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Abstract—Detecting and localizing anomalies in cyber-physical
systems (CPS) has become increasingly challenging as systems
grow in complexity, particularly due to varying sensor reliability
and node failures in distributed environments. While federated
learning (FL) offers a foundation for distributed model training,
existing approaches lack mechanisms to handle these CPS-specific
challenges. This paper presents an enhanced FL framework
that introduces three key innovations: adaptive model aggre-
gation based on sensor reliability, dynamic node selection for
resource optimization, and Weibull-based checkpointing for fault
tolerance. Our framework enables reliable condition monitoring
while addressing the computational and reliability challenges of
industrial CPS deployments. Experiments on NASA Bearing and
Hydraulic System Datasets demonstrate superior performance
over state-of-the-art FL methods, achieving 99.5% AUC-ROC in
anomaly detection and maintaining accuracy under node failures.
Statistical validation using Mann-Whitney (U) test confirms
significant improvements (p < 0.05) in both detection accuracy
and computational efficiency across diverse operational scenarios.
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Index Terms—Machine learning, condition monitoring,
anomaly detection, cyber-physical systems

I. INTRODUCTION

The proliferation of Internet of Things (IoT) devices and
autonomous systems within cyber-physical systems (CPS) has
heightened the importance of anomaly detection and localiza-
tion in industrial component health monitoring [1]. Modern
CPS, encompassing smart grids and industrial control systems,
generate vast amounts of data from numerous sensors and
actuators [2]. With millions of machine failures occurring
globally each year, the financial losses due to downtime and
repairs are substantial. Early detection and precise localization
of sensor anomalies are crucial to minimize these losses and
prevent cascading failures.

Traditional machine learning (ML) approaches, while ex-
tensively applied to detect anomalies in CPS [3]–[5], face
significant challenges in these complex environments. They
struggle with the computational burden of analyzing large-
scale sensor data from geographically dispersed locations
due to the increased need for coordination, communica-
tion, and synchronization across nodes. Moreover, these ap-

1This material is based upon work supported by the United States Depart-
ment of Energy’s (DOE) Office of Fossil Energy (FE) Award DE-FE0031744.

proaches often prioritize detection over precise anomaly lo-
calization—identifying the specific components or sensors
responsible for the anomalies—limiting their effectiveness in
identifying specific problem areas [4]. Another critical issue
is their lack of resilience against system disruptions, such
as node failures or faults in learning models, which can
compromise overall system reliability. In CPS environments,
system disruptions are particularly challenging to manage due
to their cascading impact, potentially resulting in prolonged
downtime and extensive recovery efforts [6].

While existing approaches attempt to address these chal-
lenges through various distributed learning methods, they often
fail to consider the unique characteristics of CPS environ-
ments, such as sensor reliability variations, dynamic opera-
tional conditions, and the need for continuous monitoring.
Additionally, existing methods lack robust mechanisms for
handling the inherent uncertainties and failures common in
industrial settings. These limitations indicate the need for a
comprehensive framework that not only leverages distributed
learning but also incorporates CPS-specific optimizations and
robust fault tolerance mechanisms.

To address these challenges, we propose an approach lever-
aging federated learning (FL) for both anomaly detection and
localization in CPS. While FL offers a foundation for dis-
tributed model training [1], [3], [5], basic FL implementations
face several limitations in CPS environments, including (1)
inability to handle varying sensor reliability and data quality,
(2) vulnerability to node failures and subsequent data loss, (3)
inefficient resource utilization across heterogeneous nodes, and
(4) limited adaptation to dynamic operational conditions.

Our framework enhances traditional FL approaches through
specific components, including an adaptive model aggregation
strategy that dynamically weights node contributions based on
sensor reliability and data quality, a dynamic node selection
mechanism optimized for CPS environments that balances
computational load and detection accuracy, and an intelligent
checkpointing system that predicts and prevents training dis-
ruptions while minimizing overhead.

Building upon these FL enhancements, we implement a
specialized checkpointing mechanism designed to address the
unique challenges of node failures within decentralized CPS.
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While our enhanced FL approach improves overall system
efficiency, the critical nature of industrial monitoring systems
requires additional fault tolerance guarantees. Our adaptive
checkpointing mechanism ensures continuous operation by
predicting potential node failures using operational patterns
and historical data, dynamically adjusting checkpointing fre-
quency based on system conditions and criticality, and en-
abling rapid recovery without compromising model accuracy
or training progress.

