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Computational models for high-pressure transcritical turbulence in wall-modeled large-eddy 

simulation typically rely on wall-function models to overcome the need for resolving the boundary 

layer structures. However, the mechanisms and models of turbulent boundary layer at transcritical 

conditions remain poorly understood since the near-wall flow and heat transfer are significantly 

affected by the enhanced fluctuations and steep gradients in thermodynamic properties. To address this 

issue, we study the mechanisms of transcritical turbulent boundary layers and wall-attached models at 

transcritical conditions. It is shown that the real-fluid variable-property effects are associated with the 

coupling between the near-wall cycle and the wall-normal coherent motions in the outer layer, resulting 

in the amplification of turbulent energy in the outer layer and noticeable energy transfer between the 

log-layer and the outer layer; hence, turbulence in the log-layer is modulated by the outer layer. Based 

on this underlying physical principle, we propose the characteristic velocity and length scales for the 
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attached eddy at transcritical conditions, and extend the attached eddy model to transcritical turbulent 

boundary layers by introducing a mixed scaling that incorporates both inner and outer scalings. We 

show that the new characteristic scales and extended attached-eddy model perform well in 

characterizing the structures in transcritical turbulent boundary layers.  

I. INTRODUCTION 

At supercritical pressures, the thermodynamic properties of fluids differ from those at subcritical 

conditions. Transitioning from the liquid-like phase to gas-like phase regions, which is called 

“transcritical conditions”, can occur without the formation of the interface [1]. Under transcritical 

conditions, all the thermodynamic and transport properties, including density, viscosity, specific heat 

capacity and thermal conductivity, vary significantly across the Widom line, introducing significant 

real-fluid thermodynamic effects [2-7]. Variations in thermodynamic and transport properties of the 

fluids under transcritical conditions can lead to substantially modified turbulence statistics and 

structural behaviors when compared to wall-bounded flows at subcritical pressures [3-5, 8-11]. In 

particular, momentum and energy transfer in the turbulent boundary layer of transcritical wall-bounded 

flows have a substantial impact on turbulent structural properties and modeling. 

Improving the accuracy of wall-modelled large-eddy simulations (WMLES) for predicting 

transcritical flows requires the inspections of the characteristics of turbulent boundary layers at these 

conditions since the performance of the wall-function model greatly depends on the properties of the 

logarithmic layer. To provide theoretical support to the development of wall models for simulating 

transcritical flows, specific focus is thereby directed towards the statistical and structural properties in 

the turbulent boundary layers. According to the classical description of incompressible turbulent 

boundary layers [12-13], the near-wall turbulence consists of locally active motions (ui) and inactive 
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motions (uo), where ui denotes the inner-flow-induced motions characterized by the inner scaling 

(velocity scale uτ and length scale δv) and uo is the outer-flow-induced motions that scale with outer-

layer parameters (velocity scale uτ and length scale Ly, with Ly being the half-height of the channel). 

Here, /w wu    is the friction velocity and  /v w wu    is the viscous lengthscale, where τw 

is the wall shear stress, μ is the dynamic viscosity, ρ is the fluid density and subscript w denotes the 

value at the wall. The typical structures in low-Re wall-bounded turbulence are the coherent structures 

with the streamwise length of ~1000δv and spanwise spacing of ~100δv [14-15] in the viscous sublayer 

and the buffer layer. For moderate and high Re turbulence, Zhao and Smith [12] conducted experiments 

to obtain the streamwise and wall-normal turbulence components in incompressible pipe flows; they 

found that the wall-normal spectra collapse in the energy-containing region with inner scaling, but a 

ζ/R (with ζ the wall distance and R the pipe radius) dependence was observed for the low-wavenumber 

region, implying the effects of the outer flow on the near-wall motions. Simultaneous streamwise 

velocity measurements within the incompressible turbulent boundary layer at high Reynolds numbers 

were conducted by Guala et al. [13]. Their results showed that the signature of large-scale structures 

can be found within the wall region and that these scales interact with the near-wall turbulence, which 

appears to be a primary difference to low-Re turbulence. The interactions in turbulent boundary layer 

are generally accompanied with the turbulent energy transport in turbulent boundary layers. With 

regard to the interactions in turbulent boundary layer, two mechanisms, namely “bottom-up” [16-20] 

and “up-bottom” [21-23], were reported. Lee and Moser [24] analyzed DNS data of channel flows 

with Reτ = 930, and showed that the large-scale structures in the outer layer, resulting from the 

structures with streamwise lengths less than 3δ (with δ the height of turbulent boundary layer) in the 

buffer layer, extend beyond 3δ in the streamwise direction. Furthermore, the experiments on turbulent 
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boundary layers with Reτ = 1060 by Ganapatosubramani et al. [25] showed that the large-scale 

structures have streamwise length of 1.5δ at ζ/δ = 0.1; while at ζ/δ = 0.5, their streamwise length 

reduces to 0.6δ, suggesting that turbulent energy transform from the inner layer to the outer layer (i.e., 

“bottom-up” mechanism). However, the spectral analysis by Wang and Zheng [26] implied that the 

premultiplied spectra in low-Re boundary layers decreases with ζ, while the spectra of the low 

wavenumber region in high-Re boundary layers increase with ζ, implying the “up-bottom” mechanism 

of energy transfer [26]. 

