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Abstract—Standard computed tomography (CT) reconstruction algorithms such as filtered back projection (FBP) and
Feldkamp-Davis-Kress (FDK) require many views for producing high-quality reconstructions, which can slow image acquisition and
increase cost in non-destructive evaluation (NDE) applications. Over the past 20 years, a variety of methods have been developed for
computing high-quality CT reconstructions from sparse views. However, the problem of how to select the best views for CT
reconstruction remains open. In this paper, we present a novel view covariance loss (VCL) function that measures the joint information
of a set of views by approximating the normalized mean squared error (NMSE) of the reconstruction. We present fast algorithms for
computing the VCL along with an algorithm for selecting a subset of views that approximately minimizes its value. Our experiments on
simulated and measured data indicate that for a fixed number of views our proposed view covariance loss selection (VCLS) algorithm
results in reconstructions with lower NRMSE, fewer artifacts, and greater accuracy than current alternative approaches.

Index Terms—Tomography, view selection, MBIR, sparse-view CT

✦

1 INTRODUCTION

COMPUTED tomography (CT) is a widely used imaging
tool in industrial non-destructive characterization. It

enables visualization of the internal structure of scanned
objects, aiding in the understanding of internal features,
metrology and the detection of defects and anomalies [1].
A typical CT scan collects projections from different ori-
entations around the object, also referred to as views, and
a reconstruction algorithm then processes these projections
to reconstruct an image or volume. Tuy’s condition [2], [3]
provides a general theory to determine the set of views
required for perfect reconstruction. However, in practice,
views are typically taken while the object is rotated around
a single fixed axis.

Standard reconstruction methods are based on analyt-
ical techniques, such as filtered back projection (FBP) [4]
for parallel-beam CT and the Feldkamp-Davis-Kress (FDK)
algorithm [5] for cone-beam CT. Typically, the large array
size of detectors requires the collection of many views
so that analytical algorithms can generate high-quality re-
constructions. For example, a detector with dimensions of
2000 × 2000 pixels generally needs about 2000 projection
measurements at sufficiently high signal-to-noise ratio to
achieve a high-quality 2000× 2000× 2000 FDK reconstruc-
tion [6].

In non-destructive evaluation (NDE) for additive man-
ufacturing (AM), the total scan time can vary from a few
hours to a full day, depending on the system’s energy and
settings, the sample’s density and size, and the desired
resolution. However, these long scan times can limit the
use of CT in NDE [7]. Consequently, AM inspection could
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greatly benefit from more effective methods of sparse-view
acquisition and reconstruction.

To shorten scan times while preserving image quality,
researchers have adopted sparse-view reconstruction meth-
ods. Techniques such as model-based iterative reconstruc-
tion (MBIR) [8], [9], [10], [11], plug-and-play (PnP) algo-
rithms [12], [13], [14], and end-to-end deep learning (DL)
methods [15], [16] have shown that high-quality reconstruc-
tions can be achieved with far fewer projections compared
to the standard methods.

Using sparse-view reconstruction algorithms raises an
important question: Given the limited number of projections
available, which orientations should be selected to achieve
the best reconstruction? Current workflows typically rely
on measurements from a fixed, uniformly sampled set of
orientations, without adapting to the unique geometry of
the scanned object. However, empirical studies [17], [18]
have shown that object-dependent scanning strategies can
outperform uniform sampling in terms of reconstruction
quality. For example, the Bruker High Aspect Ratio Tomog-
raphy (HART) system [17] demonstrates that projections
aligned with long, straight edges yield improved resolution
in the reconstructed image. However, it is also crucial that
the selected projections remain diverse, rather than all clus-
tering about a few prominent edge features.

While progress has been made in view selection (see
Section 2), determining the optimal views for CT recon-
struction remains an open challenge. In particular, previous
research tends to focus on criteria that favor views that are
individually most informative, rather than criteria that favor
view sets that are jointly most informative. This tends to
result in view selection algorithms that do not incorporate
the need for view diversity, or alternatively, incorporate
diversity through ad-hoc heuristics requiring the manual
selection of parameters.

In this paper, we introduce the view covariance loss
selection (VCLS) algorithm to jointly select an optimal set
of views based on a novel mathematical expression for
what we call the view covariance loss (VCL). The VCL
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is a measure of the joint information contained in the set
of views. It incorporates into a single loss function both
a measure of the information contained in the individual
views, as well as a measure of diversity among views. We
derive the VCL from an expression for the normalized mean
squared error (NMSE) when the volume is reconstructed
using view-basis functions.

The key contributions of this paper are:

• Derivation of a novel closed-form parameter-free
expression for the VCL loss function that measures
the joint information contained in a set of views.

• Development of a VCLS algorithm that performs
fast joint selection of view angles by approximately
minimizing the VCL.

• Demonstration of the use and value of VCLS on
large practical data volumes that are representative
of NDE inspection applications for AM.

