Thermally-Initiated Formation of Criegee

Intermediate CH,00 in the Oxidation of Ethane

Rizalina T. Saragi,T Nathan A. Seifert, Raghu Sivaramakrishnan,’ and

Kirill Prozument* 1

T Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL,
60439, USA
T Department of Chemistry and Chemical € Biomedical Engineering, University of New
Haven, West Haven, CT 06516, USA

E-mail: prozument®@anl.gov

Abstract

Criegee intermediates (CIs) play an important role in the atmospheric chemistry as
a transient source of OH radical, through their formation by the ozonolysis of unsatu-
rated organic compounds. Here, we report thermally initiated formation of the smallest
CI (CH200) in the oxidation of ethane (CH3CHjs) that may be relevant to combustion
and flames. The SiOy/SiC oxidation microreactor is heated to 1800 K and has a short
residence time of ~100 us. The CH2OO we observe is likely formed in a lower temper-
ature region near the microreactor’s exit. Plausible mechanisms for CHoOO formation
and retention at these conditions mediated by methylperoxy (CH300) radicals are dis-
cussed. Pure rotational spectra of CHyOO and other intermediates, HOo, CH3CHO,
CH;CHOH, ¢-CH;OCH,, CH3CH>CHO, CH300H, and HCOOH are detected with a
chirped-pulse Fourier transform millimeter-wave spectrometer operating in the 60-90
GHz frequency range. Detection occurs in a molecular beam where the species are

supersonically cooled to 5 K.
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Introduction

Criegee intermediates (CIs) are carbonyl oxides with two charge centers on the oxygen atoms.
It was shown that in addition to the main, relatively inert, singlet closed-shell zwitterion
character, there is an admixture of an exited triplet biradical state that is responsible for
the substantial reactivity of CIs.¥ Although Rudolf Criegee initiated research on ClIs back
in 1949, and proposed their formation in the alkene ozonolysis,? it wasn’t until 2008 that
Taatjes et al. observed the smallest CI, CH,OO, using tunable synchrotron photoionization
with multiplexed mass spectrometry.® One of the main techniques now used to obtain CIs
and study their reactivity is the reaction between O5 and CHsl, which is obtained by the
248 nm photolysis of CHyI,. 4

The zwitterionic character of CIs results in a relatively high dipole moment making them
convenient for measurement via rotational spectroscopy. Endo and coworkers have been
studying various Cls using Fourier transform microwave (FTMW) spectroscopy. They pro-
duced CH,OO by mixing CHyBry or CHsly with O, in a discharge nozzle, and experimentally
determined the molecular structure of CH,OO.®

McCarthy et al. demonstrated the formation of CH,OO from the mixture of CH, and O,
in an electrical discharge.” Womack et al. successfully employed FTMW spectroscopy to de-
tect CHyOO, representing the first observation of this species resulting from the ozonolysis of
ethylene.™” In these and other laboratory studies, the reactive precursors to Cls (CHjz, CH,I,
or O3) originate from non-thermal energy sources such as electrical discharge or photolysis
laser. ™' Ozonolysis of alkenes in the atmosphere is now an established source of atmo-
spheric ClIs.*? In those reactions, a vibrationally excited CI can either immediately undergo
unimolecular dissociation forming OH, or be stabilized by collisions and react with other
atmospheric species.*® While the role of CI in the atmospheric chemistry is an active field of
research,™ its presence in other gas-phase environments is less studied. In particular, Ander-
sen and Carter suggested that CH,OO may be formed in dimethyl ether combustion,* but

no experimental evidence has been found. We query whether a stabilized CI can originate



in a high-temperature thermal environment.
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Figure 1: The spectrum of HOy produced by the oxidation of ethane. The fine structure of
the 14, — 0, rotational transition is shown and labeled. The remaining lines are unassigned.
The chirp bandwidth is Av = 450 MHz, and the resultant FID is a 6 s average of 10°

acquisitions. v = 63 GHz.

In this study, we observe CH,0OO in a combustion-relevant environment using a custom-
built chirped-pulse Fourier transform millimeter-wave (CP-FTmmW )& spectrometer. CH,OO
emerges from a microreactor heated to the wall temperature 7T',,,; = 1800 K where the pool of
methyl radicals, which we deem the likeliest precursor in CH,OO formation here, is created.
We discuss a) the conditions in the reactor that would prevent complete consumption of
CH500 before detection and b) the reaction mechanisms that might be responsible for pro-
ducing CH,OO from the available building blocks. We also identify other intermediates and
infer the mole fractions of CH,OO, HO,, CH3CHO, CH,CHOH, ¢-CH,OCH,, CH3CH;CHO,
CH300H, and HCOOH, and compare those to a kinetic model prediction. The observation
of CH,0OO0 product from the oxidation of a simple hydrocarbon such as ethane may pro-
vide further important constraints on modeling the reaction networks relevant to practical
combustion chemistry, plasma and other radical-initiated oxidations, and other chemically
reactive environments that span a wide range of temperatures and pressures such as those

in hostile planetary systems like exoplanets.