The inner-outer interactions influence the dynamics in turbulent boundary layers by means of 

modulating the organizations of wall-attached eddies [27-28]. The wall-attached eddy hypothesis [29] 

is a structural model for the incompressible turbulent boundary layer. This model indicates that in 

turbulent boundary layers, the dominant momentum-carrying motions are organized into a multiscale 

population of eddies attached to the wall. A growing body of theoretical, experimental and numerical 

studies have supported that these self-similar energy-containing eddies have significant impact on the 

energy transfer and statistical profiles in the logarithmic region [29-33]. Under the hypothesis that the 

self-similar structures result in the linearly growing mixing length and logarithmic mean velocity in 

the logarithmic layer, Townsend [29] developed a theoretical attached-eddy model that predicts the 

wall-normal distributions of fluctuating velocity in the logarithmic layer. This attached eddy model 

was extended in incompressible flows by a series of studies [34-37]. According to this model, the 

velocity fluctuations at a generic location in the log-layer result from a superposition of the velocities 

induced by different attached eddies at that location, implying that the statistical behaviors in the log-

layer may result from the interactions between the inner-layer and the outer-layer motions. For 

incompressible flows, the eddies are assumed to be inviscid and a slip boundary condition is applied 



5 
 

at the wall [29, 32]. Currently, the wall-attached eddy has been reported in studies covering a wide 

range of Reynolds numbers (Reτ = 546 in Ref. [31]; Reτ = 1000 in Ref. [32]; Reτ = 500 ~ 20000 in Ref. 

[38]; Reτ = 2000 ~ 1.4×106 in Ref. [39]; Reτ = 186 ~ 934 in Ref. [40]; Reτ = 1000 ~ 5200 in Ref. [41]). 

Another critical issue for the attached eddy investigation is the velocity and length scales of the eddies, 

which characterize the scales of the energy-containing structures in boundary layers [31, 40]. The 

classical attached eddy theory shows that the turbulent velocity is characterized by uτ, while the length 

scale of the eddies is the distance to the wall since the log-layer motions are too large to be affected by 

viscosity but small compared to the boundary-layer limit O(Ly) [29, 31]. Recently, Lozano-Durán & 

Bae [31] modified the characteristic scales of attached eddy for incompressible flows with Reτ = 546 

by assuming that the momentum-carrying eddies are controlled by the mean momentum flux and mean 

shear. The efforts on identifying the characteristics scales of turbulent structures are also helpful for 

establishing the algebraic mixing-length model, which can be used as the wall model in WMLES 

methodology.  

For turbulent boundary layers with variable thermal properties, Patel et al. [42] and Patel, Boersma 

& Pecnik [43] reported that the statistical profiles, near-wall streaks, and anisotropy are significantly 

modulated by the variable density and viscosity in the channel. However, the semilocal scaling that 

considers mean density variations is still effective and as a result, statistics maintain similarity in the 

cases with the same semilocal Reynolds number Re*
   ( * *Re /yu L    , with *u   the semilocal 

friction velocity, * /wu    ) [42-44]. At transcritical conditions, the variations in thermophysical 

properties become more pronounced and many studies found that the semilocal scaling fails to collapse 

the statistical profiles in different cases [4, 8-9, 11]. The deficiency of classical scaling laws at 

transcritical conditions results from the peculiar structural dynamics of turbulent boundary layers 
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under real-fluid thermodynamic effects. Instantaneous visualizations of transcritical boundary layers 

[3, 6, 11] showed that the dense fluids ejected from the core cause positive density skewness in the 

buffer layer region. In addition, the velocity fluctuations correlated with the near-wall streak structures 

in the transcritical heated turbulent boundary layers alter the generation of mean-density- and density-

fluctuation-related Reynolds shear stresses in the buffer layer and the log-layer [45]. Peeters et al. [10] 

also found that the variations in density and viscosity affect the vortical dynamics in the viscous 

sublayer and the buffer layer; the thermal expansion related to the density changes at transcritical 

conditions contributes to the transport of streamwise vortices. 

The above review on transcritical turbulence shows that the real-fluid variable-properties at 

transcritical conditions result in peculiar organizations of near-wall turbulent streaks and coherent 

structures. However, the features and physical models for the attached eddy at transcritical conditions 

remain unclear. Although the attached eddy hypothesis was supported by the inverse wavenumber 

scaling for energy spectra and logarithmic scaling for structure function in transcritical turbulent 

boundary layer [3-4], the characteristics related to the attached eddy at transcritical conditions have 

not yet been reported. As in Cheng and Fu [27], the inner-outer interactions and the attached eddy 

model are quantitatively consistent in incompressible turbulent boundary layer even at low and 

moderate Re, the velocity fluctuations and turbulent stress generated by inner-outer-interaction in 

turbulent boundary layers follow the predictions made by the attached eddy theory. With this in mind, 

we can hypothesize that the inner-outer interactions originating within the turbulent boundary layers 

have significant effects on the attached eddies. The objective of the present study is to elucidate the 

structural behaviors of transcritical wall-bounded flows, with the primary innovation being the 

substantiation of the inner-outer interactions in the turbulent boundary layers with strong variations in 
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thermodynamic properties. Moreover, we also extend the attached eddy model [29, 35-36] to 

transcritical flows and provide new scaling for the wall-attached eddy model by considering the inner-

outer interactions in turbulent boundary layers.  

The remainder of this paper is organized as follows. Sec. II introduces our DNS methodology and 

database for transcritical channel flows. Sec. III is associated with results of turbulent structures and 

attached eddy model in transcritical boundary layers. Finally, the concluding remarks are given in Sec. 

IV. 

