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Abstract—Communication overhead in federated learning (FL)
poses a significant challenge for network anomaly detection
systems, where the myriad of client configurations and network
conditions can severely impact system efficiency and detection
accuracy. While existing approaches attempt to address this
through individual optimization techniques, they often fail to
maintain the delicate balance between reduced overhead and
detection performance. This paper presents an adaptive FL
framework that dynamically combines batch size optimization,
client selection, and asynchronous updates to achieve efficient
anomaly detection. Through extensive profiling and experimen-
tal analysis on two distinct datasets—UNSW-NBI15 for general
network traffic and ROAD for automotive networks—our frame-
work reduces communication overhead by 97.6% (from 700.0s
to 16.8s) compared to synchronous baseline approaches while
maintaining comparable detection accuracy (95.10% vs. 95.12%).
Statistical validation using Mann-Whitney U test confirms sig-
nificant improvements (p < 0.05) over existing FL approaches
across both datasets, demonstrating the framework’s adaptability
to different network security contexts. Detailed profiling analysis
reveals the efficiency gains through dramatic reductions in
GPU operations and memory transfers while maintaining robust
detection performance under varying client conditions.

Index Terms—federated learning, network anomaly detection,
communication optimization, distributed systems, GPU profiling,
automotive networks

I. INTRODUCTION

The rapid growth of digital connectivity and network infras-
tructure, driven by the proliferation of connected devices and
critical digital systems, has significantly increased the potential
for network anomalies, including cyber-attacks and system
faults [1]. Detecting these anomalies swiftly and accurately
is crucial for maintaining the security and reliability of net-
worked environments, particularly in sectors where uninter-
rupted service is essential [2]. While network anomaly detec-
tion aims to identify deviations in traffic behavior that may
indicate threats, traditional centralized machine learning (ML)
methods, which aggregate data on central servers, often face
issues with latency, scalability, and data transfer costs, making
them unsuitable for large-scale network anomaly detection [3].

Federated learning (FL) has emerged as a viable alternative,
enabling decentralized model training across distributed client
nodes. FL allows data to remain localized while model updates
are communicated to a central server, reducing the need for

centralized data collection [4]. This decentralized approach
makes FL particularly suited for time-sensitive applications,
such as network anomaly detection, where timely responses
to evolving patterns are critical. Despite these advantages,
FL introduces a new challenge: managing the communication
overhead associated with frequent model updates, especially
in time-sensitive applications like network anomaly detection,
where delays can compromise real-time detection capabilities
[5]. Efficiently balancing communication overhead with model
performance remains a key barrier to the effective deployment
of FL for network anomaly detection.

Existing approaches to reduce FL communication overhead
include techniques like client clustering and selective updates
[6]. While these methods provide useful insights, they often
address isolated aspects of the problem and lack a compre-
hensive framework that dynamically balances communication
efficiency with detection performance. This limitation is fur-
ther compounded by the diverse conditions across clients, such
as variations in computational resources and network quality,
which can disrupt system robustness and consistency [1], [3].

In response to these challenges, we propose an adaptive FL
framework specifically designed to optimize communication
overhead in network anomaly detection. Our framework in-
corporates the following contributions:

o A dynamic batch size optimization strategy coupled with
efficient local training through mixed precision and dis-
tributed data parallelism (DDP) to enhance computational
efficiency on client devices.

o An asynchronous communication approach to minimize
idle time and reduce bottlenecks, improving overall com-
munication efficiency.

o A gradient alignment-based selective update mechanism
that filters out unconstructive updates, ensuring only the
most relevant updates contribute to the global model.

We validate our framework on two datasets: UNSW-NB15
[7], representing modern network trafficc and ROAD [8],
containing automotive network data with verified attacks. In
automotive networks, detecting anomalies like masquerade
attacks is critical, as they can manipulate vehicle controls,
causing unintended braking or sudden acceleration, posing
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serious safety risks. Through detailed profiling and experi-
mental analysis, our results demonstrate substantial reductions
in communication overhead and enhanced computational effi-
ciency across both datasets, establishing a robust foundation
for deploying FL in various network security contexts. To
advance the state of the art in FL for network anomaly
detection, we make the code for our framework publicly
available on GitHub [9]. This enables other researchers to
replicate our results, compare new algorithms, and further
explore communication-efficient FL techniques.

