
IMPROVING CYBER SITUATIONAL UNDERSTANDING

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

By

Philip Huff
Harding University

Bachelor of Science in Mathematics and Computer Science, 2002
James Madison University

Master of Science in Computer Science, 2008 July 2021

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Qinghua Li, Ph.D.

Dissertation Advisor and Committee

Chair

Susan Gauch, Ph.D.

Committee Member

Roy A. McCann, Ph.D.

Committee Member

Brajendra Nath Panda, Ph.D.

Committee Member

2

Abstract

Effective cybersecurity operations require the ability to analyze large amounts of information to

assess security risks and formulate defensive strategies against adversaries. This has become more

complex in recent years as the sprawl and interconnectivity of devices grows through implemen-

tation of virtualization, cloud computing, and Internet of Things (IoT). The amount of data and

analysis required for effective cybersecurity command and control decisions far exceeds humans’

capacity to perform manually. We characterize the analysis problem as cyber situational under-

standing. The research presented to improve cyber situational understanding focuses on vulnera-

bility analysis and threat intelligence.

Regarding vulnerabilities, entities must analyze and plan work for between thousands and tens

of thousands of software vulnerabilities annually. Entities heavily use network firewalls to limit

vulnerability exposure. As a result, some of these vulnerabilities permit exposure to adversarial

exploitation, whereas others are inaccessible and therefore present negligible risk of exploitation.

Distinguishing between high and low risk software vulnerabilities requires a deep understanding

of the vulnerability, network firewall protection, and characteristics of the targeted device. This

problem is solved by extracting network service features from vulnerability data features using

both machine-learning and natural language processing. Then, the network firewall topology is

parsed to determine which vulnerabilities are reachable by adversaries. Ultimately, a state-based

safety analysis ascertains which vulnerabilities are unsafe.

A related vulnerability analysis problem occurs in cybersecurity operations when associating

an entity’s hardware and software assets to public vulnerability databases. Assets often reveal

hardware and software through installation artifacts and network service identification, and enti-

ties store these artifacts in inventory databases. However, software and hardware vendors apply

a standard Common Platform Enumeration (CPE) naming convention when publicly reporting

vulnerabilities. Associating these two datasets often requires many hours to days of manual in-

spection. The proposed solution automates the mapping approach of human analysts using fuzzy

matching techniques, natural language processing, and, ultimately, machine learning to present

a small set of recommendations for mapping the two datasets. The result significantly reduces

human analysis time and reduces the occurrence of false positives in vulnerability notifications.

Finally, cyber threat intelligence (CTI) requires associating cyber observable artifacts, such as

IP addresses, URIs, and file hashes, with cyber threat tactics, techniques, and procedures. Unfortu-

nately, most CTI data is compartmentalized across multiple organizations and cannot be shared due

to the legal and reputational risk with cyber threat being associated with the entity. The approach

to solving this problem inovlves using a distributed ledger with anonymous token spending and

authentication. This allows a consortium of semi-trusted entities to share the workload of curating

CTI for a threat sharing community’s cooperative benefit.

Acknowledgements

I wish to express my deepest gratitude to my advisor, Dr. Qinghua Li, for his support, encourage-

ment, and willingness to guide me in transitioning from industry to academia.

I appreciate my committee members Drs. Susan Gauch, Roy McCann, and Brajendra Nath

Panda for their time and support, and valuable suggestions for developing this dissertation.

Thank you to my research partners Matthew Kennett, Kylie McClanahan, and Fengli Zhang

with whom I am grateful to have shared time in your creative process. Also, I wish to thank my

colleagues from the University of Arkansas at Little Rock: Drs. Carolina Cruz, Dirk Rieners,

Jan Springer, Al Baker, Sandra Leiterman, and many more who have allowed me to complete this

degree.

To my wife, Joy, and children, Joanna, Abigail, Mac, and Kyle, I could not imagine any en-

deavor without your support and devotion.

And above all, I thank God for inspiring and sustaining me.

This dissertation is supported in part by the DOE under awards DE-OE0000779 and DE-

CR0000003, and by the NSF under award number 1751255.

Table of Contents

1 Introduction 1

1.1 Automating the Assessment of Vulnerability Exposures [46] 2

1.2 A Recommender System for Tracking Vulnerabilities [47] 3

1.3 Cyber Threat Intelligence Exchange [45] . 3

1.4 Summary of Contributions . 4

2 Automating the Assessment of Vulnerability Exposures 6

2.1 Related Work . 7

2.2 Data Modeling . 9

2.2.1 Vulnerability Features, Asset Features, and Adversary Capabilities 9

2.2.2 Adversarial Data . 11

2.2.3 Network Service and Network Reachability 12

2.3 Network Service Extraction . 12

2.3.1 Machine Learning-based Extraction . 12

2.3.2 Natural Language Processing-based Extraction 14

2.3.3 The Service Extraction Pipeline . 15

2.4 Network Reachability . 17

2.5 Model Checking Vulnerability Safety . 19

2.5.1 Dominance Relation in Capability State Labels 20

2.5.2 Measuring Impact . 23

2.6 Evaluations . 24

2.6.1 Discussion of Results and Limitations . 28

2.7 Conclusion . 29

3 A Recommender System for Tracking Vulnerabilities 33

3.1 Introduction . 33

3.2 Prior Work . 34

3.3 Background . 36

3.4 Fuzzy Matching Technique . 39

3.4.1 Natural Language Processing . 39

3.4.2 Fuzzy Matching . 40

3.4.3 Machine Learning . 41

3.5 Implementation and Evaluation . 45

3.6 Conclusion . 46

4 Cyber Threat Intelligence Exchange 49

4.0.1 The Current State of Threat Sharing . 49

4.0.2 Contributions . 50

4.0.3 Organization . 51

4.1 Background and Related Work . 51

4.1.1 Blockchain Technologies . 52

4.1.2 Zero Knowledge Proofs . 53

4.2 Building Blocks . 54

4.2.1 Sparse Merkle Trees . 54

4.2.2 Distributed Anonymous Payment . 54

4.2.3 zk-SNARKs . 56

4.3 Distributed Ledger for Threat Sharing . 57

4.3.1 Distributed Ledger Network . 58

4.3.2 Chaincode Assets . 60

4.4 Non-Attributable Token Authentication . 62

4.4.1 Anonymous Token Spending . 62

4.4.2 Merkle Tree Structure and Root Updates 64

4.4.3 Revocation of Anonymous Authentication Tokens 65

4.4.4 Adding Value to Tokens . 67

4.4.5 Authentication without Spending . 67

4.5 Chaincode for CTI Work . 68

4.6 Implementation . 70

4.6.1 Token Authentication Performance . 71

4.6.2 Ledger Operation Guidelines . 71

4.7 Conclusion . 73

5 Future Work 77

6 Overall Conclusions 79

List of Figures

1 Performance of Network Service Extraction . 16

2 Additional Network Services Identified through NLP 17

3 Reachability analysis combining Adversaries, Targets, and Vulnerabilities 18

4 Example Final State Labeling . 21

5 Sample System Network Zonal Diagram . 25

6 Monthly Safety Analysis of all Applicable Vulnerabilities 26

7 Iterative Safety Analysis for all Applicable Vulnerabilities 27

8 Vulnerabilities Allowing Extension of Adversarial Reach 28

9 Feature Importance for ’Order’ Output . 44

10 Example Recommendation Output . 44

11 Sparse Merkle Tree. 55

12 Threat Ledger Network. 59

13 MISP Data Object Model. 61

14 Merkle Tree Structure. 66

15 Work State Transition. 70

16 Proof Times Relative to Merkle Tree Height. 72

List of Tables

1 CVSS-Based Data Features . 11

2 Machine Learning Classification Results for Network Services 14

3 NLP Named-Entity Recognition Scores . 15

4 Estimated Number of Vulnerabilities Reported in 2020 by CNA 36

5 CVE Notifications in Practice . 38

6 Machine Learning ’Order’ Classification Results for CPE Matching 45

7 Sparse Merkle Tree Proof Circuit Parameters and Performance 72

Published Papers

• Chapter 2: Philip Huff, Qinghua Li. ”Towards Automated Assessment of Vulnerability Ex-

posures in Security Operations”. In: EAI International Conference on Security and Privacy

in Communication Networks, 2021. (Accepted)

• Chapter 3: Philip Huff, Qinghua Li. ”A Distributed Ledger for Non-Attributable Cyber

Threat Intelligence Exchange”. In: EAI International Conference on Security and Privacy

in Communication Networks, 2021. (Accepted)

• Chapter 4: Philip Huff, Kylie McClanahan, Thao Le, and Qinghua Li. ”A Recommender

System for Tracking Vulnerabilities”. In: International Workshop on Next Generation Secu-

rity Operations Centers (NG-SOC), 2021. (Accepted)

1 Introduction

Cybersecurity operations encompass the tactical decision-making process to protect computer sys-

tems in response to dynamic adversarial threats. Quality decision-making is increasingly challeng-

ing with the growth of complexity in both the computing environment and adversarial schemes.

Reliance on repetitive human analysis limits the advancement and scalability of cybersecurity op-

erations.

Borrowing military terminology, applying analysis and judgment to presented information,

and determining the relationship among operational variables is known as situation understanding

[7]. More specifically, for cybersecurity operations, situation understanding means obtaining the

knowledge necessary to protect the cyber system effectively.

The number of devices and dense coupling of system components make cyber situation un-

derstanding difficult to obtain. Trends in virtualization, cloud computing, and Internet-of-Things

deployment contribute to an analysis task growing beyond humans’ capacity to perform manually.

This creates the following types of uncertainty in cybersecurity operations and attack paths:

1. Interconnectedness - Devices establish communication channels cheaply through ubiqui-

tous networks and transparently through virtualized networking

2. Software Proliferation - A single device comprises several hundred software components,

many of which have a further tree of software dependencies

3. Vulnerabilities - Each software component regularly has common weaknesses identified

and publicly reported

4. Adversarial Behavior - Changing adversarial tactics, techniques, and procedures (TTP)

leaves behind trace indicators (e.g., IP addresses, URIs, file hashes, etc.), which assist in

detecting and preventing future attacks. However, the rate at which indicators are produced

has an overwhelming effect on cybersecurity operations.

1

In one sense, cyber situational understanding is a big data problem, but the data is compart-

mentalized across organizations. The legal, regulatory, and reputational trust barriers minimize the

possibility of aggregation. Consequently, although cyber situational understanding has a critical

need of machine learning over big data, the possibility is currently unrealized.

The contributions of this research solve problems in cyber situational understanding through

both (i) existing public datasets and (ii) the creation of a new semi-public dataset on which machine

learning can be performed. The most consistent public dataset for cybersecurity operations exists

with the National Vulnerability Database (NVD) [64].

This dissertation research is organized into three parts. The first part tackles the problem of

cyber situation understanding in software vulnerabilities by defining a safe state assessment and

automatically performing the assessment over many vulnerabilities. The second part addresses the

problem of associating an entity’s hardware and software inventory to public vulnerability repos-

itories. The association allows entities to more fully automate the vulnerability assessment while

avoiding false negatives and reducing false positive vulnerability notifications. Then part three

explores the cyber threat intelligence (CTI) analysis problem using a distributed ledger. The data

sharing barriers are addressed using a new approach to anonymous spending and authentication on

a permissioned blockchain, thereby enabling faster curation of CTI. Each problem and the contri-

butions are summarized below.

1.1 Automating the Assessment of Vulnerability Exposures [46]

In chapter 2, cyber situation understanding for software vulnerabilities is improved through an

automated state-based safety assessment. Current approaches for risk analysis of software vulner-

abilities using manual assessment and numeric scoring do not complete fast enough to keep pace

with the maintenance work rate to patch and mitigate the vulnerabilities. This chapter proposes a

new approach to modeling software vulnerability risk in the context of the network environment

and firewall configuration. In the approach, vulnerability features are automatically matched up

with networking, target asset, and adversary features to determine whether adversaries can exploit

2

a vulnerability. The ability of adversaries to reach a vulnerability is modeled by automatically iden-

tifying the network services associated with vulnerabilities through a pipeline of machine learning

and natural language processing and automatically analyzing network reachability. Our results

show that the pipeline can identify network services accurately. We also find that only a small

number of vulnerabilities pose real risks to a system. However, if left unmitigated, adversarial

reach to vulnerabilities may extend to nullify the effect of firewall countermeasures.

1.2 A Recommender System for Tracking Vulnerabilities [47]

In chapter 3, mitigating vulnerabilities in software requires first identifying the vulnerabilities with

an organization’s software assets. This seemingly trivial task involves maintaining vendor product

vulnerability notifications for a kludge of hardware and software packages from innumerable soft-

ware publishers, coding projects, and third-party package managers. On the other hand, software

vulnerability databases are often consistently reported and categorized in clean, standard formats

and neatly tied to a common software platform enumerator (i.e., CPE). Currently it is a heavy

workload for cybersecurity analysts to match their hardware and software package inventory to

target CPEs. This hinders organizations from getting notifications for new vulnerabilities, and

identifying applicable vulnerabilities. In this chapter, we present a recommender system to auto-

matically identify a minimal candidate set of CPEs for software names to improve vulnerability

identification and alerting accuracy. The recommender system uses a pipeline of natural language

processing, fuzzy matching, and machine learning to significantly reduce the human effort needed

for software product vulnerability matching.

1.3 Cyber Threat Intelligence Exchange [45]

Finally, in chapter 4 presents an approach to improve the cyber situation understanding of cyber

threats. Cyber threat intelligence (CTI) sharing provides cybersecurity operations an advantage

over adversaries by more quickly characterizing the threat, understanding its tactics, and antici-

pating the objective. However, organizations struggle with sharing threat intelligence due, in part,

3

due to the legal and financial risk of being associated with a potential malware campaign or threat

group. An entity wishing to share threat information or obtain information about a specific threat

risks being associated with the threat actors, resulting in costly legal disputes, regulatory investi-

gation, and reputational damage. As a result, the threat intelligence data needed for cybersecurity

situational awareness often lacks in volume, quality, and timeliness. We propose a distributed

blockchain ledger to facilitate sharing cybersecurity threat information and provide a mechanism

for entities to have non-attributable participation in a threat-sharing community. Learning from

approaches to Distributed Anonymous Payment (DAP) schemes in cryptocurrency, we use a new

token-based authentication scheme for use in a permissioned blockchain. This allows a consortium

of semi-trusted entities to share the workload of curating CTI for the community’s cooperative ben-

efit.

1.4 Summary of Contributions

My contributions are summarized as follows:

• A formal definition of system state safety when combining vulnerability, adversary, and tar-

get asset features, and an automation framework for assessing the system security, which

includes data modeling, extraction of network service information from vulnerability fea-

tures/descriptions, network reachability analysis under firewall rules, and model checking

vulnerability safety. The reachability analysis is enabled through an artificial intelligence

pipeline including ML and NLP methods to identify the network services associated with

vulnerabilities based on vulnerability features and descriptions enables automating the asso-

ciation between vulnerabilities and firewall policies.

• Matching hardware and software inventories to public vulnerability repositories through a

pipeline of natural language processing, fuzzy matching, and machine learning.

• Provide a solution for entities to share observed CTI without attribution using a permis-

sioned blockchain. We propose a novel approach to a Distributed Anonymous Payment

4

(DAP) scheme for permissioned blockchains to allow for anonymous transactions in CTI

sharing. The solution also efficiently maintains anonymous authentication in CTI sharing

and provide revocation services for entities by splitting maintenance of the Merkle tree used

for anonymous authentication between participating peers, which allows for more regular

updates of the Merkle Tree across the distributed ledger.

References

[7] Army Doctrine Publication No. 6.0: Mission Command, Command and Control of Army
Forces. Department of the Army Headquarters. July 2019.

[45] Philip Huff and Qinghua Li. “A Distributed Ledger for Non-Attributable Cyber Threat In-
telligence Exchange”. In: EAI International Conference on Security and Privacy in Com-
munication Networks. 2021.