II. DNS DATABASE OF TRANSCRITICAL CHANNEL FLOWS 

In this study, we analyze the turbulent boundary layers from an existing DNS database of the 

transcritical isothermal channel flows established in our prior studies [3-6]. The present working fluid 

is nitrogen with the critical pressure pc = 3.3958 MPa and the critical temperature Tc = 126.19 K. For 

the transcritical isothermal channel, the temperatures for the hot wall and the cold wall are kept 

spatially and temporally constant. The flow domain is of size Lx (streamwise) × 2Ly (wall-normal) × 

Lz (spanwise), with Lx/Ly = 2π, Lz/Ly = 4π/3, and with channel half-height Ly = 0.045 mm. The flow has 

a bulk pressure of pb = 3.87 MPa (corresponding to a reduced pressure of pr = 1.14) and is driven by a 

streamwise body force so that the mass flow rate is kept constant. The streamwise, wall-normal and 

spanwise coordinates are defined over the ranges 0 xx L  , y yL y L    and 0 zz L  , respectively.  

We use the cubic Peng-Robinson (PR) equation [46] as the equation of state (EoS) for transcritical 

nitrogen. Peng-Robinson (PR) equation reads 

2
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where R is the gas constant and the parameters a and b are given as 
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with 

20.37464 1.54226 0.26992 ,c                          (4) 

and with ω = 0.04 being the acentric factor. For N2, b = 8.58×10−4 and c = 0.432. All thermodynamic 

quantities are derived using the appropriate departure functions [3-6]. The transport properties 

(dynamic viscosity μ and thermal conductivity λ) are evaluated by the model for high-pressure fluids 

[47]. These models for thermal properties have been employed with their accuracy examined in our 

previous works [3-6]. 

In this study, we present results for four cases, i.e., TR3, TR1.9, TR1.4 and TR1. These cases are 

summarized in Table I. The reader is referred to Refs. [3-6] for the details on the DNS configurations, 

methodology, validations and mesh convergence analysis. Here we only make a briefly introduction. 

Cases TR3, TR1.9, TR1.4 are transcritical with a reduced temperature of Tr, cold = 0.79 at the cold wall. 

In case TR1, the two reduced wall temperatures are the same at 0.79, resulting in a constant-property 

incompressible flow with negligible heat transfer. The domain is discretized using a structured grid 

with mesh size Nx × Ny × Nz = 384 × 256 × 384. Expressed in wall units, the resolution corresponds to 

4.9 ~ 8x   , 3.26 ~ 6.8z   , 0.29 ~ 0.47y    at the cold wall and 0.2 ~ 1y     at the hot wall. 

After the flow reaches a statistically steady state, we average over homogenous directions and time 

over more than ten flow-through times to obtain statistically-converged results; one flow-through time 

is defined as x bL / u  with bu  being the bulk velocity.  
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Case Tr, cold Tr,, hot ρr, cold ρr, hot Reτ, cold Reτ, hot ρcold/ρhot 

TR3 0.79 2.38 2.17 0.12 430 300 18 

TR1.9 0.79 1.51 2.17 0.22 440 610 10 

TR1.4 0.79 1.11 2.17 0.42 500 1370 5.2 

TR1 0.79 0.79 2.17 2.17 700 700 1 

TABLE I. Summary of boundary conditions of all DNS cases. The subscripts hot and cold indicate the conditions 

at the hot wall and the cold wall, respectively. 

 

III. RESULTS AND DISCUSSIONS 

  In this section, we discuss the results. The Reynolds-averaged Navier-Stokes (RANS) mean of any 

variable f is defined here as f , and its perturbation from the mean is denoted by f  . The density-

weighted (Favre) average of f is obtained by computing f f /  , and f   is the corresponding 

perturbation. f  and f  represent averages in the streamwise direction x1 and spanwise direction x3. 

A. Interactions in the turbulent boundary layers at transcritical conditions 

To study the interactions within turbulent boundary layers, we compute the linear coherence 

spectrum (LCS), a parameter reflecting the linear coupling between fluctuations of different near-wall 

structures, to examine the spectral coherence between a near-wall reference position ζr in the log-layer 

and different wall-normal locations ζ in the outer layer of turbulent boundary layers [48]. To account 

for the density variations at transcritical conditions, we replace the fluctuating velocity in the classical 

LCS definition [48] with the density-weighted fluctuating velocity, as shown in Eq. (5): 
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where ̂  is the density-weighted streamwise fluctuating velocity ( u  ) in Fourier space, #̂  
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is its complex conjugate, ζr is the reference wall-normal position and λx is the streamwise wavelength. 

In Fig. 1, we present the linear coherence spectrum between *
r  = 50 (the reference position in the 

log-layer, *  is the semilocal wall units, * *u /    ) and *  = 300 in the outer layer for all cases. 

The results clearly show that 2 2 2 2
,TR3 ,TR1.9 ,TR1.4 ,TR1L L L L       , indicating an enhancement in 

spectral coherence between the log-layer and the out layer with increasing real-fluid thermodynamic 

effects. When using the semilocal viscous lengthscale *
v  to rescale λx, we find that 2

L  first increases, 

then keeps nearly unchanged with increasing λx, implying that stronger spectral coherence exists for 

large-scale structures. The increasing spectral coherence clearly suggests that the interactions between 

the log-layer and the outer layer for transcritical turbulent boundary layers. We will then confirm this 

by examining the energy transfer in transcritical turbulent boundary layers.  

 

FIG. 1. The LCS of the density-weighted streamwise velocity between *
r  = 50 (in the log-layer) and 

*  = 300 (in the outer layer): (a) near the cold wall; (b) near the hot wall. The streamwise wavenumber 

λx is rescaled by *
v  at *  = 300. 