The remainder of this paper is organized as follows: Section
II outlines key FL challenges. Section III reviews related work
on communication optimization in FL. Section IV describes
our proposed optimization methods. Section V presents exper-
imental setup and results, followed by a discussion in Section
VI. Finally, Section VII summarizes the findings and suggests
future research directions.

II. BACKGROUND
A. Communication Overhead and Synchronous Updates in FL

Synchronous FL algorithms, such as FedAvg [10], inherently
face significant challenges when deployed in real-world en-
vironments. The core issue arises from the “straggler effect,”
where a central server must wait for all participating clients to
complete their local training before model aggregation [10].
This synchronization requirement means the entire system
operates at the speed of the slowest client, creating a fun-
damental bottleneck in the training process. The impact of
these delays is particularly problematic in network anomaly
detection scenarios, which demand timely responses to secu-
rity threats. Delays in aggregating model updates can result
in postponed anomaly detection, allowing security threats
to persist for extended periods before being addressed [6].
Traditional solutions that attempt to address this by simply
excluding slow clients are problematic, as they can lead to bias
in the trained model and potentially miss important anomaly
patterns present in the data of slower clients [2].

B. Batch Size Considerations in FL

Batch size in FL presents unique challenges compared to
centralized training due to decentralized devices with varying
computational capabilities and data distributions [6]. In FL, a
communication round—where clients perform local training,
transmit model updates to the server, and receive an aggregated
global model—creates fundamental trade-offs. Larger batch
sizes reduce communication rounds [5] but can impair general-
ization and increase local computation time, particularly with
heterogeneous devices and non-IID data [1]. While smaller
batch sizes enhance generalization and convergence, they
increase communication overhead [4]. This trade-off becomes
critical in anomaly detection scenarios, where non-IID data
distributions can amplify update variance with larger batches
[11], while smaller batches, despite enabling faster initial
convergence, incur higher network communication costs [5].

III. RELATED WORK

Al-Saedi et al. [6] proposed CA-FL to reduce communication
overhead in FL by clustering worker updates based on sim-
ilarity. Their analysis of human activity recognition (HAR)
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datasets showed that clustering similar updates effectively
reduces communication costs and maintains model accuracy.
This makes CA-FL a promising solution for improving effi-
ciency without compromising performance.

Hu et al. [12] introduced dPRO, a performance diagnosis
toolkit for distributed deep neural network (DNN) training.
Their approach, tested across TensorFlow and MXNet frame-
works, identified performance bottlenecks in computation,
communication, and memory. This resulted in up to a 3.48x
speedup over baseline methods, demonstrating dPRO’s abil-
ity to significantly enhance distributed training performance
through targeted optimizations.

Miao et al. [13] presented MD-Roofline, an extension of
the traditional roofline model that incorporates communica-
tion dimensions to analyze distributed deep learning training
performance. Using 12 classic convolutional neural networks
(CNNs), they demonstrated how MD-Roofline could pinpoint
bottlenecks across intra-GPU computation capacity, memory
access bandwidth, and inter-GPU communication, providing
valuable insights for optimizing DNN training.

Aach et al. [14] performed a large-scale evaluation of
distributed deep learning frameworks, comparing tools like
Horovod and DeepSpeed in terms of runtime performance
and scalability. They trained ResNet architectures on the
ImageNet dataset using up to 1024 GPUs and demonstrated
that optimizing the choice of data loaders and frameworks
could dramatically reduce training time from 13 hours to
just 200 seconds, highlighting the impact of distributed deep
learning on accelerating model development.

Wen et al. [15] conducted a comprehensive survey on FL,
focusing on the various challenges and applications. They
specifically identified communication overhead as a critical
bottleneck in FL that requires innovative solutions, underscor-
ing the need for further research into efficient communication
strategies.