[46] Philip Huff and Qinghua Li. “Towards Automated Assessment of Vulnerability Exposures
in Security Operations”. In: EAI International Conference on Security and Privacy in Com-
munication Networks. 2021.

[47] Philip Huff et al. “A Recommender System for Tracking Vulnerabilities”. In: International
Workshop on Next Generation Security Operations Centers (NG-SOC). 2021.

[64] National Vulnerability Database Data Feed. https://nvd.nist.gov/vuln/data-feeds. Accessed:
2020-01-28.

5

2 Automating the Assessment of Vulnerability Exposures

The actual number of software vulnerabilities has become more evident with bug bounty pro-

grams, automated code analysis, and increased reporting by software vendors. In 2017, the number

of vulnerabilities reported annually through the National Vulnerability Database (NVD) doubled

and currently continues an upward trend [65]. Vulnerability mitigation for servers and other au-

tonomous devices requires extensive planning, coordination, and testing. Consequently, the burden

to maintain secure operations in organizations often exceeds the available resources.

To address this problem, defenders in an organization need a more contextual understanding

of the actual risk posed by a vulnerability. Contextual risk assessment requires understanding (i)

an adversary’s tactics, capabilities, and access to a targeted vulnerability and (ii) the effectiveness

of existing mitigation in the organization. Moreover, defenders need the risk information quickly.

For example, in a 2017 Equifax breach, a months-old unpatched Apache Struts vulnerability was

identified as the initial attack vector [22]. If the degree of risk became evident upon release of the

vulnerability, operators could have immediately patched the software.

A commonly used defense is a firewall. Thus, one promising solution for providing contextual

risk information to operators in determining whether an adversary has the needed network access

to exploit given vulnerabilities under firewall rules. The challenge is mapping the many applicable

software vulnerabilities of a system to the firewall rules. Currently, operators can only perform this

manually.

Our work bridges this gap by automating the identification of network services used to ex-

ploit vulnerabilities through a pipeline of machine learning (ML) and natural language processing

(NLP) methods. The machine learning method uses standard vulnerability features from the NVD

data feed to predict the associated network service. The NLP method further boosts the overall

prediction accuracy with information from vulnerability descriptions. Experiments show that the

pipeline can identify network services for 97% of vulnerabilities with an accuracy of 95%.

The joining of firewall and vulnerability data allows identifying which vulnerabilities are ac-

cessible outside of their segmented network zone. It then becomes possible to model an adversary’s

6

external view of the vulnerability. To do this, we model the placement of adversaries in the Internet

and enterprise network zones and develop methods for network reachability analysis under firewall

rules.

Once the adversary’s ability to reach the vulnerability is determined, the system’s security

state can be precisely assessed. Using standard features for access, capability, and impact in the

Common Vulnerability Scoring System (CVSS), we model safety as a function of set dominance

between the vulnerability, target asset, and adversary.

The approach demonstrates that over a realistic sample system only a small portion of vulner-

abilities are unsafe. The practical result signifies a reduced effort for the defender to maintain a

system’s secure state. The model can also recursively iterate to show how adversaries might extend

their reach using already reached software vulnerabilities. We refer to vulnerabilities in this path as

gateway vulnerabilities and demonstrate the detriment they may have on the entire system’s safety.

Section 4.1 reviews related work. Section 2.2 introduces data modeling. Section 2.3 describes

how to identify the network service associated with vulnerabilities. Section 2.4 presents network

reachability analysis under firewall rules. Section 2.5 presents the safety model for vulnerability

exposure checking. The last two sections of this chapter present evaluation results and conclusions.

2.1 Related Work

The concept of assessing software vulnerability risk in terms of adversarial capability has its roots

in the broader field of attack trees. Attack Trees, initially pioneered by Schneier [76], are practical

and well-established modeling tools for automatically assessing risk by refining the ultimate goal

of an attacker into a granular tree of actions to quantify the risk of an attack. Later research provides

a formal specification for attack trees [59]. Attack-Defense Trees (AD-Trees) add the analysis of

defense mitigation in the presence of attack methodologies to assess both mitigation approaches

and risk of attack [50]. Recent solutions in automated AD-Tree generation [8], multi-parameter

risk optimization [36] and automatically relating attacks to attack tree goals [58] continue to propel

AD-Trees as a practical tool to optimize vulnerability mitigation. Our approach differs from AD-

7

Trees by focusing only on software vulnerabilities from the perspective of a defender. In assessing

software vulnerabilities, we model the simple attacker goal to exploit the system and use standard

atomic attributes to measure the attacker’s capability.

Network attack graphs have similar objectives to attack trees in identifying adversarial capabil-

ity to attack but focus on the target reachability by the attacker. The use of modeling the physical

network as a graph to assess an attacker’s capability to exploit vulnerabilities originated in work

[70] and [4]. In [88], they provide a grammar for defining connectivity in a network and propose

a model-checking safety invariant for assessing vulnerabilities. This approach is expanded in [86]

to include a more general safety condition against unknown or zero-day attacks.

Several papers have suggested approaches to automating the software vulnerability assessment

using network attack graphs. In [90, 40], they propose metrics for a qualitative security score based

on vulnerabilities present in the network. Similarly, [67] combines vulnerability metric data with

firewall topology to provide an overall view of risk using various metrics, including connectivity

and length of network paths. A more recent approach involves scoring network path edges using

applicable vulnerability metrics to host data to calculate risk as a function of the path cost [38].

AD-Trees and attack graphs have the same nuisance of overwhelming the security analyst with

risk metrics and attack scenarios. Our approach overcomes this obstacle by focusing more narrowly

on the common problem of software vulnerability management using standard data features (i.e.,

CVSS) well understood by practitioners. Instead of outputting a graph or risk score which still

needs much manual analysis to decide whether vulnerabilities need mitigation or not, our model

generates a deterministic output as to whether vulnerabilities are safe from attackers or not. We

abstract much of the complexity in decision making using set dominance similar to other areas

of formal models in computer security such as access control [53] and, more recently, in trusted

computing [91]. Also, existing work does not address the automated extraction of network services

from vulnerability features and descriptions.

Some studies have used the NVD data for security purposes. [55] uses NLP over vulnerabil-

ity descriptions for extracting new entities (i.e., Named-Entity Recognition or NER) to generally

8

describe vulnerabilities in terms of cause, consequence analysis, and impact estimation. [87] uses

ML models for attack classification and improved impact scoring, and [56] uses concept drift in

NLP to assess vulnerabilities based on their descriptions. [96], and [94] use machine learning to

recommend remediation actions for and predict the probabilistic risk levels of vulnerabilities, and

[60] uses natural language processing over vulnerability descriptions to identify mitigation infor-

mation. [47] studies how to map software assets to to vulnerabilities. See [84] for a repository of

work in this domain. However, these existing studies do not automatically extract network services

from vulnerability features and descriptions, and they do not consider firewall policies as our work

does.

2.2 Data Modeling

Our safety model seeks to understand whether and how a set of adversaries can exploit a given

vulnerability. This section describes the relevant data for understanding adversarial interaction. A

significant portion of the input data comes from the NVD as distinct attributes, which provides a

consistent and timely source for real-time vulnerability analysis.

2.2.1 Vulnerability Features, Asset Features, and Adversary Capabilities

The NVD provides a full data feed of twelve attributes associated with the CVSS. CVSS is an open

standard maintained by a special interest group under the Forum of Incident Response and Security

Teams (FIRST) [26]. Software publishers broadly use it to describe security vulnerabilities in their

software.

Here, we describe the attributes related to the adversarial capability necessary to exploit vulner-

abilities as a function of state labeling propositions that we use for modeling. Each feature labels a

distinct capability, representing a cumulative set hierarchy for deterministically calculating adver-

sarial interaction requirements.

Features in the NVD have an abbreviation convention, which we conveniently adopt with

state labeling. The Attack Vector, AV , label defines the access necessary for an exploit. The

9

propositions Physical (P), Local (L), Network (N) and Adjacent (A) are an ordered set AV =

{N,A,L, P} in terms of decreasing exploit opportunity with respect to the vulnerability and in-

creasing exploit difficulty for the adversary. An attack vector of N implies that the adversary

can exploit the vulnerability directly through a network service. In contrast, an attack vector of

L implies the adversary needs to interact with the device for exploitation. Local attacks do not

necessarily mean an adversary cannot perform the attack remotely. For example, an adversary can

interact through VNC or SSH to exploit a vulnerability with an attack vector of L.

Attack Complexity, AC, describes the difficulty required to develop an exploit for a given

vulnerability. Propositions include Low, L, and High, H , with the ordered set AC = {L,H} . For

example, low attack complexity would indicate an adversary’s greater opportunity to exploit the

vulnerability.

Privileges, PR, describes the level of privileges necessary to exploit the vulnerability and is

similar to AC with the additional possibility of no privileges, N required. Thus, the ordered set

would be PR = {N,L,H} in terms of decreasing opportunity for exploitation.

The User Interaction label, UI , indicates the degree to which a human must be involved to

exploit the vulnerability. Propositions include Required, R, and None, N , with the ordered set as

UI = {R,N}. When R applies to a device, it would indicate regular user interaction and have

more exploit opportunities.

The temporal metric of exploitability, EX , describes the current availability of code to exploit

a vulnerability. The label EX propositions include High, H , meaning exploit code is widely

available, Functional, F , meaning exploit code is available but may require additional work, Proof-

of-concept, P , and Unproven, U , where the exploit code is not known to be developed. The ordered

set is EX = {H,F, P, U} with decreasing exploitability of a vulnerability.

Although the CVSS attributes describe vulnerability features, we make a key observation that

these features apply to both (i) target assets associated with the vulnerability and (ii) a prospective

adversary’s capability. Table 1 describes the relationship of the CVSS capability features. We

capitalize on these relationships in section 2.5 to precisely define capability in terms of safety.

10

Table 1: CVSS-Based Data Features

CVSS Fea-
ture

Vulnerability Adversary Asset

Attack Vector The physical or
network access for
exploit

The ability of an
adversary to use
the path

The location of an
asset

Privileges The logical access
necessary for ex-
ploit

The level of priv-
ileges available to
the adversary

User Interac-
tion

Whether an exploit
needs interaction
with a human

Whether humans
interact on the
asset

Exploitability The availability
and ease of de-
veloping exploit
code

The ability of an
adversary to use
or develop exploit
code

Impact Gradient Labels Impact gradient labels describe the impact an exploited vulnerability

might have on a target device, and they only apply to the vulnerability and target device. The labels

of Confidentiality, C, Integrity, I and Availability, A, describe the functionality of the vulnerability

and the security requirements of the target device. For each C, I and A, the labels include None,

N , Low, L, and High, H , with the same ordered set {N,L,H}.

2.2.2 Adversarial Data

We primarily consider scenarios in which adversaries have access outside of a targeted network

zone. Otherwise, if an adversary has internal access, they likely could use credentials rather than

software vulnerabilities for attacks. However, we do model an insider threat in section 2.6, but we

do so from a network zone on the fringe of the targeted system.

Adversary objects have capability labels assigned from Table 1, and these should be selected to

match the real adversarial capability closely. For example, a threat actor on the Internet may have

the capability to exploit vulnerabilities with High attack complexity, Low privilege, and Unproven

exploitability. An insider threat may have High privileges, but only have exploit capability for Low

11

attack complexity and High exploitability.

2.2.3 Network Service and Network Reachability

Vulnerabilities that remote adversaries could exploit are usually associated with specific network

services, e.g., a web service. The network service information is critical for associating vulnera-

bility exposure with the firewall policy, which governs access to network services. Currently, the

network service associated with a vulnerability is not released/reported in any standard format. In-

stead, security operators usually need to manually dig it out by reading vulnerability descriptions

such as those released in the NVD. We will describe how to extract the network service informa-

tion from vulnerability data in Section 2.3, and how to explore an adversary’s network reachability

to the target device and service in Section 2.4.

2.3 Network Service Extraction

The enabling factor for defining an adversary’s ability to reach a vulnerability is the extraction

of network service information from the vulnerability’s features and descriptions. We first use

machine learning to extract network services for vulnerabilities and then apply natural language

processing (NLP) to boost results. This section describes the machine learning approach, the NLP

approach, and how they are combined into one pipeline to identify network services.

2.3.1 Machine Learning-based Extraction

The machine learning portion of the pipeline uses a predictive decision-tree model over standard

feature data from the NVD to predict the network services associated with vulnerabilities. Standard

features include (i) Common Product Enumeration (CPE) [24], (ii) Common Vulnerability Scoring

System (CVSS) [25] features, and (iii) the Common Weakness Enumeration (CWE) [27]. All of

these features are regularly updated and made available by the NVD [64].

We initially tried using machine learning to predict for all network services. Machine learning

by itself performs well for the web services and client services involving user interactions. How-

12

ever, it performs much worse for other network services, probably because there are relatively few

vulnerabilities for other network services in the NVD dataset. Inspired by this observation, we

use machine learning to classify vulnerabilities into three categories, CLIENT, WEB, and INCON-

CLUSIVE, for better accuracy. The CLIENT category represents the broad class of vulnerabilities

in which either the adversary must exploit locally (e.g., local input) or must initiate client network

traffic for a remote exploit (e.g., browser-based vulnerabilities). The WEB category represents vul-

nerabilities with web services. The INCONCLUSIVE category represents all other vulnerabilities

in which machine learning does not accurately determine network services and which requires

further processing by NLP.

We labeled network services for 19,433 vulnerabilities sampled from the 2017-2019 NVD

dataset as our training data. The samples were shuffled and randomly partitioned into an 80%

to 20% training-testing split. The model uses a decision-tree classifier using the features from

the CVSS, CPE, and CWE described above and a Gini-index for branching. Table 2 shows the

precision, recall, F-score, and support metrics for the machine learning model performance.

To explain these metrics, we consider the number of true positives (tp), true negatives (tn),

false positive (fp), and false negatives (fn) with respect to the test dataset predictions matching

the correct output. Precision is then defined to measure how well the model successfully predicts

the output. This metric helps determine whether the false positive classification is acceptable.

Precision =
tp

tp+ fp
(1)

Recall measures the percentage of predictions in the test dataset successfully classified. This

metric is useful when analysts have a significant concern for a model failing to classify correctly.

Recall =
tp

tp+ fn
(2)

Likewise, the F-score is the harmonic mean of the precision and recall scores to provide a more

13

holistic performance of the model.

F-score = 2× Precision×Recall

Precision + Recall
(3)

Table 2: Machine Learning Classification Results for Network Services

Network Service Type Precision Recall F-Score Support
CLIENT 100% 100% 100% 3,764

WEB 99% 100% 100% 591
INCONCLUSIVE 99% 99% 99% 504

2.3.2 Natural Language Processing-based Extraction

We then use NLP to further process the vulnerabilities within the INCONCLUSIVE category of the

machine learning prediction. One approach is to directly classify each vulnerability description

with a label identifying the network service. However, there are thousands of network services

which makes it very challenging to get a high accuracy based on the currently available data. In-

stead, we build semantic meaning from the vulnerability descriptions in the NVD through named-

entity recognition (NER), which locates and classifies named entities in a text into pre-defined

categories such as organizations and products. For example, NER would classify “Google LLC”

in a sentence as an Organization. For a complete description of NER, refer to [23, 79]. We use

NER to extract standard features in vulnerability descriptions.

Inspired by existing work on cybersecurity ontologies [78, 81, 14], we define the following

named entities for classifying network services:

1. SERVICE - Service affected by the vulnerability. Examples include HTTP, VNC, ssh, and

CLI. These entities often map directly to network services.

2. SOFTWARE - Software product affected by the vulnerability. Software products often have

network service requirements. For example, a vulnerability affecting WordPress maps to a

web service and Google Chrome vulnerabilities require client interactions.

