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Abstract 

The Resistance Spot Welding (RSW) process is vital in the automotive industry, favored for its 

cost-effectiveness, short cycle time, and robustness. However, optimizing the quality of robust 

joints is challenging due to the complex interplay of various factors. Machine learning has 

emerged as a promising tool to predict joint quality and develop welding technologies.  

In this on-going collaborative project between Oak Ridge National Laboratory and General 

Motors, we have developed a machine-learning based framework to quantify the weld quality as 

function of weld attributes. The framework utilizes an expandable deep learning model with a 

unified architecture for predicting weld attributes to quality. It includes a method to address the 

data scattering issue inherent in welding procedures. It is also used for training-friendly RSW 

data processing, to search for the optimal weld schedule. The deep neural network modeling 

framework include functions to uncover the complex relationship between in-situ welding 

conditions and weld quality prediction factors, which greatly improve the accuracy and 

reliability of ML based model for weld quality detection and quality improvement in RSW of EV 

battery enclosures. 
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Introduction 

Resistance spot welding (RSW) is a widely used joining process in various industries, 

particularly in automotive manufacturing, due to its high efficiency, cost-effectiveness, and 

suitability for high-volume production [1, 2]. By applying pressure and passing electrical current 

through the metals to be joined, RSW creates localized heat, which fuses the materials without 

requiring additional filler material. This process is especially advantageous for applications 

requiring fast and robust joints, as it enables high-speed automation and minimizes material 

waste. In recent years, the need to join dissimilar materials, particularly aluminum and steel, has 

grown significantly as industries strive to reduce vehicle weight for improved fuel efficiency and 

reduced emissions [3]. Their differing thermal and electrical conductivities, melting points, and 

metallurgical properties can lead to issues such as brittle intermetallic compounds, poor weld 

strength, and inconsistent weld quality. The development of optimized welding parameters for 

dissimilar material joints is critical but highly complex, requiring design over high dimensional 

welding variable space, such as current, weld time, electrode force, electrode cap shape, and 

other process variables.  

Traditional methods of process development often rely on trial and error, which can be both 

time-consuming and costly. Moreover, these methods may not capture the full range of 

variability in material properties and welding conditions. This is where machine learning (ML) 

techniques can play a transformative role. By analyzing large datasets generated during welding 

trials, machine learning algorithms can identify complex relationships between process 

parameters, weld attributes, and weld quality outcomes. This enables the prediction and 

optimization of welding conditions, reducing the reliance on empirical testing and significantly 

improving process efficiency [4-10]. 

This paper investigates the application of machine learning to enhance process design, optimize 

weld parameters, and ensure consistent weld quality. We present an extensible ML framework 

that leverages a unified neural network architecture designed to assimilate knowledge from a 

broad spectrum of welding process scenarios. The architecture is extensible, enabling it to 

incorporate data from diverse sources, including different materials, welding parameters, and 

real-time process monitoring signals. Initially, the framework was developed to predict weld 

quality based on weld attributes, such as nugget size, expulsion, indentation, etc. However, its 

extensibility allowed us to broaden its capabilities to include predictions of process-to-quality 

relationships. By mapping welding parameters like current, welding time, electrode force, and 

electrode shape to quality outcomes, the framework helps identify optimal settings that improve 

the efficiency and reliability of the welding process. 

Methodology 
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In this work, we present a machine learning framework for predicting weld quality in resistance 

spot welding (RSW). The model was developed and trained using a sizeable experimental dataset 

provided by General Motors. This section discusses the feature selection, neural network model, 

and the training and testing process. 

Feature Selection and Engineering 

An important component of this approach is the application of domain knowledge in feature 

engineering. The model's ability to predict weld performance was enhanced by purposely 

selecting and engineering features rooted in the physics of dissimilar Al-steel RSWs. In welding 

dissimilar materials such as aluminum and steel, intermetallic compound (IMC) layers play a 

pivotal role in determining failure modes and joint performance. During welding process, 

localized heat leads to non-uniform thermal distributions, creating gradients in microstructure 

and material properties [11-13]. These spatial variations complicate the relationship between 

weld sub-locations and overall joint quality. To capture these effects, zone-based features were 

engineered to represent the spatial distributions of material hardness and IMC thickness, which 

vary across different regions such as the weld nugget, heat-affected zone, and base materials. 