The inner-outer interactions are further substantiated by means of sweep and ejection motions. Fig. 

2 shows the results of quadrant analysis [5, 45] for the streamwise Reynolds stresses u u   . Here, the 
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streamwise Reynolds stresses are decomposed into four quadrant events, and the contributions to the 

streamwise Reynolds stresses from each quadrant as a function of ζ∗ are presented. The quadrants 

represent the following turbulent motions: 

i) Near the cold wall: Q1 events with 0u    and 0v   , Q2 events with 0u    and 0v   

(ejection), Q3 events with 0u    and 0v   , and Q4 events with 0u    and 0v    (sweep);  

ii) Near the hot wall: Q1 events with 0u    and 0v   , Q2 events with 0u    and 0v   

(sweep), Q3 events with 0u    and 0v   , and Q4 events with 0u    and 0v    (ejection).  

Generally, the results show that, compared with TR1, the streamwise fluctuating energy is 

strengthened in the outer layer while reduced in the viscous wall-layer for transcritical cases (TR3 and 

TR1.9). The amplification of fluctuating energy in the outer layer may result from the energy transfer 

from the inner layer to the outer layer in the presence of the real-fluid thermodynamic conditions. 

Consequently, the interactions between the outer layer and the inner layer are strengthened. It can be 

seen that the streamwise turbulent stress is mainly generated by the ejection and sweep motions 

indicated by Q2 and Q4 events; hence, we can expect that the energy transfer within the turbulent 

boundary layer is accompanied with the enhancement of ejection or sweep motions in the outer layer 

and the attenuation of these motions in the inner layer. These will be discussed in the next section 

which focuses the turbulent structures that are associated with the interactions within the turbulent 

boundary layer at transcritical conditions. 
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  (a)                                     (b) 

 

  (c)                                     (d) 

FIG. 2. Quadrant analysis on the streamwise Reynolds stress. Black lines, u u    in TR1; red lines, 

u u    in TR3 or TR1.9; dashed lines, u u    in TR3 or TR1.9; pink lines, u u     in TR3 or TR1.9. 

(a) near the cold wall for TR3; (b) near the hot wall for TR3; (c) near the cold wall for TR1.9; (d) near 

the hot wall for TR1.9. 

Finally, the interactions within the transcritical turbulent boundary layer are visualized by the near-

wall turbulent structures. Fig. 3 shows the contours of density at several wall-normal locations near 

the hot wall for TR3, with the isocontours of wall-normal velocity fluctuations v  included. We note 
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that the density and the velocity fluctuations in TR3 are well correlated. Instantaneous snapshots of 

the density at ζ * = 540 in the outer layer imply that the high-density regions are associated with the 

sweep motions indicated by v> 0 (see Fig. 3(a)). The low-density regions correspond to the ejection 

motion indicated by v< 0 (see Fig. 3(b)), suggesting the low-density fluids ejected from the inner 

layer. In contrast, at ζ* = 100 and ζ* = 50, v> 0 is associated not only with the high-density streaks 

but also the low-density streaks (as shown in Fig. 3(c) and Fig. 3(e)), which appears to be different 

from the outer layer (i.e., ζ * = 540). This peculiar phenomenon is the consequence of the near-wall 

cycle and the interactions between the inner and the outer layers. The streamwise vortices with low 

density are populated in the buffer layer, the lift-up of these vortices transport them away from the 

wall, and then break-up in the outer layer. The low-density streaks thereby sweep towards the wall, 

resulting in v> 0 associated with the low-density streaks. Significant energy transfer originates from 

these wall-normal coherent motions within the turbulent boundary layers since the ejection and sweep 

motions play a significant role in the energy transport in transcritical turbulent boundary layers. 
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FIG. 3. Instantaneous snapshots (entire x-z plane) of the density near the hot wall of TR3, with (a ~ b), 

(c ~ d), (e ~ f) for ζ * = 540, 100, and 50, respectively. The superimposed lines in (a), (c), (e) indicate 

the positive wall-normal velocity fluctuations ( v> 0), while in (b), (d), (f) the superimposed lines 

represent the negative wall-normal velocity fluctuations ( v< 0).  

For a more quantitative view of the interactions within the transcritical turbulence boundary layers, 

instantaneous isosurfaces of wall-normal velocity fluctuations as well as corresponding contours of 

density near the cold wall are shown in Fig. 4. For TR3, the isosurface of wall-normal velocity 

fluctuations with v   2.5 m·s-1 and v   1.2 m·s-1 is associated with high-density structures (typically 

550  kg·m-3 in Fig. 4, corresponding to   in the buffer layer), exhibiting clear ejection events from 
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the near-wall layers as the near-wall turbulence lifts up the dense fluid into the lighter core of the 

channel. Apparently, this wall-normal mixing leads to significant interactions between the inner layer 

and the outer layer, resulting in effective mass transport and heat transfer in the log-layer. As the density 

ratio of the channel decreases, the number density of the structures with v   1.2 m·s-1 and v   2.5 

m·s-1 decreases, implying attenuated ejection and sweep motions with decreasing density ratio in the 

channel. As the fluctuating density is enhanced, so are the interactions between the inner layer and the 

outer layer.  