14

3. THREAT - Method used to exploit the vulnerability. This entity is most helpful in identi-

fying web services. Descriptions of attack vectors commonly use HTTP and HTML terms

such as POST, URI, and cookie. These adjectives often follow the preposition “via” in the

description.

4. WEAKNESS - Software failure causing the vulnerability. Examples include web attack

references such as CSRF, SSRF, and path traversal. These weaknesses commonly precede

the term vulnerability as an adjective.

We annotated approximately 4,000 vulnerability descriptions from the 2017 through 2019

NVD dataset. Then a convolutional neural network (CNN) model for recognizing named enti-

ties was trained based on these vulnerabilities with a random 80% to 20% training-testing split.

Table 3 shows the results.

We then build a set of rules for mapping vulnerabilities to network services using named enti-

ties. Each rule tags a specific network service based on the named entities extracted from vulnera-

bility descriptions.

Table 3: NLP Named-Entity Recognition Scores

NLP NER Results Summary
NER Category Precision Recall F1-score

SERVICE 76% 68% 72%
SOFTWARE 63% 64% 63%

THREAT 72% 61% 66%
WEAKNESS 70% 54% 61%

2.3.3 The Service Extraction Pipeline

The entire pipeline of network service extraction is as follows. We first use the above machine

learning method to identify a set of vulnerabilities associated with the WEB and CLIENT services.

For other vulnerabilities that fall into the INCONCLUSIVE category, the above NLP-based rule

15

Figure 1: Performance of Network Service Extraction

matching identifies the specific network services. Vulnerabilities that do not match any NLP-based

rules are left for manual analysis by security operators.

We tested the pipeline over 3,841 vulnerabilities published in the NVD in 2020. We used the

2020 NVD dataset for testing because both the machine-learning and NLP models trained over

data features from 2017 through 2019. The results are shown in Figure 1.

The left-most column shows the results of machine-learning only where service classification

is derived for 88% of vulnerabilities with a 97% classification accuracy (for the remaining 12% of

vulnerabilities, the machine learning method alone is not able to generate any service classifica-

tion). The following three columns show the classification results of machine learning and NLP

when the number of NLP rules changes from 50 to 100 and 150. When there are 50 NLP rules,

more vulnerabilities’ network services are classified than machine learning only while the overall

classification accuracy maintains at the same level. By adding NLP rules from 50 to 150, vulnera-

bilities with identified network services increase from 92% to 97%. As a trade-off, there is a slight

reduction in the overall classification accuracy (from 97% to 95%) since some NLP rules generate

wrong service mappings. However, the accuracy is still high.

16

Figure 2: Additional Network Services Identified through NLP

3,529 (92%) of the identified network services were categorized as either WEB or CLIENT,

with 3,353 (87%) identified by machine learning and 404 (10%) by NLP. Figure 2 shows the

diversity of network services identified solely by NLP. The treemap shows the number of network

services in both color and area.

Each network service maps to a set of transport-layer network ports. The ports directly as-

sociate with firewall rules to automatically assess network reachability, as we show in the next

section.

2.4 Network Reachability

Network reachability means an adversary’s ability to access a target device over a network. Fire-

walls between the adversary and target device serve as the principal inhibitor of access for most

server environments. Determining the combined and effective access permitted by the set of fire-

walls is tantamount to establishing whether an adversary can reach a given vulnerability. Reach

17

Figure 3: Reachability analysis combining Adversaries, Targets, and Vulnerabilities

analysis includes an assessment of both i) direct network service access and ii) interactive access,

in which an adversary extends its reach into the network through the possession of authentication

credentials and vulnerability exploits.

This step aims to identify combinations of adversaries, target devices, and vulnerabilities for

safety analysis. As shown in figure 3, target devices reside in network zones, and adversaries

get placed in network zones based on some realistic approximation of where an adversary may

already reside in the network. In this diagram, the outmost firewall may block the state-sponsored

adversary from the Internet to the target operator’s workstation. However, the internal firewall

policies may allow an insider threat to reach the target operator workstation.

The reachability model answers the question, “can an adversary reach a target asset and exploit

a vulnerability?” Armed with each vulnerability’s network service information, the model can use

a firewall configuration analyzer (e.g., NP-View1) to parse out network topology and accessibility

1https://www.network-perception.com/

18

between network zones and determine whether a given adversary has an opportunity to exploit a

given vulnerability.

Firewall configuration in the network can be parsed to produce paths represented as a five-tuple

variable of protocol, source and destination IP address, and source and destination transport-layer

port. The set of path tuples serve as an effective firewall ruleset between all network zones. We

also further categorize firewall rules related to interactive services (e.g., SSH, RDP). This subset

of rules allows the adversary to have authenticated access in a network zone, thereby extending its

reach and pivot toward its target. In contrast, non-interactive services (e.g., HTTP, SMB) do not

provide a direct opportunity for pivoting into a network zone.

We can now model adversarial reach by placing adversaries in network zones such as the place-

ment shown in Figure 3. For assessing an adversary’s ability to pivot between networks, the model

uses an undirected graph because interactive access can occur between any network zones in a

routed network. The network services used to permit interactive access, Ψ ∈ Γ, include those

which permit the adversary to have local interactive access to the target operating system.

A depth-first-search with cycle detection traverses the graph to associate adversaries with net-

work zones. Suppose an adversary can interact with a device in a different network zone because of

permitted interactive access. In that case, the model assumes the adversary can obtain credentials

in the existing zone. By recursively traversing the graph, adversaries copy over into each network

zone to which it may pivot.

2.5 Model Checking Vulnerability Safety

Network reachability represents a significant obstacle for the adversary, but adversarial access to

the vulnerability is not the end of the story. This section presents a definition of safety with respect

to a vulnerability, adversary, and its target device. Throughout the model discussion, we refer to

the transition system in the following definition:

Definition 2.1. Software Vulnerability Transition System

– S - Set of states

19

– R ⊆ S × S - Transition functions

– S0 ⊆ S - The set of initial states

– AP - Set of atomic propositions

– L : S → 2AP - Labeling of states formula

– Φ = AG(¬unsafe) - Invariant condition defining an secure state

– Ss - Set of final accepting states

The safety invariant, Φ, indicates the model cannot reach an unsafe state, which means the

adversary cannot exploit the vulnerability. The labels apply to the three model objects: (i) vulner-

abilities denoted as v, (ii) target devices denoted as τ , and (iii) adversaries denoted as ε. These

objects are the basic building blocks for assessing system safety. Together, these objects provide

the propositional labels applying to a system state, such that AP = {v, τ, ε}.

Figure 4 provides an example of how object labels combine in a final state, Ss, to calculate

both the safety invariant and the overall impact. In this example, the vulnerability dominates the

attack complexity (AC) of the adversary. A high AC for a vulnerability means an adversary with

low AC could not successfully exploit the vulnerability. Therefore, as we show later in this section,

the final state is safe. Because the final state is considered safe, the model does not assess impact.

However, if the final state was unsafe, the calculated impact gradient label (see section 2.2.1) of

medium would apply.

2.5.1 Dominance Relation in Capability State Labels

We now formally describe each capability label and how the labeling function applies to the vul-

nerability in the final state.

Definition 2.2 (Dominance Labels). A vulnerability state label grouping in which the following

properties hold:

20

Figure 4: Example Final State Labeling

• Distinct labels in the group can order in terms of increasing difficulty and decreasing oppor-

tunity of exploitation

• A cumulative set hierarchy represents attacker capability on the ordered labels.

• The label group defines a necessary condition for exploitation.

This definition holds for the CVSS exploitability and temporal metrics. Labels have order

applied as described below in this section. The cumulative set hierarchy follows from the ordered

set, in which the capabilities accrue based on the order. Then, finally, the necessity for exploitation

should be evident in the description of each label group.

We can now formally define safety in terms of the dominance relation between v, τ and ε. For

a given state s ∈ S, L(s) includes labels for {v, τ, ε} in the capability categories of each Cap =

{AC,PR,UI, EX}. We symbolize a state label for some category c ∈ Cap with respect to an

object as vcs, τ
c
s and εcs. For brevity, Cap is also split as Capε for labels applying to adversaries and

Capτ for labels applying to targets. The dominance relation is defined for vulnerability dominance

21

as:

(vs)dom(εs, τs) ⇐⇒

∃c ∈ Capε, vcs > εcs

∨∃c ∈ Capτ , vcs > τ cs

And dominance for the adversary and target is defined as:

(εs, τs)dom(vs) ⇐⇒

∀c ∈ Capε, εcs > vcs

∧∀c ∈ Capτ , τ cs > vcs

The safety invariant, Φ, is defined as the vulnerability dominating the target and adversary,

meaning the adversary cannot exploit the target using the vulnerability. Likewise, a safe state

means the adversary lacks some capability to exploit the vulnerability on the target device. The

following theorem associates the dominance property to our definition of model safety.

Theorem 2.1. if (vs)dom(εs, τs), then the state, s ∈ Ss is safe.

Proof. We begin proving this by assuming the dominance relation holds between vulnerabilities

and adversaries. Each capability-based category forms an ordered set which is also a cumulative

set hierarchy with respect to v, ε and τ .

∀c ∈ Cap | 0 ≤ i < |c|,

vci ⊆ vci+1 , εci+1 ⊆ εci , τ ci+1 ⊆ τ ci

Recall that the set order indicates both (i) increasing difficulty and (ii) decreasing exploit op-

portunity. For v, lower ordered categories are a subset of those higher-ordered. The ordering means

an unsafe vulnerability based on vci remains unsafe for any lower ordered capability. In contrast,

22

ε and τ have a reverse hierarchical set because capability at a higher level would suffice to exploit

any vulnerability with v at a lower order.

Because v is dominating, we know there is at least one c ∈ Cap in which v is greater than

either ε or τ . Through the cumulative set hierarchy, it follows that:

∃c ∈ Cap | vc ∩ εc ∈ ∅ ∨ vc ∩ τ c ∈ ∅ (4)

Therefore, the adversary cannot exploit the vulnerability on the target in at least one category,

and by definition 2.2, v is safe. The proof ends.

The converse is not necessarily true because some other capability category may exist outside

of the CVSS metric.

2.5.2 Measuring Impact

Impact gradient labels apply when the final state of a system is not safe. These labels provide

further context for assessing the vulnerable state of a system and prioritizing risk mitigation work.

The set of risk gradient categories are G = {C, I, A}. Similar to dominance labels, we also define

each label category as a cumulative set hierarchy in which:

∀g ∈ G | 0 ≤ i < |g|, gi ⊆ gi+1 (5)

For example, if the vulnerability label for confidentiality wereH (or high), then vC = {L,M,H}.

Now, a simple impact gradient calculation provides the combined result of v and τ :

Definition 2.3. A calculated impact gradient label applies to final states Ss in which Φ = AG(¬safe)

as:

Impact(Ss) = max(
⋃
g∈G

vg ∩ τ g)

The impact calculation bounds the impact of the target device label.

23

2.6 Evaluations

Open data sets for firewall and vulnerability management are not available due to the highly sen-

sitive nature of the data and industry-specific compliance obligations. To overcome these barriers,

we generate a realistic sample system. We adopt an approach to generate the requisite system

data using network service exploration. The applications required to run on the system determine

the required network services. We identified the required applications through interviews, assess-

ments, and exploration of industry compliance obligations. These applications are decomposed

into classes of commonly used computing assets and further decomposed into individual assets

and software.

In particular, our sample system derives from applications and compliance obligations required

for a power grid control center, but the approach works for other critical infrastructure domains as

well. We derive it using elements of the computing environment required by the North American

Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) regulatory stan-

dards [68]. The standard sufficiently references specific types of technology related to security and

reliability for creating a representative sample. The resulting system contains 124 devices orga-

nized into 25 asset groups, e.g., Web Servers and Operator Workstations, as shown in Figure 5.

The data set also includes 4,894 combined software assets mapped to the NVD.

We tested the implementation of network reachability and safety analysis on the above asset

dataset using the vulnerabilities from the NVD for January 2017 through July 2020 that match

the assets. Vulnerabilities map to software and computer assets using a combination of Common

Product Enumeration (CPE) applicability matching, Microsoft vulnerability reports, and Red Hat

vulnerability reports. In that timeframe, we found a total of 106,313 vulnerabilities applicable to

the assets.

To generate firewall rules, we analyze each asset by identifying its listening network services,

client services, and remote access services and then generate firewall rules for these services. The

generated firewall ruleset has a realistic basis in the system’s common sector-specific services. We

generated 1,156 distinct firewall rules by traversing the network graph and filling in the required

24

Figure 5: Sample System Network Zonal Diagram

25

Figure 6: Monthly Safety Analysis of all Applicable Vulnerabilities

services.

Adversaries had access to the Internet network zone, enterprise network zone, and an asset

management zone internal to the control system in the model. The Internet adversaries modeled a

state-sponsored adversary (i.e., skillful with minimum internal privileges) and an automated botnet

(i.e., minimally capable with minimum internal privileges). The two internal adversaries modeled

inside threats that hold highly privileged access but are minimally capable of exploiting vulnera-

bilities.

Each network zone’s data structure included all adversaries having interactive reach into the

zone based on the generated firewall ruleset. Network services were extracted for all the vulnera-

bilities as well.

Finally, each of the 106,313 vulnerabilities received an assessment using the presented model-

checking safety analysis. The assessment included modeling each adversary with interactive access

to the device and assessing adversaries having reach associated with the vulnerability’s network

service. A particular case also occurs for vulnerabilities requiring user interactions. Our model

mainly considers inbound reachability from the Internet to a target server device. However, we

model outbound user interaction by assuming the worst-case scenario, in which a state-sponsored

adversary has backdoor interactive access to an asset.

26

Figure 7: Iterative Safety Analysis for all Applicable Vulnerabilities

Figure 6 presents the results. This graph shows the monthly count of both safe and unsafe

vulnerabilities for the sampling period. Those vulnerabilities assessed as safe account for approx-

imately 92% of the vulnerabilities overall, whereas those assessed as unsafe remain consistently

below 500 applicable vulnerabilities per month. This implies security operators informed by safety

analysis can use their limited resources to address unsafe vulnerabilities.

The model checking also allows iterative exploration where the adversary’s reach extends

through unsafe vulnerabilities, which we term gateway vulnerabilities. Gateway vulnerabilities

allow full access or privilege escalation on a reachable target such that exploitation would extend

the adversary’s reach into additional network zones. The model checking increases reachability

only for unsafe vulnerabilities having High integrity impact. In contrast, vulnerabilities with only

denial of service effects (i.e., availability impact) or information disclosure effects (i.e., confiden-

tiality impact) do not extend adversary reach.

Figure 7 shows the results of extending reachability using gateway vulnerabilities. The first

graph/iteration is a copy of Figure 6, and the second graph/iteration shows the number of increased

vulnerabilities after extending adversarial reach from the first iteration. The third graph is the

third iteration. It is the full extension of adversarial reach since there are no additional gateway

27

Figure 8: Vulnerabilities Allowing Extension of Adversarial Reach

vulnerabilities beyond the third iteration. The number of unsafe vulnerabilities rises from 8% in the

first iteration to 20% in the second, and then 60% in the final iteration and maximum adversarial

reach.

The data would suggest an adversarial advantage in unsafe vulnerabilities, but a countermea-

sure strategy to immediately mitigate gateway vulnerabilities would maintain the defense advan-

tage of minimal unsafe vulnerabilities. The graph in Fig. 8 shows the number of gateway vulnera-

bilities per month, which remains minuscule compared to the overall number of vulnerabilities.

2.6.1 Discussion of Results and Limitations

Our results show the substantial number of vulnerabilities applying to a typical system from month

to month. We have defined a network attack model based on realistic assumption for routing and

firewall placement and proposed a definition of safety as a function of both adversarial capability

and reachability. The simulation results demonstrate the considerably small number of vulnerabil-

ities which may lead to an unsafe state. These results suggest an effective defensive strategy of

tightly coupling firewall countermeasures with vulnerability mitigation to focus resources on elimi-

nating unsafe vulnerabilities. Furthermore, focusing resources to eliminate gateway vulnerabilities

has an even greater effect to limiting adversarial reach.