Li et al. [16] conducted a systematic analysis of communica-
tion characteristics in distributed training environments. They
developed analytical formulations to estimate communication
overhead, considering various influencing factors. Their work
emphasizes the need for a deep understanding of communi-
cation patterns to inform optimizations for distributed training
systems.

Previous works have advanced understanding of commu-
nication overhead in federated and distributed learning but
often focus on isolated aspects such as clustering, performance
analysis, or framework optimization. A critical gap remains in
balancing communication efficiency and model performance,
particularly for time-sensitive tasks like network anomaly
detection. We address this gap with three key innovations:
(1) an adaptive FL framework using batch size optimization,
mixed precision, and DDP for efficient local training, (2) an
asynchronous communication strategy tailored for FL, which
reduces idle time and improves scalability in heterogeneous
environments, and (3) a gradient alignment-based selective
update mechanism to integrate only constructive updates.
Unlike traditional asynchronous methods used in parallel DNN
training, our approach is specifically designed for FL, address-
ing challenges such as stragglers, non-IID data, and varying
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Fig. 1: Framework architecture integrating efficient client training, asynchronous communication, and selective updates.

client conditions. Our validation on the UNSW-NB15 [7] and
ROAD [8] datasets demonstrates substantial improvements in
both communication efficiency and detection accuracy.

IV. PROPOSED FL OPTIMIZATION METHODS FOR
NETWORK ANOMALY DETECTION

This section introduces our proposed optimization methods for
improving FL in network anomaly detection. Our framework
addresses three key challenges in distributed anomaly detec-
tion through integrated solutions: (1) reducing communication
overhead via selective updates, (2) improving computational
efficiency through efficient local training, and (3) mitigat-
ing accuracy degradation using asynchronous communication.
Fig. 1 illustrates the flow of data through our framework, from
initial client-side processing to global model aggregation.

A. Efficient Local Training

Our FL system is composed of two main components: clients
and a global server. Each client ¢; trains a local model f; on
its dataset X;, with model parameters w;. After local training
for e epochs, each client transmits its updated parameters w;
to the global server. The server aggregates these parameters
using an averaging process to update the global model w, =
% Zfil w;, where N is the number of participating clients.

We combine three key optimizations to reduce computa-
tional overhead while maintaining detection accuracy. Batch
size significantly impacts training efficiency in distributed
environments [14]. Given the varying data characteristics and
distributions across our datasets, larger batch sizes enable
more efficient data processing, which is crucial for mini-
mizing communication rounds while preserving the ability to
capture subtle variations indicating anomalies. Larger batch
sizes reduce communication frequency between clients and
the global server by requiring fewer gradient updates, though
they require careful tuning to avoid compromising model
convergence. Our framework dynamically adjusts batch sizes
based on client capacity, balancing communication overhead
against convergence requirements.

Dynamic batch size adjustment: During training, each
client reports local metrics (GPU utilization, memory usage,
network latency) to the server, which assigns a batch size
proportional to the client’s available resources. For example, a
high-capacity client might train with 512 samples per batch to
reduce communication rounds, whereas a lower-capacity client
uses 64 to prevent straggler delays and maintain convergence
quality. This mechanism ensures that each client operates
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at an optimal pace, balancing communication overhead with
accurate model updates.

We implement mixed precision training using autocast
and GradScaler, which reduces memory usage and acceler-
ates computation by leveraging f1oat 16 for most operations
while retaining £loat32 for critical components [17]. This
approach is beneficial for high-dimensional anomaly detection:
floatl6 operations execute faster on modern GPUs, while
float32 prevents gradient underflow and preserves numeri-
cal stability. During local training, autocast automatically
casts forward passes to float16, and GradScaler man-
ages gradient scaling to avoid vanishing gradients. As a result,
clients experience lower computational overhead without com-
promising detection accuracy.

To efficiently utilize available computational resources, we
employ DDP training [14], where each client trains the lo-
cal model across multiple GPUs with synchronized gradient
updates. Our implementation runs in a high-performance com-
puting environment using SLURM for resource management,
configured with 4 GPUs per node and dedicated task resources
(-—ntasks=4, ——cpus-per—task=4). This configuration
enables efficient scaling of the training process while main-
taining synchronization across distributed components.