The isosurfaces of instantaneous density colored by the streamwise velocity fluctuations for TR3 

are shown in Fig. 5, in which the range of ζ* is 50 < ζ* < 500 near both walls. In Fig. 5(a), the density 

400   kg·m-3 corresponds to ζ* = 1100 (in the outer layer) near the cold wall in the mean density 

profile. The structures with 400   kg·m-3 shown in Fig. 5(a) originate from the high-speed streaks 

( 0u  ) in the outer layer, which allows one to conclude that these high-speed streaks correspond to 

the sweeping structures from the outer layer. Thus, the interactions between the outer layer and the 

log-layer are achieved by the high-speed, sweeping streaks from the outer layer. The structures with 

600    kg·m-3 (corresponding to ζ* = 17 near the cold wall for the mean density profile) have 

negative u , suggesting that the high-density structures are associated with the low-speed streaks; 

hence, the mixing between the inner layer and the log-layer is achieved by the ejected low-speed 

streaks from the buffer layer. A similar analysis can be performed near the hot wall. The low-density 

isosurfaces of 100   kg·m-3 in Fig. 5(c) and 300   kg·m-3 and Fig. 5(d)) (corresponding to ζ* = 

26 and ζ* = 430 near the hot wall for the mean density profile, respectively) are associated with both 

the low-speed streaks and the high-speed streaks. These results confirm that the interactions between 

the near-wall turbulence and the outer layer originate from the appearance of wall-normal motions of 
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these structures at transcritical conditions. 

 

FIG. 4. Isosurfaces of wall-normal velocity fluctuation colored by the instantaneous density near the 

cold wall, with v   1.2 m·s-1 in the left panel and v   2.5 m·s-1 in the right panel. (a-b) TR3; (c-d) 

TR1. The wall-normal coordinates correspond to 50 < ζ* < 500. 
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FIG. 5. Isosurfaces of instantaneous density colored by u  for TR3: (a) isosurfaces of 400   kg·m-

3 near the cold wall; (b) isosurfaces of 600  kg·m-3 near the cold wall; (c) isosurfaces of 100   

kg ·m-3 near the hot wall; (d) isosurfaces of 300    kg ·m-3 near the hot wall. The wall-normal 

coordinates correspond to 50 < ζ* < 500. 

We can summarize the interactions within the turbulent boundary layer at transcritical conditions in 

a schematic to provide a mechanistic description. As shown in Fig. 6, wall-normal coherent motions 

including sweep and ejection are enhanced at transcritical conditions. This results in the sweep of high-

speed streaks and the ejection of low-speed streaks, which then leads to the interactions and energy 

transfer between the inner layer and the outer layer. These enhanced interactions are therefore closely 

associated with the changes of the characteristic scales of the attached eddies. The coupling between 

the near-wall cycle and the wall-normal coherent motions are also observed in the near-wall regions, 

thus the statistics in the log-layer are modulated by both the inner-layer motions and the outer-layer 
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motions. The above structural changes in turbulent boundary layers in the presence of real-fluid 

thermodynamic effects enable considerable coherence between the log-layer and the outer layer. 

Finally, the scaling merely considering the inner scaling (such as semilocal scaling) and the outer 

scaling cannot provide accurate predictions of the statistics in transcritical turbulent boundary layers. 

 

FIG. 6. A sketch of interactions within the turbulent boundary layer at transcritical conditions 

B. Characteristic scales of turbulent structures at transcritical conditions 

For a more quantitative view of the turbulent structures in the transcritical turbulent boundary layer, 

the characteristic scales of the attached eddy are examined with particular attentions given to spectra 

in the log-layer. The characteristic velocity scale and length scale for the attached eddy in 

incompressible flows (i.e., *u  and ζ), the inner scaling *
v  and outer scaling Ly, are considered. In 
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Fig. 7, we extract the profiles of the energy spectra of the streamwise fluctuating velocity in different 

scalings. We observe that the collapse among the different profiles cannot be achieved when using *u  

and *
v  to rescale the energy spectra (see Fig. 7(a)). This is remarkably different from the conclusions 

drawn in variable-property turbulence [42]. The significant differences of the rescaled spectra near the 

hot wall and those near the cold wall when using the inner scaling *u  and *
v  are prominent. Fig. 

7(b) shows that the energy spectra normalized by characteristic scales in traditional attached eddy 

model, i.e., *u  and ζ. No general collapse is found in any wavenumber region, suggesting that the 

real-fluid thermodynamic effects change the characteristics scales of the attached eddies. The 

interactions within the turbulent boundary layer imply that the outer scaling should be taken into 

consideration when developing the characteristic scales of attached eddies in transcritical flows.  

 

FIG. 7. Energy spectra of streamwise fluctuating velocity using inner scaling and characteristic scales 

in the traditional attached eddy model extracted at different wall-normal locations for TR3. (a) using 

*u  and viscous length-scale *
v  (i.e., inner scaling) to rescale the energy spectra; (b) using *u  and ζ 

(i.e., characteristic scales in the traditional attached eddy model) to rescale the energy spectra. Solid 

profiles: near the cold wall; dashed profiles: near the hot wall. 
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The mixing length is another quantity which is associated with the length scale of the attached eddies. 

In the log-layer of incompressible turbulent boundary layers, the mixing length is proportional to the 

length scale of the attached eddies. In the non-equilibrium wall models, the algebraic mixing-length 

model, 

1 exp ,ml A






  
   

  
                            (6) 

is commonly employed to evaluate the eddy viscosity [49], where lm is the mixing length and A+ = 26 

[49]. In Fig. 8, we examine the effectiveness of Eq. (6). Fig. 8(a) shows the results of  ml /   given 

by Eq. (6), the profiles cannot collapse onto the exponential curve given by  1 exp / A    . Patel 

et al. [42] suggested to use semilocal scaling to collapse the statistical profiles for different variable-

property wall-bounded flows. Fig. 8(b) gives the results of the semilocal mixing length for all cases. 