Results and Discussion

The most abundant detected intermediate in the oxidation of CH3CHjz is the HO5 radi-
cal, and its rotational spectrum with fine structure is shown in Fig[ll The spectrum is a
Fourier transform of the free induction decay (FID) that accumulates 1 million single FIDs
recorded in just 6 seconds. The measured full-width at half-maximum (FWHM) linewidths
of about 600 kHz are defined by the Doppler dephasing of the FID in the diverging molecular
beam. The spectra of CI CH,OO and its isomer, formic acid (HCOOH), are shown in Fig2]
We also demonstrate the transitions of vinyl alcohol (CH,CHOH) and methylhydroperox-
ide (CH3;OOH) in a single spectrum in Fig[3] Additional lines of these intermediates and
spectra of acetaldehyde (CH3CHO), propanal (CH3CH,CHO), and oxirane (¢-CH,OCH,)
are available in the Supporting Information.

Using the published dipole moments and rotational constants of HOs (u,=1.412 D,
wp=1.541D),1920 syn CH,CHOH (1,=0.616 D, 11,=0.807 D),222 g ti-CH,CHOH (11,=0.547
D, 11p=1.702 D),2CH300H (11,=0.606 D, 11,=0.071 D),2¥ CH,OO0 (11,=5.0 D),%* CH3CHO
(ta= 2.53, mpy = 1.07), the average values of two works,“*4C ¢-CH,OCH, (u, = 1.89 D)<
CH3CH,CHO (p= 1.71, pp = 1.85),%Y trans-HCOOH (p,= 1.421, pp = 0.21),*? and cis-
HCOOH (p,= 2.65, pp = 2.71),*!' we employ the PGOPHER program# to simulate line
intensities, assuming a rotational temperature of 5 K. The mole fractions of these interme-
diates are obtained by comparing their line intensities to that of a benchmark molecule,
CH,DCCH (11,=0.7818 D), 5355 with a known mole fraction. A sample of 5% propyne in
argon flows at @@ = 2000 sccm through the SiO5/SiC reactor at T'yqn = 1500 K to minimize
propyne pyrolysis and maintain the conditions similar to those in the oxidation measure-
ments. We measure the 4, — 3 o5 transition of CH,DC'"CH (Fig. S6), which is contained in
the sample in natural abundance at 7.69 x 10~® mole fraction.

The measured mole fractions are compared to a simulation performed with an in-house
kinetics model, ThInK %39 developed predominantly using high-level theoretical methods

to describe the combustion of small hydrocarbons (Table . This model currently includes
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Figure 2: Two CH,0; isomers in the oxidation of ethane. Left panel: the 3 ;3 —2 o, transition
of Criegee intermediate, CH,OO. The spectrum is obtained with a Arv = 150 MHz excitation
chirp, only a 20 MHz portion is shown. The spectrum is a Fourier transform of an FID that
is averaged 10® times in 10 min. v o = 67.2 GHz. Right panel: the 3 o3 — 2 o, transition of
formic acid, trans-HCOOH. The chirp bandwidth is 20 MHz and the FID is averaged 107

times in 1 min. o = 65.2 GHz

160 species and 1090 elementary reactions. A Chemkin“? interpreted output of this model,
obtained using a 0-D homogeneous reactor approximation, is provided in the SI. The abun-
dances in the simulation at the wall temperature conditions are provided here merely as a
qualitative indicator for the intermediates observed in the present experiments. For example,
the key species of interest here, CH,OO, is not included in the present model or any other
literature chemical kinetic model for high-temperature chemistry, and therefore, there is no
entry for this species from the simulation. The SI also provides analyses of the pathways
responsible for the observed intermediates from the simulations.

Oxidation of CH3CHjs is initiated at a high temperature, and both the unimolecular

dissociation of ethane

CHgCHg — QCHg (1)

and its oxidation



Table 1: The experimental and simulated abundances of the ethane oxidation intermediates.
The experimental abundance of CH,CHOH includes 79% syn- and 21% anti- conformers,
CH30O0H includes 88% 07 and 12% 0~ tortional ground state tunneling levels, the HCOOH
includes 97.5% trans- and 2.5% cis- conformers. The experimental uncertainty of the mole
fraction determinations is £30% of the values. The ThInK kinetic model prediction is for T
= 1800 K, p = 1 atm, and ¢t = 100 us.

