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Abstract

Open-Source Intelligence (OSINT) is largely regarded as a necessary component for cyber-

security intelligence gathering to secure network systems. With the advancement of artifi-

cial intelligence (AI) and increasing usage of social media, like Twitter, we have a unique

opportunity to obtain and aggregate information from social media. In this study, we pro-

pose an AI-based scheme capable of automatically pulling information from Twitter, fil-

tering out security-irrelevant tweets, performing natural language analysis to correlate the

tweets about each cybersecurity event (e.g., a malware campaign), and validating the in-

formation. This scheme has many applications, such as providing a means for security

operators to gain insight into ongoing events and helping them prioritize vulnerabilities

to deal with. To give examples of the possible uses, we present three case studies demon-

strating the event discovery and investigation processes. We also examine the potential of

OSINT for identifying the network protocols associated with specific events, which can aid

in the mitigation procedures by informing operators if the vulnerability is exploitable given

their system’s network configurations.
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Chapter 1

Introduction

1.1 Impact of Cyberattacks

Cyber attacks on network infrastructures are becoming more frequent and catastrophic.

For example, Microsoft was a victim of a data breach discovered in January 2020 that caused

over 250 million customer records leaked online [2]. In May 2021, Colonial Pipeline was hit

with a ransomware attack [3] that caused gas supply to the east coast of the United States to

be completely cut off for days. In 2015, a cyber attack against power grids left hundreds of

thousands of people in Ukraine without power for six hours [4]. Not to mention the average

cost of a data breach rose from $3.86 million in 2020 to $4.24 million in 2021 [5]. Cyber

attacks are also constantly evolving. Sonicwall found 442,151 new malware variants in 2021,

an increase of 65% over 2020 [6]. The severity of malware has increased too. In 2020, 9

malicious actions on average were performed by a single piece of malware. This rose to 11

actions per file in 2021 [7].

Energy infrastructure is also affected by these developments. In May of 2021, the largest

fuel pipeline in the United States, Colonial Pipeline, was hit with what is considered as

the most severe ransomware attack against the energy infrastructure [3]. Colonial was able

to resume operations after paying $4.4 million in bitcoin as ransom. However, during this

period, gas supply to the east coast was completely cut off. Though the ransom was paid, the

hackers still made away with 100 gigabytes of information [8]. In 2015, a cyber attack against

power grids left hundreds of thousands of people in Ukraine without power for six hours [4].

Attackers shut down at least 30 substations, disabled backup power, and even sabotaged

the doors leading out of the operators’ workstations. These attackers used a Trojan called

BlackEnergy to access these networks and plant the KillDisk malware on the target systems

[9].
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1.2 Background

To better protect network and information systems, it is crucial for a system to identify

these cyber events as they occur and also aggregate all of the necessary pieces of information.

With the rate of these attacks as well as the speed of their evolution, the system must work

real-time.

Open-source intelligence (OSINT) is one of the most important tools for securing cy-

berspace [10]. OSINT refers to the search and collection of intelligence through public

resources such as datasets, blogs, or social media sites. This process is also aiding decision-

making for policy, foreign affairs, and the economy [11]. There are two main categories

of cybersecurity intelligence sources: formal and informal. Formal sources are typically

government-sponsored sites that collect technical information on cyber vulnerabilities such

as the National Vulnerability Database (NVD) or the Cybersecurity & Infrastructure Secu-

rity Agency (CISA). Conversely, informal sources are developed by independent entities such

as contractors or hobbyists and then made available online through a blog or social media

page.

Due to the widespread usage of social media by both governmental organizations and

independent entities, as well as the volume and velocity with which data is produced,

Twitter seems to be a highly viable data source for cybersecurity intelligence, with 330

million monthly active users posting 500 million tweets per day [12]. The global 2017

“Petya/NotPetya” ransomware attack was discussed on Twitter as early as four months

before the attack went public [13]. Hacktivists themselves even take to the social media to

disseminate vulnerability information amongst their collective. In one incident, a malicious

threat actor known as SandboxEscaper once released a zero-day, or previously unknown, vul-

nerability as well as linked proof-of-concept code in a public GitHub repository on Twitter.

Less than two days later, a group known as PowerPool began exploiting the vulnerability in

their own hacking campaign [14].
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1.3 Limitations of Existing Work

In recent years, there have been several studies on leveraging Twitter data for cyber-

security OSINT, but these studies are not without limitation. For instance several studies

forgo any form of content-based filtering for the tweets themselves, relying on the number

of entities extracted, the emotional sentiment, or the account’s follower count to determine

a tweets usefulness [15, 14, 16]. In practice, this could hinder the coverage of accounts used

by relying primarily on professional, well-known accounts and ignoring those of hobbyists

and, potentially, the hackers themselves. A secondary limitation is the lack of the ability

to connect information across tweets/accounts. Most studies will simply provide the tweet

verbatim, output some form of word frequency aggregation, or issue an alert [17, 18]. Part of

what makes OSINT effective is the ability to pull from multiple sources. However, not every

source may have a complete understanding of the event in question. Thus, the functionality

of aggregating information across sources is crucial.

1.4 Overview of Thesis

In this study, we leverage AI and Twitter data for OSINT. We propose a method to

automatically collect and correlate the necessary pieces of information about specific cyber

events (e.g., a malware campaign or vulnerability) for security operators to better understand

them and make more timely and informed decisions. Specifically, the system pulls tweets and

passes them through a multi-step AI pipeline. The first step serves as a cyber event detection

model to identify not only tweets in the cybersecurity domain, but also to detect those that

contain valuable information about specific events. The second step performs named entity

recognition (NER), a natural language processing (NLP) technique, so that the names of

different malware, threat actors, or companies can be extracted. Next, the named entities are

used to create a word co-occurrence network to assess the correlation amongst entities and

cluster them around events. Lastly, the subcomponents of the word co-occurrence network

are validated against phenomena such as Twitter spam that can hinder the integrity of the

information collected. The results of this pipeline are output to the user to show the current
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sub-topics in the cybersecurity community on Twitter and their potential to represent real

events occurring.