The good collapse of the cold wall profiles is observed; profiles at the cold walls are more similar in 

nature to the classical constant-property results, with comparatively less effect of near-wall property 

gradients on the mean flow. The changes and fluctuations near the hot wall for TR3 are most significant 

among all cases, and the profiles near the hot wall do not collapse for all cases, implying the deficiency 

of semilocal scaling with the increasing density fluctuations.  
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FIG. 8. Examinations on the algebraic mixing-length wall model. (a) mixing length given by Eq. (6); 

(b) mixing length in semilocal scaling. 

Evidently, the semilocal scaling is achieved by the normalization with the inner scaling *
v . The 

inadequacy of the semilocal scaling at transcritical conditions leads us to hypothesize that a mixed 

scaling that accounts for the effects of the outer scaling should be considered in turbulent boundary 

layers with strong variations in thermodynamic properties. According to this, we propose a new scaling 

for mixing length: 

 = *m
*

y v

l
f f .

L

 


 
  

 
                           (7) 

In Eq. (7), the mixing length is rescaled by the channel half-height Ly while the wall-normal distance 

is normalized by the semilocal viscous lengthscale. Eq. (7) can be transformed to the following form: 

   = ,y* * *
m *

v w w

L
l f Re f

  
  

                     (8) 

with ζ* and *
ml  the semilocal wall distance and mixing length, respectively, * *

v/   , * *
m vl l /  . 

Eq. (8) exposes the modification of the semilocal scaling by employing the mixed scale *
y vL /  . Fig. 

9(a) shows that this new scaling is effective to collapse all profiles of the mixing length onto a single 

curve in the log-layer. To further substantiate the effectiveness of the mixed scaling, the energy spectra 

scaled by the mixed scaling for all cases are examined in Fig. 9(b). Following this mixed scaling, the 

energy spectra are rescaled by *u  and Ly, and wavenumber k is rescaled by *
v , i.e., 

   2
* *uu

v*
y

E
f k f k .

u L

                           (9) 

Compared with the results using inner scaling (Fig. 7(a)) and characteristic scales in the traditional 

attached eddy model (Fig. 7(b)), the mixed scaling achieves better collapse for all the profiles. For the 

energy containing region, the spectra for all cases can collapse reasonably well. The results of the 
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rescaled spectra highlight the effectiveness of the mixed scaling (Eq. (7) and Eq. (9)). Eq. (7) provides 

an effective way to predict the mixing length, and also provides the reduced-order mixing-length model 

which can be employed in WMLES methodology. Furthermore, the interactions between the inner 

layer and the outer layer are also confirmed by the better collapse of the energy spectra incorporating 

the outer scaling displayed in Fig. 9(b). 

 

FIG. 9. Predictions of (a) the mixing length based on the mixed scaling; (b) the energy spectra 

normalized by the mixed scaling for all cases, the solid lines indicate the cold wall profiles and the 

dashed lines denote the hot wall profiles. 

C. An extended attached eddy model at transcritical conditions 

A key conclusion drawn from the results in Sec. III A is that for transcritical turbulent boundary 

layers, the log-layer is mutually modulated by the inner layer and the outer layer. Ma et al. [3] showed 

that the streamwise velocity structure function follows a logarithmic scaling and the streamwise energy 

spectrum exhibits an inverse wave-number scaling, providing support for the attached-eddy hypothesis 

at transcritical conditions. According to the hierarchical random organization of the attached eddies, 

the eddies are generated at the wall, the number of eddies doubles as their size halves; the eddies fill 
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the space from the wall to the log-layer, where neither viscous effects nor large-scale effects play a 

significant role [34-37]. The hierarchical random organization in the traditional attached eddy model 

indicates that i) the eddies are prominently influenced by the inner layer, while the influences imposed 

by the outer motions are inactive [12]; ii) the characteristic lengthscale of the attached eddies is the 

wall-normal distance ζ [29, 31]. However, the traditional attached eddy model cannot be 

straightforwardly extended to the transcritical turbulent boundary layer due to the existence of 

interactions between the inner layer and the outer layer. In this section, we establish the extended 

attached eddy model by introducing the mixed scaling presented in Eq. (7) and Eq. (9). Let us retain 

the following natures of attached eddies at transcritical conditions according to the hierarchical random 

additive process: 

i) The attached eddies are a hierarchy of self-similar eddy motions which are inertially dominated, 

and attached to the wall; 

ii) The attached eddies have random and independent distributions, thus it follows that the velocity 

fluctuations at a generic location are generated by the random superposition of all the eddy-induced 

velocities at that location. 

Based on the self-similar characteristics of the attached eddies, the fluctuating velocity 

   , , x z u x u  induced by a particular eddy can be given by the universal expression according 

to Townsend [29]: 

  ,a

a

u 
    
 

x x
u x f                            (10) 

with uτ the friction velocity, namely, the characteristic velocity of the eddy, and xa = (xa, ζa, za) is the 

coordinate of the center of the attached eddy. Here we extend Eq. (10) by considering the characteristic 

velocity of attached eddies (i.e., *u ) and the mixed scaling (i.e., *
y vL /  ) at transcritical conditions: 
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  ,y* a
* *
v v

L
u  

    
 

x x
u x f                          (11) 

or, 

  y* a
* *
v v

L
.