We apply the VCLS algorithm to the problem of cone-
beam CT with a single fixed axis of rotation. Our approach
assumes the availability of a “reference object” that can
be used for the selection of views. For example, in AM,
many manufactured versions of the same object design must
typically be inspected for defects. In this case, the reference
object can come from a scan of one of the many objects being
inspected. However, if every object being manufactured is
unique, then the reference object can come from a CAD
model, which is typically available, or a quick pre-scan of
the object being inspected. In each case, the VCLS algorithm
uses the reference object to select the best view angles to
scan during the inspection of the manufactured object(s).

Once the views are collected, we assume the volume is
reconstructed using a sparse-view reconstruction algorithm,
such as MBIR [19], since it provides higher-quality recon-
structions from sparse-view data compared to standard
techniques such as FDK.

Experimental results on simulated and measured cone-
beam CT data show that the VCLS consistently outperforms
both uniform view angle sampling as well as recent ad
hoc strategies that combine view information with view
diversity [20]. Also, leveraging MBIR reconstructions along
with our proposed view angle selection results in fewer
artifacts and offers sharper and more accurate edges.

An open source implementation of VCLS is available
from [19] with examples and test data available at [21].

2 RELATED WORK

Over the past 15 years, a variety of approaches have been
proposed for object-dependent tomographic view selection.
These approaches seek to select a fixed number of views in a
manner that reduces artifacts, improves resolution, and/or
reduces noise.

These approaches typically select view angles or other
orientation parameters that attempt to maximize the useful
information collected with each view. However, if one uses
a completely greedy strategy of view selection, the result
will be that too many similar views will be collected. Con-
sequently, it is essential that views be collected so that they
jointly maximize the information. This inevitably leads to a
competing need for diversity in view selection.

For example, Batenburg et al. [22] considered the prob-
lem of view selection for the special case of binary tomogra-
phy, in which the reconstruction is assumed to take on only
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Fig. 1: Evaluation of the view covariance loss (VCL) for a
toy example of parallel beam tomography with 8 views col-
lected over 180◦. a) A typical object to be imaged is forward-
projected, filtered, and back-projected to form views in the
space domain. Then γ - the cross-correlation between the
object and views is computed, and R - the autocorrelation
between the views is computed. b) The (R, γ) for the full
set of views are subsampled to the selected views, and the
resulting (RΩ, γΩ) are used to evaluate the loss function.

two possible densities. In this case, they assumed that the
total information of the projections was inversely propor-
tional to the size of the set of binary solutions. However, this
method does not naturally generalize to the tomographic
reconstruction of continuously valued objects.

Several early approaches to view selection are based
on the idea that views with higher-frequency content carry
more information. For example, in Haque et al. [23], regions
of projections with greater spectral richness are allocated a
larger number of views. This non-uniform selection ensures
that areas rich in information are sampled more densely.
Similarly, in Presenti et al. [24], the objective is to select
views that exhibit the largest intensity differences in the
simulated projections generated from a CAD model.

Another related heuristic is that views aligned with
the object’s edges tend to contain more information, as
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they capture higher-frequency details and can enhance edge
reconstruction quality. For example, in Matz et al. [25], views
were selected that aligned with object edges detected using
a wavelet transform analysis. In addition, another metric
was employed to measure the angular distance between
projections, thereby ensuring diversity in view selection.

In additive manufacturing applications, the edge infor-
mation of the scanned objects can be directly extracted from
the CAD model. In Yang et al. [26] and Lin et al. [20], [27],
algorithms are proposed that construct an edge alignment
function to evaluate how well each view aligns with the
long edges present in the CAD model, as well as an angle
dispersion function to assess the diversity of the views. By
linearly combining these two functions with a weighting
parameter λ, the methods can select views that align with
long edges while ensuring sufficient diversity among the
chosen views.

Other studies have utilized insights from CT design to
improve scanning strategies. These insights include mini-
mizing the path length through the object to reduce metal
artifacts and photon starvation, as well as decreasing the
variance of pixel values in a single projection to mitigate
beam hardening artifacts. For example, in Heinzl et al. [28],
the authors aim to determine the optimal placement of an
object by minimizing the average or maximum path length
through the material. Similarly, in Kano et al. [29], a com-
parable heuristic is applied, but with enhanced flexibility in
controlling cone-beam parameters such as cone angle and
tilt angle. In Ito et al. [30], two metrics are introduced—one
for evaluating the path length through the object and an-
other for assessing the variance in a single projection—to
help identify an optimal rotation orientation for scanned
objects. However, these approaches overlook the fact that
certain orientations may have a long path length through
the material yet still contain valuable information, such as
long-edge information.

Task-based scanning strategy optimization is also an
important research direction. For example, in [31], [32], [33],
[34], methods are proposed to enhance defect detectability
within a defined region of interest (ROI). In [34], this is
achieved by optimizing the detectability index within the
ROI, which quantifies how well a signal can be distin-
guished from noise in the frequency domain. The detectabil-
ity index is determined by the modulation transfer function
and the noise power spectrum of the reconstruction. These
approaches leverage prior knowledge of the ROI to opti-
mize the scanning trajectory, thereby reducing noise and
improving image quality in critical areas. However, these
methods are based on prior knowledge of the locations and
geometries of defects.