Species Experiment Kinetic model
CH;CHO 577 x10% 1.44x107°
CH,CHOH 256 x10°¢ 9.34 x 10~
c-CH,OCH, 4.54x1077 220 x107°
CH;CH,CHO 1.49x107% 3.17x 107"
HO, 1.60 x 107°  1.54 x 107°
CH;O0H  5.01 x 1077 4.37 x 10~

CH,00 5.85 x 107 -

HCOOH 3.74 x 1077 2.51 x 10710

contribute to the initial pool of radicals. This initial pool of radicals, CH3, CoHs, and HO,,
rapidly undergo chain branching and other oxidation reactions as well as dissociation (in the
case of CoHs and HO») at T,y = 1800 K to rapidly generate more reactive atoms/radicals
such as H, O, and OH. These reactive species then rapidly catalyze the destruction of CyHg
via bimolecular abstractions and initiate secondary chemistry. As many as 57 stable species
and radicals are formed with mole fractions > 0.1 ppm within a 10 us timescale as indicated
by simulations using our in-house model. Figure S7 depicts the time evolution of a small
sub-set of key stable species and radicals at 1800 K and 1 atm. Figure S8 demonstrates
that while (R2) initially has the greatest rate of HOy production, it is surpassed by the
CoHy + Oy —— CoHy + HO9 channel at 1 ps. At the time of measurement (100 us), the
HCO 4 Oy —— HO3 + CO reaction is the dominant source of HO,. Here we would like to
focus on the chemistry responsible for the key intermediates observed here, and in particular
hypothesize the sources for the elusive Criegee species, CH,OO, detected in this work.

Reaction of methyl radical (CHs) with O proceeds through a chemically activated com-
plex CH3;00*, which could be stabilized

CH; 4+ O, — CH300 (3)



or lead to CH30 + O or CH,0 + OH.*!' We are observing multiple strong lines that match the
prediction for CH300 by Endo.”? The stabilized methylperoxy (CH300) may also undergo
multichannel reactions.*® One route is the production of methylhydroperoxide (CH;OOH)
via a CH300 and HO; reaction.?#¥4 The mechanism is initiated by a barrierless formation
of a diradical hydrogen-bonded complex, CH300--- HO,, stabilized by approximately 4.5
kcal/mol. The reaction pathways occur both on the triplet and singlet potential energy
surfaces (PESs). The main reaction pathway occurs on the triplet PES and proceeds through

a submerged barrier to the CH;0OO0H and O, products:+*40

Additional sources for CH;OOH are other radical-radical reactions such as CH;00 + CH30
and direct hydrogen abstraction by CH3OO from the reactant CoHg. Interestingly, the
simulations using the model at 1800 K do not predict CH3OOH to be formed even in sub-
ppm levels (Table . This is not surprising since the O-O bond energy BDEsgs = 44.6
keal /mol*™ and at T > 1000 K dissociation to CH30 + OH is facile.*? However as discussed
below, the detection of CH3OOH and CH,0O is due to the complex flow fields®¥>! within
this microreactor leading to wide temperature and pressure distributions.

Observation of CH,OO originating from a high-temperature environment is important
because of its high reactivity™® and a possible role it may play in combustion and flames. At
the same time, the measurements by Stone et al. of CH,OO unimolecular decomposition at
temperatures 450-650 K and the deduced rate expression® suggest that this CI would be
extremely short-lived at the 1500-1800 K temperatures inside our reactor. Their prediction
for the rate of decomposition at 1500 K, 1 bar would be 107 — 10® s~!. Assuming, for a
moment, a uniform pressure and temperature distribution within the reactor, and an esti-
mated residence time of ~100 us,”* CH,OO would be practically not detectable. However,

there are temperature and pressure gradients within the reactor;*®*> therefore, it is plausible
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Figure 3: Vinyl alcohol and methylhydroperoxide in the oxidation of ethane. The 4, —
3 o3 transitions of syn-CH,CHOH and CH3OOH are shown. The transition within the "
torsional state of CH30OOH is magnified in the insert. The frequency of the excitation pulse
is chirped from 77780 to 77710 MHz, and the FID is averaged 10° times in 1 h and 40
min. With that significant averaging, a slightly increased noise level near the red end of the
spectrum is due to the chirp leakage into the FID detection time window. vpo = 75.8 GHz.

that the CI is formed from the available free radicals and molecules in a colder region at the

central axis of the reactor,*

or near the extraction region. At the end of the reactor, the
temperature drops and eventually reaches 5 K in the supersonic expansion, where collisions
cease and detection occurs. For example, it would be reasonable to assume that the inter-
mediates formed by the oxidation of ethane in the high-temperature region of the reactor
proceed to its exit where they briefly encounter an area of 650 K for which the measured®?
rate of CH,OO decomposition is 1.2 x 10* s~!. Most of CH,OO formed and stabilized in
that 650 K zone or anywhere in a colder area down the stream will avoid isomerization or
unimolecular decomposition® and would be detectable.

Under such colder (relative to T,q;) conditions there could be multiple mechanistic
postulates for the formation of CH,OO. For example, the chemical environment in the
microreactor is akin to that experienced during radical-initiated oxidations of hydrocarbons.
In such a scenario, we have shown in recent theory/modeling work on ethane oxidation?

that reactions not considered in hydrocarbon autoignition come into prominence. One such

example is the reaction of peroxy radicals with OH. This reaction has been the subject of



recent atmospheric chemical kinetics studies.”® In traditional auto-ignition scenarios, peroxy
radicals undergo subsequent oxidation to produce OH and therefore, peroxy and OH radicals
do not co-exist in significant concentrations to permit cross-reactions. However, in radical-
initiated oxidations in the presence of an external radical source, the inclusion of this multi-
channel radical-radical reaction can influence auto-ignition in hydrocarbons.*® Total rate
coefficients for CH305 + OH are fast (~ 107!° ¢cm?® molecule™! s7!) and therefore even a
small flux into the CH,OO + H5O product channel can lead to noticeable formation of
CH,0O0 at exit conditions in the microreactor. However, the reaction is exothermic by 45