 
    
 

x x
u x f                           (12) 

Eq. (11) suggests the idea of improving the semilocal scaling for velocity fluctuations by the factor 

*
y vL /  , thus showing consistency with the mixed scaling given by Eqs. (7) and (9). According to 

Mouri [50], the free-slip wall condition imposes fu ≠ 0, fv = 0 and fw ≠ 0 at ζ = 0. As justified later, in 

the log-layer (ζ → 0), it is reasonable to assume 

2
,  ,  ,

*
u w

u v v v w* * * *
v v v v

g g
f f g g f

 
   

                         (13) 

with g being some function of   *
a vx x /   and   *

a vz z /  . Assuming that the attached eddies have 

a population density P( *u , xa) (i.e., the number density of the attached eddies per unit area of the wall), 

the two-point correlation of fluctuating velocity in the channel can then be determined by integrating 

Eq. (11): 

     

 

2
2

2

2
4

2

, d d

, d  d d  d

y* * *a a
a a* * *

v v v

y* * * a a
a a a a* *

v v

L
P u u u

L
P u u u x z .

  

  

  

 
  

            
   

      
     

     



  

x x x r x
u x u x r x f f x

x x x r x
f f

        (14) 

  Eq. (14) can then be equivalently written as 

       
2

4 3
2

, d , d ,y* * * * *
a v a

L
P u u u    


        * *u x u x r I x r             (15) 

with * *
a a v/ x x , * *

a a v/    and  , * *I r x  the eddy-intensity function,  

 , d d* *a a
a a* *

v v

x z .
 

     
    

   
* * x x x r x

I r x f f                  (16) 

The limit ν → 0 is taken so as to ignore the viscous length ν/uτ with respect to the height ζa [29, 50]. 
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Then, a free-slip condition, i.e., 0u    and 0w   , is imposed on the wall at ζ = 0 [29, 50]. In 

Townsend’s attached eddy theory, this wall condition of velocity fluctuations yields constuuI  and 

 uv aI a /    with a a constant at 1a/     and r = 0, reproducing the nature of constant 

2u v / u   in the log-layer (i.e., ζ → 0). Ma et al. [3] examined the Reynolds shear stress in the log-

layer and reported that 2*u v / u   keeps nearly constant in the log-layer for transcritical channel flows 

with Reτ > 300. At ζ → 0 and r = 0. The condition of Eq. (14) yields 

 
2

4 3
2 4

, d d ,y* * * * * * *
a v a a*

Lu v
N u u u

u   


   


                        (17) 

and 

 
22

4 3
2 4

, d dy* * * * * *
a v a*

Lu
N u u u .

u   


  


                        (18) 

with     , , * * * *
a a x zN u P u L L    the number of the attached eddies with the size ζa. Integrating 

Eqs. (17) and (18) shows that the Reynolds stresses at the wall-normal location ζ are generated by the 

superposition of the effective attached eddies (with characteristic velocity of *u  ) whose center 

coordinate ranges from ζ to Ly. According to the dimensional analysis, reproducing the constant 

2*u v / u   at ζa → 0 gives rise to the following potential expression for N: 

  1*
aN .


                                (19) 

  Eq. (19) implies that the population density of attached eddies exhibits inverse scaling with the wall-

normal size of the eddies. According to Eq. (18), we have 

 

2 22
4 3 5 3

2 4 4

1 1

1
d d d

      ln ,

*
y v

*

L /y y* * * * * * *
v a v a* *

a

y

L Lu
Nu u u

u

A L / B



  


   
  



    

 

  
             (20) 

whose Fourier transformation leads directly to the celebrated inverse wavenumber scaling of the 

streamwise energy spectra, i.e., 
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1
uuE k .                                (21) 

The scaling of energy spectra obtained from Eq. (21) is consistent with DNS results. In addition, the 

dimensional analysis of  ,* *
aN u   results in the following scaling law for the number of the attached 

eddies: 

     1 12 1,* * * * * * *
a a v aN u u u .      

                        (22) 

  It can be seen that when plugging Eq. (22) into Eq. (17), the constant Reynolds shear stress is 

recovered. This provides justification for the form of function f in Eq. (13). In appendix A, we show 

that the present model reduces to Townsend’s wall-attached model for incompressible flows. 

Finally, we show the population density of attached eddies in transcritical flows to verify the scaling 

(Eq. (22)). Several studies have been performed to examine the population density of attached 

structures for incompressible flows. Hwang and Sung [32] reported that the distribution of the attached 

eddies is inversely proportional to its wall-normal extent for incompressible turbulent boundary layers. 

Since the attached eddies can be regarded as a hierarchy of geometrically self-similar structures in 

turbulent boundary layers [32, 48], we adopt the clustering methodology to distinguish the attached 

eddy structures following Cheng et al. [40]. The positive attached eddies (PAE) are defined as spatially 

connected regions satisfying 

   ,, , ,i i rmsu x z u                               (23) 

whereas the negative attached eddies (NAE) are regions with 

    ,, , .i i rmsu x z u                              (24) 

