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ABSTRACT

In today’s digital world, the spread of fake news and the rise of AI-generated text

have become major threats to content authenticity and public trust. This thesis addresses

both challenges through two complementary research directions: detecting fake news using

multimodal features, and identifying AI-generated text using semantic and structural rea-

soning. The first part of the work focuses on fake news detection by introducing a novel

model that combines text and image features through a unique rotational attention mech-

anism. Unlike traditional attention methods, this approach rotates the roles of query, key,

and value across modalities to capture deeper interactions. Additionally, the model incorpo-

rates external domain information by linking news posts to top-ranked websites from Google

search results, which helps assess the credibility of content based on its broader web context.

This results in a more reliable and accurate fake news detection system that outperforms

existing state-of-the-art methods. The second part presents SGG-ATD, a new framework for

detecting AI-generated text. It uses masked language modeling to measure sentence coher-

ence, followed by constructing a graph where keywords—both original and predicted—are

connected based on semantic and contextual similarity. A Graph Convolutional Network

(GCN) is then used to learn structural relationships within the text for final classification.

Experimental results demonstrate that SGG-ATD achieves high F1-scores and consistently

outperforms strong baselines. This method contributes to robust AI text detection, support-

ing accountability and resilience against AI-driven misinformation.
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1 Introduction

In the digital age, the integrity of information is under unprecedented threat. With

the widespread adoption of social media platforms and real-time content sharing [1], the

speed at which information travels has vastly outpaced traditional verification mechanisms.

This ecosystem has become fertile ground for the spread of false, misleading, or synthetically

generated information that can influence public opinion [2], manipulate social movements,

and erode trust in institutions. As technology continues to evolve, so do the techniques for

generating and distributing deceptive content—making it harder to distinguish truth from

fabrication in the digital space.

One of the most alarming manifestations of this problem is fake news, which lever-

ages persuasive writing, emotional imagery, and sometimes partial truths to deceive readers

[3]. Fake news not only misinforms individuals but also has far-reaching consequences on

democratic processes, public health decisions, and societal harmony. Compounding this is-

sue is the rise of AI-generated text, which is now capable of producing content that closely

mimics human language, tone, and style. Models like GPT-4 and similar large language

models (LLMs) [4] have made it possible to create high-quality synthetic articles, reviews,

or comments that appear authentic to both humans and traditional content filters.

These two phenomena—fake news and AI-generated content—represent different sides

of the same problem: the loss of content authenticity and credibility in an increasingly

automated and interconnected world. While fake news focuses on the deliberate spread

of misinformation, AI-generated text introduces the risk of unintentionally or maliciously

produced synthetic content that may not be explicitly false but is still artificially authored

and potentially manipulative. Together, they pose a complex and evolving challenge that

traditional machine learning approaches, often based on surface-level features, struggle to

address.
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To address the growing threat to information integrity, it is essential to develop in-

telligent systems capable of assessing both the credibility and origin of digital content. This

requires moving beyond simple keyword-based or rule-driven methods and adopting more nu-

anced, context-aware, and model-informed strategies. In this thesis, we focus on two critical

and complementary challenges in the broader effort to detect deceptive content: multimodal

fake news detection and AI-generated text detection. Both tasks contribute to the overar-

ching goal of identifying and mitigating synthetic or misleading information in the digital

space. For fake news detection, we design methods that jointly leverage textual, visual,

and domain-level credibility cues to assess the veracity of news posts. For AI-generated

text detection, we address the increasingly difficult task of distinguishing human-written

content from that produced by large language models, with a focus on capturing semantic

coherence. To this end, we propose deep learning frameworks that integrate attention-based

multimodal fusion, graph-based reasoning, and similarity-guided inference. This thesis is

structured around these two components, each presenting a novel framework tailored to its

task while contributing to the goal of strengthening content authenticity in digital environ-

ments.

1.1 Fake News Detection

Early fake news detection models primarily focused on analyzing textual content using

linguistic features, syntax patterns, or stylistic cues [5]. While effective to some extent, these

single-modal approaches often failed to capture the full context of misinformation. As fake

news began to rely more heavily on emotionally provocative images to enhance believability,

research shifted toward multimodal detection frameworks that leverage both text and visual

information. Despite this advancement, two key limitations remain.

First, many approaches exhibit limited cross-modal interaction, using static align-

ment techniques such as co-attention [6] or relationship-aware attention [7], which fail to
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capture the dynamic and evolving dependencies between text and image features. Second,

most models neglect the credibility of the news source, treating content in isolation without

considering domain-level trustworthiness.

To address these gaps, Chapter 2 of this thesis proposes a novel architecture that

introduces a rotational attention mechanism, which dynamically rotates the roles of query,

key, and value across modalities—enabling richer, bidirectional interaction between text and

image features [8]. Additionally, the model incorporates news domain credibility by associ-

ating news posts with top-ranked domains retrieved through web search, thus grounding the

content in contextual reliability. This combined framework enhances both the depth of mul-

timodal fusion and the robustness of credibility reasoning, achieving superior performance

on benchmark fake news datasets.

1.2 AI-Generated Text Detection

Existing AI detection approaches typically rely on surface-level indicators such as

token likelihoods [9], and statistical irregularities [10]. While these methods offer reason-

able performance in controlled settings, they struggle to generalize across different writing

styles, domains, and prompt variations. Moreover, most techniques treat each text sample in

isolation, overlooking the deeper structural and semantic patterns that characterize human

versus machine-generated language.

Chapter 3 of this thesis presents a new approach that addresses these challenges by

incorporating contextual and structural reasoning into the detection process. Rather than

focusing solely on local features, the proposed method captures broader semantic coherence

and relationships within the text, allowing it to better distinguish the subtle regularities and

predictability often found in AI-generated content. This enables more robust performance

across a variety of content types, including essays, news articles, technical descriptions, and

creative narratives—ultimately advancing the goal of trustworthy AI and content verification.
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1.3 Toward a Broader Effort for Content Authenticity

Together, the two core components of this thesis contribute to a broader perspective

on digital content authenticity by addressing the recent challenges of fake news detection and

AI-generated text identification. While the first focuses on multimodal features and external

knowledge (via news domains), the second focuses on textual coherence and similarity pat-

terns using graph-based reasoning. The shared goal is to move toward AI systems that can

contextually understand, verify, and interpret content in an environment where deception is

scalable and increasingly machine-powered.

This thesis, therefore, not only contributes novel architectures in each component,

but also lays the groundwork for future research on integrating these detection strategies

into real-world content verification pipelines—helping societies better navigate the evolving

landscape of truth and fabrication in the digital age.
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2 CAMFeND: Credibility-Aware Multimodal Fake News Detection with

Rotational Attention

2.1 Introduction

In today’s digital age, distinguishing between true and false information has become

increasingly challenging. Many sources disseminate misleading or entirely fabricated content,

undermining trust in reliable news outlets. For instance, high-profile incidents like the false

reports of a deadly attack on a French satirical weekly, supposedly resulting in ten fatalities,

and the fabricated story of a tragic shooting of a Canadian soldier in Ottawa (Figure 2.1),

highlight the profound impact of fake news on public beliefs. These examples underscore the

urgent need for advanced methods to analyze and verify the truthfulness of news. Developing

state-of-the-art fake news detection technologies is essential for preserving the reliability of

information sources and enhancing public understanding.

Early detection approaches [2, 3, 4, 5] primarily relied on machine learning techniques

with manually crafted features from text and social context. Subsequent advancements in-

troduced models designed to capture local dependencies in textual content by employing

convolution-based methods [6]. Other approaches focused on modeling sequential infor-

mation using recurrent structures [7], [8]. More recently, transformer-based methods have

achieved significant progress by leveraging attention mechanisms to uncover deep semantic

relationships within textual data [9]. These text-centric approaches fail to incorporate visual

and multimodal clues, which are vital for detecting deceitful content. Recent research in mul-

timodal fake news detection has emphasized the importance of integrating diverse sources of

information. For example, [10] leverages latent representations for multimedia posts, while

[11] combines BERT and VGG-19 features to enhance detection accuracy. Additionally,

[12] addresses cross-modal inconsistencies, and [13] integrates features from various sources.