Recent research has explored the use of deep learning for
optimal view selection. For example, in [35], [36], [37], deep
reinforcement learning (DRL) is employed to sequentially
choose the next optimal view, using either projections or
reconstructed images as input. These approaches frame
the selection of optimal projections as a trajectory-based
optimization problem and solve it using deep reinforce-
ment learning. The reward function (i.e., the objective opti-
mized during training) is primarily based on reconstruction
loss. However, because of their computational complexity,
these approaches have only been demonstrated for low-
dimensional images.

In summary, previous research has developed object-
dependent scanning strategies that outperform traditional

object-independent approaches. However, aside from DRL-
based methods, which do not easily scale to high-
dimensional problems, the heuristic-based optimization
frameworks used in these studies do not guarantee the
selection of an optimal view set that directly minimizes
reconstruction loss. These limitations motivate us to propose
a new, computationally efficient loss function that directly
guides the selection of views to minimize the reconstruction
loss.

3 THE VIEW COVARIANCE LOSS (VCL)
We first derive an expression for a loss function that can be
used to determine the best view subset of a reference object
denoted by x. We assume here that our reference and test
objects are similar so that the views selected for the reference
object will result in a high-quality scan of the test object.

Depending on the details of the concept of operation,
the reference object can be obtained from a scan of object
that is similar to the test object, a CAD model of the test
object, or a quick low-resolution pre-scan of the test object.
We conclude the section by discussing the interpretation of
the loss function and explaining how it can be efficiently
computed for CT problems of practical size.

3.1 VCL Derivation

Let Ω = {θ0, · · · , θK−1} denote a set of scan view param-
eters that parameterize K tomographic views of an object.
These parameters are typically scan angles in axial tomogra-
phy, but they can represent anything that parametrizes each
view of a scan.

For each view, we will assume that there is a corre-
sponding reconstruction basis function, Tθk ∈ RN , and
that the object, x, can be approximately reconstructed as
a linear combination of this set of view-basis functions.
Mathematically, we can express this as

x̂Ω,β =
K−1∑
k=0

Tθkβk = TΩβ , (1)

where
TΩ =

[
Tθ0 , . . . , TθK−1

]
,

is an N ×K matrix of view-basis functions and β ∈ RK is a
column vector of weights. Here, N is the number of voxels
in the reconstruction and K is the number of views used to
perform the reconstruction.

The selection of view-basis functions depends on the
application. For example, in our CT reconstruction problem,
if an analytical reconstruction algorithm such as FBP or FDK
is used, then the reconstructed image is computed as a linear
combination of filtered back-projections [38]. In this case,
each view-basis function is chosen to be the filtered back
projection (FBP) from a single view at angle θk

Tθk = αθkFBP(Aθkx) = αθkA
t
θk
HAθkx , (2)

where Aθkx represents the simulated forward projection of
the reference object, x, at angle θk, H represents the required
ramp filter that also depends on the choice of geometry [4],
[5], and αθk is any fixed scaling constant.

Based on this setup, our goal is to obtain the optimal
reconstruction by minimizing the normalized mean squared
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error (NMSE) loss between x and x̂ through the selection of
the optimal subset given by

Ω∗ = argmin
Ω

{
min
β

∥x− x̂Ω,β∥2

∥x∥2

}
, (3)

where the reconstruction, x̂Ω,β , depends on the selection of
the set of view angles, Ω, and weights, β.

From this, we can see that our goal is to find the set of
view angles, Ω∗, that minimizes the reconstruction distor-
tion as shown below

Ω∗ = argmin
Ω

D(Ω) , (4)

where D(Ω) is the NMSE in the reconstruction given by

D(Ω) = min
β

∥x− x̂Ω,β∥2

∥x∥2
. (5)

We can simplify the form of D(Ω) by calculating the
optimal vector β∗

Ω for a specific choice of Ω. This is given
by the solution to the following least-squares estimation
problem.

β∗
Ω = (T t

ΩTΩ)
−1T t

Ωx

Substituting β∗
Ω into (1) and (5) then results in

D(Ω) =
∥x− PΩx∥2

∥x∥2

where PΩ = TΩ(T
t
ΩTΩ)

−1T t
Ω. Note that PΩ performs an

orthogonal projection onto the column space of T . Conse-
quently, the residual x − PΩx is orthogonal to the column
space of T . Therefore, the norm squared ∥x− PΩx∥2 can be
computed using Pythagorean theorem

∥x− PΩx∥2 = ∥x∥2 − ∥PΩx∥2 (6)

where ∥PΩx∥2 can be simplified as

∥PΩx∥2 = xtP t
ΩPΩx

= xtTΩ(T
t
ΩTΩ)

−1T t
Ωx , (7)

and we use the fact that P t
ΩPΩ = PΩ because PΩ is an

idempotent matrix. We can next use (6) and (7) to derive
the following simplified expression for the NMSE.