We aim to answer the following research questions (RQs):
• RQ1: How can distributed CPS environments achieve

reliable real-time condition monitoring through our en-
hanced FL framework’s novel components?

• RQ2: What are the performance advantages of our FL
approach in terms of execution time and scalability across
different CPS datasets?

• RQ3: How does our proposed checkpointing mechanism
impact the resilience of the FL system in the presence of
node failures?

To address these questions, this paper makes the following
contributions:

• We develop an enhanced FL framework for CPS envi-
ronments that features: (1) adaptive model aggregation
based on sensor reliability, (2) dynamic node selection
for resource optimization, and (3) integrated anomaly
localization.

• We validate our approach using NASA Bearing and Hy-
draulic Systems Datasets, achieving up to 99.5% AUC-
ROC detection accuracy and approximately 2x faster ex-
ecution compared to FedAvg while maintaining superior
performance over ACFL and FedL2P.

• We design an adaptive checkpointing mechanism using
Weibull distribution modeling that ensures fault tolerance
with minimal overhead while maintaining model consis-
tency.

The remainder of this paper is organized as follows: Section
II reviews related work on federated learning for anomaly
detection in CPS. Section III presents our proposed framework.
Section IV provides experimental results. Section V discusses
the implications of these results and addresses the limitations
of our approach. Finally, Section VI concludes with key
findings and future directions.

II. RELATED WORK

Our research is informed by past work leveraging FL and
anomaly detection techniques for enhancing the reliability of
CPS. Here, we provide an overview of related work in this
area.

Shrestha et al. [2] proposed an anomaly detection frame-
work based on LSTM and autoencoders using FL for smart
electric grids. They demonstrated that their approach, which
employs Mean Standard Deviation (MSD) and Median Abso-
lute Deviation (MAD) techniques, effectively detects anoma-
lies while preserving data privacy through homomorphic en-
cryption. Their framework achieved a 98% accuracy with the
MSD approach, highlighting the trade-off between privacy,

performance, and computation time. Gaba et al. [5] intro-
duced a vertical federated multi-agent learning framework
for CPS. They demonstrated that their approach, which uses
synchronous Deep Q-Network (DQN) and Advantage Actor-
Critic (A2C) agents, significantly improves cybersecurity by
effectively learning optimal policies in both static and dynamic
environments. Their findings show substantial improvements
over standard methods, with up to 47.26% higher performance
compared to traditional reinforcement learning techniques.
Xu et al. [3] proposed an end-edge collaborative lightweight
secure FL (LSFL) architecture for anomaly detection in wire-
less industrial control systems. They demonstrated that their
LSFL approach, which integrates RMS-CNN and adaptive
key generation algorithms, achieves over 99% accuracy while
reducing communication costs by up to 89.6%. This approach
effectively balances computation resources, communication
costs, and security requirements in FL environments. Rumesh
et al. [1] presented a security architecture for Open Ra-
dio Access Networks (O-RAN) utilizing a Network Digital
Twin (NDT) framework. They showed that their hierarchical
FL-based anomaly detection algorithm accurately identifies
anomalous traffic in O-RAN with over 99% accuracy. This
work emphasizes the importance of ML model training in
simulated environments before deployment in physical net-
works, enhancing the security of O-RAN systems. Taheri et
al. [7] proposed an artificial neural network (ANN)-based
adaptation of FL-trust to mitigate cyber anomalies in virtual
power plants (VPPs). They demonstrated that their ANN-based
approach outperforms traditional FL-trust with a PI controller,
particularly in handling non-IID datasets, and effectively mit-
igates poisoning attacks. Their results underscore the superior
accuracy and detection speed of their method, contributing to
the resilience of VPPs against cyber threats.

While these studies demonstrate FL’s potential in CPS
applications, they primarily focus on either detection accuracy
or system efficiency in isolation, lacking comprehensive solu-
tions for industrial condition monitoring. Our work addresses
these limitations through key innovations: (1) an adaptive
FL framework with dynamic model aggregation for sensor
reliability, (2) integrated anomaly localization, and (3) a novel
Weibull-based checkpointing mechanism. We validate these
innovations on NASA bearings [8] and Hydraulic systems
[9] datasets, demonstrating improved accuracy, efficiency,
and robustness under node failures—advances not previously
achieved in existing work.

