final objective value (mean GEH). However, TS equally
minimized the GEH of each approach, leading to much
higher percentages of GEH that are smaller than 5. Therefore,
results from TS were selected. Finally, Figure 13 compares
the approach of GEH at different intersections before and
after calibration. RealTwin’s calibration module significantly
reduces the GEH of traffic volume at most approaches,
demonstrating its effectiveness in simulation calibration.

Calibrate Driving Behavior
Next, using the simulation with calibrated turning ratios
and inflows, we calibrates the driving behavior, specifically
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Figure 12. Intersections for calibration.

Table 3. Comparison of turning ratio and inflow calibration results

Algorithm Mean GEH before
calibration

% of GEH ¡5 before
calibration

Mean GEH after
calibration

% of GEH ¡5 after
calibration

TS 10.32 50.00% 1.40 90.90%
GA 10.32 50.00% 1.23 68.18%
SA 10.32 50.00% 5.71 68.18%

Figure 13. Comparison of approach GEH at different intersections before and after calibration.

car-following parameters, by minimizing the MAE of
average eastbound and westbound travel time. The calibrated
parameters in SUMO are listed below and their calibration
ranges are determined from literature review (74, 75).

• minGap: minimum gap when standing (m), [1.00,
3.00];

• accel: acceleration (m/s2), [2.50, 3.00];
• decel: deceleration (m/s2), [4.50, 5.30];
• emergencyDecel: maximum deceleration (m/s2),

[5.00, 9.30];
• sigma: driver’s imperfection (0 denotes perfect

driving), [0.00, 1.00];
• tau: desired headway (s), [0.25, 1.25].

According to Google Maps, the average travel time of
vehicles traveling eastbound on the same day and time was
240 s, and the average travel time of vehicles traveling
westbound was 180 s. Before the calibration, the eastbound
travel time from the simulation is 200.29 s, and the
westbound travel time from the simulation is 207.36 s. These
travel times in simulation were significantly different from
the real-world travel time. As shown in Table 4, RealTwin’s
calibration process significantly reduces the MAE for all
methods.
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Table 4. Comparison of driving behavior calibration results using different algorithms
MAE Eastbound travel time (s) Westbound travel time (s)

before cal after cal real world before cal after cal real world before cal after cal
TS 33.54 23.28 240 200.29 212.86 180 207.36 197.61
GA 33.54 15.21 240 200.29 241.67 180 207.36 208.85
SA 33.54 17.57 240 200.29 237.50 180 207.36 212.65

Conclusion
In this paper, we presented RealTwin, a comprehensive
tool that can automatically ingest real-world data and
generate scenarios for microscopic traffic simulations.
Following a streamlined scenario generation and calibration
workflow, RealTwin effectively bridges gaps between
traffic data from various sources and traffic simulators,
making microscopic traffic simulation more accessible
for researchers and engineers across various levels of
expertise. Using SUMO, VISSIM, and AIMSUN as
examples, the implementation of RealTwin for scenario
development of a case study was presented. The consistency
observed in the SUMO, VISSIM, and AIMSUN simulations
created by RealTwin demonstrated its ability to generate
comparable simulations across different simulators. In
addition, RealTwin’s capability for technology scenario
generation was introduced and illustrated. This feature can
contribute to more comprehensive microscopic simulations
facilitating the analysis of how various technological
innovations can potentially influence mobility, energy
efficiency, and safety. Finally, RealTwin was employed to
calibrate a simulation in SUMO. The calibration module
enhances RealTwin’s ability to generate realistic simulations
that reflect real-world traffic operations.

Limitations and Future Work
While RealTwin demonstrates significant advancements
in automating scenario generation for microscopic traffic
simulations, several limitations remain. For example,
the current reliance on OpenStreetMap for network
data introduces potential inaccuracies, such as incorrect
intersection lane configurations, which require manual
corrections. Additionally, the tool presently supports a
limited range of user input formats, including inputs for
traffic signals. The user interface is still in its early stages,
necessitating further development to improve accessibility
and user experience. To address these limitations, future
efforts will focus on improving and enhancing the following
aspects of RealTwin:

• Automation: Advance RealTwin workflow’s automa-
tion for more streamlined and accurate scenario gener-
ation. This includes but is not limited to:

– Automatic validation and correction of problem-
atic user input. For instance, the coordinates

provided by users for network generation may
not form a valid polygon. Similarly, mismatches
between road names in the volume input file
and the network map may cause scenario gen-
eration failure. Future developments will focus
on creating tools to assist users in validating
and correcting such inputs to ensure successful
scenario generation.