1,448 which probably leads to prompt isomerization or dissociation®” of CH,0O.

keal /mo
The present simulations using the model at 1800 K indicate that copious amounts of H- and
O-atoms are also formed (Fig. S7). Direct abstractions of CH300 by these reactive atoms
can also be sources for the observed CH,OO. Such reactions may also be facile but their
analysis requires the use of high-level multi-reference methods.”®

The theoretical investigation of the discharge-initiated formation of CH,OO in a mix-
ture of CH4 and Oy conducted by Nguyen, McCarthy, and Stanton puts forward another
chemical mechanism that may be applicable to the present study.** Under the discharge
conditions,” the reaction is initiated by the methyl radicals from the C—H bond cleavage in
CHy4. In our experiment, the source of methyl radical is initially the simple bond fission in
CH3CHj3 (Reaction , and later the CoHs; + H —— CHj 4+ CHj3 reaction (Fig. S9). Fol-
lowing the mechanism proposed by Nguyen et al., methyl radicals react with Oy to form

vibrationally excited methylperoxy, CH3OO*, which immediately reacts with another O,

skipping®” thermalization:

The H-atom abstraction by O to form CH,;OO encounters a much lower barrier of 9.7

kcal /mol than if the methylperoxy had stabilized in its potential well by collisions.**#% The



CH,00 formed with vibrational energy below the 12.1 kcal/mol barrier (relative to the re-
actants in to isomerization to dioxirane (cyc-CH,0O0) is preserved, cooled and becomes
available for detection.*® We do not observe rotational lines of dioxirane® either because
there is not enough CH,OO that is sufficiently energized or due to a well-skipping isomeriza-
tion of cyc-CH,00 to formic acid (HCOOH). Formic acid is observed in this work (Fig[2)) at
the level, which exceeds the kinetic model prediction by a factor of 103 (Table . It remains
to be determined what fraction of the observed HCOOH is mediated by CH,OO.

A recently published work by Qian et al. demonstrates a much slower rate of CH,OO
unimolecular decomposition than what would be predicted by the statistical theory.™t In
their study, specific vibrational modes of CH,OO are excited and the inhibited dissociation
is associated with the sparse vibrational level structure and poor IVR, which is necessary
to reach the transition state. How is the internal energy of CH,OO forming through (R
distributed among its degrees of freedom? The vibrational population distribution of a
reaction product is generally non-Boltzmann and encodes the overlap between its equilibrium
geometry and the configuration that its nuclei had in the transition state.%? The energy in
a nascent reaction product may be preferentially deposited into a specific vibrational mode
that is reminiscent of the nuclear motion that promoted the reaction.®® We speculate that
if energy flow out of such a mode in the nascent CH,OO in (Rp) is ineffective, the CI may
avoid isomerization or dissociation and be more readily stabilized by collisions even if its
available energy is above the barriers to those transformations.

The mechanism of ( described by Nguyen et al. includes rapid formation of an
intermediate van der Waals complex O -+ CH300* and tunneling under the 9.7 kcal/mol
barrier to HO5 + CHy0OO on the time scales relevant to our experiment. For example, with
only 0.5 kcal/mol of energy above the reactants in (Rf]), the Oy - CH;00* complex reacts
in ~1 s

Related to that mechanism, some radical-molecule pairs react faster below 200 K because

they form weakly bound complexes that have long enough lifetime for tunneling through

10



the barrier to complete. 4% Although Nguyen et al. do not show a negative temperature
dependence of the rate constant for (Rf]) in their energy range, it would be interesting to
test that possibility for a cooled O --- CH300 complex. We also point to a possibility of the
roaming mechanism®” facilitating (Rf)) by sampling multiple mutual orientations of Oy and
CH;30O0 to find the transition state.

In summary, the observation of CH,OO exiting the hot reactor is unexpected because of
its predicted extremely short lifetime at 1800 K. We conclude that the CH,OO we detect is
forming in a cooler (T" < 650 K) region near the exit from the reactor where the tempera-
ture rapidly drops to 5 K in the expansion region. Mechanistic postulates for the formation
of CH5,0O0 include the reaction of CH;00 + OH%%Y or the non-thermal mechanism in-
volving CH300* + O,.** The upgraded Argonne E-band chirped-pulsed millimeter-wave
spectrometer demonstrates high sensitivity with deep averaging of the molecular FID.