In addition to our empirical method evaluations, we also present three case studies. Event

discovery is the first of these studies. This use case follows a security operator who is simply

checking the twitter stream to see what events may be occuring without a specific one in

mind. Second, we evaluate the systems functionality on investigating a specific event. By

altering the initial search term, the user can focus the twitter stream to include a vulnerabil-

ity, a particular product, or even a malware. Third, we test how the pipeline can be used to

prioritize vulnerability patching. We take two vulnerabilities and investigate them using the

program. Based on the severity of the information found, the user should be able to make a

decision on which to prioritize.

Lastly, we evaluate the potential of implementing OSINT for the identification of network

protocols. Network protocols provide necessary pieces of information for understanding the

mechanics of a given event. However, identification methods vary given different criteria

and thus, no one method may work for all targets. To conclude this thesis, we evaluate

the efficacy of OSINT for network protocol identification via a keyword-based method and

a named entity recognition model.

1.5 Thesis Structure

The rest of this thesis is organized as follows. An examination of related work is provided

in chapter 2. Chapter 3 details the methology and evaluations of our method along with

three case studies. Chapter 5 describes the methodology and results of leveraging OSINT

for network protocol identification. Last, chapter 6 provides our closing statements.
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Chapter 2

Related Work

2.1 Deep Learning for Text Classification

Deep learning encompasses a variety of models all mimicking the structure of the human

brain. However, some forms of neural networks are better suited for certain problems than

others. Recurrent neural networks (RNN) are particularly suited to handle sequential or

time-dependent input data [19], and the use of RNNs in processing or generating natural

language is well established [20, 21]. Furthermore, Gated Recurrent Unit (GRU) models are

a form of RNN that is well suited for capturing the link between elements in a sequence

[22], like words in a tweet. [23] found that for text classification tasks such as sentiment and

relation classification, GRU models outperform both convolutional neural networks (CNN)

and LSTM models, especially with sentence lengths greater than 10 words. However, RNNs

are particularly vulnerable to what is known as the vanishing gradient problem. The van-

ishing gradient problem essentially causes neural networks to stop learning past a certain

point due, this is especially true for RNNs dealing with longer sequences of data. However,

contrary to plain RNNs, GRU architectures do not suffer from the vanishing gradient prob-

lem [24]. Regardless, some studies take this a step further and create bidirectional models.

The bidirectional aspect of the model allows data to be passed both forwards and backwards

which should alleviate any performance drops concerning the length of the sequence [25]. [26]

found that their bidirectional gated recurrent unit (BiGRU) architecture achieved a testing

accuracy of 91.6% when used in conjunction with GloVe embeddings after only 10 epochs

for text classification.

2.2 Social Media OSINT

In recent years, social media sites have been investigated as potential sources of open

source intelligence. [27] sought to develop an OSINT and social network visualization tool

based on Facebook that utilized heuristic and named entity recognition based approaches

to investigate organized crime. However, no empirical evaluations of the methods were pro-
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vided. Another study, [28], compared machine learning and dictionary-based approaches to

detecting malicious insiders, a problem effecting both the cybersecurity and broader corpo-

rate spaces, from user comments on YouTube. The highest accuracy of these methods was

81%. Twitter specifically has been implemented for OSINT in a number of fields such as

natural disaster support [29, 30], analyzing the stock market [31], and predicting elections

[32]. Furthermore, the two most prevalent applications of OSINT are in the cybersecurity

and social media domains [33].

Loosely speaking, the applications of Twitter for cybersecurity OSINT can be split into

two groups: alert-oriented and investigation-oriented. Alert-oriented methods seek to bring

specific events to a security operator’s attention. CyberTwitter [15] for instance proposes

a profiling system that extracts vulnerability information about a user’s installed software

programs and browser extensions. Through the use of an ontology and concept extractor,

the system is able to correlate Twitter information with the derived profile and issue alerts

for individual users. [16] also aims to address cyber event detection, but through the use

of NER and keyword-based approaches. This system functions as a trend detector, but for

cyber threat events specifically. [18] creates a system to identify tweets about cyber threats

and extract named entities from each tweet to generate a security alert or fill in an indicator

of compromise. Comparatively, investigation-oriented methods seek to aid operators in the

investigative process by aggregating Twitter information. Typically, these systems make

no decisions themselves. [17] provides cyber intelligence by using NLP techniques and a

specialized cyber-domain entity extractor. Through these methods, the system can output

information like important tweets and significant keywords. [14] also identifies cyber threat

tweets but through keyword heuristics and sentiment analysis with the goal of enhancing

preemptive preparedness for cyber events.

2.3 NER for Cybersecurity

One of the primary problems within natural language processing tasks is the ability to

identify named entities such as people, companies, or products. There are three primary
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categories for NER: rule-based, dictionary-based, and machine learning-based. Out of these,

supervised machine learning is the most adaptable and provides a reasonably high accuracy

[34]. One study that sought to quantify the significance of a given piece of cybersecurity

related text implemented the python library spacy‘s en core web lg pipeline for NER. After

adding a custom label, “ITProduct”, their model yielded an F1 score of 74.9 [35]. A similar

study seeking to extract exploit information from news articles compared two NER archi-

tectures: a BiLSTM and a spacy pipeline. The study found that the spacy pipeline vastly

outperformed the BiLSTM in every task [35].
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Chapter 3

Method

Overall, our method seeks to enable security operators to make more effective and timely

decisions by aggregating relevant information from Twitter and presenting it to them in an

holistic format.