D(Ω) =
∥x− PΩx∥2

∥x∥2

=
∥x∥2 − ∥PΩx∥2

∥x∥2

= 1− xtTΩ(T
t
ΩTΩ)

−1T t
Ωx

∥x∥2
From this result, we can now write the NMSE recon-

struction error as

D(Ω) = L(RΩ, γΩ) (8)

where L is the view covariance loss (VCL) function defined
by

L(R, γ) = 1− γtR−1γ . (9)

and its arguments are given by

RΩ = T t
ΩTΩ (10)

γΩ =
T t
Ωx

∥x∥
, (11)

where RΩ is the autocorrelation between the reconstruction
bases, and γ is the correlation between the view bases and
the reference object.

3.2 VCL Computation

Figure 1 illustrates how the VCL is computed for a simple
example of 8-view parallel-beam tomography. First, the
filtered back-projection is computed for each view of the
object. Then the matrix R is formed by the autocorrelation
of the back-projected views, and the vector γ is formed
by the cross-correlation between the views and the object.
In the figure, we assume that αθ = 1/∥Tθ∥ in (2) so that
the reconstruction bases are normalized. Consequently, the
entries of both R and γ are normalized correlations so
they take values in the range [−1, 1], and R has 1’s on its
diagonal.

Here, R ∈ RKmax×Kmax and γ ∈ RKmax where Kmax

corresponds to the largest set of views to be considered.
Even for large practical problems, typically Kmax ≤ 2000.
Consequently, (R, γ) can be easily stored and used in calcu-
lations.

However, naive calculation of (R, γ) from the back-
projected views can be very computationally expensive.
This is because for large practical problems, each back
projection can be very large; so computing and storing these
back projections may not be practical. For example, for a
reference object with an array size of 1024 × 1024 × 1024
and 1000 candidate views, computing R requires evaluating
approximately 5×105 inner products between two matrices,
each with dimensions 1024× 1024× 1024.

Fortunately, the computation and memory requirements
for computing (R, γ) can be dramatically reduced by sub-
sampling the reconstruction bases. Computing a single en-
try of R requires taking the inner-product of two very large
reconstruction bases. However, sufficient accuracy can be
achieved by computing the inner product using only a
small randomly selected subset of voxels. Let S ∈ RNS×N

be a random sub-sampling matrix where NS << N is
the number of sample voxels. In our experiments, we will
choose NS = ⌊r1N⌋ where r1 is a sampling rate parameter
typically chosen to be very small. So then to compute the
VCL using (9) and

R = T tStST (12)

γ =
T tStSx

∥Sx∥
, (13)

where (R, γ) are computed using the full set of possible
views to be considered.

Figure 1(b) illustrates how (RΩ, γΩ) are computed by
selecting the rows and columns of (R, γ) corresponding to
the chosen subset, Ω, of the complete set of Kmax views.
The value of VCL is then computed from (RΩ, γΩ). Notice
that the computation of VCL requires a matrix inversion so
it is O(K3), but since K < Kmax, this computation is not
expensive.

3.3 VCL Interpretation

In order to better understand the VCL, consider a measure-
ment model with the form

y = T t(x̃+ ϵ) ,

where y is the vector of observations, T is the matrix of
bases, x̃ is the unknown object, and ϵ ∼ N (0, I) is white
Gaussian noise with unit variance. Furthermore, define a
linear function x̃ = c η where η ∈ R and c ∈ RN .
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Then in the Supplementary Material, we show that the
Fisher information for the estimation of x̃ given y is given
by

Ix̃ = TR−1T t ,

and the Fisher information for the estimation of η is given y
is given by

Iη = ctTR−1T tc .

Then if we choose c = x/∥x∥where x is the reference object,
we get the following expression for the Fisher information

IV CL = γtR−1γ = 1− V CL .

So, from this we can see that minimizing the VCL has the
interpretation of maximizing the Fisher information for the
estimation of the scalar quantity η when x̃ = xη where x is
the reference object and x̃ is the unknown reconstruction.

This Fisher information can also be interpreted as maxi-
mizing the quadratic form given by

IV CL = γtBγ , (14)

where B = R−1 is a precision matrix.
So this raises the question of how to interpret maximiza-

tion of the view information, IV CL? First, maximizing the
components of γΩ will increase the view information. This
is intuitive, since a view that is correlated with x should
collect more information about x.

The matrix B = R−1 can be interpreted as a precision
matrix that encodes the inverse covariance of the view-
basis functions. Without loss of generality, we can again
assume that the reconstruction bases are normalized so that,
∥Tθk∥ = 1, in which case diag{RΩ} = I . Then the off-
diagonal elements of B reflect the degree to which different
views can be predicted from each other. Large negative off-
diagonal values indicate strong mutual predictability; so B
acts to penalize redundancy among views.