III. ANOMALY DETECTION FRAMEWORK

This section introduces our framework for real-time condi-
tion monitoring in CPS environments. While our framework
is designed for live industrial deployments, we validate its
capabilities using established datasets that emulate real-world
operational scenarios. Fig. 1 illustrates how our framework or-
chestrates the flow of sensor data through multiple processing
stages, from initial collection to FL analysis.

Our framework addresses three critical CPS challenges:
computational burden in distributed environments, precise
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Fig. 1: Framework architecture showing data flow from sensor
collection through SOM-based detection to FL with adaptive
checkpointing. The system processes raw sensor data to detect
anomalies, localizes faulty components, and maintains model
consistency across distributed clients.

component-level anomaly localization, and system reliability
under node failures. The workflow begins with sensor data
collection and preprocessing, feeds into SOM-based anomaly
detection, and culminates in FL across distributed clients.
Each stage incorporates specific enhancements for industrial
environments - from adaptive model aggregation based on
sensor reliability to Weibull-based checkpointing for fault
tolerance. The following subsections detail each component’s
implementation and their interactions within the overall sys-
tem.

A. Industrial Sensor Data Collection and Processing

Our framework’s evaluation requires datasets that provide real
industrial scenarios, document fault progression patterns, and
offer opportunities to verify both detection and localization ca-
pabilities. We select two comprehensive industrial datasets that
meet these criteria due to their ability to represent real-world
operational conditions and capture detailed fault progression,
making them well-suited for validating our anomaly detection
and localization methods.

The NASA bearings dataset [8] is generated using a spe-
cialized test rig with four Rexnord ZA-2115 double-row
bearings mounted on a shaft operating at 2000 RPM under a
0.45 kg radial load. PCB 353B33 high-sensitivity quartz ICP
accelerometers capture vibration data at 20 kHz, providing
20,480 observations per second. We utilize sets 1-3, each
containing 984 files that progress from normal operation to
failure, enabling validation of both detection accuracy and fault
progression tracking. Fig. 2 shows the sensor configuration.
The dataset’s comprehensive bearing degradation records make
it ideal for evaluating our approach’s ability to identify early
signs of failure and monitor the progression of faults.

The hydraulic systems dataset [10] comprises 2205 in-
stances from a test rig with primary working and cooling-
filtration circuits. The system captures comprehensive mea-
surements through multiple sensor types: pressure and motor
power sensors operating at 100 Hz generating 6000 attributes

Fig. 2: Bearing test rig configuration showing sensor place-
ment for vibration monitoring

each, volume flow sensors at 10 Hz producing 600 attributes
each, and various monitoring sensors including temperature,
vibration, and efficiency factors at 1 Hz yielding 60 attributes
each. This dataset enables validation across various fault
types, with labels indicating different operational states such
as cooler conditions, valve states, and system stability. The
variety of sensor data and fault labels make this dataset highly
suitable for testing our framework’s ability to localize anoma-
lies across different components and operational conditions.

To ensure robust analysis, we implement a systematic
preprocessing approach. The data undergoes normalization
to a [0,1] range, stabilizing model performance across both
datasets. We apply band-pass and low-pass filtering [11]
to remove noise and enhance signal integrity, followed by
feature selection using permutation importance [4] to optimize
computational efficiency while maintaining detection accuracy.
This preprocessed data forms the foundation for our anomaly
detection mechanism, which employs SOM to identify devia-
tions from normal operation.

B. Anomaly Detection through Self-Organizing Maps

Our framework employs SOM [12] for anomaly detection
due to its ability to capture non-linear relationships in high-
dimensional sensor data and provide quantifiable deviation
measures. We initialize the SOM with a 50x50 neuron grid
to balance computational complexity with detection accuracy,
as this dimension effectively captures the feature space of our
industrial datasets while maintaining reasonable training time.

The training process uses the first 60% of each dataset as
baseline data, representing normal operational conditions. To
ensure numerical stability and consistent feature contribution,
we normalize the input data with an epsilon adjustment:
xnormalized = MinMaxScaler(x) + ϵ, where ϵ = 1 × 10−10.
During training, each input vector xi is mapped to its best
matching unit (BMU) by minimizing the distance between
the input and neuron weight vectors. The quantization error,
defined as ei = ∥xi − wBMU∥, provides our primary metric
for anomaly detection.