The foremost limitation of this model is the basis for selecting adversarial capabilities. Vul-

nerability safety changes significantly with broad adversarial network reachability. For example,

28

if a nation state adversary has inside access to critical network zones, then many more vulnerabili-

ties would naturally create an unsafe system state. However, one might also assume an adversary

deeply embedded in the system has little need for exploiting vulnerabilities to accomplish their

objective.

Further limitations may exist in the data we use to model adversarial capability in the CVSS.

The use of attack vectors, complexity, privileges, and exploitability appears well founded and

accurate, but we could not find a public data set to validate a claim these closely model adversarial

capability.

2.7 Conclusion

We proposed a new scheme of automatically evaluating software vulnerabilities for state safety us-

ing firewall configuration data. It involves automated identification of network services associated

with vulnerabilities and connects that to firewall rules, target devices, and adversarial attributes

under one formal framework. This model expands on existing network attack models by assess-

ing specific vulnerabilities and target devices combined with adversarial attributes. With the NVD

CVSS data as a basis, we expand to provide contextual information of a given system and threat

scenario. In so doing, each applicable vulnerability can be assessed more tightly for overall system

safety. The model tested on a simulated power grid control system using a methodology to gener-

ate specific assets representative of the given sector’s services and compliance obligations. Tests

on a realistically simulated sample system showed only 8% of the applicable vulnerabilities are

unsafe. We further modeled the dynamic threat movement to pivot deeper into the network using

gateway vulnerabilities and found the presence of gateway vulnerabilities, when left unmitigated,

remarkably changes the number of unsafe vulnerabilities. The results suggest new strategies in

cybersecurity operations to better apply limited resources

References

[4] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. “Scalable, Graph-Based Network
Vulnerability Analysis”. In: ACM Conference on Computer and Communications Security.
2002, pp. 217–224.

29

[8] M. Audinot, S. Pinchinat, and B. Kordy. “Guided Design of Attack Trees: A System-Based
Approach”. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF). July
2018, pp. 61–75.

[14] Rich Piazza Bret Jordan and Trey Darley, eds. STIX™ Version 2.1. https : / / docs . oasis -
open.org/cti/stix/v2.1/cs01/stix-v2.1-cs01.html. Accessed: 2021-03-09. Mar. 2020.

[22] Keith Collins. “The hackers who broke into Equifax exploited a flaw in open-source server
software”. In: Quartz (Sept. 8, 2017). URL: https: / /qz .com/1073221/ the- hackers- who-
broke-into-equifax-exploited-a-nine-year-old-security-flaw/ (visited on 09/14/2017).

[23] Ronan Collobert et al. “Natural language processing (almost) from scratch”. In: Journal of
machine learning research 12.ARTICLE (2011), pp. 2493–2537.

[24] Common Product Enumeration Standard. https : / / nvd .nist . gov /products / cpe. Accessed:
2020-01-28.

[25] Common Vulnerability Scoring System Specification. https : / / www. first . org / cvss / v3 . 1 /
specification-document. Accessed: 2020-01-28.

[26] Common Vulnerability Scoring System v3.1: Specification Document. https://www.first.org/
cvss/v3.1/specification-document. Accessed: 2020-02-01.

[27] Common Weakness Enumeration. https://cwe.mitre.org/. Accessed: 2020-01-28.

[36] B. Fila and W. Wideł. “Efficient Attack-Defense Tree Analysis using Pareto Attribute Do-
mains”. In: 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). June 2019.

[38] M. Gamarra et al. “Analysis of Stepping Stone Attacks in Dynamic Vulnerability Graphs”.
In: May 2018, pp. 1–7.

[40] Nirnay Ghosh and S. K. Ghosh. “An Approach for Security Assessment of Network Config-
urations Using Attack Graph”. In: International Conference on Networks Communications.
2010, pp. 283–288.

[47] Philip Huff et al. “A Recommender System for Tracking Vulnerabilities”. In: International
Workshop on Next Generation Security Operations Centers (NG-SOC). 2021.

[50] Barbara Kordy et al. “Foundations of attack–defense trees”. In: International Workshop on
Formal Aspects in Security and Trust. 2010, pp. 80–95.

[53] Carl E Landwehr. “Formal models for computer security”. In: ACM Computing Surveys
(CSUR) 13.3 (1981), pp. 247–278.

[55] H. T. Le and P. K. K. Loh. “Using Natural Language Tool to Assist VPRG Automated Ex-
traction from Textual Vulnerability Description”. In: 2011 IEEE Workshops of International
Conference on Advanced Information Networking and Applications. Mar. 2011.

30

[56] Triet Huynh Minh Le, Bushra Sabir, and Muhammad Ali Babar. “Automated software vul-
nerability assessment with concept drift”. In: 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR). 2019, pp. 371–382.

[58] H. Mantel and C. W. Probst. “On the Meaning and Purpose of Attack Trees”. In: 2019 IEEE
32nd Computer Security Foundations Symposium (CSF). June 2019, pp. 184–18415.

[59] Sjouke Mauw and Martijn Oostdijk. “Foundations of Attack Trees”. In: Information Security
and Cryptology - ICISC 2005. 2006, pp. 186–198.

[60] Kylie McClanahan and Qinghua Li. “Automatically Locating Mitigation Information for
Security Vulnerabilities”. In: IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids. 2020.

[64] National Vulnerability Database Data Feed. https://nvd.nist.gov/vuln/data-feeds. Accessed:
2020-01-28.

[65] National Vulnerability Database Data Feed. https:/ /nvd.nist .gov/general/visualizations/
vulnerability-visualizations/cvss-severity-distribution-over-time. Accessed: 2020-02-01.

[67] Steven Noel and Sushil Jajodia. “Metrics Suite for Network Attack Graph Analytics”. In:
Proceedings of the 9th Annual Cyber and Information Security Research Conference. 2014,
pp. 5–8.

[68] North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection
(CIP) Standards. https:/ /www.nerc.com/pa/Stand/Pages/CIPStandards.aspx. Accessed:
2020-02-01.

[70] Cynthia Phillips and Laura Painton Swiler. “A graph-based system for network-vulnerability
analysis”. In: Proceedings of the 1998 workshop on New security paradigms. 1998, pp. 71–
79.

[76] Bruce Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999), pp. 21–29.

[78] Leslie F Sikos. “OWL ontologies in cybersecurity: conceptual modeling of cyber-knowledge”.
In: AI in Cybersecurity. Springer, 2019, pp. 1–17.

[79] spaCy Linguistic Features. https://spacy.io/usage/linguistic-features. Accessed: 2021-03-15.

[81] Zareen Syed et al. “UCO: A unified cybersecurity ontology”. In: UMBC Student Collection
(2016).

[84] Vulnerability and Patch Management Resources. http://cybersecurity.ddns.uark.edu/vpm/.
Accessed: 2021-06-25.

[86] Lingyu Wang et al. “k-zero day safety: Measuring the security risk of networks against un-
known attacks”. In: European Symposium on Research in Computer Security. 2010, pp. 573–
587.

31

[87] Peichao Wang et al. “Intelligent Prediction of Vulnerability Severity Level Based on Text
Mining and XGBboost”. In: 2019 Eleventh International Conference on Advanced Compu-
tational Intelligence (ICACI). 2019, pp. 72–77.

[88] Jeannette M Wing et al. “Scenario graphs applied to network security”. In: Information
assurance: survivability and security in networked systems (2008), pp. 247–277.

[90] Anming Xie et al. “Applying Attack Graphs to Network Security Metric”. In: Proceedings
of the 2009 International Conference on Multimedia Information Networking and Security
- Volume 01. 2009, pp. 427–431.

[91] M. Xu et al. “Dominance as a New Trusted Computing Primitive for the Internet of Things”.
In: 2019 IEEE Symposium on Security and Privacy (SP). 2019.

[94] Fengli Zhang and Qinghua Li. “Dynamic Risk-Aware Patch Scheduling”. In: IEEE Confer-
ence on Communications and Network Security (CNS). 2020.

[96] Fengli Zhang et al. “A Machine Learning-based Approach for Automated Vulnerability
Remediation Analysis”. In: IEEE Conference on Communications and Network Security
(CNS). 2020.

32

3 A Recommender System for Tracking Vulnerabilities

3.1 Introduction

An organization wishing to mitigate its software vulnerabilities has clear disadvantages against

an adversary. No obvious tie exists between the installed software of the entity and the software

publishers that maintain the vulnerability reporting and mitigation for a given piece of software.

The installed software and hardware inventory observed by a consumer is referred to as software

inventory package name. Organizations have tens of thousands of software packages represented

by hundreds to thousands of software publishers. These software publishers vary significantly from

some of the largest companies on earth to mostly abandoned software projects.

Most cybersecurity operation centers have a process to identify vulnerabilities through a com-

bination of scanning, asset management, and assessments. However, the fastest and surest strategy

in preventing vulnerabilities from being exploited is an immediate notification from the vendor.

For some vendors, this may occur through a paid support contract. Prominent operating system

vendors, such as Microsoft, Apple, and Android, regularly push new vulnerability patches, which

consumers then automatically deploy. However, many more software publishers rely on public no-

tification of vulnerabilities through services such as the National Vulnerability Database (NVD).

In these cases, consumers can only act on public notifications by matching the vulnerable

product to their hardware on software inventory. Timely analysis and remediation are critical in

computing environments such as data centers, industrial control systems, and Internet of Things

(IoT) systems.

The matching process is more complicated than it sounds. Hardware and software invento-

ries often represent an amalgamation of different software publishers packaged up and deployed

together. Then, the public vulnerability notifications use a standard naming convention which is

well-formed but distinct from software package listings in the system inventory.

To further complicate the problem, software and hardware device inventory is a private data

set. Organizations cannot simply post their software inventory for assistance in matching vulner-

33

ability reports. Revealing the deployed hardware and software names provides reconnaissance

information adversaries might use to breach an organization, and revealing the data often violates

regulatory requirements. Instead, cybersecurity analysts must painstakingly match their deployed

software to public vulnerability reports.

Automatically matching enterprise software inventory with vulnerability reports frees up time

for cybersecurity operations, but it also allows the convergence of the vulnerability data features

with the asset and operational data features. Bringing these together paves the way for even more

automation in vulnerability management and mitigation [96, 60].

Our approach solves the matching problem through a pipeline of natural language processing

(NLP), fuzzy matching, and machine learning. A cybersecurity analyst using our technique can

immediately obtain a shortlist of candidate matches to their software inventory or conclude the

absence of any matching vulnerability identification source. While not perfect, the automation

mimics the work of a human analyst to obtain a situational understanding of their environment and

dramatically shortens the time to make a match decision. To the best of our knowledge, this is the

first work to solve the aforementioned matching problem.

This chapter is organized as follows. We present prior work in section 3.2 and then describe the

vulnerability reporting process and software name matching problem in section 3.3 from the per-

spective of cybersecurity operations. We present our recommender solution in section 3.4. Finally,

we present our implementation and test results in section 4.6 and then conclude this chapter.

3.2 Prior Work

[33] defines software vulnerabilities as specific flaws in a piece of software that allows attackers

to do something malicious. The problem of determining whether the software is vulnerable is

undecidable [39], and as [52, 95] observe, vulnerabilities have become a normal process of cyber-

security operations. Entities with the responsibility of protecting against software vulnerabilities

face the challenge of timely identifying vulnerabilities through public vulnerability alert reposito-

ries.

34

Researchers have studied the problem of public vulnerability reporting in several contexts. [73]

examines the time delay between the reporting of vulnerabilities and the reporting of Common

Vulnerability Scoring Scheme (CVSS) attributes. Several works enhance publicly reported CVSS

data using machine learning and NLP to obtain new features and improve vulnerability and patch

management decisions. [96] uses the CVSS metrics to automatically recommend vulnerability

remediation actions. [94] uses vulnerability features to predict the probability of exploit for vul-

nerabilities and optimize patch scheduling. [60] uses natural language processing to automatically

localize vulnerability information from online resources. In [55], a model is provided for NLP

Named Entity Recognition (NER) over vulnerability descriptions to extract cause, consequence

analysis, and impact ratings automatically. [92] demonstrates temporal difference over time in

the vulnerability CVSS when used for machine learning. In [87], machine learning improves the

accuracy of impact scoring, and [56] shows the drift over time of NLP models when applied to

vulnerability descriptions. Similarly, [74] parses the CVE description to obtain vulnerability char-

acteristics automatically, and [46] extracts network services from vulnerability descriptions using

NLP to automatically perform threat analysis.

However, entities cannot realize the benefits of enhanced vulnerability intelligence without

mapping the Common Vulnerabilities and Exposures (CVE) to the software inventory of an entity

through a Common Platform Enumerator (CPE). For this task, we look to recommender systems.

The term recommender system originated with [71] as an approach used to filter through large

datasets to present the most relevant and desired selection back to the user. [16] defines recom-

mender systems as those guiding the user to interesting or useful objects in a large space of possible

options. Although most recommender systems [12] focus on user experience, there has been recent

work to apply the approach to cybersecurity [2, 37, 66]. To the best of our knowledge, this is the

first approach to address the problem of matching raw software inventory to standardized software

product names.

35

3.3 Background

Currently, the largest open vulnerability database is maintained as the U.S. National Vulnerability

Database (NVD) with over 1,500 vulnerability being reported monthly. Each of these vulnerabil-

ities contains a section of products to which the vulnerabilty applies. The NVD relies on CVE

Numbering Authorities (CNAs) to report vulnerabilities for products for which the CNAs have

responsibility. As of this writing there are 167 CNAs representing 28 countries. A summary of the

top ten CNAs reporting the most vulnerabilities in 2020 is provided in Table 4.

Table 4: Estimated Number of Vulnerabilities Reported in 2020 by CNA
CVE Numbering Authority Reported
MITRE Corporation 3,669
Microsoft Corporation 1,082
Oracle 807
Cisco Systems, Inc. 436
Android (Google Inc. or Open Handset Alliance) 413
GitHub, Inc. 407
IBM Corporation 353
Adobe Systems Incorporated 308
Apple Inc. 272
ICS-CERT 225
Jenkins Project 209

When reporting vulnerabilities, CNAs identify the new vulnerability by a Common Vulnerabil-

ity Enumerator (CVE). The CVE list is an open database sponsored by the United States Depart-

ment of Homeland Security 2. The CVE is commonly used by vulnerability databases, bug bounty

programs, and exploit databases. The NVD uses the Common Platform Enumeration (CPE) soft-

ware product naming standard when reporting vulnerability product applicability.

The CPE is based off the Uniform Resource Identifier (URI) syntax and provides a set theoretic

naming convention in which a source and target software product name may be structured and

compared as sets [21]. The naming standard is most commonly used to define the set of software

to which a vulnerability applies using the following keys:

2https://cve.mitre.org/cve/

36

• Part - Type of software. A value a indicates software, h indicates hardware, and o indicates

operating system.

• Vendor - Name of the manufacturer or publisher of the software.

• Product - Name of the product.

• Version - Version of the product.

• Update - A major update of the product such as a service pack for Windows. Currently, this

key is only specified in 10% of the products reported to the NVD.

• Edition - Used to specify different types of the same product. However, in practice, the

edition is commonly specified in the product name.

The CPE URI reads from general to specific in the format

cpe:2.3: <part >: <vendor >: <product >: <version >: <update >: <edition > using the

key value indicated in the URI. A ‘*’ character is used as a wildcard for the source CPE. When

matching sources to target URIs, the wildcard defines a superset based on other key value pairs in

the URI. For example CPE:2.3:a:microsoft:*:*:*:* defines the superset of all Microsoft software.

Vulnerabilities in the NVD define software applicability using CPEs in a boolean expression. In

most cases, this means a simple OR operation to define applicability to multiple products. However,

certain CNAs use the AND operation when the vulnerability only applies to a certain platform

of the product. For example, a vulnerability for Adobe Acrobat on Android as opposed to the

Windows operating system, would use the boolean AND operation to distinguish the applicability.