However, two major limitations persist:
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Figure 2.1: Illustrations of fake news stories sourced from the Pheme [1] dataset.

• Limited Cross-Modal Interaction: Many existing models struggle to capture the

complex inter-modal relationships necessary for effective fake news detection. Ap-

proaches such as [14] with co-attention and [15] with relationship-aware attention rely

on static feature alignment, assuming fixed interactions between modalities. This rigid

approach fails to account for the evolving and dynamic relationships between text and

image features, which are crucial for detecting fake news.

• Neglect of News Domain Credibility: Most models overlook the credibility of

news domains as a feature, focusing solely on content analysis. This omission leaves

the models vulnerable to misinformation from unverified or unreliable sources. Incor-

porating domain credibility is essential for filtering unreliable content and improving

classification accuracy.

To address these limitations, we propose a novel fake news detection framework with

two key components:

• Rotational Attention Mechanism: Traditional attention mechanisms, including

co-attention and self-attention, rely on static roles for query (Q), key (K), and value (V)

between text and image embeddings. While effective, this static role assignment may

overlook intricate cross-modal dependencies, particularly in scenarios where the two
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modalities provide complementary or conflicting cues. We propose a novel rotational

attention mechanism which dynamically rotates the roles of Q, K, and V across layers,

ensuring a more symmetric and comprehensive interaction, enabling each modality

to influence and be influenced by the others from multiple directional perspectives.

This richer, more nuanced interaction enhances the model’s ability to resolve modality

conflicts, such as when text and images convey contradictory information.

• News Domain as a Credibility Feature: We incorporate news domain informa-

tion as a feature to address the issue of source credibility. Using Google’s custom

search API, we extract the top domains (e.g., bbc.com, time.com) based on the news

text keywords. This contextual information provides insight into how a news topic

is discussed across reliable and unreliable sources, enabling the model to filter out

misinformation more effectively. By integrating domain credibility into the detection

process, the model achieves greater robustness and accuracy.

Our framework surpasses previous multimodal fake news detection approaches by

achieving better performance on benchmark datasets while maintaining lower complexity.

By addressing the above limitations, our method offers a more robust and efficient solution

to fake news detection. By dynamically rotating the roles of query, key, and value across

modalities, the model processes multimodal data in multiple ways, ensuring balanced contri-

butions from text, image, and domain-level information. Meanwhile, this mechanism enables

simpler capture of diverse data representations, which enhances the model’s effectiveness in

detecting fake news.

We have conducted extensive empirical evaluations using Pheme [1] and Twitter [16]

datasets. The results demonstrate significant improvements in performance across all base-

lines on the Twitter and Pheme datasets, validating the effectiveness of our proposed frame-

work. Furthermore, an ablation study confirms that both the rotational attention mechanism

and the incorporation of news domain credibility are critical to the model’s superior perfor-
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mance, as their combined contributions drive the enhanced accuracy and robustness of our

multimodal fake news detection solution, addressing a pressing societal issue.

2.2 Related Work

2.2.1 Single-Modal Approaches

Research on single-modal approaches to fake news detection initially focused on social

and textual feature analysis. Early work such as [2], [17], [4] explored credibility through

Twitter metadata, user behavior, writing style, and propagation patterns but were limited

by surface-level analysis and lacked deeper content understanding. Similarly, approaches like

[5], [18] leveraged time-series data and propagation structures but neglected content-based

insights and semantic meaning.

With the rise of neural networks, RNN and CNN-based models such as [7], [19] im-

proved feature-based and sequential analysis but struggled with long-term dependencies and

contextual depth. They incorporated multi-domain elements and advanced text embeddings

[20, 21, 22], while failed to capture dynamic feature interactions and struggled with ambigu-

ity in generation-based models. Graph-based approaches (e.g., [23]) have also been proposed

to improve rumor detection using graph convolutional networks; however, they still lack full

multimodal feature integration.

2.2.2 Multimodal Approaches

Early multimodal fake news detection models integrated textual and visual data for

better accuracy but lacked dynamic feature interactions. Event-invariant features, latent

representations, and pre-trained models have been explored in prior works such as [24], [10],

[11]. However, these approaches collectively struggled with event-specific variations, handling

multimodal conflicts, and reliance on static features, which limited their adaptability. Cross-

modal similarity has been a focus of prior research, such as the work in SAFE [25], but these
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approaches missed deeper semantic integration and failed to address complex multimodal

correlations effectively. While models such as [26], [27] provided strong feature extraction

capabilities, they lacked the dynamic cross-modal interactions that our rotational attention

mechanism enables, which allows richer text-image relationships.

Recent models aimed to improve noise suppression and feature extraction but faced

similar limitations. For instance, [28], [29] struggled to generalize across domains and overly

focused on image credibility. Adversarial networks and ensembling techniques have been

explored in prior works such as [30], [31], but these approaches encountered challenges with

unstable feature extraction and modality conflicts. Fusion models such as [32], [33] employed

complex techniques yet relied on rigid distance metrics, while noise suppression models such

as [34], [35] filtered useful signals along with noise. By offering adaptive multimodal fusion

and source credibility assessment, our approach significantly enhances fake news detection,

particularly in complex scenarios where text and images conflict or come from unreliable

sources.

2.2.3 Attention-Based Approaches

Attention mechanisms were early adopted in multimodal fake news detection by ap-

proaches such as those proposed in [36], [37], combining text, image, and social context

features but missing deeper cross-modal relationships. Co-attention and graph networks

were explored by work such as [14], [38], [39] to improve text-visual interactions. Similarly,

sentiment analysis and entity-centric alignment were integrated by methods such as [40], [41]

to capture emotional cues. Despite these advancements, the models remained constrained

by rigid structures, limiting their adaptability to dynamic contexts.

Enhanced attention mechanisms, including dual self-attention and ambiguity learn-

ing, were introduced by methods such as [42], [12] to improve multimodal integration. Tech-

niques such as self-attention, mutual attention, and multi-head attention were employed by
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[13], [43, 44, 45]. Relationship-aware attention, co-attention, and knowledge-augmented fea-

tures were further advanced by work like [15], [46, 47, 48]. However, these models often

relied on static features, external knowledge, and predefined relationships, which limited

their adaptability in rapidly changing and unstructured news environments.

In summary, prior attention models are limited to predefined feature relationships,

static knowledge graphs and static attention mechanism. Our model addresses these chal-

lenges with dynamic, rotational attention, enabling deeper interactions and flexible relation-

ships, resulting in a more robust system suited for complex, evolving news environments.

2.3 Method

In this section, we present our proposed multimodal fake new detection framework

as illustrated in Figure 2.2, that leverages both visual and textual features through a novel

architecture. It consists of the following key components:

1. Graph Attention Network (GAT): A global GAT models the relationships between

news texts and their associated domains. This module leverages:

• BERT [9] embeddings to represent the textual content of news posts.

• Word2Vec [49] embeddings to represent news domains extracted from search

results.

2. Visual Feature Extraction: Features from images accompanying the news are ex-

tracted using the VGG-19 network [50], providing a robust representation of visual

content.

3. Rotational Attention Mechanism: A unique multi-layer attention mechanism

cyclically swaps the roles of query, key, and value across three attention layers. This

design enhances the fusion of visual and textual features for more effective detection.
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4. Fake News Classifier: The integrated outputs are processed by a classifier to predict

whether the news is fake or real.

We highlight the key novelty and contributions of this architecture as follows. (1)

Novel Use of News Domains: By introducing a global GAT to model the relationships be-

tween news domains and their textual content, the framework captures domain-level depen-

dencies, enhancing interpretability and performance. (2) Rotational Attention Mechanism:

The innovative attention design enables dynamic interactions between visual and textual

modalities, resulting in improved feature fusion. (3) Multi-modal Integration: The integra-

tion of both visual features (from VGG-19) and textual features (from BERT and GAT)

enables a holistic approach to detecting fake news. In the following, we explain each com-

ponent in detail.

2.3.1 Rich Textual Feature Representation

In this subsection, we first describe the methodology for extracting domain informa-

tion from search results based on the keywords of a news article; then, we describe how a

Graph Attention Network is adopted to utilize embeddings to represent and model the rela-

tionships between news texts and their corresponding domains, enhancing the effectiveness

of fake news detection.

