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Abstract. Current approaches for risk analysis of software vulnerabili-
ties using manual assessment and numeric scoring do not complete fast
enough to keep pace with the maintenance work rate to patch and miti-
gate the vulnerabilities. This paper proposes a new approach to model-
ing software vulnerability risk in the context of the network environment
and firewall configuration. In the approach, vulnerability features are
automatically matched up with networking, target asset, and adversary
features to determine whether adversaries can exploit a vulnerability.
The ability of adversaries to reach a vulnerability is modeled by auto-
matically identifying the network services associated with vulnerabilities
through a pipeline of machine learning and natural language processing
and automatically analyzing network reachability. Our results show that
the pipeline can identify network services accurately. We also find that
only a small number of vulnerabilities pose real risks to a system. How-
ever, if left unmitigated, adversarial reach to vulnerabilities may extend
to nullify the effect of firewall countermeasures.
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1 Introduction

The actual number of software vulnerabilities has become more evident with bug
bounty programs, automated code analysis, and increased reporting by software
vendors. In 2017, the number of vulnerabilities reported annually through the
National Vulnerability Database (NVD) doubled and currently continues an up-
ward trend [5]. Vulnerability mitigation for servers and other autonomous de-
vices requires extensive planning, coordination, and testing. Consequently, the
burden to maintain secure operations in organizations often exceeds the available
resources.

To address this problem, defenders in an organization need a more contex-
tual understanding of the actual risk posed by a vulnerability. Contextual risk
assessment requires understanding (i) an adversary’s tactics, capabilities, and
access to a targeted vulnerability and (ii) the effectiveness of existing mitiga-
tion in the organization. Moreover, defenders need the risk information quickly.
For example, in a 2017 Equifax breach, a months-old unpatched Apache Struts
vulnerability was identified as the initial attack vector [13]. If the degree of risk
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became evident upon release of the vulnerability, operators could have immedi-
ately patched the software.

A commonly used defense is a firewall. Thus, one promising solution for
providing contextual risk information to operators in determining whether an
adversary has the needed network access to exploit given vulnerabilities under
firewall rules. The challenge is mapping the many applicable software vulnera-
bilities of a system to the firewall rules. Currently, operators can only perform
this manually.

Our work bridges this gap by automating the identification of network ser-
vices used to exploit vulnerabilities through a pipeline of machine learning (ML)
and natural language processing (NLP) methods. The machine learning method
uses standard vulnerability features from the NVD data feed to predict the as-
sociated network service. The NLP method further boosts the overall prediction
accuracy with information from vulnerability descriptions. Experiments show
that the pipeline can identify network services for 97% of vulnerabilities with an
accuracy of 95%.

The joining of firewall and vulnerability data allows identifying which vulner-
abilities are accessible outside of their segmented network zone. It then becomes
possible to model an adversary’s external view of the vulnerability. To do this,
we model the placement of adversaries in the Internet and enterprise network
zones and develop methods for network reachability analysis under firewall rules.

Once the adversary’s ability to reach the vulnerability is determined, the sys-
tem’s security state can be precisely assessed. Using standard features for access,
capability, and impact in the Common Vulnerability Scoring System (CVSS), we
model safety as a function of set dominance between the vulnerability, target as-
set, and adversary.

The approach demonstrates that over a realistic sample system only a small
portion of vulnerabilities are unsafe. The practical result signifies a reduced ef-
fort for the defender to maintain a system’s secure state. The model can also
recursively iterate to show how adversaries might extend their reach using al-
ready reached software vulnerabilities. We refer to vulnerabilities in this path
as gateway vulnerabilities and demonstrate the detriment they may have on the
entire system’s safety.

Our contributions are summarized as follows:
– A formal definition of system state safety when combining vulnerability, ad-

versary, and target asset features, and an automation framework for assess-
ing the system security, which includes data modeling, extraction of network
service information from vulnerability features/descriptions, network reach-
ability analysis under firewall rules, and model checking vulnerability safety.

– An artificial intelligence pipeline including ML and NLP methods to identify
the network services associated with vulnerabilities based on vulnerability
features and descriptions enables automating the association between vul-
nerabilities and firewall policies.