Consequently, maximizing IV CL favors the selection
of views that are both informative and diverse, which is
precisely what view selection should do. Importantly, VCL
incorporates both information and diversity in a natural
way without requiring separate ad hoc weighted functions
for these two purposes.

Algorithm 1 View Covariance Loss Selection Algorithm

Function: VCLS(Ω, x;K, r1, r2)
Output: Ω∗

// Step 1: Compute the reconstruction bases
S ← RandSubsampleMatrix(x, r1)
for i in 1 to |Ω| do:

Tθi ← At
θi
HAθix

Tθi ← STθi/∥STθi∥
x← Sx
// Step 2: Compute (R, γ)
for i in 1 to |Ω| do:

γ[i]← T t
θi
x/∥x∥

for j in 1 to |Ω| do:
R[i][j]← T t

θi
Tθj

// Step 3: Optimized View Selection
Ω∗ ← ViewSubsetSelection(Ω, R, γ;K, r2)
return Ω∗

Algorithm 2 View Subset Selection

Function: ViewSubsetSelection(Ω, R, γ;K, r2)
Output: Ω∗

// Initialize with uniformly sampled view angles
Ω∗ ← UniformSampling(K,Ω)
// Compute the initial loss value using Algorithm 3
L∗ ← VCL(R, γ,Ω∗)
// Test random view swaps
Repeat until no change:

for θi ∈ Ω∗ do:
ΩS ← RandomSampling(r2,Ω− Ω∗)
for θj ∈ ΩS do:

Ω′ ← SwapAngle(Ω∗, θi, θj)
L′ ← VCL(R, γ,Ω′)
if L′ < L∗ do

Ω∗ ← Ω′

L∗ ← L′

return Ω∗

Algorithm 3 Compute View Covariance Loss

Function: VCL(R, γ,Ω)
Output: L
// Subsample
RΩ ← Subsampling(R,Ω)
γΩ ← Subsampling(γ,Ω)
// Compute Loss
L← 1− γt

ΩR
−1
Ω γΩ

return L

(a) CAD drawing (b) Ground Truth (c) Reference Object

Fig. 2: (a) The CAD drawing used in the simulated data
experiment; (b) axial slice of ground truth; and (c) axial
slice of reference object used in view selection. Note that
reference object is not identical to ground truth.

TABLE 1: Parameters for Simulated CT Experiment
Specification Value

Geometry cone-beam
Detector Dimensions (pixels) 1000× 1000

Pixel Pitch in Detector (mm) 0.127

Source-to-Detector Distance (mm) 808.793

Source-to-Center of Rotation Distance (mm) 110.044

Maximum Energy of X-ray Source (keV) 200

Ground Truth Material Iron
MBIRJAX Params - (sharpness, snr db) (1.0, 35.0)

Recon Array Size (slice first) 1000× 1000× 1000

Voxel Pitch in Object (mm) 0.017

VCLS Params (default) r1 = 0.001, r2 = 0.1
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TABLE 2: VCLS Comparison for Different (r1, r2) with K = 100 and Kmax = 720

r1 = 1.0, r2 = 1.0 r1 = 0.01, r2 = 0.5 r1 = 0.001, r2 = 0.1 r1 = 0.0001, r2 = 0.01

Step1: compute reconstruction bases 11.60 minutes 8.13 minutes 5.07 minutes 4.64 minutes
Step2: Compute (R, γ) 456.01 minutes 7.24 minutes 1.51 minutes 0.26 minutes

Step3: Compute View Subset Selection 2.93 minutes 2.21 minutes 0.39 minutes 0.04 minutes

Total Time 470.54 minutes 17.58 minutes 6.97 minutes 4.94 minutes
Reconstruction Error (NRMSE) 0.0780 0.0792 0.0794 0.0801

Ground Truth Dense View(1000 views) Uniform(80 views) EPVS(80 views) VCLS(80 views)

(i) (ii) (iii) (iv) (v)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Reconstruction

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Number of views

0.075
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0.200

0.225

0.250

NR
M

SE

Dense View (1000 views)
Uniform (baseline)
EPVS (baseline)
VCLS (proposed)

(b) Reconstruction loss

Fig. 3: Comparison of view selection methods using simulated cone-beam axial CT data. (a) Axial MBIR reconstructions
with the top row being the full slice and the bottom row being zoomed-in portion in red rectangle. (i) Ground truth; (ii)
1000 uniformly sampled views; (iii) 80 uniformly sampled views; (iv) 80 EPVS sampled views; and (v) 80 VCLS sampled
views. (b) Plot of NRMSE for VCLS, EPVS, and uniform view sampling. Notice that VCLS produces consistently low
NRMSE with sharper edges and more refined texture detail than either uniform sampling or EPVS.

