
DISCLAIMER

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or any agency thereof. The

views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency

thereof. Reference herein to any social initiative (including but not

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits

Plans (CBP); Justice 40; etc.) is made by the Author independent of

any current requirement by the United States Government and does

not constitute or imply endorsement, recommendation, or support by

the United States Government or any agency thereof.

Choose an item.

PNNL-38155

Benchmark Tracking
System for Performance
Monitoring

August 2025

Braedon Billingsley
Joseph Cottam

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Choose an item.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062
www.osti.gov

ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/

PNNL-38155

Benchmark Tracking System for
Performance Monitoring

August 2025

Braedon Billingsley
Joseph Cottam

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

Benchmark Tracking System for Performance Monitoring

Braedon Billingsley

Abstract

Benchmarking is essential for high-performance software development, particularly for

monitoring performance across code iterations. This project focused on enhancing the

benchmarking process for Lamellar, an asynchronous runtime for High-Performance Computing

(HPC) systems developed at Pacific Northwest National Laboratory. Prior to this work,

benchmark results were difficult to track and compare across code versions, presenting

significant challenges in identifying performance regressions and long-term trends. The primary

objective was to establish a systematic, reproducible approach for measuring performance and

detecting regressions following code commits. Our methodology involved three key

components: standardizing benchmark outputs, implementing data versioning, and developing

analysis tools. We standardized the benchmark output format to JSON Line records containing

specific fields (execution time, hardware specifications, and environmental variables). To address

data management challenges, we evaluated several options and eventually chose a git repository

dedicated to benchmark data. We developed a suite of Python tools that processed benchmark

results, enriched them with metadata, and facilitated search in the repository. The resulting

system enables more efficient filtering and comparison of performance metrics across commit

histories, hardware configurations, and benchmark variants through a unified query interface.

Our implementation reduces computational overhead by first checking for existing results

through configuration matching before initiating new benchmark runs, thereby conserving

resources. The system has been validated by Lamellar developers. It organizes results by

benchmark type and build configurations for efficient retrieval. Future developments include a

planned Large Language Model interface for predicting benchmark performance, incorporating

the criterion package for statistical analysis, which will enable automated detection of

statistically significant performance changes, and integration with continuous integration

pipelines. Despite these enhancements being reserved for future work, this project has

successfully provided the Lamellar development team with a framework for maintaining

consistent performance standards and identifying optimization opportunities across workloads

and hardware environments.

Introduction

Software performance optimization relies on consistent benchmarking to guide development

decisions. In high-performance computing (HPC) environments, where applications run across

distributed systems, even minor performance regressions can substantially impact computational

efficiency.

Lamellar is an HPC runtime built using Rust, aiming to offer a productive and safe development

environment. It is a modern, performance-oriented runtime using Partitioned Global Address

Space (PGAS) programming and asynchronous tasking program models [1]. While Lamellar has

demonstrated promising results for distributed memory parallelism, its ongoing development

faces a common challenge in HPC software engineering: maintaining consistent performance

across an evolving codebase.

This project focused on tracking performance across code revisions, hardware configurations,

and varied workloads (as opposed to micro-benchmarks focused on hotspot identification).

Several approaches exist for addressing this challenge, including continuous integration

performance testing and automated regression detection systems, but implementing these for

HPC environments presents unique difficulties.

This project addresses needs within the Lamellar development workflow to systematically

capture, store, and analyze benchmark results across its development lifecycle. By creating

benchmarking infrastructure that connects performance metrics directly to code revisions, we

enable data-driven optimization decisions and provide early detection of potential performance

regressions.

The remainder of this report details our technical approach to designing and implementing this

benchmarking system, the specific contributions made during the internship period, and

recommendations for future enhancements to further support the Lamellar development team.

Progress

Problem Analysis and Solution Design

The initial phase of this project involved a review of Lamellar's existing benchmarking

workflow, and the challenges faced by developers. Through discussions with the Lamellar

development team, we identified requirements for an effective benchmarking system.

Results needed to be directly tied to specific git commits in both the Lamellar and Lamellar

Benchmarks repositories. The system needed to support comparison of results across different

hardware configurations while including comprehensive metadata about the execution

environment. Robust query capabilities were essential for filtering and analyzing results across

multiple revisions, all while integrating smoothly with existing development workflows.

After identifying these requirements, we evaluated several potential approaches.

• Data Version Control (DVC) [2]

• Git Large File Storage (LFS) [4]

• Criterion [3]

• LakeFS [5]

• Dolt [6]

• Git [7]

DVC initially seemed promising for its ability to version large datasets alongside code. However,

testing revealed that DVC introduced unnecessary complexity for our use case, particularly in

how it managed data across repository branches. Git LFS, while suitable, was ruled out due to

licensing costs. Criterion, though a major benchmarking framework in the Rust ecosystem,

wasn't selected due to its limited support for benchmarking across multiple environments, which

was a key requirement for our project. Criterion excels at statistical rigor for function-level

microbenchmarks but was not designed for comparing results across different hardware

configurations with environmental metadata. Other options like Dolt (versioned relational

databases) and LakeFS (data lake management) were beyond our use case requirements.

