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Abstract

The Resistance Spot Welding (RSW) process is vital in the automotive industry, favored for its
cost-effectiveness, short cycle time, and robustness. However, optimizing the quality of robust
joints is challenging due to the complex interplay of various factors. Machine learning has

emerged as a promising tool to predict joint quality and develop welding technologies.

In this on-going collaborative project between Oak Ridge National Laboratory and General
Motors, we have developed a machine-learning based framework to quantify the weld quality as
function of weld attributes. The framework utilizes an expandable deep learning model with a
unified architecture for predicting weld attributes to quality. It includes a method to address the
data scattering issue inherent in welding procedures. It is also used for training-friendly RSW
data processing, to search for the optimal weld schedule. The deep neural network modeling
framework include functions to uncover the complex relationship between in-situ welding
conditions and weld quality prediction factors, which greatly improve the accuracy and
reliability of ML based model for weld quality detection and quality improvement in RSW of EV
battery enclosures.
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Introduction

Resistance spot welding (RSW) is a widely used joining process in various industries,
particularly in automotive manufacturing, due to its high efficiency, cost-effectiveness, and
suitability for high-volume production [1, 2]. By applying pressure and passing electrical current
through the metals to be joined, RSW creates localized heat, which fuses the materials without
requiring additional filler material. This process is especially advantageous for applications
requiring fast and robust joints, as it enables high-speed automation and minimizes material
waste. In recent years, the need to join dissimilar materials, particularly aluminum and steel, has
grown significantly as industries strive to reduce vehicle weight for improved fuel efficiency and
reduced emissions [3]. Their differing thermal and electrical conductivities, melting points, and
metallurgical properties can lead to issues such as brittle intermetallic compounds, poor weld
strength, and inconsistent weld quality. The development of optimized welding parameters for
dissimilar material joints is critical but highly complex, requiring design over high dimensional
welding variable space, such as current, weld time, electrode force, electrode cap shape, and
other process variables.

Traditional methods of process development often rely on trial and error, which can be both
time-consuming and costly. Moreover, these methods may not capture the full range of
variability in material properties and welding conditions. This is where machine learning (ML)
techniques can play a transformative role. By analyzing large datasets generated during welding
trials, machine learning algorithms can identify complex relationships between process
parameters, weld attributes, and weld quality outcomes. This enables the prediction and
optimization of welding conditions, reducing the reliance on empirical testing and significantly
improving process efficiency [4-10].

This paper investigates the application of machine learning to enhance process design, optimize
weld parameters, and ensure consistent weld quality. We present an extensible ML framework
that leverages a unified neural network architecture designed to assimilate knowledge from a
broad spectrum of welding process scenarios. The architecture is extensible, enabling it to
incorporate data from diverse sources, including different materials, welding parameters, and
real-time process monitoring signals. Initially, the framework was developed to predict weld
quality based on weld attributes, such as nugget size, expulsion, indentation, etc. However, its
extensibility allowed us to broaden its capabilities to include predictions of process-to-quality
relationships. By mapping welding parameters like current, welding time, electrode force, and
electrode shape to quality outcomes, the framework helps identify optimal settings that improve
the efficiency and reliability of the welding process.

Methodology



In this work, we present a machine learning framework for predicting weld quality in resistance
spot welding (RSW). The model was developed and trained using a sizeable experimental dataset
provided by General Motors. This section discusses the feature selection, neural network model,
and the training and testing process.

Feature Selection and Engineering

An important component of this approach is the application of domain knowledge in feature
engineering. The model's ability to predict weld performance was enhanced by purposely
selecting and engineering features rooted in the physics of dissimilar Al-steel RSWs. In welding
dissimilar materials such as aluminum and steel, intermetallic compound (IMC) layers play a
pivotal role in determining failure modes and joint performance. During welding process,
localized heat leads to non-uniform thermal distributions, creating gradients in microstructure
and material properties [11-13]. These spatial variations complicate the relationship between
weld sub-locations and overall joint quality. To capture these effects, zone-based features were
engineered to represent the spatial distributions of material hardness and IMC thickness, which
vary across different regions such as the weld nugget, heat-affected zone, and base materials.
Additional features, including nugget size, material indentation, button size, and the presence of
expulsion, were also incorporated as model inputs. The flow of ML framework is presented in
Figure 1. The model’s output responses focused on key weld quality metrics such as peak load

and total energy, as determined through coach peel tests.
Integration of Material Specifications