Figure 3.1: System workflow.

3.1 Overview

Our pipeline (see Figure 3.1) contains three main phases: Cyber Event Tweet Detection,

NER, and Event-centric Entity Cluster Identification and Validation. The first begins with

pulling tweets from Twitter. These tweets are then passed to our Cyber Event Tweet De-

tection model which we trained using the concept of Transfer Learning. Transfer Learning

is used in cases where the target data is too limited to train a classifier, so instead the

classifier is trained on a related subject area with more prevalent data, then finalized using

the target data. In our case, a cyber event-specific dataset can only be built by hand but a

large dataset would be required to build a competent model. Thus, we pre-train the model

on a large number of general cybersecurity tweets, which are easier to automatically obtain,

and then fine-tune it on a small dataset of manually selected cyber event tweets. Once the

model identifies the cyber event tweets, they are passed on to the next phase. The NER

phase extracts the valuable information from the tweets, so that they can be clustered by

occurrence in the Event Cluster Identification phase. In this last phase, each cluster, repre-

senting an independent cyber event, is also validated to provide users with metrics to gauge
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Table 3.1: Search & Filtering terms to identify viable Twitter accounts

Filtering Keywords
Initial Twitter Stream #cybersecurity, #vulnerability, #cyber, #cy-

berattack, #infosec, #ransomware, #malware,
#hack, #hacker

Account Bio Founder, Analyst, Scientist, Director, cybersecu-
rity, hacker, Center, Centre, Dr., Doctor, CIO,
Chief Innovation Officer, CEO, Chief Executive
Officer

the spread and validity of the information. The user is provided with a report of each event

with notable tweets for each and an interactive word co-occurrence network.

The primary users of our solution are professionals that oversee the cybersecurity risks

of organizations such as security operators. They can use our approach for many purposes,

e.g., investigating how on-going cyber attacks could affect their organization and how their

un-patched vulnerabilities could soon be exploited.

3.2 Data Collection

3.2.1 Data for Cyber Event Tweet Detection

Due to the use of transfer learning, the cyber event tweet detection module needs general

cybersecurity tweets, non-security tweets, and cyber event-specific tweets. To begin build-

ing a dataset of general cybersecurity tweets, we elected to first identify accounts belonging

to industry professionals, similar to [14]. Through the use of Twint, an open-source Twit-

ter scraping tool, we extracted 119 accounts who had posted a tweet containing keywords

pertaining to cybersecurity such as “vulnerability”, “cybersecurity”, “phishing”, etc. To

validate that the account is a credible source, we filtered the accounts by ensuring that their

bios contain a title granting them some credibility in the field, essentially certifying the ac-

count. Table 3.1 shows the list of the search and filtering keywords. These steps derive the

332,518 positive data samples of general cybersecurity tweets.

We still need negative samples of general cybersecurity tweets. A 2009 study developed

a means of detecting the sentiment, or the opinions/emotions, of tweets. Due to the lack of

large publicly available tweet datasets, researchers in that study had to create one [36]. This
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dataset, commonly known as the Sentiment-140, contains 1.6 million tweets each labeled

as having either negative, neutral, or positive sentiment. Since its release, the Sentiment-

140 dataset has been used to assess the opinions of scientific studies online [37], to predict

stock movement [38], and even to enhance other datasets [39]. Considering these samples

were queried from the Twitter stream according to one of two emoticons, :) and :(, it is

reasonable to assume the majority are distributed into categories outside of cybersecurity.

After the removal of stop words such as “the” and “at” along with any links present in the

tweet, we were able to analyze the word frequencies of the data set. This analysis shows that

the most common words used were “good”, “day”, “get”, “like”, and “go” thus showing no

indication of cybersecurity tweets. Additionally, we found that the words “cybersecurity”,

“cyber”, “hacker”, “malware”, “vulnerability”, and “exploit” only accounted for 219 of the

12,276,829 word occurrences. Thus, any tweets from this dataset that happen to fall in the

cybersecurity domain should be overshadowed by the others, and their interference to the

model should be minimal. 320,351 tweets are randomly selected from the Sentiment-140

dataset to serve as the negative class in our dataset.

Next, we collected the cyber event-specific dataset. This dataset will be used to fine-tune

the cyber event tweet detection model. Due to the nature of cyber security information on

Twitter, these tweets were selected by hand. Companies often share basic tips and tricks (i.e.

“10 tips on how to avoid phishing scams”), but these are not useful for security operators

to understand a specific event. Following a similar methodology as before, we manually

searched a series of keywords related to cybersecurity and selected 181 tweets containing

valid information such as CVEs (Common Vulnerabilities and Exposures), software assets,

or malware families to serve as the positive samples. Again, we appended an equivalent

number of tweets from the Sentiment-140 dataset for the negative samples.
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Table 3.2: Entity labels for the NER model

Label Examples
AttackType Phishing, DDos, SQL Injection
Cardinal 1, two, 3, four
CVE CVE-2022-23657, cve-2022-23658

Global-Political Entity (GPE) United States, Russia, China, Canada
MalwareType Ransomware, Spyware, Ryuk, Petya

Money $50, six dollars, one-hundred euro
Ordinal First, 2nd, Third, 4th

Organization (ORG) Apple, Microsoft, Meta
Nationality, Religious, or American, Russian, Muslim,
Political groups (NORP) Democrat, Republican

Percent 10%, twenty percent
Product iPhone, Windows, iOS

3.2.2 Data for Named Entity Recognition

Again using Twint, we scraped approximately 11,000 new tweets by keywords defined in

Table 3.1, and then routed them through the cyber event tweet detection model for filtering.