Based on this analysis, we decided to use a git repository for simplicity. We designed a solution

with three core components: a standardized benchmark result format, a dedicated git repository

for result storage, and a suite of Python tools for data processing and analysis. This approach

balanced simplicity with the flexibility needed to support complex queries across benchmark

results.

Implementation of Benchmark Result Standardization

The first technical contribution involved standardizing the output format for Lamellar

benchmarks. We implemented a JSON Lines-based format where each benchmark execution

generates a structured record containing performance metrics such as timing measurements,

throughput rates, and data transfer statistics, along with benchmark-specific configuration

parameters that define the test conditions. The format also captures comprehensive system

information including hardware specifications, operating system details, and processor

characteristics, as well as execution metadata such as run timestamps and dates for

reproducibility. Additionally, each record includes version control data with git repository state

information including commit hashes, messages, and dates for the benchmarking codebase, along

with software version information to ensure experimental reproducibility across different

environments and code versions.

This standardization required modifications to the existing benchmark code to capture system

information and format the output consistently. The structured format enabled programmatic

analysis while remaining human-readable for debugging purposes. By enforcing consistent

output fields, we ensured that results remained comparable across different execution

environments and code versions.

Development of Data Management Infrastructure

For storing and versioning benchmark results, we created a dedicated git repository with a

carefully designed structure to facilitate efficient querying. The repository organization separates

results by benchmark type, build type, and benchmark commit, enabling retrieval without

loading the entire dataset. This approach provides complete history preservation through git's

versioning capabilities, distributed access for team members across multiple locations, simple

integration with existing git-based development workflows, and the ability to opt out of tracking

benchmarks.

To manage this repository, we developed a Python-based data export tool that processes raw

benchmark outputs, validates their format, enriches them with additional metadata, and exports

them to the appropriate location in the data repository. This automation saves time and minimizes

the potential for human error in the data management process while ensuring consistent

organization of benchmark results.

Query and Analysis Tool Development

The most significant technical contribution was the development of a flexible query interface for

benchmark results. This Python tool enables Lamellar developers to filter benchmark results by

git commit range, hardware configuration, benchmark parameters, and compare performance

metrics across code revisions to identify regressions. With future development it will generate

statistical summaries of performance trends and export filtered results for further analysis or

visualization. Figure 1 demonstrates the complete data processing pipeline, illustrating how

benchmark execution flows through filtering and metadata enrichment stages before being stored

in the git repository, where the query tools can search and retrieve results (Figure 1).

The query interface features a configuration-based approach where users can specify complex

queries through JSON files. The tool first checks for matching existing results before suggesting

new benchmark commands to run, significantly reducing computational overhead by eliminating

redundant executions.

Figure 1 describes the data transformation process and python scripts responsible for each stage.

Integration with Development Workflow

To ensure adoption, we integrated the benchmarking infrastructure with Lamellar's existing

development practices. This integration included providing documentation of the benchmarking

workflow for developers, example queries for common performance analysis scenarios, and

helper scripts to simplify the most frequent benchmark operations. Figure 2 illustrates the

complete system architecture, showing how benchmark data flows from code commits through

benchmark execution to the git-based storage system, where it can later be processed by both

statistical testing tools for regression detection and Python analysis tools for generating

performance insights (Figure 2).

The system was designed to support both interactive use during development and potential future

integration with continuous integration pipelines. While automated performance regression

detection was not implemented during this internship, the infrastructure provides the foundation

for such capabilities, as demonstrated in the workflow diagram. The adoption of git as the

storage mechanism allowed developers to leverage their existing knowledge of version control

rather than learning an entirely new system.

Figure 2 illustrates the complete workflow of the benchmarking system, from execution through storage to analysis and
visualization.

Impact and Evaluation

The benchmarking infrastructure is expected to demonstrate value for the Lamellar team by

providing visibility into performance changes across code revisions. It is intended to reduce the

time required to record and analyze benchmark results by automated processing and supporting

systematic comparison of performance across hardware configurations and software revisions. It

establishes a foundation for data-driven optimization decisions.

Lamellar developers have validated the approach and identified opportunities for future

enhancement. The design ensures that the system can evolve alongside Lamellar's development,

accommodating new benchmarks and analysis requirements as they are developed. Performance

data collected through this system will inform optimization.

Future Work

The benchmarking infrastructure established during this internship provides a solid foundation

for several planned enhancements. Future development will focus on implementing automated

performance insights generation through statistical analysis of benchmark trends. While Criterion

wasn't suitable for our current multi-environment requirements, its compatibility with git and

statistical rigor remain appealing aspects. If Criterion develops more general results-tracking

capabilities to support benchmarking across different hardware configurations, we may

incorporate it in the future.