Base material properties, such as resistivity, strength, ductility, thickness, and surface coating,
were included as input variables to account for the influence of material characteristics on weld
performance. The inclusion of these material specifications serves two purposes: (1) expanding
the model’s scope to include a wide variety of stackups, even those with limited data
representation, and (2) providing critical insights into the material behaviors that influence weld
outcomes. By integrating material properties, the model gains a deeper understanding of the
complex interactions between the materials and welding process, leading to improved

generalization.
Weld Process and Joint Quality Variability Handling

Based on foundation ML framework, we have expanded the model with inputs of process
conditions to explore the relationship between welding process conditions and joint performance
properties. One major challenge in RSW is addressing the variability in weld quality observed
under identical process conditions. Welds made under the same settings can exhibit different
strengths, toughness, and fatigue resistance due to subtle variations in material properties,
environmental factors, or process dynamics. To capture this variability, we developed a



customized neural network system capable of not only predicting weld quality but also
quantifying the variability across replicate welds. This was achieved by integrating process
condition variables such as electrode cap shape, polarity, pre-heat, clamp load, welding current
schedule, and adhesive type as input streams. These inputs, along with material specifications
and post-weld conditions (e.g., baking, aging), were used to predict both the weld performance
properties and their variability.

Neural network model

The proposed approach employs a single ML framework with a unified neural network
architecture, which is designed to learn the material-associated weld attribute-performance
relationship and weld process-performance relationship, as shown in Figure 1. The ML model
consisted of a 2- or 3-layer artificial neural network with 32 to 256 neurons on each layer for
each individual task. The Rectified Linear Unit (ReLU) activation function was selected for its
ability to enhance training efficiency without compromising generalization accuracy [14]. The
dropout layer was introduced after each hidden layer to mitigate the risk of overfitting. Given the
differences in magnitude among input variables, we applied Min-Max normalization to
standardize the range of predictor variables. This normalization ensured balanced node weighting
during training, preventing instability due to disproportionate feature scaling.

Training and Validation

Central to our methodology is the utilization of a sizable dataset comprising Al-steel resistance
spot welds spanning over 20 weld stackups. By training on this diverse dataset, the model learns
to encapsulate the interplay between material characteristics, weld quality attributes, weld
process conditions, and joint performance. The training dataset included a total of 4,756
individual welds. To ensure robust performance and avoid overfitting, we employed a five-fold
cross-validation (CV) strategy. The dataset was randomly shuffled and divided into five folds,
with four folds used for training and the remaining fold for validation. This process was repeated
to validate model performance across all data splits.



Predictions

Validation testing properties
Testing .
P i oo N
| Welding physics : |
SRl knowledge gui-r.led data E . :
! preparation ' ! :

A
Materials : | Hyperparameter tuning |

Thickness, specification, i ] Input Hidden Output
I ' layers

coating | ' O O O E
Weld attributes . ‘ 00 - O .0 1

button size, expulsion,

' /
indentation, IMC, hardness ! | . \‘ . . . 'O 2
| i < 03
| Weld process parameters |! |
| Current, welding time, pre-heat || ! |\ J
I s " ] i | J
electrode shape, clamp load, | 3 o0 --- O :
adhesive, post-weld baking H ! Prediction targets: 1 — peak load, 2 — extension at break, |
i 'Y 1

|__3—total energy

Independent Independent testing
testing

Figure 1 Flow of the machine learning framework for RSW quality prediction.

Results and Discussion

ML prediction of joint quality based on weld attributes: The performance of the machine learning
(ML) model in predicting joint properties was evaluated by comparing its predictions to
experimental measurements. Figure 2 plots the regression analysis between predicted and
measured peak load and total energy for validation test welds. The predicted and measured
values were located around the perfect prediction line (i.e., y=x) in a scattered manner. The
Pearson’s correlation coefficients between the measured and predicted values for peak load and
total energy were calculated as 0.937 and 0.879, respectively. The high correlation coefficients
suggest a strong relationship between predicted and measured data, that is, the DNN regression
model identified the high dimensional correlations among the welds attributes and joint
performance properties. It was noted that the predictions of total energy exhibited increased error
and larger variation, which could be attributed to the complicated nature of the fracture process.
The challenges were partially addressed in our study, laying the groundwork for future
improvements. Despite occasional limitations in predicting total energy for certain weld
stackups, the neural network model consistently delivered satisfactory performance in predicting
weld quality metrics, validating its ability to capture high-dimensional correlations between weld
attributes and joint performance properties.