– Evaluation of the solution based on vulnerabilities from the NVD and identi-
fication of gateway vulnerabilities that can flip the network attack modeling
in favor of the adversary.
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Section 2 reviews related work. Section 3 introduces data modeling. Section
4 describes how to identify the network service associated with vulnerabilities.
Section 5 presents network reachability analysis under firewall rules. Section
6 presents the safety model for vulnerability exposure checking. The last two
sections present evaluation results and conclusions.

2 Related Work

The concept of assessing software vulnerability risk in terms of adversarial ca-
pability has its roots in the broader field of attack trees. Attack Trees, initially
pioneered by Schneier [28], are practical and well-established modeling tools for
automatically assessing risk by refining the ultimate goal of an attacker into a
granular tree of actions to quantify the risk of an attack. Later research provides
a formal specification for attack trees [24]. Attack-Defense Trees (AD-Trees)
add the analysis of defense mitigation in the presence of attack methodologies
to assess both mitigation approaches and risk of attack [19]. Recent solutions
in automated AD-Tree generation [12], multi-parameter risk optimization [15]
and automatically relating attacks to attack tree goals [23] continue to propel
AD-Trees as a practical tool to optimize vulnerability mitigation. Our approach
differs from AD-Trees by focusing only on software vulnerabilities from the per-
spective of a defender. In assessing software vulnerabilities, we model the simple
attacker goal to exploit the system and use standard atomic attributes to mea-
sure the attacker’s capability.

Network attack graphs have similar objectives to attack trees in identify-
ing adversarial capability to attack but focus on the target reachability by the
attacker. The use of modeling the physical network as a graph to assess an
attacker’s capability to exploit vulnerabilities originated in work [27] and [11].
In [33], they provide a grammar for defining connectivity in a network and pro-
pose a model-checking safety invariant for assessing vulnerabilities. This ap-
proach is expanded in [31] to include a more general safety condition against
unknown or zero-day attacks.

Several papers have suggested approaches to automating the software vulner-
ability assessment using network attack graphs. In [17,34], they propose metrics
for a qualitative security score based on vulnerabilities present in the network.
Similarly, [26] combines vulnerability metric data with firewall topology to pro-
vide an overall view of risk using various metrics, including connectivity and
length of network paths. A more recent approach involves scoring network path
edges using applicable vulnerability metrics to host data to calculate risk as a
function of the path cost [16].

AD-Trees and attack graphs have the same nuisance of overwhelming the
security analyst with risk metrics and attack scenarios. Our approach overcomes
this obstacle by focusing more narrowly on the common problem of software
vulnerability management using standard data features (i.e., CVSS) well under-
stood by practitioners. Instead of outputting a graph or risk score which still
needs much manual analysis to decide whether vulnerabilities need mitigation
or not, our model generates a deterministic output as to whether vulnerabilities
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are safe from attackers or not. We abstract much of the complexity in decision
making using set dominance similar to other areas of formal models in computer
security such as access control [20] and, more recently, in trusted computing [35].
Also, existing work does not address the automated extraction of network ser-
vices from vulnerability features and descriptions.

Some studies have used the NVD data for security purposes. [21] uses NLP
over vulnerability descriptions for extracting new entities (i.e., Named-Entity
Recognition or NER) to generally describe vulnerabilities in terms of cause,
consequence analysis, and impact estimation. [32] uses ML models for attack
classification and improved impact scoring, and [22] uses concept drift in NLP
to assess vulnerabilities based on their descriptions. [36], and [37] use machine
learning to recommend remediation actions for and predict the probabilistic risk
levels of vulnerabilities, and [25] uses natural language processing over vulner-
ability descriptions to identify mitigation information. [18] studies how to map
software assets to to vulnerabilities. See [9] for a repository of work in this
domain. However, these existing studies do not automatically extract network
services from vulnerability features and descriptions, and they do not consider
firewall policies as our work does.

3 Data Modeling

Our safety model seeks to understand whether and how a set of adversaries
can exploit a given vulnerability. This section describes the relevant data for
understanding adversarial interaction. A significant portion of the input data
comes from the NVD as distinct attributes, which provides a consistent and
timely source for real-time vulnerability analysis.