A particularly promising direction is the development of a Large-Language-Model (LLM) based

tool that could generate benchmark commands and predict expected performance results based

on natural language prompts, allowing developers to anticipate performance impacts without

executing full benchmark suites. Integration with continuous integration pipelines will enable

automated benchmark execution upon new commits to the benchmark repository, coupled with

statistical testing frameworks for regression detection. These automated systems will provide

real-time performance monitoring and alert developers to potential performance regressions

immediately upon code submission, transforming the current manual workflow into a fully

automated performance validation system that integrates with Lamellar's development cycle.

Impact on Laboratory or National Missions

This benchmarking infrastructure project supports the Department of Energy's mission to

advance scientific discovery through advancing high-performance computing capabilities. By

enabling systematic performance tracking of Lamellar, our work enhances PNNL's distributed

computing framework as it supports scientific computing applications. The improved

performance visibility provided by our benchmarking system accelerates the development of

efficient computational tools. The infrastructure creates capabilities for data-driven decision

making in software optimization, allowing researchers to more efficiently use the laboratory's

computational resources for scientific discovery. This work was partially supported through the

High-Performance Data Analytics (HPDA) program at PNNL, which supports fundamental

research and development in high-performance computing to enable scientific discovery.

Conclusions

This project successfully addressed a critical gap in the Lamellar development workflow by

establishing benchmarking infrastructure that transforms ad-hoc performance testing into a

structured approach. By standardizing benchmark output formats, implementing a version-

controlled data repository, and developing query tools, we've created a system that links

performance results to code commits, enables meaningful cross-configuration comparisons, and

eliminates redundant benchmark executions by first checking if they already exist. These

improvements enhance the team's ability to maintain high-performance standards throughout the

development lifecycle.

The modular approach employed ensures scalability as Lamellar continues to evolve,

accommodating new benchmark types and analysis requirements without architectural changes.

While the planned LLM-based performance prediction system remains for future

implementation, the data collection and organization mechanisms established provide the

necessary foundation for this advancement. This benchmarking infrastructure will play a crucial

role in ensuring that performance remains a top consideration throughout Lamellar's

development process, supporting PNNL's broader mission of advancing scientific discovery

through high-performance computing.

References

[1] Friese R.D., R. Gioiosa, J. Cottam, E. Mutlu, G. Roek, P. Thomadakis, and M. Raugas. 2024.

"Lamellar: A Rust-based Asynchronous Tasking and PGAS Runtime for High Performance

Computing," SC24-W: Workshops of the International Conference for High Performance

Computing, Networking, Storage and Analysis, Atlanta, GA, USA, 2024, pp. 1236-1251, doi:

10.1109/SCW63240.2024.00165.

[2] Iterative, DVC: Data Version Control - Git for Data &

Models (2020) DOI:10.5281/zenodo.012345.

[3] Heisler, B. Criterion 0.7.0: Statistics-driven Benchmarking Library for Rust.

https://docs.rs/criterion/latest/criterion/ (accessed 08-14-2025).

[4] GitHub Inc. Git Large File Storage (LFS): An Open Source Git Extension for Versioning

Large Files. https://git-lfs.com/ (accessed 08-14-2025).

[5] Treeverse Ltd. LakeFS: Open Source Data Version Control for Data Lakes. https://lakefs.io/

(accessed 08-14-2025).

[6] DoltHub. Dolt: SQL Database with Git-style Versioning. https://www.dolthub.com/ (accessed

08-14-2025).

[7] Git Project. Git: Distributed Version Control System. https://git-scm.com/ (accessed 08-14-

2025).

[8] SchedMD LLC. SLURM: Simple Linux Utility for Resource Management.

https://www.schedmd.com/ (accessed 08-14-2025).

https://doi.org/10.5281/zenodo.3677553
https://docs.rs/criterion/latest/criterion/
https://git-lfs.com/
https://lakefs.io/
https://lakefs.io/
https://www.dolthub.com/
https://git-scm.com/
https://www.schedmd.com/

Appendix

Participants

Name Institution Project Role

Joseph Cottam Pacific Northwest National

Laboratory

Data Scientist; Mentor

Community College

Internship Program (CCI)

U.S Department of Energy

(DOE), Office of Science,

Office of Workforce

Development for Teachers

and Scientists (WDTS)

This work was supported in

part by DOE and WDTS

under the CCI program.

Scientific Facilities

Research Computing (RC):

• Junction cluster at PNNL

• gitlab.pnnl.gov

Notable Outcomes

Gold Experience Research Symposium:

• Presented a PowerPoint presentation to fellow interns, laboratory staff, and guests.

PNNL-38155

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	38155.pdf
	Benchmark Tracking System for Performance Monitoring
	Abstract
	Summary
	Acknowledgments
	Acronyms and Abbreviations
	Contents
	Figures
	Tables
	1.0 Introduction
	1.1 Heading 2

	2.0 Section
	3.0 References
	Appendix A – Title