Search Results Domain Extraction

News domain information related to a news article of interest is obtained by searching

the keywords of news text online and identifying the most frequently occurring domain

names among the search result URLs. The intuition stems from the observation that the

presence of certain domains (e.g., cnn.com) can indicate the credibility of a news text. When

the keywords of a news text are input into Google, the resulting URL domains can offer

context: credible sources tend to appear for real news, while fake news often lacks well-known

12



domains or includes less reputable ones. For example, real news search results typically

link to authoritative domains, whereas fake news tends to feature dubious or insignificant

domains. Incorporating these domain information helps the model assess news authenticity

by providing a broader context for distinguishing between real and fake news.

Specifically, the news text is represented as a sequence of words T = {Ti}ti=1. The top

K frequently occurring words are extracted and input into the Google Custom Search API to

get search result URLs. The top common S search result news domains (e.g. wikipedia.org,

quora.com) from the URLs are used for further analysis, representing a vector of 1 × S.

Graph-Based Contextual Analysis

The Graph Attention Network (GAT; [51]) is utilized to model the relationships

between news texts and their associated news domains, represented as a bipartite graph. The

graph consists of two distinct types of nodes: news text nodes (vi ∈ VA) and news domain

nodes (vj ∈ VB), where edges represent relationships between a news text and its top related

domains. The news text nodes (vi) are initialized with BERT [9] embeddings, h
(0)
i ∈ Rdtext ,

while the news domain nodes (vj) are initialized with Word2Vec [49] embeddings, h
(0)
j ∈

Rddomain .

The edges, denoted by Eij, connect news text nodes in VA with news domain nodes in

VB, capturing their relevance. This bipartite graph structure is reflected in the reformulated

GAT equations.

To compute the importance of each neighboring node, the attention score eij between

a news text node vi and a connected news domain node vj is defined as:

eij = LeakyReLU
(
a⊤

[
WAh

(l)
i ∥ WBh

(l)
j

])
(2.1)

where WA ∈ Rd×dtext and WB ∈ Rd×ddomain are learnable weight matrices specific to the two

node types, a ∈ R2d is a learnable attention vector, and ∥ denotes the concatenation of the

transformed features.
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The attention scores are normalized using a softmax function to compute the attention

coefficients αij, which determine the contribution of a neighboring node vj to the feature

update of node vi:

αij =
exp(eij)∑

k∈NA(i) exp(eik)
(2.2)

where NA(i) is the set of neighbors of node vi in VB.

The feature of a news text node vi is updated by aggregating the features of its

neighboring news domain nodes vj ∈ VB, weighted by the attention coefficients αij:

h
(l+1)
i = σ

 ∑
j∈NA(i)

αijWBh
(l)
j

 (2.3)

where σ is a non-linear activation function. Similarly, the features of news domain nodes

vj ∈ VB are updated using their neighboring news text nodes vi ∈ VA:

h
(l+1)
j = σ

 ∑
i∈NB(j)

αjiWAh
(l)
i

 (2.4)

where NB(j) is the set of neighbors of node vj in VA.

The GAT is trained using a cross-entropy loss function. After training, the model

is frozen, and the learned embeddings of news text nodes (hi) are used as textual feature

representations for subsequent layers in the overall framework.

2.3.2 Visual Feature Extraction

For image feature extraction, we use the pre-trained VGG-19 [50] model, a deep

convolutional neural network known for its strong performance in image classification tasks.

Consisting of 19 layers, with 16 convolutional layers and 3 fully connected layers, it concludes

with a softmax layer for classification. To obtain visual features, we add a fully connected

layer with ReLU activation after the penultimate layer of VGG-19. This layer generates a

d× 1 dimensional VGG-19 feature representation of the input image.
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Figure 2.2: Architecture of our CAMFeND model. Text features from BERT are enhanced
using a Graph Attention Network capturing news post-domain relationships, while visual
features come from VGG-19. A rotational attention mechanism exchanges query, key, and
value roles between GAT and VGG-19 embeddings. The fused representation undergoes
normalization and a feed-forward network before classification into fake or real news. The
sample news image is from the Twitter [16] dataset.

2.3.3 The Multimodal Framework

The proposed multimodal framework fuses textual and visual features from news

posts using a novel rotational attention mechanism. This section outlines how text and

image representations are integrated to form a combined feature vector through a novel

rotational attention mechanism.

Traditional Attention Mechanism

The standard multi-head self-attention (MSA) [52] block shown in Figure 2.3(a) uses

multi-headed self-attention functions to compute similarity between d× 1 queries (Q), keys

(K), and values (V ), determining the attention distribution. Multi-Head Attention is com-
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posed of multiple attention layers operating in parallel. For m heads, each head performs

the following transformations:

A(Q,K, V ) = softmax

(
QKT

√
dh

)
V (2.5)

where, Q,K, V ∈ Rdh×1 and dh = d
m

, with d dimension.

The Multi-Head Attention is calculated as:

hj = A(QWQ
j , KWK

j , V W V
j ) (2.6)

MHA(Q,K, V ) = concat(h1, . . . , hm)WO (2.7)

where, WQ
j ,WK

j ,W V
j ∈ Rd×dh are the j-th head’s projection matrices and WO ∈ Rd×d is the

output weight matrix.

The fully connected feed-forward network comprises two linear layers separated by a

ReLU activation function.

FFN(x) = max(0, xW1)W2 (2.8)

where x ∈ Rd×1 is the input to the FFN, W1 ∈ Rd×dff and W2 ∈ Rdff×d are the weights of the

FFN, dff is the hidden dimension of the FFN.

Rotational Attention Mechanism

The rotational attention mechanism in Figure 2.3(b) involves three distinct parallel

attention layers, where the roles of query Q, key K, and value V are rotated between the

textual and visual embeddings. Let Tgat denote the textual features obtained from the GAT,

and Ivgg denote the visual features extracted from the VGG-19 model.

In traditional multi-head attention, multiple parallel heads are used, each applying

its own query, key, and value. This approach can be computationally expensive as it requires

several attention calculations in parallel, each with separate parameters for Q, K, and V .

Moreover, the fixed assignment of roles (Q, K, V ) across heads limits the relationships that

can be modeled between textual and visual modalities.
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Figure 2.3: (a) Self Attention and (b) Rotational Attention: Q, K, and V roles rotate across
three attention layers.

Rotational attention improves on this by using a single attention mechanism and

rotating the roles of Q, K, and V across three layers. This captures richer interactions

between modalities and reduces computational complexity by using fewer parameters (no

multi-heads). By rotating roles, the model explores a wider variety of relationships between

textual and visual features that would be missed in a fixed-head approach. The rotational

attention mechanism proceeds as follows:

Attention 1

A1 = A(Ivgg,Tgat, Ivgg ⊙Tgat) + Ivgg (2.9)

In the first attention layer, the query is the VGG-19 embedding Ivgg, the key is the GAT

embedding Tgat, and the value is the element-wise product of the two embeddings, Ivgg⊙Tgat.
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Attention 2

A2 = A(Ivgg ⊙Tgat, Ivgg,Tgat) + Ivgg ⊙Tgat (2.10)

In the second attention layer, the roles are rotated. The query is the element-wise product

Ivgg ⊙ Tgat, the key is the VGG-19 embedding Ivgg, and the value is the GAT embedding

Tgat.

Attention 3

A3 = A(Tgat, Ivgg ⊙Tgat, Ivgg) + Tgat (2.11)

In the third attention layer, the roles are further rotated. The query is the GAT embedding

Tgat, the key is the product Ivgg ⊙Tgat, and the value is the VGG-19 embedding Ivgg.

Concatenation and Layer Normalization

The outputs from the three attention layers, A1, A2, and A3, are concatenated to

form a single vector. This concatenated vector is then passed through a layer normalization

process:

Aconcat = [A1;A2;A3] (2.12)

Anorm = LayerNorm(Aconcat) (2.13)

Feed-forward Layer and Add & Norm

The normalized vector is processed through a feed-forward layer, followed by an ad-

ditional add & norm layer to further stabilize the learning process.