TABLE 3: Parameters for fuel nozzle CT experiment
Specification Value
Instrument ZEISS Metrotom 800
Geometry cone-beam

Detector Dimensions (pixels) 1024× 1024

Pixel Pitch in Detector (mm) 0.2

Source-to-Detector Distance (mm) 808.508

Source-to-Center of Rotation Distance (mm) 243.307

Maximum Energy of X-ray Source (keV) 180

Scanned Object Material 316L stainless steel
MBIRJAX Params - (sharpness, snr db) (1.0, 35.0)

Recon Array Size (slice first) 893× 1008× 1008

Voxel Pitch in Object (mm) 0.06

VCLS Params (default) r1 = 0.001, r2 = 0.1

TABLE 4: FWHM widths from fuel nozzle data.
Uniform EPVS VCLS

num.
views

width
(mm)

error
(mm)

width
(mm)

error
(mm)

width
(mm)

error
(mm)

1050 2.34 0
40 2.70 0.36 3.18 0.84 2.46 0.12
80 2.46 0.12 1.92 -0.42 2.34 0.00

TABLE 5: Hole diameters from fuel nozzle data.
Uniform EPVS VCLS

num.
views

dia.
(mm)

error
(mm)

dia.
(mm)

error
(mm)

dia.
(mm)

error
(mm)

1050 1.89
± 0.05 0

40 1.08
± 0.47 0.81 1.34

± 0.30 0.55 1.59
± 0.11 0.30

80 1.76
± 0.08 0.13 1.77

± 0.06 0.12 1.79
± 0.06 0.10
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Fig. 4: Hexagonal fuel nozzle axial slice for (i) the object
scanned in experiments; (ii) the reference object used for
view selection. Top row: FDK reconstructions from dense
view sampling. Bottom row: Segmentation of FDK recon-
structions. The segmentation of the reference object was
used as x in VCL evaluation. Notice that the scanned object
and the reference object are not exactly the same with a
slight positional shift and some differences in details.

4 VIEW COVARIANCE LOSS SELECTION (VCLS)

In this section, we describe an implementation for the View
Covariance Loss Selection (VCLS) algorithm which approx-
imately minimizes the VCL in order to select the best view
subset. The general strategy of the VCLS algorithm is to first
compute (R, γ) for the full set of Kmax possible views. The
algorithm then searches through possible view subsets of
size K to find the subset Ω∗ that approximately minimizes
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FDK + Uniform(40 views) Uniform(40 views) EPVS(40 views) VCLS(40 views) FDK + Uniform(80 views) Uniform(80 views) EPVS(80 views) VCLS(80 views)

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 0.0
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1.5
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2.5

Fig. 5: Comparison of view selection methods using hexagonal fuel nozzle data. Top row is the full axial slice of
reconstruction, and bottom row is a zoomed-in portion of the region outlined in red in Figure 6(b). (i) 40 uniformly-sampled
views + FDK (baseline method); (ii) 40 uniformly-sampled views + MBIR (baseline method); (iii) 40 EPVS sampled views
+ MBIR (baseline method); (iv) 40 VCLS sampled views + MBIR (proposed method). (v) 80 uniformly-sampled views +
FDK (baseline method); (vi) 80 uniformly-sampled views + MBIR (baseline method); (vii) 80 EPVS sampled views + MBIR
(baseline method); (viii) 80 VCLS sampled views + MBIR (proposed method). Notice that VCLS produces reconstructions
with sharper edges and fewer artifacts.
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Fig. 6: Hexagonal fuel nozzle (a) intensity profiles; (b)
ground truth from MBIR reconstruction using 1050 uni-
formly sampled views. Red box indicates zoomed-in region
and green line indicates line used for intensity profile.

L(RΩ∗ , γΩ∗). Since this requires a search through
(Kmax

K

)
possible subsets, we use a randomized search strategy to
find an approximate minimum to the loss.

Algorithm 1 first computes a random subsampling ma-
trix as described in Section 3.2 above. Here, 0 < r1 ≤ 1.0
is the spatial subsampling rate, which controls the trade-
off between computational complexity and accuracy. The
sampled voxels are selected within the region of interest
(ROI), and for our experiments, the ROI is defined as the
smallest sphere enclosing the reference object. However,
the ROI can be user-defined based on specific application
requirements. In practice, S can simply be represented by a
list of indices corresponding to the sampled voxels.

Next, the subsampled reference image and reconstruc-
tion bases are computed.1 While subsampling can be ap-
plied after the reconstruction bases are computed, some
reconstruction packages allow for faster back projection

1. Additional details on the generation of the reconstruction bases for
the cone-beam reconstruction problem are provided in the Supplemen-
tary Material.
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Fig. 7: Illustration of the 40 selected views using radial lines
for hexagonal fuel nozzle data using (a) uniform sampling
(short scan), (b) EPVS, and (c) VCLS. Notice both EPVS
and VCLS select views with non-uniform spacing. However,
VCLS automatically selects views with a narrower angular
range (less than 180°).

of sparse voxel subsets [19]. In either case, the compu-
tation of these bases can be parallelized across indepen-
dent processors. Step 2 of Algorithm 1 then computes
(R, γ) from the subsampled bases, and Step 3 calls the
ViewSubsetSelection() function to determine the best set of
views.