Additional features, including nugget size, material indentation, button size, and the presence of 

expulsion, were also incorporated as model inputs. The flow of ML framework is presented in 

Figure 1. The model’s output responses focused on key weld quality metrics such as peak load 

and total energy, as determined through coach peel tests.  

Integration of Material Specifications 

Base material properties, such as resistivity, strength, ductility, thickness, and surface coating, 

were included as input variables to account for the influence of material characteristics on weld 

performance. The inclusion of these material specifications serves two purposes: (1) expanding 

the model’s scope to include a wide variety of stackups, even those with limited data 

representation, and (2) providing critical insights into the material behaviors that influence weld 

outcomes. By integrating material properties, the model gains a deeper understanding of the 

complex interactions between the materials and welding process, leading to improved 

generalization. 

Weld Process and Joint Quality Variability Handling 

Based on foundation ML framework, we have expanded the model with inputs of process 

conditions to explore the relationship between welding process conditions and joint performance 

properties. One major challenge in RSW is addressing the variability in weld quality observed 

under identical process conditions. Welds made under the same settings can exhibit different 

strengths, toughness, and fatigue resistance due to subtle variations in material properties, 

environmental factors, or process dynamics. To capture this variability, we developed a 
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customized neural network system capable of not only predicting weld quality but also 

quantifying the variability across replicate welds. This was achieved by integrating process 

condition variables such as electrode cap shape, polarity, pre-heat, clamp load, welding current 

schedule, and adhesive type as input streams. These inputs, along with material specifications 

and post-weld conditions (e.g., baking, aging), were used to predict both the weld performance 

properties and their variability.  

Neural network model 

The proposed approach employs a single ML framework with a unified neural network 

architecture, which is designed to learn the material-associated weld attribute-performance 

relationship and weld process-performance relationship, as shown in Figure 1. The ML model 

consisted of a 2- or 3-layer artificial neural network with 32 to 256 neurons on each layer for 

each individual task. The Rectified Linear Unit (ReLU) activation function was selected for its 

ability to enhance training efficiency without compromising generalization accuracy [14]. The 

dropout layer was introduced after each hidden layer to mitigate the risk of overfitting. Given the 

differences in magnitude among input variables, we applied Min-Max normalization to 

standardize the range of predictor variables. This normalization ensured balanced node weighting 

during training, preventing instability due to disproportionate feature scaling. 

Training and Validation 

Central to our methodology is the utilization of a sizable dataset comprising Al-steel resistance 

spot welds spanning over 20 weld stackups. By training on this diverse dataset, the model learns 

to encapsulate the interplay between material characteristics, weld quality attributes, weld 

process conditions, and joint performance. The training dataset included a total of 4,756 

individual welds. To ensure robust performance and avoid overfitting, we employed a five-fold 

cross-validation (CV) strategy. The dataset was randomly shuffled and divided into five folds, 

with four folds used for training and the remaining fold for validation. This process was repeated 

to validate model performance across all data splits. 
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Figure 1 Flow of the machine learning framework for RSW quality prediction. 

Results and Discussion 

ML prediction of joint quality based on weld attributes: The performance of the machine learning 

(ML) model in predicting joint properties was evaluated by comparing its predictions to 

experimental measurements. Figure 2 plots the regression analysis between predicted and 

measured peak load and total energy for validation test welds. The predicted and measured 

values were located around the perfect prediction line (i.e., y=x) in a scattered manner. The 

Pearson’s correlation coefficients between the measured and predicted values for peak load and 

total energy were calculated as 0.937 and 0.879, respectively. The high correlation coefficients 

suggest a strong relationship between predicted and measured data, that is, the DNN regression 

model identified the high dimensional correlations among the welds attributes and joint 

performance properties. It was noted that the predictions of total energy exhibited increased error 

and larger variation, which could be attributed to the complicated nature of the fracture process. 

The challenges were partially addressed in our study, laying the groundwork for future 

improvements. Despite occasional limitations in predicting total energy for certain weld 

stackups, the neural network model consistently delivered satisfactory performance in predicting 

weld quality metrics, validating its ability to capture high-dimensional correlations between weld 

attributes and joint performance properties.  