3.1 Vulnerability Features, Asset Features, and Adversary
Capabilities

The NVD provides a full data feed of twelve attributes associated with the CVSS.
CVSS is an open standard maintained by a special interest group under the Fo-
rum of Incident Response and Security Teams (FIRST) [3]. Software publishers
broadly use it to describe security vulnerabilities in their software.

Here, we describe the attributes related to the adversarial capability neces-
sary to exploit vulnerabilities as a function of state labeling propositions that
we use for modeling. Each feature labels a distinct capability, representing a
cumulative set hierarchy for deterministically calculating adversarial interaction
requirements.

Features in the NVD have an abbreviation convention, which we conveniently
adopt with state labeling. The Attack Vector, AV , label defines the access nec-
essary for an exploit. The propositions Physical (P ), Local (L), Network (N)
and Adjacent (A) are an ordered set AV = {N,A,L, P} in terms of decreas-
ing exploit opportunity with respect to the vulnerability and increasing exploit
difficulty for the adversary. An attack vector of N implies that the adversary
can exploit the vulnerability directly through a network service. In contrast, an
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attack vector of L implies the adversary needs to interact with the device for ex-
ploitation. Local attacks do not necessarily mean an adversary cannot perform
the attack remotely. For example, an adversary can interact through VNC or
SSH to exploit a vulnerability with an attack vector of L.

Attack Complexity, AC, describes the difficulty required to develop an exploit
for a given vulnerability. Propositions include Low, L, and High, H, with the
ordered set AC = {L,H} . For example, low attack complexity would indicate
an adversary’s greater opportunity to exploit the vulnerability.

Privileges, PR, describes the level of privileges necessary to exploit the vul-
nerability and is similar to AC with the additional possibility of no privileges, N
required. Thus, the ordered set would be PR = {N,L,H} in terms of decreasing
opportunity for exploitation.

The User Interaction label, UI, indicates the degree to which a human must
be involved to exploit the vulnerability. Propositions include Required, R, and
None, N , with the ordered set as UI = {R,N}. When R applies to a device, it
would indicate regular user interaction and have more exploit opportunities.

The temporal metric of exploitability, EX, describes the current availability
of code to exploit a vulnerability. The label EX propositions include High, H,
meaning exploit code is widely available, Functional, F , meaning exploit code is
available but may require additional work, Proof-of-concept, P , and Unproven,
U , where the exploit code is not known to be developed. The ordered set is
EX = {H,F, P, U} with decreasing exploitability of a vulnerability.

Although the CVSS attributes describe vulnerability features, we make a key
observation that these features apply to both (i) target assets associated with the
vulnerability and (ii) a prospective adversary’s capability. Table 1 describes the
relationship of the CVSS capability features. We capitalize on these relationships
in section 6 to precisely define capability in terms of safety.

Table 1. CVSS-Based Data Features

CVSS Feature Vulnerability Adversary Asset

Attack Vector The physical or net-
work access for exploit

The ability of an ad-
versary to use the path

The location of an as-
set

Privileges The logical access nec-
essary for exploit

The level of privileges
available to the adver-
sary

User Interaction Whether an exploit
needs interaction with
a human

Whether humans in-
teract on the asset

Exploitability The availability and
ease of developing ex-
ploit code

The ability of an ad-
versary to use or de-
velop exploit code

Impact Gradient Labels Impact gradient labels describe the impact an ex-
ploited vulnerability might have on a target device, and they only apply to the



6 P. Huff and Q. Li

vulnerability and target device. The labels of Confidentiality, C, Integrity, I and
Availability, A, describe the functionality of the vulnerability and the security
requirements of the target device. For each C, I and A, the labels include None,
N , Low, L, and High, H, with the same ordered set {N,L,H}.

3.2 Adversarial Data

We primarily consider scenarios in which adversaries have access outside of a
targeted network zone. Otherwise, if an adversary has internal access, they likely
could use credentials rather than software vulnerabilities for attacks. However,
we do model an insider threat in section 7, but we do so from a network zone
on the fringe of the targeted system.