After 50 training iterations with a Gaussian neighbor-
hood function, we establish an anomaly threshold based on
the statistical distribution of training set quantization errors:
Threshold = µe + 3σe, where µe and σe represent the
mean and standard deviation of baseline errors. This threshold
derivation ensures robust anomaly detection by accounting for
natural variations in the data while maintaining sensitivity to
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significant deviations. Any data point generating a quantization
error above this threshold indicates a potential anomaly, en-
abling our framework to identify developing faults before they
lead to system failure. While detecting anomalies provides
crucial insights, localizing these issues to specific components
enables targeted maintenance interventions.
C. Component-Level Anomaly Localization
The precise identification of anomalous components enhances
maintenance efficiency in CPS environments by enabling
targeted interventions before failures occur. Our localization
approach analyzes the spatial distribution of anomalies across
sensors to pinpoint specific components requiring attention.
For each sensor Sj , we compute a cumulative anomaly score:
Cj =

∑n
i=1 I(Aij > Threshold), where Aij represents the

anomaly score for sensor Sj at time ti, and I(·) is an indicator
function returning 1 when the score exceeds our detection
threshold. This computation provides a quantitative measure
of each component’s contribution to system anomalies. The re-
sulting distribution of Cj values enables our framework to rank
components by their anomaly frequency, creating a prioritized
maintenance schedule that optimizes resource allocation and
minimizes system downtime. Having established our detection
and localization approaches, we now detail how FL enables
distributed implementation of these capabilities.
D. FL Implementation
Our FL architecture addresses critical limitations in traditional
FL approaches when applied to CPS environments. Standard
federated averaging faces three key challenges in industrial
settings: it assumes uniform reliability across all clients,
lacks mechanisms for handling sensor degradation, and treats
all client updates with equal importance regardless of their
detection performance. These limitations significantly impact
anomaly detection accuracy in real-world industrial deploy-
ments where sensor reliability varies and node performance
fluctuates over time.

To overcome these challenges, we implement a
performance-aware client selection and aggregation
strategy. Each client ci maintains a local dataset Xi

and model fi, training for e epochs to produce parameters
wfi = fi(Xi, e). Unlike traditional FL, our framework
continuously evaluates client performance through three
key metrics: anomaly detection accuracy on a validation
set, sensor drift measurements, and historical prediction
consistency. This evaluation enables our system to identify
and prioritize high-performing clients, ensuring model updates
originate from the most reliable data sources in the CPS
network.

The global server employs our enhanced aggregation mech-
anism that builds upon [13] by incorporating these perfor-
mance metrics. The global model parameters wg are computed
as: wg =

∑n
i=1 αiwfi , where αi represents our adaptive

weighting factor: αi = βi·γi·δi∑n
j=1 βj ·γj ·δj . Here, βi represents

detection accuracy, γi captures sensor reliability, and δi mea-
sures prediction stability for client i. These parameters are
estimated as follows: Detection accuracy (βi) is detailed in

Section IV. Sensor reliability (γi) is quantified through γi =
exp(−|σi−σref |/σref ) where σi is the current sensor variance
and σref is the reference variance from initial calibration.
Prediction stability (δi) is measured using δi =

1
1+var(pt−pt−1)

where var(pt − pt−1) is the variance of prediction changes
over a sliding window. This multi-factor weighting approach
ensures that clients demonstrating consistent performance and
reliable sensor readings have a greater influence on the global
model while automatically reducing the impact of degraded or
unstable nodes. By dynamically adjusting these weights based
on ongoing performance evaluation, our system maintains
robust anomaly detection capabilities even as client conditions
change over time. To maintain reliable operation of this dis-
tributed framework, we implement an adaptive fault tolerance
mechanism detailed in the following subsection.

E. Adaptive Fault Tolerance Mechanism

Traditional FL systems in CPS environments face significant
challenges when handling node failures and client dropouts.
Current approaches typically employ two inadequate recovery
strategies: complete system restart or client reinitialization
with the last known global weights. These methods result
in substantial training disruptions and resource inefficiencies,
particularly problematic in time-sensitive industrial monitoring
applications.