An example with AND and OR operations is the Wordpress vulnerability CVE-2020-10257 3 that

has 62 vulnerable configurations.

The intention of the NVD is for organizations to match their hardware and software inventory

to CVEs and receive the applicable vulnerability notifications. However, in most cases, there is no

3https://nvd.nist.gov/vuln/detail/CVE-2020-10257

37

clean way to do so. Table 5 provides a summary of CNAs who provide an online mapping between

CVEs and software products and packages.

Table 5: CVE Notifications in Practice
Hyperlinked CNA Matching Approach

Cisco, Inc.
Each Cisco advisory is mapped to multiple CVEs, but prod-
uct matching is not known to be automated

Debian
CVEs are listed by package name, which can be matched to
Debian APT listing

Intel Corp.
Each Intel advisory is mapped to multiple CVEs, but prod-
uct matching is not known to be automated

Microsoft Corp.

A spreadsheet can be downloaded from the source URI with
Microsoft Knowledge Base (KB) mapping to CVEs. Prod-
uct matching comes through their Windows Security Up-
date Service (WSUS) tool which can be configured to out-
put a KB listing.

RedHat, Inc.
CVEs are mapped to packages, and product listing can be
matched from the output of RedHat Package Manager.

Suse
Package to CVE mappings can be scraped from the given
URI, and packages are listed on the operating system
through RedHat Package Manager.

Ubuntu
Package to CVE mappings can be scraped from the given
URI, and packages can be matched through an APT listing
on the operating system.

As shown, most Linux operating systems can automatically match to CVEs using package list-

ings available through the operating system. Cisco, Intel, and Microsoft provide up to date map-

pings from update packages to the CVE. Microsoft is unique in providing a tool for automatically

extracting applicable packages (i.e., KBs) for an operating system.

As far as we can tell, no other CNAs provide an automated software inventory to CVE listing.

Therefore, organizations wanting to receive notifications of new vulnerabilities are left to manu-

ally map their remaining inventory to CPE source URIs. Alternatively, they may review all new

vulnerabilities for applicability, but the mapping still must regularly occur to perform vulnerability

patching and mitigation.

38

3.4 Fuzzy Matching Technique

This section presents a solution for automatically matching target CPEs against an enterprise hard-

ware and software inventory. Doing so not only allows for automated vulnerability notifications but

also enables organizations to combine data features between vulnerabilities and vulnerable assets

to improve cybersecurity risk understanding and mitigation decisions.

The approach to fuzzy matching approximates the process a security analyst would take in

finding matching CPEs for their hardware and software inventory. A security analyst seeking to

map their unknown software package inventory to a vulnerability source begins first by finding a

suitable vendor name and filtering down further to find the product, but the search becomes messier

when they cannot easily find a suitable source CPE for a specific product. If a vendor match is

found, then the target CPE set might contain only the vendor, which is too coarse-grained. For

large vendors, this might produce several hundred false positive CVE notifications each year.

We account for the complexity in decision making by determining candidate target CPEs

through a three phase automation process. First, we extract the word vectors using the core english

vocabulary from spaCy4. Then, based on the word vectors, we fuzzy match the software inventory

package names to a set of CPEs using multiple metrics. Since many results might be returned in

this step, finally, we use machine learning to order these CPEs and produce a small set (e.g., 5 to

10) of candidate target CPEs for a human to select.

3.4.1 Natural Language Processing

The inherent variation in natural language means that computers struggle to extract meaning in

language. Irregular verb conjugations, for example, are difficult to detect using word stems. In

our work, we find that software names, in particular, are often not dictionary words, and so many

pre-trained or ready-to-use models have no context with which to recognize them.

Because of this, there is great value in representing words in some standardized, machine-

readable format; Word2Vec is a recent but well-established method for this task [62]. Word2Vec
4https://spacy.io/

39

is an algorithm which processes a text corpus and projects the corpus vocabulary as vectors in a

multi-dimensional space. Word2Vec can be trained on any corpus and will create word vectors

for all tokens within it. Using word vectors, many NLP tasks become programmatic in nature.

Measures of vector similarity can predict synonyms or antonyms. Similarly, word vectors can be

used to infer analogies. For example, if a direction is calculated between the vector for ”man” and

the vector for ”king”, that direction can be applied to the vector for ”woman” to obtain ”queen”.

Word vectors are simply an array of the same size as the number of dimensions, often normal-

ized in the range [−1, 1] before storage or comparison. Once a Word2Vec model has been trained,

only the word vectors must be stored, minimizing the storage space needed.

3.4.2 Fuzzy Matching

String similarity tests occur through multiple calculations. First, the similarity between the soft-

ware package inventory and the CPE is measured using the cosine between two-word vectors A

and B as shown in the following equation where equal vectors have a cosine angle of one, and

maximally dissimilar vectors have a cosine of 0.

cos Θ =
A ·B
‖A‖‖B‖

(6)

Software names commonly have multiple words and symbols. The comparison is normalized

by first splitting the string by common stop words and then removing unnecessary symbols. Sub-

sequently, calculating the cosine similarity occurs through the average of all distinct word vectors

in the string. This approach allows for similar words to appear in a different order between two

strings without impacting the similarity score.

However, the concatenation of vendor and product strings can have misleading cosine similarity

scores. For instance, software products commonly get bought out by other companies, but the CPE

name may remain the same, or product names can span several words and adversely impact the

matching vendor. Consequently, the cosine similarity between the software package inventory

40

name A, and the vendor Bvendor, and the cosine similarity between the software package inventory

name A and the product Bproduct are calculated separately.

Finally, software package inventory names may not have a word vector representation due to

misspellings or other variance in the software naming. Likewise, the cosine similarity calculation

returns 0 even when the words closely align. In these cases, the similarity gets measured as the co-

sine similarity of the strings using the letter count where c represents the letter, andC(x) represents

the count of the letter x.

cos Θ =

∑
∀c∈A∩B C(A.c)× C(B.c)√
C(A.c)2 ×

√
C(B.c)2

(7)

3.4.3 Machine Learning

Our matching solution uses machine learning as the final step in the pipeline to better distinguish

the results of fuzzy matching. The machine learning model assists in ordering the results from

fuzzy matching and presenting a smaller focused set to human operators. This approach improves

the accuracy of the identified vulnerabilities by considering both fuzzy matching and historical

vulnerability reporting for the software product.

The number of vulnerabilities between different vendors and different products varies greatly.

For example, accidentally matching the vendor Goomeo instead of Google for a software package

drastically affects the number of accurately identified vulnerabilities because Google has several

vulnerabilities identified each month. Thus, using the string similarity in the previous fuzzy match-

ing step does not produce effective enough results. That is why machine learning is further used.

The data features for the machine learning model include:

1. Actual Type (categorical feature) - The type can be either software or hardware.

2. Part (categorical feature) - CPE part as either ”a” for application, ”o” for operating system,

or ”h” for hardware.

3. CNA Source (categorical feature) - The CVE Naming Authority is most closely associated

with the vendor and product. Although the CNA does not currently factor much in the

41

prediction, there is a clear distinction in product naming among CNAs. We leave this to

future research to determine if this should have more weight in the model’s output.

4. Word Vector Cosine Similarity (between [0, 1]) - The cosine similarity between word

vectors in the software inventory package name and the concatenated vendor and product

from the CPE.

5. Vendor Word Vector Cosine Similarity (between [0, 1]) - The cosine similarity between

word vectors in the software inventory package name and only the CPE vendor.

6. Product Word Vector Cosine Similarity (between [0, 1]) - The cosine similarity between

word vectors in the software inventory package name and only the CPE product.

7. Vendor Word Character Cosine Similarity (between [0, 1]) - The cosine similarity be-

tween the word characters in the software inventory package name and the vendor.

8. Product Word Character Cosine Similarity (between [0, 1]) - The cosine similarity be-

tween the word characters in the software inventory package name and the product.

9. Vendor Product Count - The number of software products per vendor reported in the CPE.

A vendor with a large product count has the risk of producing a false positive in the product

matching.

10. Vendor Vulnerability Count - The historical number of vulnerabilities reported through

the NVD for the given vendor. A high number of vulnerabilities increases the likelihood

of a CPE match producing false positives. A low number of vulnerabilities indicates that

products for this vulnerability can match at the less granular VENDOR level without much

risk of false positives.

11. Product Vulnerability Count - Similar to the vendor vulnerability count, this is the count

of vulnerabilities specific to the software product.

42

For each candidate CPE generated in the fuzzy matching step, the machine learning prediction

outputs three classifications:

1. Order - An ordered set (HIGHEST, HIGH, MEDIUM, LOW, LOWEST, REJECT) on the

confidence this target CPE is a good recommendation. The ordering classifier allows for a

sorted presentation of recommendations back to the security operator. A REJECT output

indicates the recommender should not present the option to the security operator.

2. Level - Either VENDOR or PRODUCT. If the target CPE went only to VENDOR for a soft-

ware publisher with numerous products and vulnerabilities (e.g., Google, Microsoft, etc.), it

would have many false positive vulnerability notifications. In contrast, a target CPE for a

vendor with relatively few vulnerability notifications could safely match only to the vendor

level.

Then the candidate CPEs are ordered based on Order classification first and then the Level

classification. CPEs with a higher Order classification go before CPEs with a lower Order classifi-

cation. When the Order classification is the same, CPEs with the Level classification of PRODUCT

go before CPEs with the Level classification of VENDOR. Using the outputs of Order and Level,

the recommender can present to human operators the most likely target CPEs first.

We generated training data samples using over 7,000 software product strings (i.e., software in-

ventory package names) found on Wikipedia using the MediaWiki API 5 and Wikipedia categories

related to software products. These names match against the CPE word vectors to produce 23,048

samples of training and test data for machine learning.

For each CPE in the NVD, the vendor and product strings receive pre-processing to remove

non-alphanumeric characters. Words split based on the convention of using underscores and dashes

to separate words in the CPE strings. Then, the word vectors are calculated for each vendor and

product and stored in a hashed reference to the CPE. Training samples are pre-processed and

formed into word vectors in the same way. The top 100 of the most similar CPE word vectors are

5https://www.mediawiki.org/wiki/API

43

Figure 9: Feature Importance for ’Or-
der’ Output

Figure 10: Example Recommendation
Output

extracted as initial candidates using word vector cosine similarity tests on the product and vendor.

Training data labels are generated based on manual inspection and general guidelines to avoid

false positives. For instance, decisions to classify a match as a VENDOR typically only apply to

vendors having less than 100 vulnerabilities per year. Otherwise, the match will likely produce far

too many false positives.

The machine learning model uses a random forest classifier using a Gini impurity measure

for the decision split, 100 decision trees in the forest, and an 80/20 training/testing split. Using

a random forest classifier reduces the variance between the models and allows for more feature

analysis. Table 6 shows the result for the Order classification. For the description of precision,

recall, and F-score metrics, refer to the presentation of table 2. The highest and lowest order

recommendations have very high F-scores because HIGHEST, LOWEST, and REJECT have more

determinism and samples. The ordering in between (i.e., HIGH, MEDIUM, and LOW) requires

more subjective judgment and more variance. Model classification performance for Level is almost

100% accurate. These classifications indicate high determinism in the output. The dataset used for

training and testing is available on GitHub 6.

The primary output of the machine learning model is the order of presenting the results back

6https://github.com/pdhuff/cpe recommender

44

to the security operator. Likewise, of the three outputs, order has the most number of options and

highest variance. Figure 9 shows the feature importance for the order prediction using permuta-

tions as a measure. Each feature is arbitrarily modified ten times over the training and test data.

The importance calculation, i, for feature j, is calculated as the difference in the overall model

accuracy score, s and the mean permuted accuracy score:

ij = s− 1

K

K∑
j=1

sjk (8)

The permuted feature measurement shows that the Vendor Character Similarity and Product

Character Similarity have the highest importance in the model performance. Vulnerability count

also has a significant impact on the model performance because our order labeling factored in

the impact of choosing the wrong CPE. If a vendor or product has a higher vulnerability count,

then the label is often ordered higher to minimize the potential for an operator missing applicable

vulnerabilities. The lower feature importance for word vector similarity tests does not discount

their use in the model. Indeed, word vector similarity is used to identify the input candidate CPEs

for machine learning, but the variance in word vector similarity does not appear helpful in ordering.

Table 6: Machine Learning ’Order’ Classification Results for CPE Matching
Recommended Order Precision Recall F-Score Support
HIGHEST 100% 98% 99% 937
HIGH 80% 66% 72% 232
MEDIUM 72% 46% 56% 211
LOW 89% 87% 88% 1,076
LOWEST 98% 99% 98% 5,854
REJECT 99% 100% 100% 14,738
Weighted Average 98% 98% 98% 23,048

3.5 Implementation and Evaluation

We tested the recommender system and compared it to a human analyst using i) 50 software inven-

tory package names of commonly used software on the Microsoft Window (MS) platform, and ii)

45

50 hardware inventory names of commonly used network and computing hardware in an enterprise.

The search involved inspecting these products on the NVD to find vulnerabilities associated with

them, and validating the search result. Overall, the manual process took approximately 6.5 hours

to identify target CPEs for the hardware and 70 minutes to identify target CPEs for the software.

Figure 10 provides examples for each prediction. Users have presented a reduced set of options

priortized first by Order and then by Level. For example, if the machine learning finds a product

match, the user first sees the product match before a less granular vendor match.

For software, the average number of manual search results was 119, and only 8% of those

searches returned a conclusive result. In contrast, our recommender returned an average of 2 results

with 40% conclusively identified, since it can accurately map software names to CPEs which in

turn can accurately map to vulnerabilities. A sample of the results generated by the recommender

is shown in figure 10.

For hardware, the average number of manual search results by the analyst was approximately 34

with only 28% returning a conclusive result, and the average number returned by the recommender

was 2 with 48% returning a conclusive result. We consider no results returned as inconclusive.

Since hardware is not as commonly represented in the NVD, no search results is not surprising

with hardware assets.

For this small dataset of 100 hardware and software inventory package names, the recom-

mender already saved over 7 hours and provided more accurate results. For larger systems with

more hardware and software assets, the time saving will be even more. Furthermore, with the

recommender automatically finding results, the cybersecurity operation has less risk of missing

vulnerability notifications.

3.6 Conclusion

We have presented a new approach for organizations to automatically match their hardware and

software inventory to CPEs used by standard vulnerability sources. The recommendation system

outputs a small set of target CPE names for identifying applicable vulnerabilities based on the input

46

of software package inventory. Using a pipeline of NLP, fuzzy matching and machine learning,

the system produces a much more accurate and useful result based on the ecosystem of software

vendors and CVE Naming Authorities.

Our initial testing showed significant time savings, but more importantly, the results showed

an improvement in accuracy. In future work, we plan to validate these results with a larger, more

realistic dataset.

References

[2] Abdullah Abuhussein, Sajjan Shiva, and Frederick T Sheldon. “CSSR: cloud services secu-
rity recommender”. In: 2016 IEEE world congress on services (SERVICES). IEEE. 2016,
pp. 48–55.

[12] Jesús Bobadilla et al. “Recommender systems survey”. In: Knowledge-based systems 46
(2013), pp. 109–132.

[16] Robin Burke. “Hybrid recommender systems: Survey and experiments”. In: User modeling
and user-adapted interaction 12.4 (2002), pp. 331–370.

[21] Brant A Cheikes et al. Common platform enumeration: Naming specification version 2.3.
US Department of Commerce, National Institute of Standards and Technology, 2011.

[33] Mark Dowd, John McDonald, and Justin Schuh. The art of software security assessment:
Identifying and preventing software vulnerabilities. Pearson Education, 2006.

[37] Muriel Figueredo Franco, Bruno Rodrigues, and Burkhard Stiller. “MENTOR: the design
and evaluation of a protection services recommender system”. In: 2019 15th international
conference on network and service management (CNSM). IEEE. 2019, pp. 1–7.