Aff = FFN(Anorm) (2.14)

Afinal = LayerNorm(Aff + Anorm) (2.15)
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Final Output

The final output Afinal from this multimodal framework is used as the combined

textual-visual feature representation, which is passed to the fake news classifier for prediction.

2.3.4 Fake News Classifier

The combined multimodal representation, becomes the input to the fake news clas-

sifier to determine whether a news article is real or fake. It incorporates a fully connected

layer with ReLU activation. The predicted probabilities for the k-th post are given by:

ŷk = σ(max(0,Wc ·AfinalK)Ws) (2.16)

where, σ(.) is the softmax function, ŷk denotes the predicted probabilities, and AfinalK is the

feature representation of the k-th post. Wc is the fully connected layer parameter and Ws is

the softmax layer parameter. We use cross-entropy to calculate the detection loss:

L(Θ) = −
N∑
k=1

[Yk log(ŷk) + (1 − Yk) log(1 − ŷk)] (2.17)

where Yk represents the ground-truth labels of the k-th post and N is the number of posts.

2.4 Evaluations

2.4.1 Dataset

We evaluate our model CAMFeND on two widely used benchmark datasets in the

fake news detection literature: Pheme [1] and Twitter [16]. Pheme contains rumors and

non-rumors from five major events, with text, images, and labels. The Twitter dataset

includes tweets with text, images, and social context. Given our emphasis on text and image

content, we exclude tweets with videos or missing text and images. Pheme is split 80/20 for

training/testing, while Twitter provides a pre-split development and test set. These datasets

offer a rich environment for evaluating our model with labeled text-image pairs. Table 2.1

shows the dataset statistics.
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Table 2.1: Data statistics for two real-world datasets.

News Twitter Pheme

# of Fake News 7898 1972

# of Real News 6026 3830

# of Images 514 3670

2.4.2 Implementation Details

Our CAMFeND model is implemented using PyTorch [53], [54], with a model dimen-

sion d of 128. We use K = 20 for top keywords, S = 5 for top news website domains, m = 1

for dh, and dff = 512. Pre-trained BERT [9] and VGG-19 [50] models with frozen parameters

are used.

The GAT component includes two hidden layers of dimension 128, optimized using

the Adam optimizer [55] with a learning rate of 0.001 and a dropout rate of 0.6. It is trained

for 150 epochs with a mini-batch size of 32, and the embeddings are frozen during overall

model training.

For model training, we use three hidden layers of dimension 64 for fully connected

layers associated with GAT, VGG-19, and rotational attention block embeddings. Our pro-

posed CAMFeND model is trained for 150 epochs with a learning rate of 0.0007, a dropout

rate of 0.4, and a mini-batch size of 32 using the Adam optimizer [55]. We use Optuna [56]

for hyperparameter tuning with accuracy as the selection criterion.

2.4.3 Baselines and Results

We evaluate CAMFeND against strong baselines to highlight its effectiveness in fake

news detection.

• EANN [24]: Derives event-invariant features using a multimodal feature extractor and

fake news detector.
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Table 2.2: Performance comparison across Twitter dataset

Methods Acc Pre Rec F1

EANN 0.648 0.709 0.615 0.659

att RNN 0.664 0.692 0.667 0.679

MVAE 0.745 0.751 0.745 0.748

SpotFake 0.771 0.773 0.773 0.773

SAFE 0.766 0.765 0.764 0.764

SpotFake+ 0.790 0.790 0.789 0.789

MCAN 0.809 0.828 0.810 0.819

CAFE 0.806 0.804 0.808 0.806

BMR 0.851 0.885 0.819 0.851

MPL 0.841 0.822 0.860 0.841

CAMFeND 0.861 0.898 0.872 0.885

• MVAE [10]: Uses a variational autoencoder for text and image data with an encoder-

decoder structure and a binary classifier to detect fake news.

• att RNN [36]: Embeds attention in a Recurrent Neural Network for the integration

of multimodal features.

• SpotFake [11]: Employs advanced models such as BERT for textual analysis and

VGG-19 for image processing.

• SAFE [25]: Uses a similarity-aware multimodal approach to analyze text and visuals.

• SpotFake+ [26]: Extends SpotFake with a pre-trained XLNet model for textual fea-

ture extraction.

21



Table 2.3: Performance comparison across Pheme dataset

Methods Acc Pre Rec F1

EANN 0.681 0.696 0.725 0.710

att RNN 0.850 0.851 0.855 0.853

MVAE 0.852 0.852 0.859 0.855

SpotFake 0.823 0.868 0.863 0.865

SAFE 0.811 0.812 0.828 0.820

SpotFake+ 0.800 0.802 0.810 0.806

MCAN 0.865 0.859 0.859 0.859

CAFE 0.861 0.857 0.838 0.847

BMR 0.859 0.824 0.814 0.819

AKA-Fake 0.858 0.918 0.877 0.897

CAMFeND 0.882 0.913 0.908 0.903

• MCAN [14]: Dynamically fuses text and image features using a co-attention mecha-

nism.

• CAFE [12]: Addresses cross-modal inconsistencies by learning discriminative features

through ambiguity learning.

• BMR [43]: Uses multi-view feature extraction and an improved Multi-gate Mixture-

of-Expert (iMMoE) network for cross-modal learning and fake news detection.

• MPL [57]: A multi-modal prompt learning framework for early fake news detection,

using pre-trained models and adaptive prompts to generate semantic context rapidly.

• AKA-Fake [58]: Utilizes an adaptive knowledge subgraph with reinforcement learning

to capture task-relevant knowledge and cross-modal correlations.
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Table 2.2 and 2.3 shows the experimental results of various baseline approaches compared

to our CAMFeND model. Early multimodal models like EANN performs slightly better on

Pheme compared to Twitter, but it struggles with feature fusion, making it less competitive

than models with more advanced multimodal integration methods. Across both datasets,

att RNN performs better than EANN due to its use of attention mechanisms. However,

MVAE outperforms both EANN and att RNN by leveraging a variational autoencoder for

more effective multimodal fusion, though it still lags behind models with advanced attention

mechanisms.

SpotFake and SpotFake+ leverage pre-trained models like BERT and VGG-19, show-

ing strong results across both datasets. While effective in combining textual and visual

features, they are outpaced by more recent models that incorporate attention mechanisms

and credibility verification. SAFE uses cross-modal similarity, performing well, but strug-

gles with capturing nuanced interactions, making it less competitive than models with deeper

attention mechanisms.

MCAN, with its co-attention mechanism, performs exceptionally well in both datasets,

allowing for deep multimodal integration and improving its ability to detect fake news in

complex scenarios. CAFE also shows strong performance, particularly on Pheme, though

it is slightly less competitive on Twitter. Its cross-modal ambiguity learning helps han-

dle uncertain or ambiguous information. BMR demonstrates effective multimodal fusion,

though its performance suggests it could be outperformed by models with more advanced

attention mechanisms. MPL and AKA-Fake are among the top performers. MPL leverages

multimodal attention, while AKA-Fake benefits from integrating knowledge graphs, both

demonstrating solid generalization across datasets, with MPL performing well on Twitter

and AKA-Fake excelling on Pheme.

Notably, our proposed CAMFeND model consistently outperforms baseline models on

both datasets, highlighting the effectiveness of rotational attention and news domain infor-
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mation in enhancing feature fusion and domain credibility, giving CAMFeND a competitive

edge.

2.4.4 Ablation Results and Discussions

Table 2.4 presents the ablation study results, analyzing the contribution of key

CAMFeND components, particularly rotational attention and news domain information.

Both components show a significant impact on performance across the Twitter and Pheme

datasets.

Table 2.4: Performance of CAMFeND variants.