Our framework addresses these limitations through an adap-
tive checkpointing mechanism based on failure probability
modeling. Unlike standard checkpointing in deep learning
frameworks, our approach dynamically adjusts save intervals
based on system conditions. We model node failure probability
using a Weibull distribution, chosen for its effectiveness in
representing industrial system failure patterns: F (t) = 1 −
exp

(
−
(
t
λ

)k)
, where λ and k are scale and shape parameters

derived from historical CPS failure data. The optimal check-
pointing interval t∗c balances overhead costs against recovery
time through our cost function: C(tc) =

tc
T + pf (tc) · tr

T .

This formulation accounts for total computation time T ,
recovery time tr, and failure probability pf (tc). By minimizing
this cost function, we determine checkpoint intervals that adapt
to changing system conditions, ensuring efficient recovery
while minimizing overhead.

During operation, each client maintains state information
including model parameters, optimization states, and training
progress. Upon detecting a failure, our system leverages these
checkpoints to restore the failed client’s state and synchronize
with the global model, eliminating the need for complete
retraining. By minimizing training disruptions and adapting
to system conditions, our adaptive fault tolerance mechanism
ensures reliable model training across distributed nodes. This
fault tolerance capability plays a crucial role in maintaining
real-time anomaly detection and system health monitoring,
thereby enhancing the robustness of our FL framework in CPS
environments.
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IV. RESULTS

This section evaluates our framework’s effectiveness in ad-
dressing the key challenges of anomaly detection in CPS
environments. We assess our approach’s ability to maintain
detection accuracy under varying sensor reliability, handle
node failures, and provide efficient anomaly localization. Our
experiments simulate a distributed CPS environment to vali-
date the framework under realistic operational conditions.

A. Experimental Setup

We implement our framework using PyTorch for the FL
components, with experiments conducted on an Intel i9-
12900HK processor with 32GB RAM. Our evaluation en-
vironment simulates 10 distributed clients processing sensor
data from the NASA Bearings and Hydraulic System Datasets,
reflecting real-world CPS deployments where edge devices
operate across different locations.

The neural network architecture in each client comprises
four fully connected layers (128, 64, 32 neurons) with ReLU
activation functions and a 40% dropout rate. The dropout
rate is specifically chosen to prevent overfitting by randomly
deactivating 40% of neurons during training, which is particu-
larly important given the high-dimensional nature of sensor
data. We use the Adam optimizer with a learning rate of
0.001, which offers a balance between convergence speed
and stability. The batch size is set to 512 to efficiently
process large amounts of sensor data, allowing the model to
learn effectively from diverse data points while maintaining
computational efficiency. Early stopping is incorporated to
prevent overfitting, ensuring that training halts once the model
performance plateaus on the validation set.

For a comprehensive evaluation, we include state-of-the-art
methods such as FedAvg [13], ACFL [14], and FedL2P [15]
as our baselines.
1) Evaluation Metrics
(i) Detection accuracy: Measures the proportion of correct
predictions, offering a straightforward view of model per-
formance. However, it may be sensitive to class imbalance,
particularly in datasets where anomalies are rare.

(ii) AUC-ROC: Evaluates model performance across differ-
ent classification thresholds, crucial for imbalanced datasets
like ours. It quantifies the model’s ability to distinguish
between normal and anomalous instances and is calculated
as: AUC-ROC =

∫ 1

0
TPR(FPR−1(x)) dx.

B. Framework Validation

Our framework demonstrates effective anomaly detection and
localization capabilities in CPS environments through its en-
hanced FL components. Fig. 3 shows the SOM-based detection
results across different operational scenarios, revealing our
framework’s ability to identify various failure patterns.

The detection results reveal distinct failure patterns across
datasets. Bearing Dataset 1 shows gradual degradation begin-
ning November 3, with periodic spikes culminating in severe
deterioration by November 25. Bearing Dataset 2 demonstrates
early-stage fault detection around February 17, where the

Fig. 3: SOM-based anomaly detection across datasets show-
ing quantization error progression: Bearing Dataset 1 (top-
left) exhibits gradual degradation, Bearing Dataset 2 (top-
right) shows early-stage deterioration, Bearing Dataset 3
(bottom-left) demonstrates abrupt failure, and Hydraulic Sys-
tem (bottom-right) reveals multi-component anomaly patterns.

quantization error transitions from stable operation to ele-
vated values with total degradation after February 19. Bearing
Dataset 3 captures an abrupt failure scenario characterized
by a sharp increase in quantization error after April 15. The
Hydraulic Systems Dataset exhibits distinct temporal patterns
with significant anomaly spikes, validating our framework’s
ability to handle complex multi-component systems.