– Automatic correction of network layout. The
network data from OpenStreetMap often has
issues with intersection lane configuration. We
are in the process of developing tools for
RealTwin to use computer vision and deep
learning techniques to automatically process
satellite or street-level images of intersections
and correct the network.

– Automatic identification and correction of incon-
sistent data. Inconsistent data, such as mis-
matched traffic volumes or intersection turning
ratios from different data sources, can affect the
realism of the simulation scenario. Future devel-
opments aim to integrate automated algorithms to
identify and resolve such data inconsistencies.

• Integration: Improve RealTwin capabilities to inte-
grate more:

– Emerging applications. RealTwin currently sup-
ports scenario generation for Autonomous Vehi-
cles (AV). Expanding support for other emerging
technologies, such as Connected and Automated
Vehicles (CAVs) and electrification, is planned as
part of future developments.

– Multi-modal traffic. In future versions, we plan
to support multi-modal traffic (e.g., bus, truck,
etc.) and allow vehicle composition to be a
user-defined input. Additionally, we will provide
recommended driving behavior parameters for
each traffic mode for user reference.

– User input data formats. RealTwin currently
uses OpenStreetMap for network generation and
supports direct outputs from GridSmart as inputs
for demand and UTDF as inputs for traffic signal.
In the future, ingestion of additional data formats,
such as United States Geological Survey (USGS)
map data for network and OD data or per vehicle
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record data (trajectory data) for traffic demand, is
planned to be added to the tool to provide greater
flexibility.

– Algorithms and performance measures.
RealTwin will include additional algorithms and
performance measures in its scenario generation
and calibration process. For example, RealTwin
currently uses jtrrouter to generate the route
file for SUMO. SUMO routeSampler.py could
be another option and will be considered as an
alternative way to generate SUMO routes in
our future version. Another example is that the
calibration module of RealTwin in future versions
will utilize additional calibration algorithms
(e.g., Artificial Neural Networks (ANNs))
and objective functions (e.g. minimizing Root
Mean Square Error (RMSE), minimizing root
mean square normalized error (RMSNE), and
multi-objective calibration function, etc.), and
expand the range of MOEs to include metrics
that capture detailed driving behavior (e.g., lane
change frequency, acceleration and deceleration
profiles, speed variance), safety indicators (e.g.,
time-to-collision), as well as energy consumption
and emissions estimates.

• Ease of use: Enable user-friendliness and ease of use
of the RealTwin tool.

– RealTwin user interface (UI). we will develop
user-accessible metrics that provide character-
istics of the comprehensive RealTwin database
such as accuracy and completeness, and develop
a user-friendly and flexible UI prototype to gen-
erate scenarios. This UI prototype will support
users to select, locate, and generate scenarios
with ease while including transparency on the
accuracy and completeness of data and scenarios.

– Customization. We will enhance RealTwin’s flex-
ibility by enabling users to customize various
aspects of the tool. For example, currently,
RealTwin supports calibrating predefined param-
eters, but users cannot define or choose additional
parameters. Future updates will include this func-
tionality, allowing users to adapt the tool to their
specific research needs.

In addition to improving RealTwin’s capabilities, we will
use RealTwin to generate and calibrate scenarios for networks
of different scales to perform further in-depth performance
analyses in future work.
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Zürich, Zürich, 2017, pp. 1–43.

57. Espinosa, M. Safety evaluation of signalized intersections
with automated vehicles at various penetration levels
based on conflict analysis of simulated traffic. doi:
10.32920/ryerson.14652957.v1. URL https:

//rshare.library.torontomu.ca/articles/

thesis/Safety_evaluation_of_signalized_

intersections_with_automated_vehicles_

at_various_penetration_levels_based_on_

conflict_analysis_of_simulated_traffic/

14652957.
58. Morando, M. M., L. T. Truong, and H. L. Vu. Investigating

safety impacts of autonomous vehicles using traffic micro-
simulation. In Australasian transport research forum. 2017, pp.
1–6.