Due to the output of neural networks being a continuous variable, we established a threshold

of 0.5 to convert the probabilistic values into binary decisions. Tweets generating a value

less than or equal to 0.5 are reassigned to 0 (denoting a non-cyber event tweet) and the rest

to 1 (denoting a cyber event tweet). This left around 5,000 tweets containing valuable cyber

event information. Using the Prodigy annotation software, we labeled the entities that may

be useful for security operators to know, such as types of malware or CVEs. A complete list

of entity labels, as well as some examples, are provided in Table 3.2.

3.3 Cyber Event Tweet Detection

3.3.1 Architecture

We adopt a similar neural network architecture to [26] using BiGRU layers, but instead

of GloVe embeddings, we use a randomly initialized embedding layer which will convert

n integer-based word encodings into vectors of length d, thus creating an n ∗ d matrix

representation of the entire tweet. In [26], the authors used GloVe embeddings for any token

that was available; however, they approximate that 18% of the tokens from their dataset do

not have GloVe mappings, thus warranting the use of random vectors for those tokens. We
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(a) Diagram of a GRU unit
(b) A BiGRU architecture showing the di-
rection

Figure 3.2: Diagrams for GRU and BiGRU

found that approximately 44% of our tokens lacked a GloVe mapping. Considering nearly

half of our tokens would need random vectors, we elected to use the randomly initialized

embedding layer to generate uniformly distributed random vectors for every token.

The equations to compute the output of a GRU unit as shown in Figure 3.2a with input

xt and the output of the previous unit ht−1 are shown below, where σ is the sigmoid function

and Wi, Wr, and Wc are the weights for the input, the reset gate, and the current memory

content, respectively.

zt = σ(Wi ∗ [ht−1, xt]) (3.1)

rt = σ(Wr ∗ [ht−1, xt]) (3.2)

ct = tanh(Wc ∗ [rt · ht−1, xt]) (3.3)

ht = (1 − zt) · ct + zt · ht−1 (3.4)

For a BiGRU architecture, one set of GRU units processes the input from start to end, while

a second processes the input in reverse, as shown in Figure 3.2b.

We use an output dimension d of size 25 along with an embeddings regularizer (L2 =

0.0438). The architecture contains a BiGRU layer with 128 state cells. Contrary to [26],

we skip the concatenation of the BiGRU outputs and instead route them through a fully

connected (FC) layer of 128 units. Lastly, the model includes a dropout layer with a 33%

rate and a FC layer with 1 unit to achieve a binary classification.
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Table 3.3: Cyber Event Detection Model Architecture

Layer Type Output Shape
Embedding (None, 140, 25)

Bidirectional (None, 256)
Dense (None, 128)

Dropout (None, 128)
Dense (None, 1)

3.3.2 Encoding

Before we could begin training the model, we first need to encode the tweets. The embedding

layer present in the architecture detailed in Table 3.3 takes in an array of integers and

converts them into vectors of uniform distribution. The maximum number of words possible

in a tweet is 140, meaning that our array would contain 140 integers. Thus, we created a

dictionary mapping each unique word present in the training data to a specific integer, with

a few exceptions.

First, as shown in Table 3.2, one of our primary labels for NER is the CVE. CVEs

essentially act as reference tags for vulnerabilities. This also means that every CVE is

unique. Mapping every CVE to its own integer is unhelpful, especially since any tweet

containing a CVE should automatically be considered a positive case for the cyber event

detection algorithm. Instead, we elected to map all CVEs to one integer: 2. Similarly, the

set of unique words in the dataset is hardly all-encompassing and new malware and threat

groups come out frequently. To remedy this and avoid issues with the model, any words not

present in the dictionary, i.e. those without a mapping, are mapped to 1. Lastly, most tweets

will not contain 140 words, so we must pad those entries with 0s to maintain a uniform size.

3.3.3 Training

As aforementioned, transfer learning is used. We first train a model to identify general

cybersecurity tweets, and then train a model to identify cybersecurity events. To train the

model to identify tweets relating to the cybersecurity domain as a whole, we trained it with
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50% of the “General Cybersecurity dataset” mentioned previously and validated it with the

remaining 50%. We specified 20 epochs and a batch size of 64. Then, using the “Cyber Event

Specific” dataset, we focused the pre-trained model to identify tweets containing valuable

event-specific information. Because this dataset is rather small, we elected to use a 90/10

training/testing split, 100 epochs, and a batch size of 20.

Training utilized binary crossentropy loss (Eq. (3.5)) and the Adam optimizer with

a learning rate of 0.001. We also elected to implement two functions that augment the

training process as a whole, known as callbacks: ReduceLRonPlateau and EarlyStopping.

ReduceLRonPlateau keeps track of the validation loss and lower the learning rate by a factor

of 0.1 to avoid overshooting the local minima. Similarly, EarlyStopping also keeps track of

the validation loss but will stop the training process entirely if it stagnates for longer than

3 epochs.

loss = −y log ŷ − (1 − y) log(1 − ŷ) (3.5)

3.4 Named Entity Recognition

At this point, the Twitter stream has been filtered to only include tweets containing

valuable information about cybersecurity events. Thus, it is time to extract the specific

entities that may be useful in describing them. The NLP library spaCy provides several pre-

trained model pipelines, notably the en core web md pipeline. This pipeline has been used

in multiple domains from extracting brand names for sentiment analysis [40] to correlating

diseases with specific pre-existing conditions [41]. It takes the raw text as input and passes

it through a series of components, each taking in the output of the previous component

and passing its own output to the next. Most of these components provide simple but

necessary functions, such as word vectorization and part-of-speech tagging. Lastly, the NER

component allows for the labeling of non-overlapping spans, so we can extract entities such

as companies and malware families from tweets. Overall, this pipeline features 685 thousand

keys and 20 thousand vectors of dimension 300. For training the pipeline, we kept the

default configuration of an 80/20 training/testing split and the initial learning rate of 0.01.
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The components besides tok2vec and NER were frozen to avoid changing their weights.