ML prediction of joint quality from weld process parameters: The ML model was expanded to
explore the relationship between welding process parameters and joint quality. The novel neural
network design enables the prediction of both joint performance and the associated variability
under different welding process conditions. Figure 3 summarizes the model’s predictions of the



statistical mean, minimum, and maximum joint peak load, compared to experimental
measurements. The model provided accurate quantitative predictions of both the average peak
load and the range of variability (minimum and maximum) across the entire dataset, which
included welds produced under approximately 650 process conditions. The ability of the model
to handle weld stackups with limited data is particularly notable. Even in cases where data
representation was sparse, the model leveraged the comprehensive learning framework to make
reliable predictions. This demonstrates the effectiveness of our unified ML training strategy,
which allows the model to generalize effectively across different process conditions and material
stackups. The insights gained from these results suggest potential for further improvements by
incorporating additional data sources or sensing variables, which could enhance the model’s
ability to predict weld quality metrics.

Figure 4 presents four example cases, illustrating how the ML model predicts joint performance
while quantifying the variability of weld quality under different welding scenarios. The model’s
predictions ranged from high strength with good repeatability to low strength with poor
repeatability. For each case, the model provided both the statistical average peak load and a
probability distribution describing the variation of peak load across replicate welds. A narrower
probability distribution indicated more consistent weld quality under specific welding conditions,
while a broader distribution signified greater variability. The close agreement between the
predicted and actual measurements suggests that the model effectively captures the inherent
variability in weld quality, allowing manufacturers to optimize welding parameters for both
performance and consistency. By predicting the probability distribution of weld quality
outcomes, the model provides valuable insights for improving process control and ensuring
reliable product quality in industrial settings.

To enhance the practical utility of the ML framework, we connected the fully trained DNN
model to an optimization scheme aimed at identifying optimal welding process windows. This
approach enables the determination of process conditions that produce welds meeting specific
target performance criteria for a given material stackup. Figure 5 illustrates the weld schedule
optimization approach and presents the optimized ranges of welding process conditions
necessary to achieve high performance and good repeatability for two material stackups: (1) 0.8
mm X626 — 0.9 mm HDG LCS: Target performance — Peak load > 300 N, Coefficient of
Variation (CV) <12% and (2) 1.2 mm AA6022 — 2.0 mm HDG LCS: Target performance — Peak
load > 550 N, CV < 12%. These predictions assume ideal welding conditions without special fit-
up issues, such as electrode misalignment or sheet gaps. Part of the predicted process conditions
have been validated with the training dataset. While the ML model also predicted new process
conditions that haven’t been tested experimentally, this allows manufacturers to explore a
broader range of settings to achieve their performance targets without the need for extensive trial



and error. The results demonstrate the potential of the unified ML framework to guide the

development of resistance spot welding for different Al-steel combinations. While the results are

promising, further independent testing is desirable to validate the model’s effectiveness across a

broader range of material stackups and process conditions.
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Figure 2 Comparison between ML predicted and experimentally measured (a) peak load and (b)

total energy for validation test welds.
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Figure 3 ML model provided quantitative prediction for mean, minimum and maximum joint

peak load for a variety of material combinations.
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Figure 4 ML model predicted joint peak load and its variability under a variety of materials and

welding conditions.
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Figure 5 Leveraging the DNN model for welding process design to achieve joint target

performance for two example weld stack-ups of 0.8mm X626 — 0.9mm HDG LCS and 1.2mm
6022 — 2.0mm HDG LCS.

Conclusion

This work presented an expandable ML based modeling framework to enhance process design,

optimize weld parameters, and ensure consistent weld quality in RSW. By incorporating domain

knowledge of welding physics, the model improved the prediction of key weld metrics such as

peak load and total energy. Trained on a sizeable aluminum-steel weld dataset, the model

accurately captured relationships between weld attributes, process conditions, and joint




performance, while accounting for variability under different welding scenarios. The ML
framework successfully predicted weld quality and variability, helping to optimize welding
parameters for consistent performance. The model's integration with an optimization scheme
demonstrated its practical utility in identifying optimal process windows for various material
stackups. Future work will focus on improving integrating real-time inline signal data in our
expandable ML model framework training and prediction to enable real-time weld quality
prediction and adaptive process control. Expanding the dataset and refining the model will
further improve its accuracy and applicability across diverse welding conditions, making it a
practical tool for industrial applications.
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