59. Maryam Mousavi, S., D. Lord, B. Dadashova, and
S. Reza Mousavi. Can autonomous vehicles enhance
traffic safety at unsignalized intersections? In International
Conference on Transportation and Development 2020.
American Society of Civil Engineers Reston, VA, 2020, pp.
194–206.

60. Rao, R. S., S. Yoon Park, and G.-L. Chang. Developing
the guidelines for managing autonomous vehicle flows on
congested highways: A case study of MD-100. Simulation,
Vol. 97, No. 6, 2021, pp. 367–382.

61. Rezaei, A. and B. Caulfield. Simulating a transition to
autonomous mobility. Simulation Modelling Practice and
Theory, Vol. 106, 2021, p. 102175.

62. Sukennik, P., J. Lohmiller, and J. Schlaich. Simulation-
based forecasting the impacts of autonomous driving. In
Proceedings of the International Symposium of Transport
Simulation (ISTS’18) and the International Workshop on
Traffic Data Collection and its Standardization (IWTDCS’18),
Matsuyama, Japan. 2018, pp. 6–8.

63. Stanek, D., R. T. Milam, E. Huang, and Y. A. Wang. Measuring
autonomous vehicle impacts on congested networks using
simulation. Tech. rep., 2018.

Prepared using TRR.cls

https://transportation.cubic.com/
https://transportation.cubic.com/
 https://www.openstreetmap.org 
 https://www.openstreetmap.org 
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://support.trafficware.com/support/solutions/articles/69000836741-synchro-studio-12-user-guide
https://support.trafficware.com/support/solutions/articles/69000836741-synchro-studio-12-user-guide
https://support.trafficware.com/support/solutions/articles/69000836741-synchro-studio-12-user-guide
https://rshare.library.torontomu.ca/articles/thesis/Safety_evaluation_of_signalized_intersections_with_automated_vehicles_at_various_penetration_levels_based_on_conflict_analysis_of_simulated_traffic/14652957
https://rshare.library.torontomu.ca/articles/thesis/Safety_evaluation_of_signalized_intersections_with_automated_vehicles_at_various_penetration_levels_based_on_conflict_analysis_of_simulated_traffic/14652957
https://rshare.library.torontomu.ca/articles/thesis/Safety_evaluation_of_signalized_intersections_with_automated_vehicles_at_various_penetration_levels_based_on_conflict_analysis_of_simulated_traffic/14652957
https://rshare.library.torontomu.ca/articles/thesis/Safety_evaluation_of_signalized_intersections_with_automated_vehicles_at_various_penetration_levels_based_on_conflict_analysis_of_simulated_traffic/14652957
https://rshare.library.torontomu.ca/articles/thesis/Safety_evaluation_of_signalized_intersections_with_automated_vehicles_at_various_penetration_levels_based_on_conflict_analysis_of_simulated_traffic/14652957
https://rshare.library.torontomu.ca/articles/thesis/Safety_evaluation_of_signalized_intersections_with_automated_vehicles_at_various_penetration_levels_based_on_conflict_analysis_of_simulated_traffic/14652957
https://rshare.library.torontomu.ca/articles/thesis/Safety_evaluation_of_signalized_intersections_with_automated_vehicles_at_various_penetration_levels_based_on_conflict_analysis_of_simulated_traffic/14652957


Xu et al. 21

64. Tafidis, P., A. Pirdavani, T. Brijs, and H. Farah. Intersection
control type effect on automated vehicle operation. In CICTP
2019. 2019, pp. 2742–2750.

65. Wang, Y. and L. Wang. Autonomous vehicles’ performance
on single lane road: A simulation under VISSIM environment.
In 2017 10th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-
BMEI). IEEE, 2017, pp. 1–5.

66. Li, D. and P. Wagner. Impacts of gradual automated
vehicle penetration on motorway operation: a comprehensive
evaluation. European transport research review, Vol. 11, 2019,
pp. 1–10.

67. Lu, Q., T. Tettamanti, D. Hörcher, and I. Varga. The impact
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