This work suggests that the reactive Criegee intermediates may be important in the
intermediate-temperature (up to ~ 1000 K) environments in addition to the atmosphere.
They may also be formed in radical initiated oxidations that can lead to situations where
peroxy radicals can co-exist with reactive atoms/radicals such as OH, H, or O-atoms. Fu-
ture experiments to validate the non-thermal mechanism (Rp)) may include deuteration of
ethane to gauge the role of tunneling in this CH,OO formation. Dimethyl ether with its
slightly lower CH30—CHj3 bond dissociation energy (BDEggg = 84.1 kcal/mol) than ethane’s
CH;—CHj3 (BDEggs = 90.1 kcal/mol)4™8 would be a better source of methyl radicals and
thus a possibility of CH,OO formation in its oxidation is of interest. Detection of larger
CIs in a similar experiment would be challenging due to the increased rotational partition
function reducing the line intensities, but not impossible. A Criegee-mediated pathway to
formic acid and the consecutive chemistry of stabilized CH,OO at intermediate temperatures

may be investigated with a combined modeling-experiment-theory®® approach.

11



Methods

Reactor and gas handling system

The SiO4/SiC reactor is constructed of a quartz tube (0.8 mm i.d., 1.0 mm o.d., VitroCom,
p/n CV8010) inserted into a 60 mm-long SiC tube (1.0 mm i.d., 1.95 mm o.d., Saint-Gobain
Ceramics, Hexoloy SE, p/n 3238672). The gap between the two tubes is sealed by vacuum
epoxy near the entrance of the reactor to contain the flow of the ethane and oxygen mixture
within the SiO, insert and minimize deterioration of the SiC heater tube. After annealing,
the quartz insert is making a thermal contact with the SiC tube, which is resistively heated to
Twan = 1800 K (the maximal temperature along the wall detected by an optical pyrometer )
during measurements. The oxidation of CH3CHj is initiated and the secondary chemistry
evolves during the ~ 100 ps residence time within the reactor. The oxidation intermediates,
including CH,OO, are captured by the CP-FTmmW spectrometer once the gas has expanded
supersonically from the reactor into the vacuum chamber and cooled to T,; =~ 5 K.

The gas delivery and vacuum systems are described in a prior publication.™ Briefly, the
mixture of 5% CH3CHjs and 5% O, mole fractions in Ar is produced by merging the flows
of 1) CH3CHj3 at 100 sccm, 2) neat Ar at 900 sccm, and 3) mixture of 10% Oy in Ar at
1000 scem, and directed to the reactor at (Q = 2000 scecm combined flow rate. The reactor
operates in a continuous flow regime. When the reactor is heated to T'y.; = 1800 K, the
stagnation pressure becomes py = 1.6 bar. At these conditions, the pressure in the chamber
is pan = 1.5 x 1072 mbar maintained by two turbomolecular pumps. Gasses are purchased
from Airgas and have the following stated purity. Ethane is Research grade 99.99% (p/n
ET R80) with the total hydrocarbon impurity (THC) of < 80 ppm. Neat argon is Research
Plus grade 99.9999% (p/n AR RP300) with THC < 0.1 ppm. The 10% oxygen in argon
mixture (p/n X02AR90C3002555) contains Ultra High Purity 99.994% oxygen with THC
< 0.5 ppm, and Ultra High Purity 99.999% argon with THC < 0.5 ppm. The THC of the

resulting mixture is < 4.3 ppm.
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Figure 4: Schematic of the E-band CP-FTmmW spectrometer that utilizes a fast digitizer
to record and average the FID. The available frequency range for chirping (60-90 GHz) is
indicated and chirps with bandwidths up to Av = 1.2 GHz (Fig. S2) are utilized. The LO
frequency (v0) can be set within the same frequency region (60-90 GHz). An example of
vL,o = 63 GHz used to obtain the spectrum in Fig[l]is shown. The direction of the wavevector
k of the frequency-chirped, linearly polarized mmW beam propagating between the two lens
horn antennas is shown with an arrow.

CP-FITmmW spectrometer

In this work we implement an E-band (60-90 GHz) CP-FTmmW spectrometer with deep
averaging of the FID signal using a fast digitizer (ADQ7DC FWATD, PCle card, by Teledyne
SP Devices) inspired by work of Hays et al.”! The main architecture of the spectrometer
remains that of our E-band CP-FTmmW setup, which was described elsewhere.%?

The schematic of the present spectrometer is shown in Fig Chirped pulses (chirps) are
formed by the arbitrary waveform generator (AWG, Tektronix AWGT70001A, 50 Gs/s), which
is disciplined by a 12.5 GHz clock frequency from the Master Clock Synthesizer (Agilent
Technologies, PSG Analogue Signal Generator E8257D, 250 kHz — 20 GHz), and amplified
by 14 dB (Marki Microwave, AP-125EQP, 1-25 GHz). The chirps are frequency-multiplied
by a factor of 6 and amplified to 16.2-17.8 dBm (42-60 mW) throughout the E band using
the Virginia Diode signal generator extension (SGX) module WR12SGX. The last element

in the SGX is a passive multiplier, which minimizes the SGX emission during FID detection.