Adversary objects have capability labels assigned from Table 1, and these
should be selected to match the real adversarial capability closely. For example,
a threat actor on the Internet may have the capability to exploit vulnerabilities
with High attack complexity, Low privilege, and Unproven exploitability. An
insider threat may have High privileges, but only have exploit capability for Low
attack complexity and High exploitability.

3.3 Network Service and Network Reachability

Vulnerabilities that remote adversaries could exploit are usually associated with
specific network services, e.g., a web service. The network service information
is critical for associating vulnerability exposure with the firewall policy, which
governs access to network services. Currently, the network service associated
with a vulnerability is not released/reported in any standard format. Instead,
security operators usually need to manually dig it out by reading vulnerability
descriptions such as those released in the NVD. We will describe how to extract
the network service information from vulnerability data in Section 4, and how
to explore an adversary’s network reachability to the target device and service
in Section 5.

4 Network Service Extraction

The enabling factor for defining an adversary’s ability to reach a vulnerability is
the extraction of network service information from the vulnerability’s features
and descriptions. We first use machine learning to extract network services for
vulnerabilities and then apply natural language processing (NLP) to boost re-
sults. This section describes the machine learning approach, the NLP approach,
and how they are combined into one pipeline to identify network services.

4.1 Machine Learning-based Extraction

The machine learning portion of the pipeline uses a predictive decision-tree
model over standard feature data from the NVD to predict the network services
associated with vulnerabilities. Standard features include (i) Common Product
Enumeration (CPE) [1], (ii) Common Vulnerability Scoring System (CVSS) [2]
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features, and (iii) the Common Weakness Enumeration (CWE) [4]. All of these
features are regularly updated and made available by the NVD [6].

We initially tried using machine learning to predict for all network services.
Machine learning by itself performs well for the web services and client services
involving user interactions. However, it performs much worse for other network
services, probably because there are relatively few vulnerabilities for other net-
work services in the NVD dataset. Inspired by this observation, we use machine
learning to classify vulnerabilities into three categories, CLIENT, WEB, and
INCONCLUSIVE, for better accuracy. The CLIENT category represents the
broad class of vulnerabilities in which either the adversary must exploit locally
(e.g., local input) or must initiate client network traffic for a remote exploit
(e.g., browser-based vulnerabilities). The WEB category represents vulnerabili-
ties with web services. The INCONCLUSIVE category represents all other vul-
nerabilities in which machine learning does not accurately determine network
services and which requires further processing by NLP.

We labeled network services for 19,433 vulnerabilities sampled from the 2017-
2019 NVD dataset as our training data. The samples were shuffled and randomly
partitioned into an 80% to 20% training-testing split. The model uses a decision-
tree classifier using the features from the CVSS, CPE, and CWE described above
and a Gini-index for branching. As shown in Table 2, the prediction is very
accurate.

Table 2. Machine Learning Classification Results for Network Services

Network Service Type Precision Recall F-Score Support

CLIENT 100% 100% 100% 3,764

WEB 99% 100% 100% 591

INCONCLUSIVE 99% 99% 99% 504

4.2 Natural Language Processing-based Extraction

We then use NLP to further process the vulnerabilities within the INCONCLU-
SIVE category of the machine learning prediction. One approach is to directly
classify each vulnerability description with a label identifying the network ser-
vice. However, there are thousands of network services which makes it very chal-
lenging to get a high accuracy based on the currently available data. Instead, we
build semantic meaning from the vulnerability descriptions in the NVD through
named-entity recognition (NER), which locates and classifies named entities in
a text into pre-defined categories such as organizations and products. For exam-
ple, NER would classify “Google LLC” in a sentence as an Organization. For a
complete description of NER, refer to [8, 14]. We use NER to extract standard
features in vulnerability descriptions.

Inspired by existing work on cybersecurity ontologies [10, 29, 30], we define
the following named entities for classifying network services:
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1. SERVICE - Service affected by the vulnerability. Examples include HTTP,
VNC, ssh, and CLI. These entities often map directly to network services.

2. SOFTWARE - Software product affected by the vulnerability. Software
products often have network service requirements. For example, a vulnera-
bility affecting WordPress maps to a web service and Google Chrome vul-
nerabilities require client interactions.