Fig. 4: Component-level anomaly localization showing cumu-
lative anomaly counts: Bearing Datasets 1 and 3 (bottom)
identify critical components, while the Hydraulic System
(top) reveals sensor-specific degradation patterns. Localization
results for Bearing Dataset 2 align with previous findings [4].

Our framework’s anomaly localization capability enables
precise identification of problematic components. Fig. 4
demonstrates this through cumulative anomaly counts across
datasets. In the bearings case, our approach consistently identi-
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fies critical components, with Bearing 3 showing significantly
higher anomaly counts in both datasets. The Hydraulic System
analysis reveals Pressure Sensor 2 (PS2) as the primary con-
cern, with elevated counts compared to other sensors, enabling
targeted maintenance planning.

Quantitative comparison with existing FL approaches in
Table I demonstrates our framework’s superior performance.
The improved accuracy and AUC-ROC scores result from
our adaptive model aggregation strategy, which dynamically
weights client contributions based on sensor reliability. While
FedAvg suffers from uniform client treatment and ACFL and
FedL2P show limited improvement, our framework achieves
consistently high performance through its CPS-specific opti-
mizations.

TABLE I: Performance comparison across FL methods with
10 clients and 15 rounds demonstrating effectiveness of our
adaptive approach.

Method Accuracy (%) AUC-ROC Time (s)
Bearings Dataset

Proposed 99.5 0.995 35
ACFL 95.8 0.962 52
FedL2P 93.2 0.945 48
FedAvg 90.1 0.912 65

Hydraulic Systems Dataset
Proposed 98.3 0.981 42
ACFL 94.7 0.953 58
FedL2P 92.5 0.934 55
FedAvg 89.4 0.901 71

These results directly address RQ1 by demonstrating our
framework’s ability to achieve reliable condition monitoring
in CPS environments through enhanced FL components. The
combination of accurate anomaly detection, precise component
localization, and adaptive model aggregation enables robust
real-time monitoring across diverse industrial settings.

C. Scalability and Fault Tolerance Evaluation

Our framework’s effectiveness in real-world CPS deployments
depends on both its ability to scale across distributed nodes
and maintain performance under node failures in 15 rounds.
Fig. 5 demonstrates these capabilities across both datasets.

For the Bearings Dataset, our framework maintains detec-
tion accuracy above 90% as client numbers increase to 25,
while other approaches show significant degradation beyond
15 clients. This superior scaling stems from our adaptive
model aggregation strategy, which intelligently weights client
contributions based on sensor reliability. The framework’s
resilience is particularly evident under increasing dropout
rates, where it maintains above 85% accuracy even at 0.5
dropout rate. This robustness results from our Weibull-based
checkpointing mechanism, which adaptively saves training
states based on predicted failure patterns.

The Hydraulic Systems Dataset results further validate these
capabilities in a more complex environment. Our framework
maintains accuracy above 85% across varying client configu-
rations and demonstrates notably slower performance degrada-
tion under node failures compared to baseline methods. While
FedAvg’s performance drops sharply due to its uniform client

Fig. 5: Performance analysis showing accuracy versus number
of clients (left) and dropout rates (right) for both datasets.
Our framework maintains superior detection capability through
adaptive aggregation and Weibull-based checkpointing.

treatment and lack of fault tolerance, and ACFL and FedL2P
show moderate decline due to their limited adaptation capa-
bilities, our framework’s combination of adaptive aggregation
and strategic checkpointing ensures consistent performance.

These results directly address RQ2 and RQ3, demonstrating
our framework’s ability to maintain reliable operation at scale
while handling node failures effectively. The superior perfor-
mance derives from our framework’s key innovations: adaptive
aggregation for varying sensor reliability and Weibull-based
checkpointing that optimizes fault tolerance based on opera-
tional patterns. This combination enables robust operation in
practical CPS deployments where both scaling requirements
and node failures are common challenges.