3.5 Event Cluster Identification and Validation

After the entities are extracted, we aggregate them into specific events and analyze their

degree of co-occurrence. For this phase we used three python libraries: Pandas, Pyvis,

and Networkx. After iterating through the entities and creating a Pandas DataFrame of

entity pairs and their number of co-occurrences, we used Pyvis and Networkx to construct

undirected network graphs. Fig. 3.3 shows an example Pyvis graph. The nodes show the

entities present in the initial scrape of the program. Each edge connecting two nodes shows

the number of co-occurrences, or weight, of the pair. To avoid cluttering the network, we

filtered out any edges where the weight was one, as one co-occurrence is not evidence of a

strong correlation. Using the Networkx graph, we segmented the graph into its connected

subcomponents (i.e., subgraphs) for further analysis. Each subgraph can be understood as

a self-contained event and demonstrates the connections between the primary entities.

Diffusion Index = #Unique Users/#Total Tweets (3.6)

Spam Index =
Σ#users

n=0 ( 1
# nth User Tweets

)

#Total Tweets
(3.7)

Due to the varying degree of veracity, or truthfulness, of social media data, it needs

some means of validation. Measuring the frequency of tweets about a certain topic is not

enough to gauge their validity because in extreme cases, those tweets could be coming from

a single user in an attempt to clog or redirect the focus of the Twitter stream. Thus,

measuring the number of tweets about a subject while also adjusting for number of accounts

participating in the conversation is important. We adopt two metrics from a prior study

[42]. The Diffusion Index, given by Eq. (3.6) measures how quickly information has spread.

The Spam Index, given in Eq. (3.7), measures repeated tweets from the same user. It can

be viewed as inflating the diffusion. In practice, we would grant more trust to topics with

high diffusion and spam indices. A low diffusion would signify that a very small number of
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Figure 3.3: An Example Network Graph

users, potentially a community, are discussing the event. Though this is does not inherently

make the information false, when coupled with a low spam index (signifying disproportionate

tweet contribution), it could be evident of tactics to obscure other, more severe, events.

3.6 Method Evaluations

3.6.1 Evaluation Metrics

We use 6 metrics: Area under the Receiver Operating Characteristic curve (AUC-ROC),

Accuracy, Precision, Recall, F1-score, and Specificity. The AUC-ROC score compares the

true and false positive rates across different discrimination thresholds. The curve can be

compared to a line from (0,0) to (1,1) which represents an untrained classifier that will label

the samples randomly. The greater the ROC curve’s deviation from this line, the higher

the performance. The remaining metrics all operate on a binary basis, meaning any values

above a threshold of 0.5 are converted to 1 (positive) and the rest to 0 (negative). The use

of binary classification generates four cases: true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). Accuracy is defined as the number of correct, or

true, predictions divided by the total number of predictions. Precision, defined in equation
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3.8, focuses on how well the model detects the positive class and does not take into account

any values concerning the negative case. Conversely, recall (defined in equation 3.9) accounts

for the false negatives, or samples incorrectly classified as negative.

Precision =
TP

(TP + FP)
(3.8)

Recall =
TP

(TP + FN)
(3.9)

F1-score, defined in equation 3.10 is more robust against class imbalances than standard

accuracy is, but it does not demonstrate the models’ performance on the negative class.

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.10)

Specificity (equation 3.11) denotes the proportion of true negatives to the number of

samples the model classified as negative, and should help demonstrate how well non-cyber

event tweets are discarded.

Specificity =
TN

(TN + FP)
(3.11)

3.6.2 Cyber Event Tweet Detection

Fig. 3.4 shows the performance of cyber event tweet detection. On a MacBook Pro (2017)

with a 3.1 GHz dual-core Intel i5 processor, pre-training and training the model took just over

9 hours (543 minutes) and approximately 90 seconds respectively whereas model predictions

take approximately 5ms per sample. The pre-trained model achieved a 98.6% accuracy

and a 98.6% AUC-ROC (Fig. 3.4c) score. It yielded 97.7%, 99.6%, 98.7%, and 97.6% for

precision, recall, F1 score, and specificity respectively. The results show that the model can

very accurately identify general cybersecurity tweets. The final cyber event tweet detection

model achieved a 97.2% AUC-ROC score (Fig. 3.4d) and 96.9% accuracy on its testing set.
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(d) ROC Curve for Final Model

Figure 3.4: Performances of Cyber Event Tweet Detection

After inspecting the confusion matrix in Fig. 3.4b, it is clear that the model can correctly

classify cyber event tweets, as it receives a recall of 1. However, a small portion of tweets

that did not pertain to a cyber event were not discarded, thus generating false positives

and resulting in a 94.1% precision. The model got an F1 of 97.0% and specificity of 95.2%.

Overall, the performance is good, although not as good as the pre-trained model due to

insufficient cyber event tweets in the training data.

3.6.3 Named Entity Recognition

Again, on a MacBook Pro (2017) with a 3.1 GHz dual-core Intel i5 processor, training

the model took approximately 38 minutes and 17 ms per prediction. Overall, the method

received 88.55%, 89.70%, and 87.43% for F1, precision, and recall respectively. However,

further examination revealed that entity labels crucial to the function of the scheme, such as

CVE, MalwareType, and AttackType, all receive F-scores above 94.0%. The labels where the

model’s ability is lacking (F1 below 85%) are Org, Product, and Cardinal. A full breakdown
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of the NER model’s performance by label is provided in Table 3.4.