13



A direct reading manual attenuator (QuinStar QAD-E00000) tunable between 0 and 60 dB
attenuation is installed after the SGX for calibration purposes (see the SI). The millimeter-
wave (mmW) beam is broadcast to the vacuum chamber by a lens horn antenna (Flann
Microwave 26810-NB-17349, 75 mm lens diameter, 33 dBi gain) where it crosses the molecular
beam at 90°. RF absorbing sheets (Laird Technologies EMI, p/n 78820181) are placed
inside the chamber to dampen stray mmW radiation. On the other side of the chamber, the
molecular FID is received by another lens horn antenna, amplified by an E-band low-noise
amplifier (LNA, Mi-Wave 955EF-25/8/387, 25 dB gain, 4.5 dB noise figure) and directed
to the RF port of the passive balanced mixer (QuinStar QMB-FBFBES, 0.1-5 GHz IF) for
frequency downconversion. The mixer is driven by a local oscillator (LO) with a frequency
set between 60 and 90 GHz that is provided by a frequency-doubled output of the tunable LO
Synthesizer (Keysight, PSG Analogue Signal Generator E8257D, 250 kHz — 50 GHz). The
downconverted FID from the IF port of the mixer is amplified (Miteq LNA-40-00100600-18-
15P, 45 dB gain, 0.1-6 GHz) and cleaned by a 1.1-3.1 GHz bandpass filter (Lorch Microwave,
10BP7-2100/2200-S). After that, the amplitude of a single FID, which is usually dominated
by the noise, fills the digitizer’s vertical scale of 1 V,, without exceeding it. The noise
floor is set by the mmW LNA. The LO Synthesizer is phase-locked to the Master Clock
Synthesizer via a 1 GHz link to maintain the phase stability of the spectrometer. This
supplements the 10 MHz frequency standard provided to the synthesizers, AWG, and the
ADQ7DC digitizer. As in the segmented chirp scheme,™ we set the LO frequency (o)
close to a relatively narrow chirping region (Av) covering molecular transitions of interest
to keep the IF frequency within the digitizer bandwidth of 3 GHz, but also below a strong
digitizer spurious signal™ (spur) at 2.5 GHz.

The ADQT digitizer has a 10 GS/s sampling rate, 3 GHz analogue bandwidth, and 14-bit
vertical digitization depth. Although the bandwidth of the digitizer is lower than that of
high-end oscilloscopes, it sustains orders of magnitude faster data flow and processing. That

allows acquisition of FIDs every 6 ps or with 167 kHz repetition rate. The data flow in the
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spectrometer is structured as follows. The AWG is programmed to continuously output a
sequence of data frames of 6 s length that contains a frequency-chirped pulse (chirp) of 0.5
ps duration in the beginning and zeros elsewhere. These data frames stem from the main
AWG channel with 8 bit vertical resolution and 50 GS/s sampling rate. A 1-bit marker
channel of the AWG provides a trigger to the ADQ7DC digitizer 0.4 ns after the end of the
chirp. At that time, the frequency-downconverted FID is recorded by the digitizer for 4 ps.
The 0.4 us delay is for the transient ringing in the downconversion electronics excited by
the intense chirp to subside before a much weaker FID is digitized.™® 2 x 105 consecutive
FIDs are averaged within the digitizer before the resulting FID is transferred to a file on the
computer that hosts the PCle card with ADQ7DC. 5000 of these aggregated time traces may
be recorded in 1 h and 40 min and then co-added to form a final, 10° average FID. However,
it is more practical to average between 10° (6 s acquisition time) and 10® (10 min acquisition
time) FIDs. Deep averaging in a reasonable time is achievable due to the combination of
the 75% duty cycle of the spectrometer (considering the chirp and the FID duration as a
useful time) and a steady (non-pulsed) molecular sample.™ ™ The final frequency domain
CP-FTmmW signal (spectrum) is the magnitude of the Fourier transformation of the FID

after applying a Kaiser-Bessel window function.
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The Supporting Information is available free of charge on the ACS Publications website at
DOI: 10.1021... Table S1 lists the line assignments, frequencies, and calibrated intensities
for the reaction intermediates and the CH,DC™CH benchmark molecule. Figure S1 shows
the the spectra of the 315 -2 15, 3,52, and 4, — 3 15 transitions of CH,OO observed in
addition to the 3 o3 — 2, line shown in Fig[2] Figure S2 shows a 1200-MHz wide spectrum
that contains the lines of CH3CHO, syn-CH,;CHOH, CH300H, and syn-CH3CH,CHO. The
spectral data for Fig. S2 is available in the SI. Figures S3-S5: spectra of trans-HCOOH,
cis-HCOOH, and ¢-CH,OCH,. Fig. S6 shows the 4, — 3, transition of CH,DC'*CH,
which is detected in natural abundance and used to deduce the mole fractions of the reac-
tion intermediates. Fig. S7 shows the mole fraction simulations for CH3CHs, Oy, HO,, CH3,
CH3;CH,, OH, H, O, HCO, CH,0O, CH30, CH3CHO, CH,CHOH, ¢-CH,OCH,, HCOOH,
CH300, CH3;00H, CH3CH;CHO, CH3CH,00, and CH,CH;OOH. Figs. S8-S24 show the
rate of production simulations for HO,, CH3, CH3CH,, OH, H, O, HCO, CH,0O, CH3CHO,
CH,CHOH, ¢-CH,OCH,, HCOOH, CH300, CH;00H, CH3CH,CHO, CH3CH,0O0, and
CH,CH3;OO0H. For each species in Figs. S8-S24, up to 10 most contributing to their forma-
tion reactions are shown over the initial 5 pus and 200 ps time intervals. The output summary

and the detailed results of this kinetic modeling are available as separate files.
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Signal Calibration