In Eqs. (23) and (24), ,i rmsu  denotes the root-mean-square of the velocity components and α is the 

threshold. Cheng et al. [40] took α as 1.5 based on percolation theory. Fig. 10 shows the clusters of 

streamwise velocity fluctuations identified by Eqs. (23) and (24). We observe that the clusters of u  
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have complex shapes, most of the clusters are attached to the wall whereas a few clusters distribute 

above the wall, exhibiting detachment from the wall. To extract the attached structures from these 

clusters, Cheng et al. [40] classified these clusters into two groups: attached eddies with the wall 

distance 1    and detached eddies with the wall distance 1   . In this study we follow this 

procedure to determine the number of the attached eddy structures. The streamwise, wall-normal and 

spanwise extents of the bounding box of the structures satisfying Eqs. (23) and (24) are defined as lx, 

ly and lz. To examine the present scaling of the population density of the attached eddies in transcritical 

turbulent boundary layers, we show the population density of the positive and negative attached eddies 

as a function of *  for TR3 and TR1.9 in Fig. 11. Note that since the eddies are attached to the wall, 

the wall-normal extent ly of the wall-attached eddies is equivalent to ζ. It can be seen in Fig. 11 that 

the population density of the attached eddies (including both PAE and NAE) can be well approximated 

by   1.1*
yP l


  . These results indicate that the population density of the attached structures at 

transcritical conditions is associated with their hierarchical length scales, with the decay of PAE 

deviating slightly from the theoretical estimations   1*


 that is given by our extended attached eddy 

model. 
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FIG. 10. Clusters of streamwise velocity fluctuations for TR3. The attached structures are distinguished 

based on Eqs. (23) and (24). (a) positive attached structures near the cold wall; (b) negative attached 

structures near the cold wall; (c) positive attached structures near the hot wall; (d) negative attached 

structures near the hot wall. The color indicates the distance from the wall. The wall-normal coordinate 

corresponds to 0 < ζ * < 100, and the x and z axes show the whole streamwise and spanwise extents of 

the flow field. 
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FIG. 11. Population density P (P = N/(LxLz)) of the positive and negative attached eddies as a function 

of their wall-normal extents *
yl . (a) for TR3 and (b) for TR1.9. The straight lines denote the scaling 

  1 1.*
yP l


 . 

In summary, we have proposed an extended attached eddy model in the context of transcritical 

thermodynamic conditions in this section. Compared with the classical attached eddy model [29] and 

the hierarchical random additive process model [34, 35, 50], we generalize the expression of the two-

point velocity correlation by taking account of the characteristic velocity and mixed scaling for 

transcritical thermodynamic flows. The model yields the inverse wavenumber scaling of energy 

spectra and the   1*


 scaling of population density of the eddies, which can be confirmed from DNS 

results. The mixed scaling reflecting the interactions within turbulent boundary layers enables the 

model to predict the statistics in transcritical boundary layers more accurately.  

IV. CONCLUSIONS 

In this work, we study the physical underpinning of the interactions within the turbulent boundary 

layer at transcritical conditions, and propose the characteristic scales and models of attached eddies. 

These observations are constructive for the development of the more accurate wall models of WMLES. 
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The conclusions are summarized as follows. 

i) Remarkable coherence between the turbulence in the inner layer and the outer layer is found. The 

streamwise Reynolds stresses of fluctuating energy amplifies in the outer layer while decrease in the 

inner layer, which results from the energy transfer from the inner layer to the outer layer under real-

fluid thermodynamic conditions. The interactions between the inner layer and the outer layer are 

highlighted by the success of mixed scaling that collapses energy spectra at transcritical conditions.  

ii) The complicated coupling effects of the near-wall cycle and the wall-normal coherent motions 

(i.e., sweep and ejection) play significant roles in the interactions and energy transport within 

transcritical turbulent boundary layers. With decreasing density changes, ejection and sweep motions 

in turbulent boundary layers in the channel attenuate. 

iii) The interactions within the boundary layers also modulate the characteristic velocity and 

lengthscale of the attached eddies in transcritical flows. It is found that the classical characteristic 

scales for attached eddies in incompressible flows cannot accurately characterize the attached eddies 

in turbulent boundary layers at transcritical conditions. An improved algebraic mixing length that can 

be employed as the reduced-order wall model in WMLES is proposed in the present work. This mixing-

length model incorporates a modification of the semilocal scaling by the mixed scaling / *
y vL  . We 

apply this mixing-length model in the log-layer at transcritical conditions and find that this model 

performs considerably well.  

iv) Finally, an extended model for the wall-attached eddy at transcritical conditions is proposed in 

order to incorporate the interactions within the turbulent boundary layers in the attached eddy theory. 

The two-point correlation of fluctuating velocity induced by the attached eddy is established taking 

account of the new mixed scaling, and the extended attached eddy model can yield the celebrated 
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inverse wavenumber scaling of the streamwise energy spectra at transcritical conditions. Furthermore, 

the model predicts that the population density of attached eddies exhibits   1*
yP l


 , with *

yl  the 

semilocally wall-normal extent of the eddies. This prediction agrees reasonably well with the DNS 

results. 
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APPENDIX A. COMPARISON OF ATTACHED EDDY MODEL WITH CONSTANT-

PROPERTY RESULTS 

We show that the generalized derived model in Sec. III C can reduce to Townsend’s wall-attached 

model for incompressible flows. For incompressible flow, Eq. (14) reduces to 

     
2

2
dy a a

a a
v v v

L
P u   

            
   


x x x r x

u x u x r x f f x           (A1) 

The eddy intensity function for incompressible flow reduces to 

 0, d d consta a
a a

v v

x z
 

      
    

   


x x x x
I x f f                (A2) 

and 
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2

1
,  ,u u v v

v v

f g f g


 
                            (A3) 

with g being some function of  a vx x /    and  a vz z /   . Thus, the extended attached eddy 

model yields the following scaling for streamwise velocity fluctuations for incompressible flows, 

   
2

1 12
d ln ,

yL

a a y

u
N A L / B

u 


  

                     (A4) 

which is consistent with 2 2/u u  obtained by the incompressible wall-attached eddy theory. 
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