3. THREAT - Method used to exploit the vulnerability. This entity is most
helpful in identifying web services. Descriptions of attack vectors commonly
use HTTP and HTML terms such as POST, URI, and cookie. These adjec-
tives often follow the preposition “via” in the description.

4. WEAKNESS - Software failure causing the vulnerability. Examples in-
clude web attack references such as CSRF, SSRF, and path traversal. These
weaknesses commonly precede the term vulnerability as an adjective.

We annotated approximately 4,000 vulnerability descriptions from the 2017
through 2019 NVD dataset. Then a convolutional neural network (CNN) model
for recognizing named entities was trained based on these vulnerabilities with a
random 80% to 20% training-testing split. Table 3 shows the results.

We then build a set of rules for mapping vulnerabilities to network services
using named entities. Each rule tags a specific network service based on the
named entities extracted from vulnerability descriptions.

Table 3. NLP Named-Entity Recognition Scores

NLP NER Results Summary
NER Category Precision Recall F1-score

SERVICE 76% 68% 72%

SOFTWARE 63% 64% 63%

THREAT 72% 61% 66%

WEAKNESS 70% 54% 61%

4.3 The Service Extraction Pipeline

The entire pipeline of network service extraction is as follows. We first use the
above machine learning method to identify a set of vulnerabilities associated
with the WEB and CLIENT services. For other vulnerabilities that fall into the
INCONCLUSIVE category, the above NLP-based rule matching identifies the
specific network services. Vulnerabilities that do not match any NLP-based rules
are left for manual analysis by security operators.

We tested the pipeline over 3,841 vulnerabilities published in the NVD in
2020. We used the 2020 NVD dataset for testing because both the machine-
learning and NLP models trained over data features from 2017 through 2019.
The results are shown in Figure 1.

The left-most column shows the results of machine-learning only where ser-
vice classification is derived for 88% of vulnerabilities with a 97% classification
accuracy (for the remaining 12% of vulnerabilities, the machine learning method
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Fig. 1. Performance of Network Service Extraction

alone is not able to generate any service classification). The following three
columns show the classification results of machine learning and NLP when the
number of NLP rules changes from 50 to 100 and 150. When there are 50 NLP
rules, more vulnerabilities’ network services are classified than machine learning
only while the overall classification accuracy maintains at the same level. By
adding NLP rules from 50 to 150, vulnerabilities with identified network ser-
vices increase from 92% to 97%. As a trade-off, there is a slight reduction in the
overall classification accuracy (from 97% to 95%) since some NLP rules generate
wrong service mappings. However, the accuracy is still high.

3,529 (92%) of the identified network services were categorized as either WEB
or CLIENT, with 3,353 (87%) identified by machine learning and 404 (10%) by
NLP. Figure 2 shows the diversity of network services identified solely by NLP.
The treemap shows the number of network services in both color and area.

Fig. 2. Additional Network Services Identified through NLP
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Each network service maps to a set of transport-layer network ports. The
ports directly associate with firewall rules to automatically assess network reach-
ability, as we show in the next section.

5 Network Reachability

Network reachability means an adversary’s ability to access a target device over a
network. Firewalls between the adversary and target device serve as the principal
inhibitor of access for most server environments. Determining the combined and
effective access permitted by the set of firewalls is tantamount to establishing
whether an adversary can reach a given vulnerability. Reach analysis includes
an assessment of both i) direct network service access and ii) interactive access,
in which an adversary extends its reach into the network through the possession
of authentication credentials and vulnerability exploits.

This step aims to identify combinations of adversaries, target devices, and
vulnerabilities for safety analysis. As shown in figure 3, target devices reside in
network zones, and adversaries get placed in network zones based on some real-
istic approximation of where an adversary may already reside in the network. In
this diagram, the outmost firewall may block the state-sponsored adversary from
the Internet to the target operator’s workstation. However, the internal firewall
policies may allow an insider threat to reach the target operator workstation.

Fig. 3. Reachability analysis combining Adversaries, Targets, and Vulnerabilities

The reachability model answers the question, “can an adversary reach a tar-
get asset and exploit a vulnerability?” Armed with each vulnerability’s network
service information, the model can use a firewall configuration analyzer (e.g.,
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NP-View1) to parse out network topology and accessibility between network
zones and determine whether a given adversary has an opportunity to exploit a
given vulnerability.