D. Statistical Validation

To rigorously validate our framework’s performance advan-
tages, we conduct a statistical analysis comparing our approach
against state-of-the-art FL methods (FedAvg, ACFL, and
FedL2P). We employ the Mann-Whitney U test to evaluate the
significance of performance differences in AUC-ROC scores
across all experimental configurations. The Mann-Whitney U
test, a non-parametric test, is chosen due to its robustness
in comparing distributions without assuming normality, which
makes it particularly suitable for our detection accuracy mea-
surements.

The null hypothesis (H0) in our analysis is that there is
no difference between the AUC-ROC values produced by our
proposed method and the baseline methods (FedAvg, ACFL,
and FedL2P). The alternative hypothesis (H1) is that the AUC-
ROC values produced by our method are significantly greater
than those produced by the baselines, indicating improved
performance. We conduct the tests at a significance level of
α = 0.05. Table II presents the results of the Mann-Whitney
U test, demonstrating the statistical significance of our frame-
work’s performance improvements across both datasets.
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The extremely low p-values (p < 0.05) across all compar-
isons allow us to reject the null hypothesis, confirming that
our framework’s performance improvements are statistically
significant. This significance stems from our framework’s key
innovations: the adaptive model aggregation strategy better
handles varying sensor reliability, while the dynamic node
selection mechanism optimizes client participation. These ad-
vantages manifest consistently across both datasets, with par-
ticularly strong statistical significance in comparisons against
state-of-the-art FL methods (FedAvg, ACFL, and FedL2P),
which lack these CPS-specific optimizations. The results rein-
force our framework’s effectiveness in addressing the unique
challenges of industrial CPS environments through its en-
hanced FL components.

TABLE II: Mann-Whitney U test results demonstrating the
statistical significance of our framework’s performance im-
provements across both datasets.

Comparison Dataset U Statistic p-value
Proposed vs. FedAvg Bearings (1-3) 11678.0 5.12e-17
Proposed vs. ACFL Bearings (1-3) 12045.0 2.85e-17
Proposed vs. FedL2P Bearings (1-3) 11924.0 3.78e-16
Proposed vs. FedAvg Hydraulic 11523.0 4.89e-17
Proposed vs. ACFL Hydraulic 11892.0 3.12e-17
Proposed vs. FedL2P Hydraulic 11756.0 4.23e-16

V. DISCUSSION

Our results demonstrate the effectiveness of the enhanced FL
framework for reliable condition monitoring in CPS envi-
ronments. Key innovations—adaptive model aggregation, dy-
namic node selection, and Weibull-based checkpointing—drive
its superior performance. The framework achieves 99.5%
AUC-ROC on the Bearings Dataset and 98.3% on the Hy-
draulic Systems Dataset, outperforming ACFL by 3.7% and
3.6%, respectively. Adaptive model aggregation intelligently
weights client contributions, significantly improving detection
accuracy compared to FedAvg (90.1%). Dynamic node selec-
tion optimizes resource use, resulting in 2x faster execution,
while Weibull-based checkpointing enhances fault tolerance.
These features are crucial for maintaining high accuracy and
minimizing disruptions in industrial settings. The framework’s
practical value lies in reducing downtime and optimizing
resource allocation, leading to improved efficiency and cost
savings for industries.

However, this work assumes historical failure data for
Weibull modeling, which may not always be available. Ad-
ditionally, further validation across more CPS environments is
needed to enhance generalizability. Future work should focus
on developing an online adaptation of Weibull parameters and
anomaly detection framework, supporting diverse sensor types
and failure modes, and reducing communication overhead for
better scalability in larger deployments. Overall, the proposed
framework demonstrates significant potential for FL in CPS,
offering enhanced accuracy, scalability, and resilience with
broad industrial applicability.

VI. CONCLUSION

This paper presents an enhanced FL framework for CPS
condition monitoring, integrating adaptive model aggregation,
dynamic node selection, and Weibull-based checkpointing.
Evaluation on NASA Bearing and Hydraulic System Datasets
demonstrates superior performance with 99.5% AUC-ROC
accuracy, outperforming existing approaches like FedAvg,
ACFL, and FedL2P. Future work will focus on reducing com-
putational overhead and extending the framework to broader
industrial CPS applications where continuous monitoring is
critical. REFERENCES
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