The integrated intensities of lines in Figures 1-3 and S1-S5 were calibrated to account for
i) the excitation and detection efficiency of the spectrometer and ii) the chirping band-
width. Chirps were brought to a linear regime by 60 dB attenuation of the mmW and
their amplitudes were measured using an oscilloscope (Tektronix DPO73304DX). The cal-
ibrated intensities in Table S1 were obtained by dividing the integrated line intensities by
the chirps’ amplitudes and multiplied by v/Av. The relative abundances are found using the
PGOPHER program to simulate the line intensities using the published dipole moments and
rotational constants of the molecules of interest. The rotational temperature of every species
is assumed to be 5 K (see the relative line intensities in the acetaldehyde spectrum in Fig.
S2). Finally, the mole fractions in the mixture were found using a reference stable molecule
CH,DC"™CH. A mixture of 5% (by mole) propyne in argon (without O,) flowed through
the reactor at T, = 1500 K. We measured the spectrum of the CH2DC13CH isotopologue
of propyne in natural abundance (Fig. S6). We assume that its absolute abundance is the
product of the parent mole fraction (0.05), the natural abundance of D (0.000145) and the
natural abundance of 3C (0.0106), i.e. 7.685 x 1078, With that, the absolute abundances
(mole fractions) of the reaction intermediates can be adjusted in a PGOPHER simulation

to match the observed ratios of their calibrated line intensities to that of CH,DC"CH.

Kinetic Modeling

The in-house kinetic model, ThInK, was simulated on a 0-D homogeneous reactor on Chemkin
with the following conditions: 1800 K, 1.0 atm, 5% C,Hg and 5% O, in Ar, and for 200 us.
Simulations at the same conditions over the first 5 us provide insight into the early-time ki-
netics. Figure S7 shows the mole fractions of the key stable molecules and radicals involved
in ethane oxidation as a function of time. Figures S8-524 show the rate of production of

related species and their most significant reactions in the scope of the ThInK model.

S-4
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Table S1: List of Frequency

Species Transition Exp. Freq (MHz) Intensity Ref. Freq Ref.
CH,00 303 — 209 69420.641(20) 13.14 69420.6536 JPL ¢
CH,00 313— 219 66922.355(50) 3.29 66922.3880 JPL
CH,00 31— 2 72152.081(50) 4.37 72152.0559 JPL
CH,00 4,,—313 89189.583(100) 2.40 89189.6346 JPL
CH,00H 44— 303 0t?® 77747.001(20) 9.35 TTT47.0549 JPL
CH,;00H 44— 303 0 77765.113(100) 0.64 77765.1582 JPL
CH;00H 413—319 0+ 81008.643(50) 5.05 81008.6484 JPL
HO, logg—04 3/2-1/2°¢ 1-0¢  65070.862(20) 1443.44 65070.85(8) JPL
HO, Log—04 3/2-1/2  2-1 65081.787(20) 3725.25 65081.82(4) JPL
HO, lgy—04 3/2-1/2 1-1 65098.487(20) 306.93 65098.44(9) JPL
HO, logy—04 1/2-1/2 10 65373.006(20) 526.16 65373.01(10) JPL
HO, lgy—04 1/2-1/2 0-1 65396.186(20) 796.26 65396.15(10) JPL
HO, lgg—04 1/2-1/2 1-1 65400.616(20) 108.74 65400.63(10) JPL
CH,;CHO 44— 303 A 76866.440(20) 1081.98 76866.4357 JPL
CH,CHO 404s— 303 E 76878.958(20) 1329.74 76878.9525 JPL
CH,;CHO 43— 399 A 77038.620(20) 165.18 77038.6010 JPL
CH,;CHO 45— 35 A 77218.314(20) 242.70 77218.2910 JPL
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Species Transition Exp. Freq (MHz) Intensity Ref. Freq Ref.
CH,CHO 4, — 3, 77125.653(20) 12734 77125.6950 JPL
CH,CHO — 3., 77126.482(20)  132.64 77126.4134 JPL