Algorithm 2 is used to compute an optimized subset of
K views, Ω∗, from the full set of views, Ω. This is done by
first selecting a random subset of views, Ω∗. Then for each
view in Ω∗, we attempt to identify a substitute view that
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results in a lower VCL. Specifically, for each view in Ω∗, a
random subset ΩS of size ⌊r2(Kmax−K)⌋ is generated from
Ω \Ω∗, where r2 is the parameter that controls the trade-off
of computation and thoroughness for each iteration. In each
swap, a single view from Ω∗ is exchanged with one from ΩS .
If the swap lowers the VCL, then Ω∗ and its corresponding
loss are updated accordingly, and this is continued until
no change occurs after attempting random swaps for every
angle in Ω∗.

Algorithm 3 evaluates the VCL. Notice that this algo-
rithm first selects the relevant rows and columns of R and
the elements of γ to form (RΩ, γΩ). This reduces computa-
tion since the (R, γ) only need to be computed once.

5 EXPERIMENTAL RESULTS

In this section, we compare the effectiveness of the VCLS
algorithm for view selection to both conventional uniform
view sampling methods and the edge projection-based view
selection (EPVS) algorithm of [20] for both simulated and
measured X-ray CT datasets.

5.1 Simulated Data
In this section, we compare VCLS to EPVS and uniform
view sampling using a simulated dataset. This allows us
to compare to the exact ground truth.

Table 1 specifies the parameters used for generating
and reconstructing the simulated cone-beam CT data. Ad-
ditional details on the modeling of polychromatic X-ray
effects, beam-hardening correction [39], and material mod-
eling [40] are provided in the Supplementary Material.

Figure 2(a) shows the CAD model that was used to
generate the ground truth and reference objects used in
our simulations. The ground truth object was generated by
rastering a CAD model using the parameters in Table 1.
This CAD model included extra artificial defects, such as
pores and cracks embedded within the object. The reference
object is similar, but not exactly the same, as the ground-
truth object. This was done to test the robustness of our
method. More specifically, we generated the reference object
by rasterizing a second CAD without defects but with a
slightly different rotation. We then rotated the reference
object in 2D to visually match the position of the ground-
truth object.

Figures 2(b) and (c) show axial slices of both the ground
truth and reference objects. A total of 720 candidate view
angles were uniformly sampled from the range of 0◦ to 360◦

for view selection.
Unless otherwise noted, all reconstructions used MBIR

via the MBIRJAX software package [19], and all experi-
ments were performed on 2 A100 GPUs and a 64-core CPU
platform using a combination of python, numpy, and JAX
software environments. MBIRJAX automatically controls
regularization using the meta-parameters of snr db and
sharpness specified in Table 1.

Table 2 compares the runtime and reconstruction loss of
VCLS using different values of r1 and r2.2 Notice that as
r1 and r2 decrease, the computation time decreases, but the
reconstruction error increases slightly. We found (r1, r2) =
(0.001, 0.1) to be a good trade-off, and used these values in
all remaining experiments.

2. We note that Step 1 of Algorithm 1 used both GPUs and the sparse
back-projection capability of MBIRJAX to speed computations.

Figure 3a shows comparisons of VCLS with uniform
view sampling and the EPVS algorithm [20] for the simu-
lated cone-beam data. The axial slices shown in Figure 3a
demonstrate that VCLS results in sharper edges and more
refined texture detail than either uniform sampling or EPVS.
The plot of NRMSE versus number of views in Figure 3b
supports this by showing that the VCLS reconstructions
have lower NRMSE than the uniform or EPVS reconstruc-
tions as the number of views varies from 30 to 150.

5.2 Measured Data

We next compare VCLS with EPVS and uniform view sam-
pling using an experimentally measured axial cone-beam X-
ray CT data scan of a hexagonal fuel nozzle [41] collected on
a ZEISS Metrotom 800 system. Table 3 lists the parameters
used in the experiment. Figure 6(b) shows an axial slice of
the additively manufactured hexagonal object that was used
in this experiment.

In AM inspection, it is typical for a sequence of parts
printed from the same CAD drawing to be scanned con-
secutively. In such scenarios, the information gained from
the first scanned part can be used to guide the scanning
strategy for the remaining parts. To simulate this, a binary
segmentation of the reconstructed image from a dense-view
scan of a separate object is used as the reference object for
view selection.

Figure 4 shows the scanned object and the reference
object. Notice that the reference object does not perfectly
match the scanned object, which tests the robustness of view
selection under imperfect reference object conditions.