ML prediction of joint quality from weld process parameters: The ML model was expanded to 

explore the relationship between welding process parameters and joint quality. The novel neural 

network design enables the prediction of both joint performance and the associated variability 

under different welding process conditions. Figure 3 summarizes the model’s predictions of the 
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statistical mean, minimum, and maximum joint peak load, compared to experimental 

measurements. The model provided accurate quantitative predictions of both the average peak 

load and the range of variability (minimum and maximum) across the entire dataset, which 

included welds produced under approximately 650 process conditions. The ability of the model 

to handle weld stackups with limited data is particularly notable. Even in cases where data 

representation was sparse, the model leveraged the comprehensive learning framework to make 

reliable predictions. This demonstrates the effectiveness of our unified ML training strategy, 

which allows the model to generalize effectively across different process conditions and material 

stackups. The insights gained from these results suggest potential for further improvements by 

incorporating additional data sources or sensing variables, which could enhance the model’s 

ability to predict weld quality metrics. 

Figure 4 presents four example cases, illustrating how the ML model predicts joint performance 

while quantifying the variability of weld quality under different welding scenarios. The model’s 

predictions ranged from high strength with good repeatability to low strength with poor 

repeatability. For each case, the model provided both the statistical average peak load and a 

probability distribution describing the variation of peak load across replicate welds. A narrower 

probability distribution indicated more consistent weld quality under specific welding conditions, 

while a broader distribution signified greater variability. The close agreement between the 

predicted and actual measurements suggests that the model effectively captures the inherent 

variability in weld quality, allowing manufacturers to optimize welding parameters for both 

performance and consistency. By predicting the probability distribution of weld quality 

outcomes, the model provides valuable insights for improving process control and ensuring 

reliable product quality in industrial settings. 

To enhance the practical utility of the ML framework, we connected the fully trained DNN 

model to an optimization scheme aimed at identifying optimal welding process windows. This 

approach enables the determination of process conditions that produce welds meeting specific 

target performance criteria for a given material stackup. Figure 5 illustrates the weld schedule 

optimization approach and presents the optimized ranges of welding process conditions 

necessary to achieve high performance and good repeatability for two material stackups: (1) 0.8 

mm X626 – 0.9 mm HDG LCS: Target performance – Peak load > 300 N, Coefficient of 

Variation (CV) < 12% and (2) 1.2 mm AA6022 – 2.0 mm HDG LCS: Target performance – Peak 

load > 550 N, CV < 12%. These predictions assume ideal welding conditions without special fit-

up issues, such as electrode misalignment or sheet gaps. Part of the predicted process conditions 

have been validated with the training dataset. While the ML model also predicted new process 

conditions that haven’t been tested experimentally, this allows manufacturers to explore a 

broader range of settings to achieve their performance targets without the need for extensive trial 



7 
 

and error. The results demonstrate the potential of the unified ML framework to guide the 

development of resistance spot welding for different Al-steel combinations. While the results are 

promising, further independent testing is desirable to validate the model’s effectiveness across a 

broader range of material stackups and process conditions.  

 

Figure 2 Comparison between ML predicted and experimentally measured (a) peak load and (b) 

total energy for validation test welds. 

 

Figure 3 ML model provided quantitative prediction for mean, minimum and maximum joint 

peak load for a variety of material combinations.  
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Figure 4 ML model predicted joint peak load and its variability under a variety of materials and 

welding conditions. 

 

Figure 5 Leveraging the DNN model for welding process design to achieve joint target 

performance for two example weld stack-ups of 0.8mm X626 – 0.9mm HDG LCS and 1.2mm 

6022 – 2.0mm HDG LCS.  

Conclusion 

This work presented an expandable ML based modeling framework to enhance process design, 

optimize weld parameters, and ensure consistent weld quality in RSW. By incorporating domain 

knowledge of welding physics, the model improved the prediction of key weld metrics such as 

peak load and total energy. Trained on a sizeable aluminum-steel weld dataset, the model 

accurately captured relationships between weld attributes, process conditions, and joint 
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performance, while accounting for variability under different welding scenarios. The ML 

framework successfully predicted weld quality and variability, helping to optimize welding 

parameters for consistent performance. The model's integration with an optimization scheme 

demonstrated its practical utility in identifying optimal process windows for various material 

stackups. Future work will focus on improving integrating real-time inline signal data in our 

expandable ML model framework training and prediction to enable real-time weld quality 

prediction and adaptive process control. Expanding the dataset and refining the model will 

further improve its accuracy and applicability across diverse welding conditions, making it a 

practical tool for industrial applications. 
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