Table 3.4: NER Performance Per Label

Label Precision Recall F1 Score
CVE 98.85 98.85 98.85

MalwareType 94.74 96.64 95.68
Ordinal 100.00 90.00 94.74

AttackType 98.32 90.70 94.74
Money 94.74 90.00 92.31
NORP 97.83 84.91 90.91
GPE 92.02 89.82 90.91

Percent 81.82 90.00 85.71
Org 82.59 76.34 79.34

Product 75.00 84.00 79.25
Cardinal 71.11 78.05 74.42

3.6.4 Entity Clustering

To evaluate the efficacy of clustering named entities by their co-occurrence for cyber event

detection (see Fig. 3.3 for examples), we randomly selected nine event clusters as test

cases. By manually comparing each edge within the cluster network against what is avail-

able online and our own knowledge, we were able to gauge the relevancy/correctness of the

edges/connections between different nodes. Since the full clusters contain too many edges

to manually verify, for each cluster we only checked the edges connected to the central node

(i.e., the node with most edges in the cluster). As shown in table 3.5, the percentage of

correct edges ranges from under 70% to 100%. Overall, we found the percentage of correct

edges returned by our solution to have a weighted average of approximately 84.41%, showing

a good accuracy.
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Table 3.5: Event Cluster Validity

Central Node #Edges Percentage of Correct Edges
CVE-2022-30129 2 100.00%
CVE-2022-29866 6 100.00%

Spotify 3 100.00%
Facebook 10 100.00%

Apple 65 96.92%
Android 36 88.89%
Microsoft 21 76.19%
MacOS 69 72.46%

cve-2022-32893 19 68.42%
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Chapter 4

Case Studies

4.1 Cyber Event Discovery

The first use case is the discovery of new cyber events. Under these circumstances, the

user would use the program’s default search parameters to capture the largest breadth of

Twitter chatter possible. Security officers could in turn use this information to defend their

systems, potentially even before major security information providers begin reporting on it.

This case study was conducted on May 23, 2022 at approximately 10 a.m. After an initial

run, the program revealed 14 events that might be occurring. The top 5 events with the

highest weight are provided in Table 4.1 along with their diffusion and spam indices, and

a notable tweet. With the tweet column, we are able to examine the events with better

context. In fact, all 5 clusters contain a CVE and four of the five refer to a specific version

number for the vulnerable asset. This may not always be the case, however. Thus, there are

instances in which entity clusters may need further investigation, which is discussed further

in section 4.2. We were able to find corroborating articles for each of the clusters [43, 44,

45].

4.2 Cyber Event Investigation

Under some circumstances, the user may already know of an event and would like to

investigate it. To simulate this use case, we focus on the “log4j” vulnerability that affected

many companies in early 2022. The vulnerability was first disclosed in early December 2021

as a remote code execution (RCE) bug with a critical severity classification. Less than a

day later, the vulnerability was being exploited by multiple threat actors, such as the Mirai

botnets. Information like this is crucial for security operators to monitor their systems,

especially considering Cloudflare and Cisco suffered attacks more than a week before the

vulnerability was publicly disclosed [46]. With our proposed solution, professionals would

have had access to information about this event and its implication, regardless of whether

or not the provider had reported on it.
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Table 4.1: Top five entity clusters with their associated outputs. Tweets are provided without
modification.

Entity Cluster Diff. Spam Sample Tweet
cve-2022-20821, 1.0 1.0 Cisco Warns of Exploitation Attempts Tar-

geting New IOS XR Vulnerabi... (Securi-
tyweek) The flaw, tracked as

xr, cisco CVE-2022-20821, was discovered by Cisco
during the resolution of a s...

cve-2022-29599, 1.0 1.0 CVE-2022-29599 : In #Apache Maven
maven-shared-utils prior to version 3.3.3,
the Commandline class can

maven, emit double-quoted strings without proper
escaping, allowing shell injection attacks....

commandline
cve-2021-30028 1.0 1.0 Emerging Vulnerability Found CVE-2021-

30028 - SOOTEWAY Wi-Fi Range Exten-
der v1.5 was discovered to

range wi-fi use default credentials (the admin pass-
word for the admin account) to access the
TELNET service, allowing
attackers to erase/read/write the firmwar

cve-2021-42863 0.7 0.583 Potentially Critical CVE Detected! CVE-
2021-42863 A buffer overflow in ecma_

builtin_typedarray_prototype

jerryscript _filter() in JerryScript version fe3a5c0
allows an attacker to con... CVSS: 8.80
#CVE #CyberSecurity

cve-2022-1816 1.0 1.0 CVE-2022-1816 A vulnerability, which was
classified as problematic, has been found in
Zoo Management Sys-

zoo tem 1.0. Affected by this issue
is /zoo/admin/public_html/view_

accounts?type=zookeeper of the content
module....

To begin our investigation we searched “log4j” and found 1017 tweets. Passing them

through our cyber event detection model resulted in 487 tweets. An initial analysis is shown

in Table 4.2. The word co-occurence network, provided in Figure 4.1a, shows a strong

correlation between log4j, VMware, Apache, and RCE. There is also a number of CVE

tags present in the network. To continue our investigation, we included CVE-2021-44228 in

22

ecma_builtin_typedarray_prototype
ecma_builtin_typedarray_prototype
_filter()
/zoo/admin/public_html/view_accounts?type=zookeeper
/zoo/admin/public_html/view_accounts?type=zookeeper


(a) log4j (b) log4j cve-2021-44228

Figure 4.1: Word Co-occurence networks for investigation search terms

the search parameters as it has the highest co-occurence with “log4j”. This small change

dramatically reduced the network as shown in Figure 4.1b. For the final run we wanted to

see if we could gather more information about what Lazarus may refer to. With the addition

of this entity, the program was able to find a tweet containing all three entities, provided in

Table 4.2. Of the entities found, North Korea was among the nation-states seen exploiting

log4j [47], CVE-2021-44228 was the first of the CVEs revealed during this event [46], and

Lazarus was a threat group targeting VMware servers [48]. In this process, many of the key

entities of this event were identified in less than a minute.