[39] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A survey”. In: ACM
Computing Surveys (CSUR) 50.4 (2017), pp. 1–36.

[46] Philip Huff and Qinghua Li. “Towards Automated Assessment of Vulnerability Exposures
in Security Operations”. In: EAI International Conference on Security and Privacy in Com-
munication Networks. 2021.

[52] Andreas Kuehn and Milton Mueller. “Shifts in the cybersecurity paradigm: zero-day ex-
ploits, discourse, and emerging institutions”. In: Proceedings of the 2014 New Security
Paradigms Workshop. 2014, pp. 63–68.

[55] H. T. Le and P. K. K. Loh. “Using Natural Language Tool to Assist VPRG Automated Ex-
traction from Textual Vulnerability Description”. In: 2011 IEEE Workshops of International
Conference on Advanced Information Networking and Applications. Mar. 2011.

47

[56] Triet Huynh Minh Le, Bushra Sabir, and Muhammad Ali Babar. “Automated software vul-
nerability assessment with concept drift”. In: 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR). 2019, pp. 371–382.

[60] Kylie McClanahan and Qinghua Li. “Automatically Locating Mitigation Information for
Security Vulnerabilities”. In: IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids. 2020.

[62] Tomas Mikolov et al. “Efficient estimation of word representations in vector space”. In:
arXiv preprint arXiv:1301.3781 (2013).

[66] Fitzroy D Nembhard, Marco M Carvalho, and Thomas C Eskridge. “Towards the application
of recommender systems to secure coding”. In: EURASIP Journal on Information Security
2019.1 (2019), pp. 1–24.

[71] Paul Resnick and Hal R Varian. “Recommender systems”. In: Communications of the ACM
40.3 (1997), pp. 56–58.

[73] Jukka Ruohonen. “A look at the time delays in CVSS vulnerability scoring”. In: Applied
Computing and Informatics 15.2 (2019), pp. 129–135.

[74] Ernesto Rosario Russo et al. “Summarizing vulnerabilities’ descriptions to support experts
during vulnerability assessment activities”. In: Journal of Systems and Software 156 (2019),
pp. 84–99.

[87] Peichao Wang et al. “Intelligent Prediction of Vulnerability Severity Level Based on Text
Mining and XGBboost”. In: 2019 Eleventh International Conference on Advanced Compu-
tational Intelligence (ICACI). 2019, pp. 72–77.

[92] Y. Yamamoto, D. Miyamoto, and M. Nakayama. “Text-Mining Approach for Estimating
Vulnerability Score”. In: 2015 4th International Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS). Nov. 2015, pp. 67–73.

[94] Fengli Zhang and Qinghua Li. “Dynamic Risk-Aware Patch Scheduling”. In: IEEE Confer-
ence on Communications and Network Security (CNS). 2020.

[95] Fengli Zhang and Qinghua Li. “Security Vulnerability and Patch Management in Electric
Utilities: A Data-Driven Analysis”. In: The 1st Radical and Experiential Security Workshop
(RESEC). 2018.

[96] Fengli Zhang et al. “A Machine Learning-based Approach for Automated Vulnerability
Remediation Analysis”. In: IEEE Conference on Communications and Network Security
(CNS). 2020.

48

4 Cyber Threat Intelligence Exchange

Adversaries have the upper hand in cyber attacks. They benefit from anonymity, both in person and

in purpose. In contrast, targeted entities (e.g., companies) have difficulty distinguishing everyday

benign activities from malicious activities. Thus, entities spend prodigious efforts to gain action-

able threat intelligence. In a recent survey on Cyber Threat Intelligence (CTI) sharing, security

professionals strongly agree that intelligence sharing supports breach detection/recovery and vul-

nerability identification/mitigation efforts [97]. However, many technical, trust, legal and cultural

barriers prohibit more widespread threat information sharing [31].

Many cyber threats target critical infrastructures in the private sector. These target entities have

the same trust barriers and even more technical and legal barriers due to the limits of qualified se-

curity professionals working at each organization. A recent report on cyber threat sharing indicated

only 3% of private sector participants shared any threat indicators in 2018 [48].

Furthermore, the value received from CTI is often lacking due to various technical challenges

and missing context. In one study [83] 70% of respondents find shared threat data too voluminous

and complex for actionable intelligence. Similarly, [35] finds CTI solutions need to enhance their

ability to provide context and flexibility to improve the overall value proposition.

4.0.1 The Current State of Threat Sharing

Organizations are rapidly developing the competency and appetite to participate more in threat-

sharing communities. The global rise in security operations centers, through which most CTI

exchange occurs, has an expected market growth of 11.5% through 2025 [41]. However, with cur-

rent approaches heavily focused on classified data and government intelligence services, actionable

data is too little and too late. Likewise, as [32] points out, private sector organizations have little

motivation to share their threat data sustainably.

Entities share threat data to gain a better understanding of the risk posed to their mission.

An average entity may experience tens of thousands of malicious probes from the Internet per

day. However, most probes result from automated scanning and do not represent a motivated and

49

intelligent human adversary. Entities participate in threat sharing to distinguish actual danger from

benign in hopes of mitigating the threat before it manifests.

Society has an interest in preventing cyber threats from entities that provide critical services and

infrastructure. Military and law enforcement agencies would generally provide protection, but they

have limited purview into the interaction between adversaries and private entities. Government

agencies, national Computer Emergency Response Teams (CERTs), and non-profit Information

Sharing and Analysis Centers (ISACs) offer two-way threat-sharing services to address this gap.

However, private entities have many barriers encumbering CTI sharing. A private entity wish-

ing to share threat information risks attribution of the cyber threat, resulting in costly legal disputes,

regulatory investigation, and reputational damage. For example, a mistaken analysis of VPN logs

to maintain a failed water pump led to a federal investigation of cyber warfare [93]. In [49], le-

gal compliance and limiting attribution are identified as the primary challenges for organizations

wishing to share their own CTI with others.

Additional barriers exist with sharing of classified intelligence to private entities. Programs

exist to clear private sector entities, but they come at a high cost. Then, moving classified intelli-

gence to actionable threat and vulnerability mitigation cannot keep pace with adversarial intrusion

techniques’ dynamic nature. Likewise, attempts for fully bidirectional threat sharing have mostly

failed.

4.0.2 Contributions

This chapter provides a solution for entities to share observed CTI without attribution using a

permissioned blockchain. We propose a novel approach to a Distributed Anonymous Payment

(DAP) scheme [75] for permissioned blockchains to allow for anonymous transactions in CTI

sharing. This solution also efficiently maintains anonymous authentication and provides revocation

services for entities. It does so by splitting maintenance of the Merkle tree used for anonymous

authentication between participating peers, which allows for more regular updates of the Merkle

Tree across the distributed ledger.

50

Anonymous transactions address the legal and regulatory barriers organizations have with cy-

ber threat attribution, increasing CTI sharing on the ledger. We then propose a new chaincode to

incentivize CTI creation for the cooperative benefit of participating entities. The chaincode targets

the barriers preventing bidirectional threat sharing between private sector entities and government

agencies by generating timely and actionable CTI without the need for costly declassification.

The chaincode also seeks to reduce volume and increase value in CTI. Human analysts control

the volume of threat data through work evaluation functions. Whereas automated log sharing so-

lutions produce data at the speed of machines, the chaincode produces intelligence at the speed of

humans. Furthermore, human analysts should find the intelligence actionable because the chain-

code originates directly from private entity queries.

4.0.3 Organization

Section 4.1 reviews related work. Section 4.2 introduces the building blocks for our approach.

Sections 4.3, 4.4, and 4.5 presents the proposed approach and its major components. Section 4.6

discusses evaluation results. Section 4.7 concludes this chapter.

4.1 Background and Related Work

CTI exchange programs fall into three categories:

1. Classified Threat Sharing - Provides automated classified threat indicators to its members.

The DHS Enhanced Cybersecurity Services (ECS) is an example of this type of service[34].

2. Data Lakes - Collects a large volume of logs from its members and centrally analyzes the

data. The Department of Energy Cyber Risk Information Sharing Program (CRISP) uses the

data lake model [29].

3. Analyst to Analyst - Threat hunting analysts exchange data over a shared platform. The

European Union Agency for Cybersecurity recommends the Malware Information Sharing

Platform for community threat sharing [35].

51

This chapter targets the third category of CTI in which human analysts directly share threat

intelligence and indicators between entities. The most commonly shared threat data includes low-

level indicators such as IP addresses, URIs, DNS names, and file hashes collected automatically

or via threat hunting. Our platform supports sharing of other security information as well, e.g.,

vulnerability mitigation information. Many services provide one-way data sharing to the entity of

known malicious threat indicators.

Stillions’ Detection Maturity Levels [80] characterizes this type of data as lower-level evidence

of an intrusion attempt. In contrast, higher levels of intelligence include data about how the adver-

sary operates and their motivations.

The work of creating CTI involves tying lower-level indicators to adversarial motivation. How-

ever, these indicators exist in the networks of private entities and outside of the direct purview of

CTI producers. Timely bidirectional CTI exchange means indicators and resulting CTI are shared

freely. The producers receive value by better tracking malicious activity, and consumers receive

value through an improved understanding of adversarial risk.

Using a distributed ledger, we can commoditize CTI work as described in section 4.5 while, at

the same time, eliminating trust barriers that preclude the sharing of threat indicators.

4.1.1 Blockchain Technologies

The permissioned ledger fundamentally uses blockchain as a basis for distributed trust. Blockchain

has gained popularity with cryptocurrency technologies like bitcoin [63], and ethereum [89] mak-

ing possible public distributed transactions with no central authority. Several recent works have

suggested using blockchain technologies for CTI exchange [72, 42, 44]. Our work differs by ad-

dressing attribution and targeting CTI sharing communities of trust through a permissioned ledger.

The use of a permissioned blockchain presented in [5] has growing acceptance as a general-

purpose distributed ledger. While still public, in the sense of being accessible over the Internet,

permissioned blockchains take advantage of partial trust relationships in a system. In the Hyper-

ledger Fabric project, network peers first execute transactions and then order and distribute them

52

onto the blockchain. This approach allows for more complex transactions because peers can detect

state and denial of service problems before the chaining operation.

We choose a permissionless blockchain over a public blockchain because of privacy consider-

ations. A CTI sharing community is often open only to participating members from a given sector

or nation-state. Although peer entities have no problems with attribution among the community,

privacy concerns would likely arise in a public blockchain.

4.1.2 Zero Knowledge Proofs

The public nature of blockchain systems spotlights the need for anonymity and private information

retrieval. Common to most solutions to these problems are zero-knowledge proofs (ZKP), which

allow authentication without identification. In [20], Chaum first developed an e-cash system in

which a user could present proof of authentication from some certifying entity without revealing

the user. Pseudonym systems in [57] have a similar mechanism to allow entities to operate under

a pseudonym untraceable to their original authenticated identity and ultimately form a chain of

pseudonyms to conduct anonymous transactions in a system.

Direct Anonymous Authentication (DAA) systems extend and implement ZKP and have widely

deployed on trusted platform modules (TPM), and blockchain systems [15, 19, 18, 17]. Most

recently, the anonymizing idemix library has become available as a core service in Hyperledger

Fabric.

However, DAA schemes do not have a mechanism for incentives, and they require additional

roles in managing access to the ledger. Instead, we look to recent advancements in cryptocurrency.

The explosive growth of cryptocurrencies has ushered in a wave of innovation in anonymizing

transactions in the past decade. Anonymous spending in cryptocurrency is made possible through

zero-knowledge Succinct Non-Interactive ARgument of Knowledge (zk-SNARKS) presented in

[30]. Zerocoin [61] is one of the first systems proposed to support anonymous transactions on top

of bitcoin. Zerocash [75] and others [51] made use of zk-SNARKS to make this more feasible and

extend the system to prevent tracing the history of a coin and improve efficiency.

53

Although permissioned blockchains do not require a cryptocurrency incentive, we propose an

incentive mechanism for the desired outcome of high quantity and quality threat data. The “gas”

or currency of cybersecurity exists in human work and actionable CTI.

4.2 Building Blocks

Before presenting the approach to non-attributable CTI sharing, we introduce the building blocks

used by our approach.

4.2.1 Sparse Merkle Trees

Merkle trees provide an efficient data structure to authenticate information. They are used on the

blockchain to verify transactional integrity. Branches of the tree get formed from the combined

secure hashes of its children. In this way, anyone can verify the membership of a tree leaf by

comparing the calculated Merkle root with some other valid Merkle root.

Sparse Merkle Trees make use of the property that the path to any given leaf is a function of

a small number of branches up to the Merkle root. In the example shown in Figure 11, we store

a minted coin, cm, as a leaf in the Merkle Tree. The leaf’s index is determined by the branch

direction down the tree, in which a 0 means the left branch, and a 1 means the right branch. Then,

for someone to later validate the inclusion of cm, they need only the index and the tree branches

along the path indicated by the index, which is necessary to calculate the root.

We represent the tree path as path, which contains attributes for the index location in the tree,

path.addr, and the branch siblings, path.S necessary to calculate the Merkle root.

4.2.2 Distributed Anonymous Payment

First, distributed anonymous payment (DAP) schemes allow an entity to prove they have an elec-

tronically minted coin, cm, without actually revealing the coin. The proof also requires the entity to

provide knowledge of an associated, yet untraceable, serial number, sn, to prevent an entity from

double-spending.

54

Figure 11: Sparse Merkle Tree.

55

DAP schemes have the important property of retaining the minted coin as a valid leaf value in

the Merkle Tree. Unlike Bitcoin, they do not have the luxury of maintaining an unspent transaction

object (UTXO) inventory. To do so requires identifying spent coins, which DAP schemes do not

reveal. Therefore, we must evaluate the Merkle tree size appropriate to support the life of the

blockchain.

4.2.3 zk-SNARKs

The proof of knowledge in [75] uses zero-knowledge Succinct Non-Interactive Arguments of

Knowledge (zk-SNARK) proofs from [11]. zk-SNARKs provide an efficient proof construct and

verification mechanism. Our proof demonstrates the knowledge of a cm ∈ CMList without re-

vealing cm, which equates to an anonymous user proving, “I have a valid token, but to ensure my

anonymity, I am not going to tell you which token.”

At its core, a zk-SNARK equates to demonstrating knowledge of a well-formed polynomial,

p(x), such that h(x)t(x) = p(x), where t(x) is a target polynomial available to the ledger, and h(x)

is derived by the prover as h(x) = p(x)/t(x). The prover constructs the polynomial, p(x), through

an algebraic circuit available on the ledger which has been translated from code representing the

Merkle Tree proof of knowledge. The prover samples some arbitrarily chosen secret s, such that

h(s)t(s) = p(s). To ensure the integrity of the target polynomial and sampled value, s, all opera-

tions are performed using homomorphic encryption with generator, g, such that (gh(s))t(s) = gp(s).

The process for non-interactive proof and verification consists of the following steps:

1. Multi-Party Setup - A multi-party setup protocol occurs to produce the public parameters,

pp, which includes the homomorphic encryption of the powers of x in the secret polynomial

of dimension, d for secret, s. Thus, the proving key consists of the powers necessary to

compute the secret polynomial, the target polynomial, and sampled values to ensure zero

knowledge of the secret polynomial. An initial setup requires multiple parties with strong

zero-knowledge guarantees [13]. The keys used for proving and verification are referred to

as the common reference string.

56

2. Algebraic Circuit - A program to construct the zero-knowledge proof converts to an alge-

braic circuit by flattening the program into a series of expressions in the form x = yopz,

which form the so-called circuit wires. Ultimately, these form the basis of the secret polyno-

mial coefficients. In our case, the circuit consists of the Merkle Tree proof of inclusion.