syn-CH,CHOH 4, — 3 o3 77726.552(20) 52.30 77726.58 Rodler and Bauder®

syn-CH,CHOH 6 o5 — 5 45 76840.808(50) 9.93 76840.77 Rodler and Bauder®
anti-CH,CHOH 4, — 3 45 77361.141(50) 1107 77361.12 Rodler’
C,H.CHO  8,— 7, 77182.023(50) 18.21  77181.9857(400) CDMS?
C,H,CHO 8os— 7 o7 77952.179(50) 34.43  77181.9857(400) CDMS
trans-HCOOH 3,5 — 2, 64936.254(20) 35.95 69436.2747(16) CDMS
trans-HCOOH 3 5 — 2, 67291.116(20) 62.00  67291.1296(15) CDMS
trans-HCOOH 3 ,,—2 69851.947(20) 44.20 69851.9640(16) CDMS
cissHCOOH 3., —2 4, 63799.487(50) 502 63799.4934(27) CDMS
cis-HCOOH  3,3,—2, 68014.132(100) 3.29 68014.0927(31) CDMS
cissHCOOH — 1,,— 1y, 76175.302(100)  4.65  76175.3218(31) CDMS
cissHCOOH 35— 2, 65840.319(50) 550 65840.1982(29) CDMS
cissHCOOH 33— 29 65840.334(50) 4.57 65840.1982(29) CDMS
c-C,H,0 20— 11 63558.705(20) 16.56  63558.7070(3) CDMS
¢-C,H,0 2, — 1 67776.852(20)  61.82  67776.8575(3) CDMS
¢-C,H,0 45— 4y, 65822.539(50) 514 65822.5467(4) CDMS




L=S

Species Transition Exp. Freq (MHz) Intensity Ref. Freq

Ref.

CH,DC™CH 4, —34 62775.821(50) 2.83 62775.7946(50)

CDMS

“Jet Propulsion Laboratory (https://spec.jpl.nasa.gov/).
*Inversion.

°J'—J.

L

¢J. Am. Chem. Soc., Vol. 106. No. 14, 1984.

FJ. Mol. Spec., Vol. 114, No. 1, 1985.

9The Cologne Database for Molecular Spectroscopy (https://cdms.astro.uni-koeln.de/).
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Figure S1: The rotational spectra of CH,OO formed in the oxidation of ethane. The chirp
bandwidths are 150 MHz (only 20 MHz portions are shown), and each FID is averaged 100

million.
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Figure S2: The 76800 — 78000 MHz rotational spectrum of CH;CHO, syn-CH,CHOH, anti-
CH,CHOH, syn-C,H,CHO (propanal), and other species formed in the oxidation of ethane.
The chirp bandwidth is Av = 1200 MHz and the LO frequency is 75.6 GHz, resulting in
the IF frequency in the 1.2 — 2.4 GHz range. The FID is averaged 100 million times in 10
minutes. The spectral data is available as a separate file in the SI.
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1800 K, 1.0 atm, 0.01 cm?, C,H, (5%) + O, (5%) in Ar

0.1 g+

0.01 -
0.001 -

1E-4

-

m

(e}
|

Mole Fractions
m
g,
1

-

m

oo
|

1E-54

L 0.1
J 0.01

4 0.001

= 1E-4

Mole Fractions

20

40

60

Time (sec)

T T T T
80 100 120

T
140

T
160

T
180

— 1E-5
. 1E-6
1E-7
1E-8
1 1E-9
1E-10
| 1E-11

] 1E-12

301
{001

{ 0.001
] 1E-4
] 1E-5
5 1E-6
;1E—7
] 1E-8
.: 1E-9
] 1E-10
] 1E-11
] 1E-12
.4 1E-13
] 1E-14
] 1E-15
1 1E-16

200

1E-6

CH,CHO
CH,CHOH
¢-CH,CH,0
——HCOOH
CH,00
—— CH,00H
— - — CH,CH,00
——— CH,CH,00H
—— CH,CH,CHO

CH,CHOH
¢-CH,CH,0
——HCOOH
CH,00
——— CH,00H
— - = CH,CH,00
——— CH,CH,00H
—— CH,CH,CHO

Figure S7: Mole fractions of some intermediates in the oxidation of ethane. Early time
formation (upper panel) and evolution during the residence time in the microreactor (lower

panel).
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Rate of Production of HO, 1800 K
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Figure S8: Rate of Production of HO, for 5 us and 200pus.
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Figure S9: Rate of Production of CH; for 5 us and 200us .
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Rate of Production of C,H5 1800 K
(C,Hg (5%) +O, (5%) in Ar)
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Figure S10: Rate of Production of C,H; for 5 ps and 200us .
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Figure S12: Rate of Production of H for 200us .
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Figure S14: Rate of Production of HCO for 200us .
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Figure S15: Rate of Production of CH,O for 200us .

S-20



Rate of Production of CH;CHO 1800 K
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Figure S16: Rate of Production of CH;CHO for 200us .
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Figure S17: Rate of Production of CH,CHOH for 200us .
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Rate of Production of c-CH,CH,0O 1800 K
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Figure S18: Rate of Production of ¢c—CH,CH,O for 200us .

S-23
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Figure S19: Rate of Production of HCOOH for 200us .
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Rate of Production CH;OOH 1800 K
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Figure 521: Rate of Production of CH;00H for 200y .
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Rate of Production CH,CH,CHO 1800 K
(CyHg (5%) +0, (5%) in Ar)
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Figure S22: Rate of Production of C,H;CHO for 200us .

S-27



Rate of Production of CH;CH,00 1800 K
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Figure S23: Rate of Production of CH;CH,OO0 for 200us .
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Figure S24: Rate of Production of CH,CH,OOH for 200us .
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