Firewall configuration in the network can be parsed to produce paths rep-
resented as a five-tuple variable of protocol, source and destination IP address,
and source and destination transport-layer port. The set of path tuples serve as
an effective firewall ruleset between all network zones. We also further categorize
firewall rules related to interactive services (e.g., SSH, RDP). This subset of rules
allows the adversary to have authenticated access in a network zone, thereby
extending its reach and pivot toward its target. In contrast, non-interactive ser-
vices (e.g., HTTP, SMB) do not provide a direct opportunity for pivoting into
a network zone.

We can now model adversarial reach by placing adversaries in network zones
such as the placement shown in Figure 3. For assessing an adversary’s ability to
pivot between networks, the model uses an undirected graph because interactive
access can occur between any network zones in a routed network. The network
services used to permit interactive access, Ψ ∈ Γ , include those which permit
the adversary to have local interactive access to the target operating system.

A depth-first-search with cycle detection traverses the graph to associate
adversaries with network zones. Suppose an adversary can interact with a device
in a different network zone because of permitted interactive access. In that case,
the model assumes the adversary can obtain credentials in the existing zone. By
recursively traversing the graph, adversaries copy over into each network zone
to which it may pivot.

6 Model Checking Vulnerability Safety

Network reachability represents a significant obstacle for the adversary, but ad-
versarial access to the vulnerability is not the end of the story. This section
presents a definition of safety with respect to a vulnerability, adversary, and
its target device. Throughout the model discussion, we refer to the transition
system in the following definition:

Definition 1. Software Vulnerability Transition System

– S - Set of states
– R ⊆ S × S - Transition functions
– S0 ⊆ S - The set of initial states
– AP - Set of atomic propositions
– L : S → 2AP - Labeling of states formula
– Φ = AG(¬unsafe) - Invariant condition defining an secure state
– Ss - Set of final accepting states

The safety invariant, Φ, indicates the model cannot reach an unsafe state,
which means the adversary cannot exploit the vulnerability. The labels apply

1 https://www.network-perception.com/
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to the three model objects: (i) vulnerabilities denoted as v, (ii) target devices
denoted as τ , and (iii) adversaries denoted as ε. These objects are the basic
building blocks for assessing system safety. Together, these objects provide the
propositional labels applying to a system state, such that AP = {v, τ, ε}.

Figure 4 provides an example of how object labels combine in a final state,
Ss, to calculate both the safety invariant and the overall impact. In this example,
the vulnerability dominates the attack complexity (AC) of the adversary. A high
AC for a vulnerability means an adversary with low AC could not successfully
exploit the vulnerability. Therefore, as we show later in this section, the final
state is safe. Because the final state is considered safe, the model does not assess
impact. However, if the final state was unsafe, the calculated impact gradient
label (see section 3.1) of medium would apply.

Fig. 4. Example Final State Labeling

6.1 Dominance Relation in Capability State Labels
We now formally describe each capability label and how the labeling function
applies to the vulnerability in the final state.

Definition 2 (Dominance Labels). A vulnerability state label grouping in
which the following properties hold:

– Distinct labels in the group can order in terms of increasing difficulty and
decreasing opportunity of exploitation

– A cumulative set hierarchy represents attacker capability on the ordered la-
bels.

– The label group defines a necessary condition for exploitation.

This definition holds for the CVSS exploitability and temporal metrics. La-
bels have order applied as described below in this section. The cumulative set
hierarchy follows from the ordered set, in which the capabilities accrue based on
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the order. Then, finally, the necessity for exploitation should be evident in the
description of each label group.