Components Twitter Pheme

Acc F1 Acc F1

CAMFeND¬r 0.782 0.815 0.801 0.835

CAMFeND¬r+sh 0.813 0.838 0.841 0.863

CAMFeND¬r+mh 0.832 0.866 0.850 0.878

CAMFeND¬v 0.743 0.798 0.784 0.817

CAMFeND¬t 0.724 0.767 0.762 0.792

CAMFeND¬n 0.803 0.821 0.827 0.846

CAMFeND 0.861 0.885 0.882 0.903

Impact of Rotational Attention

Removing the rotational attention mechanism (CAMFeND¬r) results in a significant

drop in performance across both datasets, with Twitter showing an accuracy drop and Pheme

experiencing a similar decline. This indicates that rotational attention plays a crucial role

in enabling dynamic cross-modal interactions between text and images.
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Using a single transformer unit, both single-head attention (CAMFeND¬r+sh) and

multi-head attention (CAMFeND¬r+mh) improve over the model without rotational atten-

tion. In both Twitter and Pheme datasets, these variants boost accuracy but still fall short

of the complete model (CAMFeND), which achieves higher accuracy in both datasets.

While multi-head attention offers advantages over single-head attention, it lacks the

dynamic nature of rotational attention, which enables diverse interactions between the query,

key, and value components. The rotational attention mechanism in CAMFeND enhances

the model’s ability to explore rotational interaction of input modalities, leading to deeper

interactions and better understanding of cross-modal signals, resulting in higher accuracy

and performance across both datasets.

Effect of Component Removal

Removing the visual component (CAMFeND¬v) or the textual component (CAM-

FeND¬t) leads to significant drops in performance for both datasets. On Twitter, removing

the visual component causes a notable drop in accuracy, while removing the textual compo-

nent similarly impacts performance. On Pheme, removing either component shows a similar

trend, confirming that both modalities provide essential information for accurate detection

in multimodal fake news detection.

Role of News Domains

The inclusion of news domain information proves to be a critical factor in improving

the model’s robustness. When news domains are omitted (CAMFeND¬n), the model relies

solely on BERT embeddings for textual features, leading to a drop in performance in both

datasets. This shows that news domain information adds a crucial layer of source reliability

assessment, helping the model filter out unreliable sources and reducing false detections that

may arise when relying purely on content.
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2.5 Conclusions

We presented CAMFeND, a novel multimodal fake news detection model that com-

bines rotational attention and news domain information. By rotating the roles of query, key,

and value between text and image features, our model captures deeper cross-modal inter-

actions for more accurate detection. The integration of news domain information enhances

robustness by providing broader contextual cues from associated domains. Comprehensive

evaluations on the Twitter and Pheme datasets show that CAMFeND consistently outper-

forms baseline models.
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3 Seeing Through the Mask: AI-Generated Text Detection with

Similarity-Guided Graph Reasoning

3.1 Introduction

In an era where machines write as fluently as humans, we are entering a new chapter in

how information is produced, consumed, and trusted. Large Language Models (LLMs) such

as GPT-4 [1], Claude [2], and LLaMA [3] have made it nearly effortless to generate essays,

news articles, reviews, and even research papers with human-like fluency. What was once an

imaginative leap—a machine composing coherent and contextually accurate paragraphs—is

now commonplace. The boundary between synthetic and authentic language is becoming

indistinguishable to the naked eye.

As this generative capability becomes more accessible and widespread—through mod-

els like GPT [4], BERT [5], and T5 [6]—its applications have expanded rapidly to include

content creation, conversational agents, and real-time translation [7, 8]. However, this grow-

ing realism brings profound challenges: from misinformation and fake news propagation

to academic dishonesty and erosion of digital trust [9, 10, 11]. With AI-generated con-

tent becoming nearly indistinguishable from human writing, questions around authorship,

authenticity, and accountability are now more urgent than ever.

As these models seamlessly blend into communication workflows, a new and urgent

challenge emerges. Educators, journalists, policymakers, and even AI developers are increas-

ingly grappling with a pressing question: How do we determine who—or what—authored

a piece of text? From student assignments generated at the push of a button to fabricated

news articles and automated spam campaigns, the misuse of LLMs has already begun to

erode trust in written communication. Worse still, existing detection techniques are rapidly

losing ground. Conventional methods such as [12, 13] typically rely on shallow linguistic

heuristics, statistical features, or supervised classifiers trained on outputs from known lan-
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guage models. While these approaches show promise on curated benchmarks, they often

struggle to generalize across domains or withstand adversarial rewriting, paraphrasing, and

stylistic obfuscation [14, 15]. As a result, adversaries can easily manipulate AI-generated

text to appear convincingly human. This underscores the need for detection frameworks

that move beyond surface-level patterns and engage with the structural underpinnings of

language.

However, most existing detection methods fail to operationalize this structural per-

spective. Despite recent advances, two major limitations persist:

• Lack of structural reasoning: While prior work recognizes that AI-generated text tends

to exhibit higher predictability, many existing methods rely only on surface-level cues

such as per-token probabilities [16, 17] or shallow statistical features [12, 18], failing

to model the deeper contextual and compositional structures that give rise to these

patterns.

• Limited generalization across varied domains: Existing detectors such as DetectGPT

[14] and Ghostbuster [15] often underperform when applied to unseen domains or

writing styles.

At the heart of this dilemma lies a deeper question—not just whether a piece of

text is AI-generated, but whether its structure and predictability reveal traces of its origin.

Human language, while flexible and expressive, carries with it natural irregularities and

subtleties rooted in reasoning, creativity, and intent. AI-generated text, by contrast, is

often more formulaic, exhibiting higher token-level predictability and stylistic consistency.

Capturing this difference requires methods that can perceive and represent the interplay

between meaning, context, and linguistic structure.

Building on this intuition, we propose a new approach to AI-generated text detection

that leverages masked language modeling to uncover patterns of semantic coherence and
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contextual regularity. We first extract content-rich keywords from the input text and mask

a subset of them. A pretrained language model predicts the masked keywords, and both the

extracted and predicted keywords are used to construct a contextual graph. In this graph,

nodes represent keywords, and edges encode lexical semantics and contextual similarity.

This structure allows our framework to reason over meaning-based patterns and generative

signals—enabling more accurate and robust classification.

Our method, AI-Generated Text Detection with Similarity-Guided Graph Reason-

ing (SGG-ATD)—addresses the limitations outlined earlier by combining masked language

modeling with graph-based reasoning:

• We construct a graph that connects original keywords and LLM-predicted keywords,

allowing the model to capture how words relate in both meaning and context. This

enables the model to move beyond isolated word-level analysis and instead reason over

the structural and contextual flow of the text—an area where AI-generated writing

often differs from human-authored content.

• We enhance the model’s ability to generalize across varied text types—such as news

articles, essays, technical descriptions, and creative writing—by using masked keyword

prediction. This approach helps the model learn the underlying predictability and

structure of a passage, enabling it to identify generative patterns that persist across

different domains and writing styles.

By combining semantic meaning and LLM-prediction patterns in a graph structure,

SGG-ATD provides a unified way to understand how words relate and how likely they are to

appear in context. Unlike traditional models, our approach captures the deeper structure of

how words connect and flow. This helps the model better recognize patterns that are typical

of AI-generated content—even when the text is rewritten or comes from a different domain.

Empirical evaluations across multiple datasets — including news, creative writing,

essays, and vulnerability descriptions — show that our framework outperforms strong base-
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lines, achieving superior F1 scores and generalization across both in-distribution and out-of-

distribution settings.

The remainder of this chapter is structured as follows: Section 3.2 presents related

work, Section 3.3 outlines the proposed method, Section 3.4 provides a detailed evaluation

and analysis of results, and Section 3.5 concludes this chapter with final insights.

3.2 Related Work

Large language models (LLMs) dramatically advanced the quality of machine-generated

text, narrowing the gap with human writing across diverse domains. Early models like GPT-

2 and GPT-3 demonstrated few-shot and zero-shot capabilities that pushed the frontier of

language generation [19, 4]. These were later scaled further in models such as [20, 21],

which showed that architectural and computational scale alone can yield significant perfor-

mance improvements across instruction following, translation, and question answering tasks.

Despite these capabilities, researchers also highlighted linguistic differences between LLM-

generated and human text, such as reduced factuality or coherence in early generations in

[18, 22].

To detect such content, many approaches were developed that analyzed surface-level

features, probability metrics, or neural representations. For instance, [12] visualized token-

level likelihoods to help humans distinguish AI-generated text, while [14] used log-probability

curvature from perturbed inputs to separate model-written content from human-authored

responses. Extending these ideas, [15] proposed a structured approach by scoring token

probability distributions from weaker models. Models such as [23] combined DeBERTa

and traditional classifiers, showing strong results in English web text. A common thread

in these models was that their effectiveness often relied on access to scoring APIs or logit

distributions, which may not be available for closed-source LLMs.