4.3 Vulnerability Prioritization

In this case study, we adopted the perspective of a security operator who just became

aware of two vulnerabilities in our company’s system, namely CVE-2022-26862 and CVE-

2022-26717, but we did not know how to prioritize patching them. Our OSINT tool can

provide intelligence that complements existing AI-based vulnerability management solutions

[49, 50, 51, 52]. Specifically, we followed a similar methodology as section 4.2. After pass-

ing CVE-2022-26862 through our OSINT system, we found that the diffusion and spam

indices of this topic are rather low, 0.6 and 0.467, meaning that the conversations about

23



Table 4.2: Diffusion and Spam Index Values from Example Entity Clusters. Tweets are
provided without modification.

Entity
Clus-
ter

Diff. Spam Sample Tweet

log4j
vmware
us

0.923 0.885 #Log4Shell reminded us how important it is to have a
trusted open-source software provider. This blog post
by @mpermar explains the vulnerability in detail and
how VMware Application Catalog brings confidence to
developers and operators. https://t.co/OhLawPexfJ

#Log4j #CVE
cve-
2021-
4422
lazarus
north

1.0 1.0 North Korea-linked group Lazarus is exploiting the
Log4J RCE #vulnerability (CVE-2021-44228) to com-
promise VMware Horizon servers. If not already do
the right thing: Patch yours! #becybersmart https:

//t.co/EYFNTcEfOz

this vulnerability are fairly isolated. Our system also found two notable tweets showing that

the vulnerability affects certain versions of Dell BIOS, and allows a locally authenticated

malicious user to bypass security controls.

An initial run of our OSINT tool found a strong correlation between CVE-2022-26717

and “safari”. Once we included “safari” in our search terms, we found diffusion and spam

indices of 1.0 and two notable tweets. The first provided a link to an exploit dated May 8th.

The second also linked this exploit, but provided the patched version number as well.

We found CVE-2022-26717 the more dangerous vulnerability and should be prioritized as

such. Not only were there fewer conversations about CVE-2022-26862, it also required a local

user. This concludes our investigation. In fact, CVE-2022-26717 is much more widespread

and has a publicly available exploit circulating. Thus, it indeed deserves a higher priority,

validating our tools recommendation.
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Chapter 5

OSINT for Network Protocol Identification

5.1 Overview

Overall, network protocols simply define the data formatting, sending, and receiving

rules for a network endpoint. HTTP, TCP, and SMTP are examples of such protocols.

However, they can also provide crucial information in the domain of vulnerability manage-

ment, specifically whether or not the vulnerability is even exploitable. With the adoption

of wireless networking, firewalls became commonplace. Broadly speaking, firewalls filter in-

coming/outgoing network traffic according to some criteria, typically via port. These ports

are actually assigned to traffic via a specific protocol. Thus, by knowing what protocol a

vulnerability relies on, security operators can better determine if their systems are at risk,

even if a vulnerability is present.

In this section we detail the methodology and evaluations of an alternative method of

extracting cybersecurity information from Twitter data. Though NER has yielded impressive

results, both in this study and others, it may prove less effective than or need to be coupled

with other methods, such as keyword identification, to achieve optimum performance. One

such situation is the identification of network protocols. Keyword identification methods

search a given string of text, such as a tweet, for a given sub-string, such as ”HTTP”.

However, the protocols are not always mentioned. Thus, we built a mapping that will allow

us to match certain products that are mentioned in a tweet to their associated protocols.

In the following sections we describe the datasets used, the methodology of building the

mapping, and the evaluations of the method with a comparison to NER performance.

5.2 Datasets

5.2.1 Protocol Mapping

To build this dataset, we employed the use of the national vulnerability database’s API.

With this API, we pulled every CVE from January 15, 2019 to September 14, 2022. We

then had nearly 130,000 records detailing different characteristics of the vulnerability such
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as status and published date, but most importantly we had the vulnerability’s description.

Next, we took a random sample of 50% of the CVEs, leaving us with 62,837. We went

through a few pre-processing steps before proceeding. First, we converted the descriptions

in to their lowercase forms. Next, we removed any from of website link through the use of a

regular expression provided in equation 5.1. Following a similar methodology as in section

3.5, we leveraged the co-occurrence of a product and a protocol. By iterating through the

CVE descriptions we were able to asses what products and protocols occured in the same

CVE description, thus, insinuating a connection. The products were identified using the

NER model described in section 3.4 and the protocols were identified by their keyword

occurrence. These co-occurrences are then aggregated into a python dictionary mapping the

lower-case string representation of the product, “axis m1125” for example, to a lower case

string of its associated protocols separated by spaces such as “http ftp”. It is worth noting

the majority of the mappings only map products to a single protocol, but a few do contain

multiple, which is possible. The resulting 567 mappings were then manually validated. A

sample of these mappings are provided in table 5.1

https?://\S+ (5.1)

Table 5.1: Sample of Product-to-Protocol Mapping

Product Protocol Product Protocol
Zyxel armor http siplus s7-1500 tcp

zte psirt telnet http::daemon http
advantech scada http vaadin designer http
simatic et200s udp horde Groupware http
apache wicket dns jabber smtp

bacnetstac ftp telnet haproxy http
snapdragon compute tcp kibana http

adblock plus http phabricator dns
somatom x.cite tcp openldap dns

honeywell experion lx tcp totolink a3100r telnet
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Table 5.2: List of Protocols Searched for

Protocols
http, tcp, ftp, telnet, dns, arp, udp, smtp

5.2.2 Ground Truth

Before we can asses the efficacy of our approach, we need a high-quality ground truth to

compare to. Once again, through the use of the NVD API, we pulled any CVE from 2019 to

present whose description mentions one of the protocols provided in table 5.2. Following the

pre-processing steps used in section 5.2.1, we lower-case standardized the descriptions and

removed any external links. The label for these records is the network protocol mentioned

in their descriptions. Before moving further, we validated the approach by taking a random

sample of 100 of these records and manually analyzing them. We found that 90% of the CVEs

analyzed were correctly associated to a protocol. Additionally, we applied the previously

developed mapping to the CVE descriptions, effectively extending the number of protocols

each CVE may have been mapped to.