We can now formally define safety in terms of the dominance relation between
v, τ and ε. For a given state s ∈ S, L(s) includes labels for {v, τ, ε} in the
capability categories of each Cap = {AC,PR,UI,EX}. We symbolize a state
label for some category c ∈ Cap with respect to an object as vcs, τ

c
s and εcs. For

brevity, Cap is also split as Capε for labels applying to adversaries and Capτ for
labels applying to targets. The dominance relation is defined for vulnerability
dominance as:

(vs)dom(εs, τs) ⇐⇒
∃c ∈ Capε, vcs > εcs

∨∃c ∈ Capτ , vcs > τ cs

And dominance for the adversary and target is defined as:

(εs, τs)dom(vs) ⇐⇒
∀c ∈ Capε, εcs > vcs

∧∀c ∈ Capτ , τ cs > vcs

The safety invariant, Φ, is defined as the vulnerability dominating the target
and adversary, meaning the adversary cannot exploit the target using the vul-
nerability. Likewise, a safe state means the adversary lacks some capability to
exploit the vulnerability on the target device. The following theorem associates
the dominance property to our definition of model safety.

Theorem 1. if (vs)dom(εs, τs), then the state, s ∈ Ss is safe.

Proof. We begin proving this by assuming the dominance relation holds between
vulnerabilities and adversaries. Each capability-based category forms an ordered
set which is also a cumulative set hierarchy with respect to v, ε and τ .

∀c ∈ Cap | 0 ≤ i < |c|,
vci ⊆ vci+1 , εci+1 ⊆ εci , τ ci+1 ⊆ τ ci

Recall that the set order indicates both (i) increasing difficulty and (ii) de-
creasing exploit opportunity. For v, lower ordered categories are a subset of those
higher-ordered. The ordering means an unsafe vulnerability based on vci remains
unsafe for any lower ordered capability. In contrast, ε and τ have a reverse hi-
erarchical set because capability at a higher level would suffice to exploit any
vulnerability with v at a lower order.

Because v is dominating, we know there is at least one c ∈ Cap in which v is
greater than either ε or τ . Through the cumulative set hierarchy, it follows that:

∃c ∈ Cap | vc ∩ εc ∈ ∅ ∨ vc ∩ τ c ∈ ∅ (1)

Therefore, the adversary cannot exploit the vulnerability on the target in at
least one category, and by definition 2, v is safe. The proof ends.

The converse is not necessarily true because some other capability category
may exist outside of the CVSS metric.
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6.2 Measuring Impact

Impact gradient labels apply when the final state of a system is not safe. These
labels provide further context for assessing the vulnerable state of a system
and prioritizing risk mitigation work. The set of risk gradient categories are
G = {C, I,A}. Similar to dominance labels, we also define each label category
as a cumulative set hierarchy in which:

∀g ∈ G | 0 ≤ i < |g|, gi ⊆ gi+1 (2)

For example, if the vulnerability label for confidentiality were H (or high),
then vC = {L,M,H}. Now, a simple impact gradient calculation provides the
combined result of v and τ :

Definition 3. A calculated impact gradient label applies to final states Ss in
which Φ = AG(¬safe) as:

Impact(Ss) = max(
⋃
g∈G

vg ∩ τg)

The impact calculation bounds the impact of the target device label.

7 Evaluations

Open data sets for firewall and vulnerability management are not available due
to the highly sensitive nature of the data and industry-specific compliance obli-
gations. To overcome these barriers, we generate a realistic sample system. We
adopt an approach to generate the requisite system data using network ser-
vice exploration. The applications required to run on the system determine the
required network services. We identified the required applications through inter-
views, assessments, and exploration of industry compliance obligations. These
applications are decomposed into classes of commonly used computing assets
and further decomposed into individual assets and software.

In particular, our sample system derives from applications and compliance
obligations required for a power grid control center, but the approach works
for other critical infrastructure domains as well. We derive it using elements of
the computing environment required by the North American Electric Reliability
Corporation (NERC) Critical Infrastructure Protection (CIP) regulatory stan-
dards [7]. The standard sufficiently references specific types of technology related
to security and reliability for creating a representative sample. The resulting sys-
tem contains 124 devices organized into 25 asset groups, e.g., Web Servers and
Operator Workstations, as shown in Figure 5. The data set also includes 4,894
combined software assets mapped to the NVD.

We tested the implementation of network reachability and safety analysis on
the above asset dataset using the vulnerabilities from the NVD for January 2017
through July 2020 that match the assets. Vulnerabilities map to software and
computer assets using a combination of Common Product Enumeration (CPE)
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Fig. 5. Sample System Network Zonal Diagram

applicability matching, Microsoft vulnerability reports, and Red Hat vulnera-
bility reports. In that timeframe, we found a total of 106,313 vulnerabilities
applicable to the assets.