To move beyond token-level metrics, recent efforts incorporated structure and seman-
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tics. For example, [24] proposed a novel rewriting-based detection strategy, where text was

passed through a rewriting model and the degree of transformation was used as a signal

of authenticity. Similarly, [25] used graph neural networks to model word co-occurrence in

texts and extracted deeper contextual patterns for detection. These approaches attempted

to address the brittleness of detectors that relied only on shallow cues.

Domain generalization emerged as a critical challenge for detection models, especially

when trying to flag content from unseen generators like GPT-4 or Claude. To tackle this,

[26] proposed a framework that combined domain-adversarial learning and contrastive loss to

generalize across LLMs without requiring retraining. Similarly, [27] formulated detection as

a domain adaptation problem, allowing models trained on legacy LLMs to adapt to modern

ones without labeled data. These approaches attempted to future-proof detectors against

rapid advances in generation technologies.

In parallel, watermarking-based detection saw a resurgence. One line of work such

as [28] introduced a soft watermark that biased generation toward a known token distri-

bution, while [29] proposed a statistically robust watermark with provable guarantees un-

der paraphrasing. A comprehensive survey [30] examined earlier watermarking efforts and

highlighted challenges like multilinguality and visibility under adversarial attacks. These

techniques offered post-hoc verifiability but depended on model-side cooperation.

Despite these developments, a growing body of work showed that many detectors

were vulnerable to simple evasion techniques. Rephrasing, synonym replacement, and style-

shifting can significantly reduce detection accuracy, even for strong models like [14] or [23].

Some attacks even worked across detectors by perturbing only the prompt without changing

semantics, as shown in recent jailbreak studies [31, 32]. These findings raised concerns about

the long-term robustness of detection systems.

Prompt engineering has also played a dual role—both in instructing models for tasks

and in enabling or defeating detection. Chain-of-thought prompting, prefix tuning, and
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zero-shot reasoning enhanced reasoning fluency in LLMs [33, 34, 35]. However, these same

mechanisms can be exploited to disguise AI-generated text or control its stylistic fingerprint

as in [36].

Finally, questions of fairness and bias in detection remain largely underexplored.

As [37] showed that existing detectors disproportionately misclassified non-native English

writing as AI-generated, it raised concerns about fairness in academic or professional con-

texts. Simultaneously, societal studies like [38] showed that AI-generated content—while

often helpful—differed in tone and formal structure, affecting its acceptability depending on

the task.

Together, this body of work underscores that despite significant progress, AI-generated

text detection remains challenging—particularly under adversarial, cross-domain, and stylis-

tically diverse scenarios. In response, our framework shifts focus to the underlying structure

and contextual predictability of the text by modeling relationships between original and

LLM-predicted keywords. This alternative perspective aims to offer robustness in detection

without relying on model-specific signatures.

While detection research progressed rapidly, many existing methods suffered from sig-

nificant constraints. A large subset of detectors—including those based on log-probabilities

or token distributions such as [14, 15]—relied on white-box access to the generating model,

which was impractical for closed APIs or unseen LLMs. Others like [39, 23] depended on

stylistic patterns or frequency-based features that can be evaded through prompt rephras-

ing or synonym substitution. Watermarking methods like [29, 28], while provably robust in

controlled settings, require model cooperation can be vulnerable to transformations in real-

world use. Even domain adaptation frameworks like [26, 40], though effective, still relied on

feature alignment rather than deeper semantic grounding.

In contrast, our approach focuses on modeling the semantic and structural coherence

of the text itself, independent of the generator’s internal distribution. By leveraging graph-
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based representations constructed from original and LLM-predicted keywords, our method

captures localized semantic relationships and models contextual predictability. This design

encourages robustness against common challenges such as paraphrasing and domain varia-

tion, offering a detection strategy that does not rely on prior knowledge of the generator or

labeled outputs.

3.3 Method

In this section, we present our proposed AI Text Detection Framework, SGG-ATD

(Figure 3.1), which identifies AI-generated text by combining masked language modeling with

graph-based reasoning. This novel framework captures semantic associations and contextual

predictability through a context-enriched graph formulation. It comprises the following four

key components:

1. Keyword Extraction and Masking: This module extracts syntactically meaningful

keywords (nouns and verbs) using Part-of-Speech (POS) tagging [41]. To simulate

partial context and expose latent structural cues, 30% of these keywords are randomly

selected and replaced with the <mask> token.

2. Masked Keyword Prediction: The masked input text is then passed through a pre-

trained ALBERT-base-v2 model [42], which predicts the missing keywords based on

surrounding context. These predictions provide insight into keyword-level predictabil-

ity, revealing structural regularities often present in AI-generated content.

3. Graph Construction with Dual Similarity Encoding: A graph is constructed

where nodes represent original and LLM-predicted keywords. Edges are weighted using

cosine similarity and contextual similarity, which are combined into a unified adjacency

matrix for graph-based reasoning.

4. Graph-Based Classification via Graph Convolutional Networks (GCN): The
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Figure 3.1: SGG-ATD detects AI-generated text by constructing a graph per input, where
nodes are original and predicted keywords. Edges encode lexical semantics (cosine) and
contextual (prediction-based) similarity. A GCN processes the graph for final classification.
An example illustrating this process is shown on the right.

constructed graph is processed using a two-layer GCN [43], which propagates and

aggregates information across keyword nodes. A global graph representation is then

derived and passed to a classifier to determine whether the input text is AI-generated

or human-written.

We highlight the novelty and contributions of this framework as follows. (1) Pre-

dictive Masking for Structural Signal: Unlike prior works, our approach probes contextual

predictability by masking semantic keywords and reconstructing them using a pretrained

language model, capturing generative patterns often indicative of AI-written text. (2) Dual

Similarity Graph Encoding: The integration of lexical semantics and contextual similarity

into a single graph structure enables more expressive relational modeling. (3) Graph-Based

Reasoning over Prediction-Informed Graphs: We leverage a Graph Convolutional Network

(GCN) over the constructed similarity graph to model higher-order dependencies, supporting

robust detection beyond surface-level textual patterns.
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3.3.1 Keyword Extraction and Masking

Given an input text, we extract a set of keywords K = {k1, k2, . . . , kn} using part-of-

speech (POS) tagging, focusing on nouns and verbs as they carry core semantic meaning.

We randomly select a subset M ⊂ K, masking 30% of the keywords by replacing them with

<mask> tokens:

|M| = ⌊αn⌋, where α = 0.3 (3.1)

This results in a masked version of the input text Tm, which is used to probe contextual

predictability in the following stage.

3.3.2 Masked Keyword Prediction

To expose latent structural differences between AI-generated and human-written

texts, we employ a prediction step inspired by masked language modeling (MLM). The

masked input text is passed to a pretrained ALBERT-base-v2 model [42], which predicts the

missing keywords based on surrounding context.

Our hypothesis is that language models demonstrate higher confidence and accuracy

in reconstructing masked tokens in AI-generated text, due to its syntactic regularity and

high dependency on keyword-level patterns. In contrast, human-written content—being

more varied and context-rich—leads to greater prediction uncertainty.

As illustrated in Figure 3.2, this behavioral difference becomes evident when com-

paring prediction results across both text types. The figure shows that AI-generated texts

result in more accurate predictions, while human-written texts often produce more incorrect

keywords (incorrect predictions are highlighted in blue), supporting our hypothesis.

The predicted keywords are treated as contextual reconstructions and are later used

to construct a graph alongside the original keywords. Formally, given a masked input text

Tm, the predicted keywords M̂ are obtained as:
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Figure 3.2: This illustration highlights the rationale behind our masking strategy, as applied
to samples from a vulnerability dataset. In both AI-generated and human-written examples,
30% of the keywords have been masked. The language model predicts these tokens, and
the differences in prediction accuracy provide insight into the predictability patterns of each
text type. Incorrect predictions (blue tokens) are more frequent in human-written samples,
highlighting reduced contextual predictability.