3. Proof - An entity constructs a proof of knowledge demonstrating they have a valid token

in the Merkle tree using both the public parameters and algebraic circuit. The proof is

non-interactive because the prover does not need to exchange keys to produce the proof

statement. Zero-knowledge comes through a key sampled by the prover, which conceals the

secret polynomial.

4. Verification - Verification is performed in the chaincode of the ledger to ensure the construc-

tion of the secret polynomial in addition to the public inputs to the circuit is valid.

Besides the original works in zk-SNARKs, the papers [69, 9] provide good tutorials on the

process.

4.3 Distributed Ledger for Threat Sharing

Distributed ledgers provide transactional integrity for large and diverse communities. In its most

well-known cryptocurrency implementations, distributed ledgers supply a high assurance system

for transacting digital goods such as Bitcoin. Our scheme considers human work as the exchanged

commodity for cybersecurity threat sharing. The work of threat identification and attribution in-

volves costly human labor to identify artifacts, piece together the adversarial objective, and tie

cyber observables to malware campaigns and threat actors. Entities receive value through more

actionable intelligence and an improved understanding of cyber risk.

The use of a distributed ledger for cybersecurity work is not without precedent. [77] proposes

the use of economic incentives to incentivize secure data sharing. Also, in many ways, a market-

place for threat information can be compared to software bug bounty programs where companies

wishing to fix software vulnerabilities before an adversary exploits them monetize the work of

57

finding vulnerabilities [43]. However, with cyber threats, the work production comes from entities

wishing to protect their systems better.

We propose a distributed ledger in which any participating entity submits monetized threat

intelligence work in the form of structured work queries as transactions on the ledger. Entities

requesting work do so through anonymous credentials using a web application tied to a peer entity

on the distributed ledger. Participants use the same web application to search for information about

a given threat. The ledger does not record searches as transactions.

4.3.1 Distributed Ledger Network

This section proposes a permissioned blockchain network architecture to support the exchange of

threat intelligence between participating entities. Our implementation for threat sharing uses a

permissioned blockchain. These differ from public blockchains by requiring authenticated access

and eliminating the need for proof-of-work or proof-of-stake consensus. Chaincode is a set of

smart contracts installed by participating entities and serves as the blockchain’s central service

rather than the currency transaction object. With cryptocurrency, smart contracts are a service

of the blockchain, but with permissioned blockchains, the blockchain is a service of the smart

contract.

Also, cryptocurrencies overcome almost all trust boundaries, but this is not always desirable,

especially with CTI. Instead, we use the permissioned blockchain to overcome trust boundaries

existing between organizations.

Figure 12 shows an example blockchain network in where the shaded area represents elements

required by the blockchain and users involved in CTI access the network outside of the shaded

area. Fundamentally, the blockchain includes a group of entities, referred to as peers, who have

consensus on the chaincode execution and maintain a copy of both the blockchain and the current

state database of chaincode assets (or objects).

Peers join the network either initially or through peer consensus. The collective peers comprise

the distributed system’s nodes, and they participate in the validation of new blocks and storage of

58

Figure 12: Threat Ledger Network.

59

the data. However, with permissioned blockchains, peers also provide the service of user interac-

tion with the blockchain network.

An organization does not need to be a peer of the blockchain to participate in the service.

Instead, peers provide credentialing services through their certificate authority. Users of other

organizations are then permitted to execute chaincode transactions through peer applications.

In the example shown in Figure 12, the peers include organizations typically involved in threat

sharing, such as government agencies, CERTs, ISACs, and research labs. These organizations have

the incentive and resources to install and maintain the peer service needed for threat sharing. If a

private entity wanted to participate in the network, they would only need to obtain credentials from

a peer and use a published web application, thus, significantly lowering the bar of complexity for

threat exchange participation.

The network also requires an ordering service. Blocks of transactions get added to the blockchain

through the ordering service. Consistent with the execute-order-validate consensus approach de-

scribed in [5], peers will first simulate the execution of proposed transactions before sending them

to the ordering service. The ordering service then packages valid transactions into the next block

and sends them to all network peers.

4.3.2 Chaincode Assets

The network’s chaincode centers on CTI reports commonly exchanged between organizations. We

choose to use the standard MISP format [85]. Other CTI taxonomies include STIX [10], and the

Common Cyber Threat Framework [1], but the MISP format is extensible and concentrates on the

threat report instead of the observable artifacts. By aggregating artifacts into event reports, we can

more easily form a high-level representation of the CTI report’s value.

An sample MISP report with object relationships is shown in figure 13. A MISP Event Report

contains the creating organization (or anonymous), description, and report object, which can range

from single threat observation reports to several thousand indicators and sightings of a malware

family. There are over 200 open object definitions, and reports can contain multiple objects. Tags

60

Figure 13: MISP Data Object Model.

describe the report in terms of the information-sharing community. Example tags include the DHS

Traffic Light Protocol, malware classifications, IDS rules, and admiralty scale. The tags can be

helpful in chaincode for defining access control rules, expiration, and other state transition logic.

Finally, object attributes tie to the reported objects and contain the observable artifacts asso-

ciated with an event, such as IP addresses, URIs, file hashes, and email addresses. Attributes are

the primary search targets for the network. Each network peer stores a document-oriented NoSQL

database of existing reports and indexes the attributes for fast searching and correlation.

Besides the threat objects, we also define two assets used for managing the quality of threat

61

reports. The work asset represents human work and consists of structures for both the problem and

the solution. When first submitted, the solution is empty and queued for human analysis. Examples

of work may include associating tactics, techniques, and procedures (TTP) to threat artifacts or

attribution of a threat report. Other types of work might include validation or annotation of reports

to assist in automatic classification, and generation of mitigation actions for vulnerabilities that the

adversary tries to exploit.

Finally, a tree asset serves to facilitate anonymous authentication and manage the human work

by controlling the input, incentivizing the output, and anonymizing the submittal of software arti-

facts.

4.4 Non-Attributable Token Authentication

For the CTI distributed ledger to function, we must provide its users with anonymization guaran-

tees. We now present the approach for anonymous authentication using a Merkle Tree for zero-

knowledge commitment. To start, we present the process of token commitment. Then we show

an approach of splitting the tree to support more authentication features such as revocation and

value-based spending.

4.4.1 Anonymous Token Spending

A user receives a token upon the chain code validating some threat intelligence work, or perhaps

as part of some bootstrapping process where new users have a limited set of tokens. A user will

provide a token to the ledger when performing work for the chaincode to later validate. Then, once

the chaincode validates the token, commitment occurs by adding the token as a leaf to the Merkle

tree, tree.

The user arbitrarily samples a secret key through the security parameter, λ representing the key

length and pseudorandom function Gen(1λ). A user may safely use the secret key repeatedly as a

witness to multiple tokens. For each new token, a user arbitrarily generates a serial number, sn, in

the same way. Then, using a collision-resistant hash function, CRH = (0, 1)∗ → 0, 1λ, the token is

62

generated as shown in the following functions.

1 : sk← Gen(1λ)

2 : sn← Gen(1λ)

3 : tk← CRHsksn

The sparse Merkle tree then gets calculated with the inclusion of the token as (rt, path). The

user then has the following public and private data related to the token.

1 : tkpub ← (rt, sn)

2 : tkpri ← (sk, path)

Algorithm 1 Token Verifier Circuit
Public Parameters: pp
Public Input: rt, sn
Witness: sk, path
Output: π - proof of inclusion

1: procedure TOKEN VERIFIER

2: tk← CRHsksn
3: rttk ← the smt calculation using tk and path

4: if rt = rttk then
5: return true
6: else
7: return false
8: end if
9: end procedure

Algorithm 1 shows the zk-SNARK circuit for proof and verification. To generate a zk-SNARK

proof, a user supplies the public parameters, pp, which includes the common reference string for

proving and the zk-SNARK circuit. Public input includes both the Merkle root, rt, demonstrating

knowledge of a valid token, and the serial number, sn, formed through the witness. The witness

includes the secret key, sk, and the path down the tree to the token.

The chaincode on the distributed ledger verifies the proof represented in algorithm 2. Here,

the public parameters, pp, include the portion of the common reference string used for verification

in the ledger. The verification includes (i) checking to ensure the zero-knowledge proof is valid,

63

(ii) verifying the Merkle Root is a valid root for the ledger, and (iii) the serial number represents

an unspent coin. The first check uses the zk-SNARK for the network. For the second check, the

ledger must include a set of valid roots, and we describe this process in section 4.4.2. The final

check on whether sn exists in SNList prevents a double spend.

Algorithm 2 Verify Token Proof
Public Parameters: pp
Input: π, rt, sn
Output: Valid or Invalid

1: procedure VERIFY PROOF

2: valid← verify(pp, π, rt, sn) . zkSNARK verification
3: if valid ∧ rt ∈ RTList ∧ sn /∈ SNList then
4: return Valid
5: else
6: return Invalid
7: end if
8: end procedure

4.4.2 Merkle Tree Structure and Root Updates

In the token spending scheme described above, a root update when inserting a batch of new tokens

to the tree would make token spending attribution trivial. An entity would only need to search the

ledger for the root associated with a token proof to identify the user.

To prevent this attack, we designate an entity to perform the service of sending out root updates

at a time interval, tnew. Then validation should only include roots published within some time

interval, texpiry. Thus, a user wishing to spend a token must wait within a timespan of tnew after

receiving the validation. Also, a token proof will be valid within a timespan of texpiry from the

proof construction. The expiration prevents token attribution because the prover supplies only

recent token roots instead of the root calculated at token insertion.

The problem then becomes regularly distributing the tree paths to the network, which we now

address. A Merkle tree in a DAP scheme may have token leaves distributed in any order. The

location of the leaf in the tree has no association with the identity of the token owner. However,

64

permissioned blockchains have inherent organizational structures, which the ledger can use for

more robust authentication features and storage efficiency.

For a Merkle tree of height, h, the branch levels are split into three levels, hnet, horg, and huser

as shown in figure 14. Thus, the tree supports 2hnet organizations and each organization may have

2horg users.

By dividing the tree height, we minimize the size of tree updates and storage requirements to

only those necessary for the entity’s role in the network. As an example, a tree with a height of

32 requires approximately 256 GiB of storage. Also, to keep the siblings, path.S, up to date,

the network must distribute a similar-sized update. However, using a permissioned blockchain’s

organizational structure and setting the hnet level at 14, the network updates only require 1 MiB

while allowing for 214 organizations.

Each organization is responsible for maintaining its similarly sized sub-tree to distribute path.S

updates to its users.

The organizational tree structure supports several other services, which we now describe.

4.4.3 Revocation of Anonymous Authentication Tokens

Any network peer entity or organization may wish to revoke tokens as users leave, tokens become

compromised, or users abuse the network. Since the tree divides into sub-trees of organizations

and users, such revocation becomes trivial. User tokens are revoked by setting the desired token

sub-tree to null and recalculating the root. Similarly, the network could revoke entire organizations

by setting the organization sub-tree to null.

The revocation scheme works because tokens are not anonymous, and the Merkle tree does not

need to hide the token holders’ identities. A token spend only reveals the serial number, which

cannot associate with the token. The network may safely maintain an identity on the token tree

while preserving non-attribution in token spending.

The revocation latency ties to the texpiry time interval associated with root updates. Attempts

to authenticate using a revoked token will guarantee to fail after texpiry because the proof of token

65

Figure 14: Merkle Tree Structure.

66

inclusion no longer works with the new root.

4.4.4 Adding Value to Tokens

In a cryptocurrency, value is an attribute of the coin itself, and spend operations pour an old

set of coins into a new set with the same value preserved. However, pouring coin value creates

problems in the proposed scheme because the primary purpose of the token is for non-attributable

authentication, and supporting a large number of token spends adds unnecessary complexity.

Instead, we propose tokens only have a value of 1, and we increase the user Merkle tree height

to support a large number of tokens. Only the user only needs to maintain the path siblings for

any levels below horg. Knowing these paths allows the user to construct a valid proof without the

network or organization having to maintain a tree height to support a large number of possible

tokens.

For example, if the network maintained a tree height of 14 at 1 MiB, and each organization

maintained a sub-tree height of 18 at 8 MiB, each user could maintain their sparse sub-tree of 64

levels to support a vast number of tokens far beyond the maximum necessary.

4.4.5 Authentication without Spending

Finally, by maintaining tokens with revocation services, they provide a useful means of anonymous

authentication. There are several scenarios where users might desire anonymity. A user may

wish to perform an anonymous search on the network, e.g., searching for a particular IP address.

Performing such a search could infer the organization’s attribution as a victim of the malware.

To support anonymous authentication only, we make a minor modification to the token spend-

ing circuit and remove the serial number as the public verification parameter. Additionally, we

hash the timestamp, ts, with the root to prevent replay attacks.

67

Algorithm 3 Token Authentication Circuit
Public Input: pp, rt, ts
Witness: tk, path
Output: Whether the calculated root matches the given root

1: procedure TOKEN AUTH

2: rttk ← the smt calculation using tk and path

3: if CRHrtts = CRHrttkts then
4: return true
5: else
6: return false
7: end if
8: end procedure

4.5 Chaincode for CTI Work

This section presents in detail the state program model used for managing work on the network.

Several peer-authenticated transactions occur to update threat reports, which we do not formalize.

The transactional updates to threat reports are essential but straightforward. Instead, we focus on

the Work asset transactions to facilitate the expansion of threat knowledge and automation beyond

existing services. Recall that a Work asset consists of problem and solution data structure which

maps to an Event Report asset.

Work asset transactions focus both on the problem of submitting CTI anonymously and on

validating the quality of the CTI. The cybersecurity community has not extensively considered the

use of non-attributable CTI, and the chaincode recognizes this by including a set of evaluation

states.

Figure 15 shows a state transition diagram of the workflow from the addition of Work to the

completion of a solution. Each state transition represents a chaincode function made available to

the network for processing the ledger. The ledger must maintain state to support asynchronous

processing of transactions and high assurance in the logic of the chaincode.

The object variables for the state program include the following chaincode assets:

V ar = {event record, work, token tree} (9)

68

A threat record asset includes the complex data structure represented in figure 13 and de-

scribed in section 4.3.2. Assets for work have a problem/solution data structure that stores the

proposed problem and maintains a set of proposed solutions for evaluation. The tree asset supports

the use of tokens described in section 4.4.

The program graph over V ar is defined as

Definition 4.1. State Transaction Program Graph

– S - Set of states

– Effect : Act× Eval(V ar)→ Eval(V ar) - Transition effect function.

– R ⊆ S × Cond(V ar)× Act× S - Conditional transition relation

– S0 ⊆ S - The set of initial states

– g0 ∈ Cond(V ar) - The initial condition

The functionEval comprises the set of evaluations over V ar, and the functionCond comprises

the set of conditional expressions over V ar.

Work state is maintained through the smart contract logic. Valid work states include S =

READY WORK, IN PROGRESS, READY EVAL, IN EVAL, ADD WORK.

Anyone with a valid token may submit a work record to the network accompanied with a token

proof. The chaincode first evaluates the token proof as a guard condition for the work queue. In

this way, the work has no attribution to an entity, but the entity authenticates as a valid user of the

network. Also, the ledger preserves the quality of the work queue by requiring an entity to give up

something of value in exchange for work performed.

Each work asset gets added to a priority queue on the ledger. The priority queue operates based

on priority and time to differentiate work value and prevent starvation for lower priority work

requests. Workers should also choose work based on their resources and capabilities, but we leave

the optimal dequeuing of work to future research.

69

Figure 15: Work State Transition.

Finally, the ledger adds an evaluated solution by i) updating the event record with the added

context provided through the work solution, ii) inserting the tokens provided with the work solution

and evaluation, and iii) publishing a new root to the network based on the updated tokens.

The entity requesting work will likely search for the work solution periodically. Thus, the

network supports authentication-only proofs using tokens to preserve the anonymity of the work

requester. An entity need not authenticate with an identity, save only to perform work.