5.3 Protocol Extraction via Tweet

The application of the product-to-protocol mapping and the keyword identification would

likely occur within the NER phase discussed in section 3.4. By this point in the pipeline, the

set of tweets will have already been filtered to include only those pertinent to cybersecurity.

First, the tweet is lower-case standardized. Next, the tweet is searched for each of the 8

protocols mentioned in table 5.2. If a match is found, that protocol is added to the list of

entities that need to be correlated. If no match is found, we continue with the NER model.

From here, we check to see if any of the products found by the NER model are keys in the

Product-to-protocol mapping. The protocols associated with any valid mappings are then

added to the list of entities.
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5.4 Evaluations

5.4.1 Metrics

For measuring the effectiveness of the approach, we use two primary metrics: coverage and

accuracy. Coverage measures the prevalence of the terms of interest in the Twitter dataset.

For instance, if we are investigating a vulnerability associated with HTTP, but none of the

tweets actually contain the keyword ”HTTP”, we will have a coverage of 0. If the tweets do

mention the protocol, however, we will have a coverage of 1. This value is averaged over the

CVEs investigated. Lastly, we implemented accuracy. In this case, accuracy is the number of

covered CVEs where we were able identify the correct protocol though the process described

in section 5.3.

5.4.2 Comparison of Methods

By taking into account the products present within our Product-to-Protocol mapping, we

found a coverage of approximately 77.7%, as opposed to 54.1% without the mapping. This

means that of the CVEs we investigated, Twitter data contained some network protocol

information for 77.7% of the CVEs. These tweets were then used to evaluate the accuracy of

our method for those vulnerabilities. Overall, the Keyword/Mapping approach outperforms

the NER model on a per-protocol basis and yields an average of 90.6% when weighted against

the number of samples per-protocol. A complete breakdown of the performance of both the

NER and Keyword/Mapping aproaches are provided in table 5.3

5.5 Approach Limitations

Though the Keyword/Mapping approach outperforms the NER model, there are still

limitations to the approach. First, our tests focused on the identification of eight protocols,

but in practice the list of protocols used to build the Product-to-Protocol mapping and the

keyword search itself would need to be exhaustive. Considering the rate that techonology

progresses and the computational complexity costs of adding new items to this list, it may
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Table 5.3: Accuracy Comparison of Methods

Protocol NER Keyword & Mapping
http 46.0 88.3
ftp 57.1 97.0

smtp 78.9 95.8
telnet 82.8 94.3

tcp 55.7 97.4
arp 19.4 100.0
dns 60.0 96.4
udp 77.7 91.1

Weighted Average 50.1 90.6

not always be feasible. Secondly, keyword-based approaches typically have a high false-

positive rate. For instance, one of the products we identified when building the mapping was

called ClearPass. Through our qualitative investigations into what might be limiting the

methods performance, we discovered that CVEs involving ClearPass were being associated

with the protocol ARP without it ever being mentioned. We quickly realized that the

program was identifying ARP as a substring of the product name: Cle-arP-ass. The simplest

solution would be to append spaces to the beginning and end of the search terms so that the

method only identifies protocols if they are stand alone words and in the middle of a token.

However, we believe this ability to identify protocols mid-token may be why the keyword-

based approach outperforms the NER. Take the product “httpdaemon” for instance. To

human readers, it is understood that this product deals with the HTTP protocol and thus

that may be the only mention of the protocol in the description at all. The tokenization

rules of most NER models would leave this token as is and not be able to see it contains a

protocol within. Keyword-based approaches however would. An empirical study would be

needed to both asses both the false-positive rate of the approach as well as the benefit of

allowing mid-token identification.

29



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed a scheme of discovering and analyzing cyber events through the

use of OSINT based on Twitter data. Through a multi-model pipeline, our system can filter

the Twitter stream to identify cyber event tweets, extract the valuable information about

specific cyber events, and validate their veracity. The results of the project are promising and

show that the pipeline could be used in practice to inform professionals during investigations.

We also presented three case studies to demonstrate a few scenarios in which the system

could be helpful. Lastly, we examined the potential of Twitter OSINT for the identification

of network protocols. The results of this branch of work further support the use of Twitter

for cybersecurity intelligence gathering.

6.2 Future Work

For future work, there are two primary directions we would like to take: usability and

refinement of entities. In regard to usability, we would like to enhance the resulting co-

occurence network produced at the end of the pipeline. As shown in figure 3.3, some clusters

can become very convoluted, making it difficult for the users to evaluate the associated event.

Further research into network analysis techniques for how to trim the network could remedy

this. Additionally, the use of more user-friendly icons could help the user sift through the

information. For instance, instead of every node being a blue circle, nodes denoting a CVE

could be displayed as a yellow square and those denoting products could be green stars.

For the refinement of our entities, the labels we used for the NER model are rather broad.

Prodigy offers a train-curve function, which trains a model on 25% increments from 0% to

100% of a dataset. It allows the user to observe the plateau of the model’s performance

and in our case our model would likely benefit from further training. Future work should

include diversifying the labels. For instance, the product label could be divided into oper-

ating systems, mobile devices, websites, databases, etc. This in-turn should help the model
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distinguish between organization and the many product classes as well as provide a better

definition for the entities.
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