M̂ = ALBERT(Tm) (3.2)

To ensure high-quality predictions, we filter out punctuation and malformed outputs

(e.g., incomplete tokens, symbols).

3.3.3 Graph Construction with Dual Similarity Encoding

A graph representation of the text is constructed, where nodes represent both original

and LLM-predicted keywords. We construct a similarity graph where each node is connected

to every other node, and edges are weighted using two key similarity measures:

1. Lexical Semantic Adjacency Matrix (A): Captures semantic similarity between
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words on subword-level lexical features using FastText [44] embeddings via cosine sim-

ilarity.

2. Contextual Similarity Matrix (S): Encodes contextual alignment between original

and predicted keywords based on dot-product similarity.

These two similarity measures are computed independently and reflect distinct aspects

of textual structure: lexical semantics and contextual predictability.

The initial lexical semantic adjacency matrix A is computed as:

Aij =
wi ·wj

∥wi∥∥wj∥
(3.3)

where wi and wj are FastText embeddings of words i and j.

The contextual similarity matrix S is given by:

Sij = wi ·wj (3.4)

where S captures contextual alignment between original and predicted keywords based on

masked reconstruction behavior.

To form the final graph structure, we integrate both signals by summing the two

matrices:

A′ = A + S (3.5)

The combined adjacency matrix A′ is then used as input to the GCN for graph-based

reasoning.

3.3.4 Graph-Based Classification via GCN

The constructed similarity graph is processed using a Graph Convolutional Network

(GCN), which operates on the enhanced adjacency matrix A′ that encodes both lexical
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semantics and contextual similarity. The GCN propagates information across nodes to refine

their embeddings and model higher-order relationships relevant for classification.

Node embeddings are updated layer-wise as follows:

Z(i+1) = σ
(
D−1/2(A′ + I)D−1/2Z(i)W

)
(3.6)

where Z(i) is the node embedding at layer i, A′ is the modified adjacency matrix, D is the

degree matrix, W is a trainable weight matrix, and σ is a non-linear activation function (e.g.,

ReLU). The initial input Z(0) = X corresponds to the feature matrix composed of FastText

embeddings of the original and predicted keywords.

After the final GCN layer, the node representations are aggregated using mean pooling

to form a global graph representation, which is passed to a classifier:

ŷ = softmax(Classifier(MeanPool(Z))) (3.7)

Here, ŷ is the predicted class label indicating whether the input text is AI-generated

or human-written.

3.3.5 Training and Evaluation

The GCN-based classifier is trained using a binary cross-entropy loss function:

L = −
∑
i

yi log ŷi + (1 − yi) log(1 − ŷi) (3.8)

where yi ∈ {0, 1} is the true label (1 for AI-generated, 0 for human-written), and ŷi is the

predicted probability output from the model.

3.3.6 Summary

We introduce a novel framework that leverages both masked language modeling and

graph-based reasoning. By constructing a graph whose adjacency matrix integrates both
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lexical semantics similarity and prediction-informed contextual relationships, our model cap-

tures subtle patterns in text structure and predictability — patterns that are often indicative

of machine authorship.

3.4 Evaluations

3.4.1 Datasets

To evaluate our proposed approach, we use four diverse text datasets representing

different writing domains and linguistic challenges:

• News Dataset – Comprised of journalistic content, featuring a formal tone and fact-

based reporting. This dataset was sourced from Verma et al. [15].

• Creative Writing – Includes fictional and narrative-driven samples, characterized by

varied vocabulary and stylistic choices. This dataset is also based on the collection by

Verma et al. [15].

• Student Essay – Contains argumentative and academic-style writing, often demon-

strating structured reasoning and moderate complexity. The samples are derived from

Verma et al. [15].

• Vulnerability Dataset – A domain-specific dataset focused on software vulnerability

descriptions, which combines technical jargon with concise summaries. We constructed

this dataset ourselves: human-written samples were extracted from the National Vul-

nerability Database (NVD) [45], while AI-generated samples were created using Chat-

GPT [8] to produce vulnerability descriptions aligned with the style and content of

NVD entries.

Table 3.1 provides sample examples from these domains for comparison and Table 3.2

presents the dataset statistics. These datasets are selected to evaluate the model’s robustness

43



Table 3.1: Comparison of AI and Human Samples Across Domains

Datasets AI Samples Human Samples

News The committee’s main task will be to de-

fine how the new addresses should be man-

aged and who will legally control them.

The Internet may be overflowing

with new technology but crime

in cyberspace is still of the old-

fashioned variety.

Creative

Writing

I shrug. ’It gets old after a while, ya know?

Plus, there’s not much to do in the same

place for over a year.’

’You have finally arrived’ He pro-

jected into my mind, with the most

chilling cold and unhuman voice.

Student

Essay

On the other hand, women in many so-

cieties may feel pressure to have chil-

dren due to familial or societal expecta-

tions, irrespective of their personal de-

sires. Such societal pressures can con-

tribute to women having children they do

not particularly desire, leading to dissat-

isfaction and regret.

In conclusion why women do or do

not have children is a complex pro-

cess influenced by many factors, and

based upon a variety of discourses

and opportunities ingrained within

society, not simply whether or not a

woman likes children.

Vulnerability

Dataset

The XML data exchange endpoint does

not disable external entity processing, al-

lowing attackers to inject malicious enti-

ties. This can lead to unauthorized access

to serverside files and even sensitive user

data.

Unrestricted Upload of File with

Dangerous Type vulnerability in

JiangQie Free Mini Program allows

Upload aWeb Shell to aWeb Server.

This issue affects JiangQie Free

Mini Program: from na through

2.5.2.
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Table 3.2: Dataset Statistics Across Domains

News Creative Student Vulnerability

Writing Essay Dataset

# Dataset Size 479 728 13629 946

# Median Length 45 38 82 30

# Minimum Length 3 2 2 4

# Maximum Length 208 354 291 429

across a broad spectrum of writing styles and domains, including general-purpose news

reporting, academic essays, creative narratives, and highly technical software vulnerability

descriptions. This diversity ensures that the model is exposed to varying linguistic patterns,

domain-specific vocabulary, and stylistic complexity, making it well-suited for detecting AI-

generated content in both generic and specialized contexts. For our experiments, each dataset

is randomly split into 80% training and 20% testing subsets.

3.4.2 Implementation Details

We implemented our model in PyTorch [46, 47], leveraging the HuggingFace Trans-

formers library and pretrained ALBERT-Base v2 [42] for masked language modeling. Key-

word extraction was performed using NLTK [48], and FastText embeddings were used to

represent nodes in the graph. Each input sample was converted into a graph structure in-

formed by lexical semantics and contextual similarity. A two-layer Graph Convolutional

Network (GCN) processed the graph, and its output was passed through a fully connected

layer for binary classification. The model was trained using binary cross-entropy loss with

the Adam optimizer [49], a learning rate of 0.01, and 100 epochs on an NVIDIA GPU.
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3.4.3 Baselines

We compare our proposed method against several state-of-the-art AI-generated text

detection approaches that employ diverse detection strategies:

• GPTZero [50]: It is a commercially available AI tool that analyzes mathematical

features such as perplexity to assess whether a given text is likely written by a human

or generated by an AI model.

• DetectGPT [14]: A zero-shot method that leverages the curvature of the log-probability

landscape in the output space of a language model to identify text likely generated by

AI.

• Ghostbuster [15]: An approach that constructs feature representations using aggre-

gated predictions from multiple small language models, aiming to capture statistical

irregularities in AI-generated text.

• RAIDAR [24]: A rewriting-based method that evaluates the degree of textual change

introduced by language models when rewriting input passages, using edit distance as

a discriminative signal.