4.6 Implementation

We performed testing to evaluate the Merkle tree maintenance from section 4.4.2 and token au-

thentication in section 4.4. Also, we propose implementation guidelines for implementing the

blockchain under realistic loading conditions. Our tests of the zk-SNARK proofs use snarkjs and

70

circomlib, and the performance was tested on an Intel Core i5-8356U CPU @1.60 GHz with 16GB

of RAM.

4.6.1 Token Authentication Performance

The Merkle tree height drives the network performance for token authentication in both storage

and time. Authentication allows sparse tree storage at both the organizational, horg, and user

levels, huser. However, the network must provide frequent updates at the network level, hnet, to

support anonymous authentication. Due to the frequency of these updates, we propose setting horg

at 15, which for a 256-bit node size, requires 1 MiB of storage.

Users can manage a much deeper portion of the Merkle tree because they only store the sparse

tree based on the number of tokens they possess, but the token proof circuit requires a consistent

depth. Figure 16 shows the relationship between the depth and proof times. Here, we propose

a reasonable tree depth of, at most, 128, which provides ample space for both the foreseeable

maximum number of organizational users and the number of tokens allocated for each user.

The parameters and performance of the algebraic circuit for a tree with this size are shown in

Table 7.

4.6.2 Ledger Operation Guidelines

We developed the chaincode model for use in Hyperledger Fabric, and although a full-scale simu-

lation is in development, we make some observations here about the operation of the network.

There are three types of transactions proposed: i) event reports, ii) work management, and iii)

network maintenance activities, including Merkle root updates. To develop a realistic expectation

of throughput, we consider the critical infrastructure sectors in the United States. The Department

of Homeland Security identifies sixteen critical infrastructure sectors [28]. Using utility data from

the Energy Information Administration [6], we find 3,338 individual utility companies in the elec-

tric sector. If each organization produced an average of ten transactions per day during a peak of

four working hours, we could expect a maximum throughput of 40 transactions per second.

71

Figure 16: Proof Times Relative to Merkle Tree Height.

Table 7: Sparse Merkle Tree Proof Circuit Parameters and Performance

Merkle Tree Height 128
Number of Wires: 32,486
Number of Constraints: 32,363
Private Inputs: 130
Public Inputs: 2
Number of Labels: 151,304
Number of Outputs: 0
Proof Time: 4,200 ms
Verification Time: 28.5 ms

72

For this level of throughput, Hyperledger Fabric benchmark experiments indicate a latency

of approximately 1 second with a block size of 10 transactions [82]. They also indicate that an

endorsement policy of up to four network peers for each transaction would have a minimal effect

on the overall transaction latency. Overall, the system’s theoretical bounds would fall well within

the efficient operating conditions of Hyperledger Fabric.

4.7 Conclusion

We propose a new approach for overcoming the trust barriers of inter-organizational threat in-

telligence sharing using a distributed ledger technology. We have demonstrated a novel use of

zk-SNARKs and Sparse Merkle Trees to enable anonymous authentication and anonymous token

spending for the ledger’s permissioned users. The results pave the way for a new approach to cy-

bersecurity threat intelligence sharing, which commoditizes the work of CTI curation and sharing

to produce a greater cooperative value.

References

[1] A Common Cyber Threat Framework: A Foundation for Communication. 2013.

[5] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system for permissioned
blockchains”. In: Proceedings of the Thirteenth EuroSys Conference. 2018, pp. 1–15.

[6] Annual Electric Power Industry Report. https : / / www. eia . gov / electricity / data / eia861/.
Accessed: 2021-03-12.

[9] Aritra Banerjee, Michael Clear, and Hitesh Tewari. “Demystifying the Role of zk-SNARKs
in Zcash”. In: 2020 IEEE Conference on Application, Information and Network Security
(AINS). IEEE. 2020, pp. 12–19.

[10] Sean Barnum. “Information with the Structured Threat Information eXpression (STIX™)”.
In: (2013).

[11] Nir Bitansky et al. “Succinct non-interactive arguments via linear interactive proofs”. In:
Theory of Cryptography Conference. Springer. 2013, pp. 315–333.

[13] Sean Bowe, Ariel Gabizon, and Matthew D Green. “A multi-party protocol for construct-
ing the public parameters of the Pinocchio zk-SNARK”. In: International Conference on
Financial Cryptography and Data Security. Springer. 2018, pp. 64–77.

73

[15] Ernie Brickell, Jan Camenisch, and Liqun Chen. “Direct anonymous attestation”. In: Pro-
ceedings of the 11th ACM conference on Computer and communications security. 2004,
pp. 132–145.

[17] J. Camenisch et al. “One TPM to Bind Them All: Fixing TPM 2.0 for Provably Secure
Anonymous Attestation”. In: 2017 IEEE Symposium on Security and Privacy (SP). 2017,
pp. 901–920.

[18] Jan Camenisch, Manu Drijvers, and Anja Lehmann. “Anonymous attestation using the strong
diffie hellman assumption revisited”. In: International Conference on Trust and Trustworthy
Computing. Springer. 2016, pp. 1–20.

[19] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. “Compact E-Cash”. In: Ad-
vances in Cryptology – EUROCRYPT 2005. Ed. by Ronald Cramer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 302–321.

[20] David Chaum. “Security without identification: Transaction systems to make big brother
obsolete”. In: Communications of the ACM 28.10 (1985), pp. 1030–1044.

[28] Critical Infrastructure Sectors. https://www.cisa.gov/critical- infrastructure- sectors. Ac-
cessed: 2021-03-12.

[29] Cyber Risk Information Sharing Program (CRISP). Tech. rep. Accessed: 2021-01-13. De-
partment of Energy, Office of Cybersecurity, Energy Security, and Emergency Response.

[30] George Danezis et al. “Pinocchio coin: building zerocoin from a succinct pairing-based
proof system”. In: Proceedings of the First ACM workshop on Language support for privacy-
enhancing technologies. 2013, pp. 27–30.

[31] Michael Daniel and Joshua Kenway. “Repairing the Foundation: How Cyber Threat Infor-
mation Sharing Can Live Up to its Promise and Implications for NATO”. In: Cyber Threats
and NATO 2030: Horizon Scanning and Analysis (), p. 178.

[32] Constance Douris. Cyber threat data sharing needs refinement. Lexington Institute Arling-
ton, Virginia, 2017.

[34] Enhanced Cybersecurity Services (ECS). Tech. rep. Accessed: 2021-01-13. Department of
Homeland Security.

[35] Exploring the opportunities and limitations of current Threat Intelligence Platforms. Tech.
rep. Accessed: 2021-01-06. ENISA, Dec. 2017.

[41] “Global Security Operations Center Market Forecast up to 2025”. In: Business Wire (En-
glish) (2019).

[42] Seonghyeon Gong and Changhoon Lee. “Blocis: blockchain-based cyber threat intelligence
sharing framework for sybil-resistance”. In: Electronics 9.3 (2020), p. 521.

74

[43] Hackerone List of Bug Bounty Programs. https: / /hackerone.com/bug- bounty- programs.
Accessed: 2021-03-11.

[44] Shen He et al. “BloTISRT: Blockchain-based Threat Intelligence Sharing and Rating Tech-
nology”. In: Proceedings of the 2020 International Conference on Cyberspace Innovation
of Advanced Technologies. 2020, pp. 524–534.

[48] Office of Inspector General. DHS Made Limited Progress to Improve Information Sharing
under the Cybersecurity Act in Calendar Years 2017 and 2018. 2020.

[49] Christopher Johnson et al. Guide to cyber threat information sharing. Tech. rep. National
Institute of Standards and Technology, 2016.

[51] Ahmed Kosba et al. “Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts”. In: 2016 IEEE symposium on security and privacy (SP). IEEE. 2016,
pp. 839–858.

[57] Anna Lysyanskaya et al. “Pseudonym systems”. In: International Workshop on Selected
Areas in Cryptography. Springer. 1999, pp. 184–199.

[61] Ian Miers et al. “Zerocoin: Anonymous distributed e-cash from bitcoin”. In: 2013 IEEE
Symposium on Security and Privacy. IEEE. 2013, pp. 397–411.

[63] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech. rep. Manubot,
2019.

[69] Maksym Petkus. “Why and How zk-SNARK Works: Definitive Explanation”. In: ().

[72] Raúl Riesco, Xavier Larriva-Novo, and Vıctor A Villagrá. “Cybersecurity threat intelligence
knowledge exchange based on blockchain”. In: Telecommunication Systems 73.2 (2020),
pp. 259–288.

[75] Eli Ben Sasson et al. “Zerocash: Decentralized anonymous payments from bitcoin”. In: 2014
IEEE Symposium on Security and Privacy. IEEE. 2014, pp. 459–474.

[77] Meng Shen et al. “Blockchain-based incentives for secure and collaborative data sharing
in multiple clouds”. In: IEEE Journal on Selected Areas in Communications 38.6 (2020),
pp. 1229–1241.

[80] Ryan Stillions. The DML Model. 2014.

[82] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. “Performance benchmarking and
optimizing hyperledger fabric blockchain platform”. In: 2018 IEEE 26th International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS). IEEE. 2018, pp. 264–276.

[83] The Value of Threat Intelligence: A Study of North American and United Kingdom Compa-
nies. Tech. rep. Accessed: 2021-01-06. Ponemon Institute, July 2016.

75

[85] Cynthia Wagner et al. “Misp: The design and implementation of a collaborative threat intel-
ligence sharing platform”. In: Proceedings of the 2016 ACM on Workshop on Information
Sharing and Collaborative Security. 2016, pp. 49–56.

[89] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[93] Kim Zetter. “Exclusive: Comedy of Errors Led to False ‘Water-Pump Hack’Report”. In:
Wired Threat Level (2011).

[97] Adam Zibak and Andrew Simpson. “Cyber threat information sharing: Perceived benefits
and barriers”. In: Proceedings of the 14th international conference on availability, reliability
and security. 2019, pp. 1–9.

76

5 Future Work

The results in chapter 2 make several assumptions about the adversary and their placement in

the network model. An entity will likely have more threat information about the adversary, such

as their capabilities, intent, and motivation. The automated analysis could better approximate

reachability by more accurately modeling the adversary’s interaction with the vulnerability.

Also, the named entity recognition over vulnerability descriptions can systematically extract

additional features to assist in the situation understanding of the vulnerability. The NLP model

we have developed works well to extract network service features. However, more annotation

work and word vector embeddings are necessary to use the model more generally in understanding

vulnerabilities.

In chapter 3, the word vector similarity metrics indicate that our corpus vocabulary does not

represent many software vendor and product words. We were able to fabricate the word vectors

through representation in synthetic texts, but this approach increases similarity for all software

vendors and products. More generally, we need a better approach for producing synthetic text

for out-of-vocabulary words. Higher quality vulnerability word vectors should also improve the

efficiency in annotation for the named entity recognition problem.

The CPE recommender solution will likely support matching natural language across multiple

vulnerability datasets. One such application includes Bug Bounty Programs (BBP). BBP provides

a crowdsourcing approach for software publishers to find and fix security vulnerabilities missed in

software development. A bounty compensates individuals for publicly disclosing vulnerabilities in

hopes of increasing the number of people reviewing the software for weaknesses, or in the worst

case, provides an incentive to publicly report the vulnerability instead of selling to an adversary

[3]. Bounty hunters have several options, from large tech firms to platforms such as HackerOne

and Bugcrowd. The platforms comprise hundreds of software publishers advertising bounties for

specific types of vulnerabilities. Through platform services, independent bounty hunters connect

with the software publishers offering the bounty. Analysis of the rules of engagement performed

in [54] shows the typical program specifications of eligible and non-eligible vulnerabilities, pro-

77

hibited actions, and reward evaluations. Individuals may submit vulnerabilities for review, and

bounties are publicly accepted and paid out.

With automated CPE identification from natural language, we can better study BBP and the

NVD correlation. For example, we can study the causation relationship between vulnerability

disclosure and working exploit code. Additional natural language about vulnerabilities exists in

BBP, expanding data features to improve learning models and recommenders.

Chapter 4 exposes many additional research questions. Although we understand current ap-

proaches for exchanging CTI, we do not yet know how private entities and intelligence agencies

would adapt to more actionable and current intelligence sharing if our approach were adopted.

The economy of threat sharing for cooperative benefit also requires more research to understand

the value gained and the necessary reward to incentivize sharing. Finally, more open CTI curation

provides opportunities to study automation in machine learning and natural language processing

over event reports.

78

6 Overall Conclusions

This dissertation has presented improvements to cyber situational understanding in both cyber-

security vulnerability and threat analysis. These two analytic components constitute the external

influence on cybersecurity risk to an entity and feed into the command and control decisions to

better defend against adversarial attacks.

In chapter 2, we present an approach to assessing vulnerability exposures by automating both

(i) the adversarial reachability of each vulnerability and (ii) the safe-state analysis of each reach-

able vulnerability. To do so, we overcame the challenges of modeling adversarial movement in a

network and extracting key network service features to associate public vulnerability datasets to

entity-defined network security policies. As a result, an entity can automatically determine unsafe

vulnerabilities in its network. We show that for a common control system network in the electric

sector, the automation produces significantly fewer vulnerabilities requiring immediate attention.

Continuing with vulnerability analysis, chapter 3 describes a recommender system to better

identify structured CPE URIs from collected hardware and software artifacts in an entity’s in-

ventory system. The recommender system uses a combination of fuzzy matching, word vector

similarity testing, and machine learning to identify an ordered set of optimal naming URIs for as-

sociating vulnerabilities to assets. In our experiments, the resulting system markedly reduces the

amount of time required by an analyst to map their inventory and improves the accuracy of the

vulnerability source mapping.

Finally, chapter 4 targets the problem of cyber threat intelligence exchange. Using zk-SNARKs,

a permissioned blockchain for cyber threat intelligence can be shared and used without entity attri-

bution. This work lays out a new approach to managing Merkle trees associated with zk-SNARKS

to support (i) efficient token exchange, (ii) network broadcast, (iii) revocation, and (iv) anonymous

authentication. Furthermore, the chaincode used for sharing CTI supports incentives and valida-

tion services. A community of trusted public and private entities can use the chaincode to produce

less voluminous and more actionable CTI for cooperative benefit.

79

	Introduction
	Automating the Assessment of Vulnerability Exposures huff2021-vulnexposures
	A Recommender System for Tracking Vulnerabilities huff2021ngsoc
	Cyber Threat Intelligence Exchange huff2021-cti
	Summary of Contributions

	Automating the Assessment of Vulnerability Exposures
	Related Work
	Data Modeling
	Vulnerability Features, Asset Features, and Adversary Capabilities
	Adversarial Data
	Network Service and Network Reachability

	Network Service Extraction
	Machine Learning-based Extraction
	Natural Language Processing-based Extraction
	The Service Extraction Pipeline

	Network Reachability
	Model Checking Vulnerability Safety
	Dominance Relation in Capability State Labels
	Measuring Impact

	Evaluations
	Discussion of Results and Limitations

	Conclusion

	A Recommender System for Tracking Vulnerabilities
	Introduction
	Prior Work
	Background
	Fuzzy Matching Technique
	Natural Language Processing
	Fuzzy Matching
	Machine Learning

	Implementation and Evaluation
	Conclusion

	Cyber Threat Intelligence Exchange
	The Current State of Threat Sharing
	Contributions
	Organization

	Background and Related Work
	Blockchain Technologies
	Zero Knowledge Proofs

	Building Blocks
	Sparse Merkle Trees
	Distributed Anonymous Payment
	zk-SNARKs

	Distributed Ledger for Threat Sharing
	Distributed Ledger Network
	Chaincode Assets

	Non-Attributable Token Authentication
	Anonymous Token Spending
	Merkle Tree Structure and Root Updates
	Revocation of Anonymous Authentication Tokens
	Adding Value to Tokens
	Authentication without Spending

	Chaincode for CTI Work
	Implementation
	Token Authentication Performance
	Ledger Operation Guidelines

	Conclusion

	Future Work
	Overall Conclusions