From Tuy’s condition [2], [3], it is known that views from
0◦ to 180◦ plus the cone angle (short scan) are sufficient
for complete Fourier space coverage. Therefore, in order to
achieve the best results, our uniform sampling uses equally
spaced samples in the range of [0◦, 194.42◦], where the cone
angle is 14.42◦ in our setting. However, the VCLS and EPVS
algorithms are allowed to select views from the full range of
[0◦, 360◦] for maximum flexibility.

Unless otherwise noted, all reconstructions were per-
formed using MBIRJAX on an A100 GPUs and a 64-core
CPU platform with the parameters listed in Table 3. Any
FDK reconstructions of short scan data used Parker weight-
ing to improve reconstruction quality and avoid corre-
sponding short scan artifacts [42].

Figure 5 shows the reconstructed images obtained using
40 and 80 selected views, which correspond to approxi-
mately a 26× and 13× reduction in the number of measure-
ments compared to a dense scan of 1050 views. Notice that
for both the 40 and 80 view case, the VCLS view selection
produces sharper images with fewer artifacts than either
uniform or EPVS view selection. Also, VCLS achieves much
better quality than FDK reconstruction with uniform view
sampling shown in Figure 5(i) and (v).

To demonstrate the impact of such algorithm in real
world application, we considered dimensional character-
ization of object width and holes using sparse view re-
construction algorithms. Such characterizations are critical
in applications such as industrial metrology of parts that
require accurate measurement of object dimensions.

Figure 6 shows line profiles through the reconstructions
along the green line shown in the dense-view reconstruction
of Figure 6(b). Then Table 4 lists the associated measured
values of the object’s width using the full-width at half
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Fig. 8: (a) Plot of reconstruction loss (NRMSE) for 40-view reconstructions using VCLS sampling, but with varying reference
object quality. The dashed line shows baseline NRMSE with 40 uniformly sampled views. (b) Examples of reference objects
generated by reconstructing the actual object from uniformly sampled sparse views ranging from 1040 views to 8 views.
The top row shows the full axial slice of each reconstruction, and the bottom row shows the corresponding segmentation.
Note that VCLS consistently outperforms uniform sampling even when the quality of the reference object is quite poor.

maximum (FWHM) measure. The associated error is also
listed for each measurement using the measured width with
dense view (1050 views) as ground truth.

Notice that in Table 4, VCLS has the lowest measured
error in both the 40 view case (0.12mm error) and in the
80 view case (0mm error). This is consistent with the visual
inspection of the line profiles for the 40 view case shown in
Figure 6. Here, the dense view result (yellow curve) is used
as ground-truth.

Table 5 presents a summary of an analysis of the diam-
eters of holes in the object. Notice that for both the 40 and
80 view case, the VCLS algorithm results in reconstructions
with the lowest error in the mean diameter estimate. More-
over, the standard deviation of the error is the lowest among
the alterative view selection algorithms. More details of the
analysis are presented in the Supplementary Material.

Figure 7 illustrates the view selection patterns for uni-
form sampling (using a short scan), EPVS, and VCLS. Note
that VCLS selects views from a narrower range of angles
used by EPVS or even the short scan predicted by Tuy’s con-
dition. This is potentially useful since it reduces the range of
angles that must be obtained during a scan. Also, notice that
the VCLS views are not uniformly spaced. Instead, there are
subtle but important variations in view angle that appear to
favor particularly informative views while also preserving
view diversity.

5.3 Effect of Reference Object Quality
In this section, we investigate the effect of the reference
object quality on the VCLS algorithm view selection using
the measured data of Section 5.2.

Figure 8a plots the NRMSE using 40 views selected by
VCLS, but based on a reference object of varying quality.
Each reference object is generated by reconstructing the
object from uniformly sampled sparse views, with sampling
ranging from 1040 views to only 8 views. Figure 8b shows
the reference reconstructions used in the plot along with
their corresponding segmentations.

Notice that the NRMSE of the VCLS reconstruction in-
creases slowly, even for very low-quality reference recon-
structions. In fact, the VCLS reconstruction is still much
better than the baseline (uniform view sampling) recon-
struction, even when the reference is reconstructed from

only 8 uniformly sampled views. This suggests that it is
possible to use even a fast ultra-sparse CT scan in order to
generate a reference object of sufficient quality for use in the
VCLS algorithm.

6 CONCLUSION

We present an algorithm for CT view selection which is
based on the minimization of a novel view covariance
loss (VCL) function. The VCL is unique in that it is a
single expression that accounts for the joint information
in the views. We show that the VCL is closely related to
the Fisher information for estimating a linear projection of
the object, providing a principled justification for its use.
Consequently, it encourages view selections that are both
informative and diverse (i.e., uncorrelated). The VCL also
has a relatively simple closed form and can be computed
efficiently for practical CT problems using straightforward
acceleration methods. Experimental results on both simu-
lated and measured cone-beam CT data demonstrate that
the view covariance loss selection (VCLS) algorithm selects
views that differ subtly from uniform sampling, but that
substantially improve the quality of CT reconstruction.
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