3.4.4 Main Results

Table 3.3 presents the core results of our model and baseline comparisons across all

four datasets using F1 score as the evaluation metric, consistent with prior works [15, 24]

where it was the sole reported metric. Among existing models, RAIDAR and Ghostbuster

demonstrate strong performance in structured and technical domains like Student Essay

and Vulnerability dataset, reaching up to 0.69 and 0.75 respectively. However, our model,

which integrates contextual graph modeling with masked keyword reconstruction, achieves

the highest F1 scores across all domains — attaining 0.98 on the Vulnerability dataset and

0.85 on Student Essay using a masking ratio of 0.3.
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Table 3.3: Performance comparison (F1 Scores) across all datasets

Methods News Creative Student Vulnerability

Writing Essay Dataset

GPTZero (2023) 0.43 0.61 0.48 0.66

DetectGPT (2023) 0.41 0.63 0.52 0.72

GhostBuster (2023) 0.59 0.57 0.64 0.75

RAIDAR (2024) 0.63 0.65 0.69 0.84

SGG-ATD (Ours) 0.79 0.72 0.85 0.98

Furthermore, our method significantly outperforms all baselines in challenging do-

mains such as Creative Writing and News, where other detectors like GPTZero and De-

tectGPT struggle due to reliance on shallow statistical cues. The consistent performance

of our model across diverse writing styles — facilitated by the use of a 0.3 masking ra-

tio — demonstrates the robustness and generalizability of our graph-augmented detection

framework.

3.4.5 Analysis

Effect of LLM Backbone

As shown in Table 3.4, we evaluate the performance of our framework using different

backbone language models for predicting masked keywords with a fixed masking ratio of 0.3.

ALBERT-Base v2 achieves the best overall balance across domains, particularly in News

and Creative Writing, while also maintaining strong performance in Student Essay and

Vulnerability dataset. DeBERTa-Base and Roberta perform competitively, achieving near-

identical results on the Vulnerability dataset. Even BERT-Base-Uncased yields strong scores,

especially in Student Essay. These results indicate that our graph-augmented framework is
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modular and model-agnostic, capable of leveraging a range of encoder backbones without

substantial performance degradation.

Table 3.4: Performance using different LLMs in our model

LLM (Our Model) News Creative Student Vulnerability

Writing Essay Dataset

BERT-Base-Uncased 0.75 0.66 0.88 0.97

ALBERT-Base v2 0.79 0.72 0.85 0.98

DeBERTa-Base 0.75 0.72 0.85 0.97

Roberta 0.73 0.70 0.86 0.98

Out-of-Distribution (OOD) Generalization

Table 3.5 presents the out-of-distribution (OOD) evaluation results. For the OOD

setting, we adopt a leave-one-domain-out evaluation strategy to simulate cross-domain gen-

eralization. Specifically, the model is trained on a combination of three datasets (e.g., News,

Creative Writing, and Student Essay) and tested exclusively on the remaining unseen dataset

(e.g., Vulnerability Dataset). These target unseen domains differ significantly in tone, struc-

ture, vocabulary, and syntactic variability—making OOD evaluation a strong indicator of

real-world robustness. Our model consistently achieves the highest F1 scores in each do-

main, including substantial improvements in News (0.67 vs. 0.49 and 0.58) and Vulnerability

dataset (0.75 vs. 0.62 and 0.66). Notably, it also outperforms RAIDAR and Ghostbuster in

more stylistically varied domains like Creative Writing and Student Essay, indicating strong

generalization capabilities.

It is important to note that GPTZero and DetectGPT are unsupervised methods.

Therefore, their OOD performance remains identical to their in-domain performance, fur-

ther highlighting the advantage of our supervised graph-based design in adapting to unseen
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domains. These results collectively suggest that SGG-ATD is more robust to distributional

shifts and adaptable across diverse linguistic domains and writing styles.

Table 3.5: Out-of-Distribution (OOD) Evaluation – F1 Scores

Dataset (F1 Scores) News Creative Student Vulnerability

Writing Essay Dataset

GPTZero 0.43 0.61 0.48 0.66

DetectGPT 0.41 0.63 0.52 0.72

GhostBuster 0.49 0.52 0.50 0.62

RAIDAR 0.58 0.59 0.53 0.66

SGG-ATD 0.67 0.65 0.61 0.75

Effect of Masking Ratio

Figure 3.3 illustrates the effect of different masking ratios on our model’s performance

across the four datasets. We observe that the Vulnerability dataset and Student Essay

datasets remain relatively stable across all masking levels, with the Vulnerability dataset

consistently achieving F1 scores above 0.97 and peaking at 0.99 for multiple ratios. In

contrast, domains like Creative Writing are more sensitive to the masking ratio; performance

declines at higher masking levels, dropping from 0.78 at 0.1 to 0.71 at 0.5 and 0.9. The News

dataset shows a gradual improvement up to a masking ratio of 0.3, where it reaches its peak

F1 score of 0.79, before plateauing or slightly dropping. Based on these trends, we select a

masking ratio of 0.3 as the default in our framework. This ratio offers the best balance across

all domains—yielding the highest score in News and competitive results in the other three. It

avoids the over-masking that degrades performance in more variable, stylistic domains while

still providing enough masked context for the model to learn meaningful reconstruction

patterns. Overall, a 0.3 masking ratio supports both stability and generalization, making it
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Figure 3.3: Effect of masking ratio on model performance (F1 score) across four datasets.
A masking ratio of 0.3 provides a strong balance across domains, achieving the highest
score in News and maintaining competitive results elsewhere, while higher ratios degrade
performance in stylistically variable datasets like Creative Writing.

an effective setting for our masked keyword-based graph model.

3.5 Conclusions

In this work, we introduced a graph-augmented framework for detecting AI-generated

text by leveraging masked keyword reconstruction and contextual relational modeling. By

masking a portion of input text and using ALBERT-Base v2 to predict the masked tokens,

our approach captures subtle structural and semantic differences between human and AI-

written content. We further enriched this signal by constructing a graph of original and

predicted keywords, enabling the model to reason over their contextual dependencies. Ex-

tensive experiments across four diverse datasets—News, Creative Writing, Student Essay,

and Vulnerability dataset—demonstrated that our method consistently outperforms strong

baselines such as GPTZero, DetectGPT, Ghostbuster, and RAIDAR.

Additionally, our model exhibited strong generalization to out-of-distribution (OOD)

data, and ablation studies on masking ratios revealed that a masking ratio of 0.3 offers

the best trade-off across domains. These results validated the robustness, adaptability,

and modularity of our approach. Future work may explore extending this framework to
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multimodal inputs or incorporating dynamic masking strategies to improve adaptability and

performance in real-world settings.
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4 Conclusion

This thesis explored two critical and interconnected problem spaces, first, multimodal

fake news detection and second, AI-generated text detection, both aimed at safeguarding the

integrity of information in the AI era.

In the first part, we presented a novel architecture for fake news detection that incor-

porates multimodal inputs (text and image) and contextual credibility cues (news domains)

using a rotational attention mechanism. By combining BERT embeddings for textual data,

VGG-19 features for image content, and domain-level reasoning via Graph Attention Net-

works (GAT), the model captures rich, cross-modal interactions and improves performance

over traditional baselines. This chapter demonstrated that deception in fake news is rarely

isolated to one modality and that holistic modeling of visual, textual, and contextual signals

is essential.

The second part of this thesis focused on the detection of AI-generated text, an in-

creasingly critical challenge as large language models become more fluent and widely adopted.

To address this, we proposed a similarity-guided graph reasoning framework that leverages

masked language modeling to predict masked keywords and evaluate semantic coherence.

The original and predicted keywords are represented as nodes in a graph, while their pair-

wise similarities define the edge weights. This graph is then processed through a Graph

Convolutional Network (GCN), enabling the model to reason over structural and contextual

relationships—resulting in more robust detection, even across diverse and previously unseen

generative styles.

Together, the two components of this thesis represent complementary strategies for

content authenticity verification. The first focuses on understanding credibility through mul-

timodal fusion and external domain cues, while the second emphasizes semantic consistency

and structural coherence in text. Both are designed with the shared goal of building AI
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systems that can interpret, verify, and protect the quality of information in dynamic and

adversarial environments.

This thesis not only introduces novel architectures and reasoning frameworks, but

also sets the stage for future research directions such as integrating both tasks into a single

real-time detection pipeline, exploring adversarial robustness, and applying these methods

to multilingual or cross-platform content. As generative technologies continue to evolve, so

too must our tools to identify and mitigate deception—ensuring that innovation in AI is

matched by equal progress in AI accountability and content integrity.
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