To generate firewall rules, we analyze each asset by identifying its listening
network services, client services, and remote access services and then generate
firewall rules for these services. The generated firewall ruleset has a realistic
basis in the system’s common sector-specific services. We generated 1,156 distinct
firewall rules by traversing the network graph and filling in the required services.

Adversaries had access to the Internet network zone, enterprise network zone,
and an asset management zone internal to the control system in the model.
The Internet adversaries modeled a state-sponsored adversary (i.e., skillful with
minimum internal privileges) and an automated botnet (i.e., minimally capable
with minimum internal privileges). The two internal adversaries modeled inside
threats that hold highly privileged access but are minimally capable of exploiting
vulnerabilities.

Each network zone’s data structure included all adversaries having interactive
reach into the zone based on the generated firewall ruleset. Network services were
extracted for all the vulnerabilities as well.

Finally, each of the 106,313 vulnerabilities received an assessment using the
presented model-checking safety analysis. The assessment included modeling
each adversary with interactive access to the device and assessing adversaries
having reach associated with the vulnerability’s network service. A particular
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Fig. 6. Monthly Safety Analysis of all Applicable Vulnerabilities

case also occurs for vulnerabilities requiring user interactions. Our model mainly
considers inbound reachability from the Internet to a target server device. How-
ever, we model outbound user interaction by assuming the worst-case scenario,
in which a state-sponsored adversary has backdoor interactive access to an asset.

Figure 6 presents the results. This graph shows the monthly count of both safe
and unsafe vulnerabilities for the sampling period. Those vulnerabilities assessed
as safe account for approximately 92% of the vulnerabilities overall, whereas
those assessed as unsafe remain consistently below 500 applicable vulnerabilities
per month. This implies security operators informed by safety analysis can use
their limited resources to address unsafe vulnerabilities.

Fig. 7. Iterative Safety Analysis for all Applicable Vulnerabilities

The model checking also allows iterative exploration where the adversary’s
reach extends through unsafe vulnerabilities, which we term gateway vulner-
abilities. Gateway vulnerabilities allow full access or privilege escalation on a
reachable target such that exploitation would extend the adversary’s reach into
additional network zones. The model checking increases reachability only for un-
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safe vulnerabilities having High integrity impact. In contrast, vulnerabilities with
only denial of service effects (i.e., availability impact) or information disclosure
effects (i.e., confidentiality impact) do not extend adversary reach.

Figure 7 shows the results of extending reachability using gateway vulnera-
bilities. The first graph/iteration is a copy of Figure 6, and the second graph/it-
eration shows the number of increased vulnerabilities after extending adversarial
reach from the first iteration. The third graph is the third iteration. It is the
full extension of adversarial reach since there are no additional gateway vulner-
abilities beyond the third iteration. The number of unsafe vulnerabilities rises
from 8% in the first iteration to 20% in the second, and then 60% in the final
iteration and maximum adversarial reach.

The data would suggest an adversarial advantage in unsafe vulnerabilities,
but a countermeasure strategy to immediately mitigate gateway vulnerabilities
would maintain the defense advantage of minimal unsafe vulnerabilities. The
graph in Fig. 8 shows the number of gateway vulnerabilities per month, which
remains minuscule compared to the overall number of vulnerabilities.

Fig. 8. Vulnerabilities Allowing Extension of Adversarial Reach

8 Conclusion
We proposed a new scheme of automatically evaluating software vulnerabilities
for state safety using firewall configuration data. It involves automated identifi-
cation of network services associated with vulnerabilities and connects that to
firewall rules, target devices, and adversarial attributes under one formal frame-
work. Tests on a realistically simulated sample system showed only 8% of the
applicable vulnerabilities are unsafe. We further modeled the dynamic threat
movement to pivot deeper into the network using gateway vulnerabilities and
found the presence of gateway vulnerabilities, when left unmitigated, remarkably
changes the number of unsafe vulnerabilities. The results suggest new strategies
in cybersecurity operations to apply limited resources better.
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