B. Communication Optimization

Traditional synchronous FL faces significant performance bot-
tlenecks when clients operate at different speeds or experience
varying network conditions [18]. In synchronous updates, the
global server must wait for all clients to complete their local
training before model aggregation, resulting in increased idle
times and communication overhead, especially when slower
clients are involved [5]. Fig. 2 illustrates this challenge,
showing how system efficiency can be affected by client or
network delays.

Our framework implements asynchronous communication,
allowing concurrent client updates without global synchroniza-
tion. This design reduces idle time by letting faster clients
contribute updates immediately and improves fault tolerance
through independent client operation. Clients train indepen-
dently, submit updates once ready, and a thread pool man-
ages concurrent submissions. The server aggregates updates
continuously, eliminating delays from stragglers. Removing
synchronization barriers enables continuous operation in het-
erogeneous environments with varying client capabilities and
network conditions [5].
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(right) communication in FL. In the synchronous approach,
the red “X” indicates the synchronization barrier, where the
server waits for all clients to finish training before aggregation.
Asynchronous updates allow continuous model improvement
through independent client contributions without such a bar-
rier.

C. Global Model Aggregation

Our framework implements client-side filtering for efficient
global model aggregation in FL, reducing communication
overhead by filtering updates at the source based on gradient
sign alignment. Specifically, after local training, each client
compares the signs of local gradients with the last known
global model gradients, calculating an alignment ratio as the
proportion of parameters with matching signs. We set an
alignment threshold of 65% as the selection criterion through
empirical search across a range of values, balancing the trade-
off between filtering noisy updates and retaining constructive
client contributions. Only clients achieving alignment ratios
above this threshold transmit their model parameters w; to
the global server. The server then aggregates these pre-filtered
updates into the global model as w, = ﬁ > ics Wi, where
S represents the set of clients that met the threshold criteria.
The updated global model w, is then broadcast to all clients
to synchronize their models for the next training round. This
client-side selective update mechanism integrates seamlessly
with our asynchronous framework [14], benefiting heteroge-
neous FL scenarios with diverse client data.

To enhance the fault tolerance of our system, we incorporate
an adaptive checkpointing mechanism. Traditional FL systems
often face challenges with node failures, typically resulting in
complete restarts or reinitialization with the last known global
weights, which leads to significant training disruptions. To
address these challenges, we employ a dynamic checkpointing
mechanism based on node failure probability modeling, thus
enhancing system robustness. We use a Weibull distribution,
represented as F'(t) =1 —exp (— (%)k), where A and k are
parameters derived from historical failure data, to predict node
failures. The optimal checkpointing interval ¢} is determined
by balancing overhead cost and recovery time through the
cost function C(t.) = % + py(tc) - %, where T is the
total computation time, ¢, is the recovery time, and py(t.)
represents the failure probability at interval ¢.. Minimizing
this function ensures that checkpoint intervals are efficient
and adaptable to varying system conditions. During operation,
each client maintains state information, including model pa-
rameters, optimization states, and training progress. If a client
drops out, the system uses checkpoints to restore its state and
resynchronize with the global model, avoiding full retraining.

By combining client-side filtering with asynchronous ag-

gregation and adaptive checkpointing, our approach signif-
icantly reduces communication overhead while maintaining
system robustness. This ensures that only constructive updates
are transmitted, preserving training continuity in distributed,
heterogeneous environments [5]. We adopt a three-layer ar-
chitecture (256, 128, 64) validated on both UNSW-NBI15
and ROAD, as deeper configurations offered no substantial
accuracy gains but increased computational overhead by up
to 45%. Consequently, this lightweight design achieves high
detection accuracy (95.10% on UNSW-NBI15 and 91.4% on
ROAD) while minimizing overhead in the federated setting.

Algorithm 1 Efficient Client Update Filtering and Training
Strategy

Require: Model architecture, Client data, Global weights W,

Ensure: Updated model weights, Training metrics
Client Update Filtering Mechanism: All clients train
locally in parallel. After training, the server evaluates
updates using gradient alignment and aggregates only
those with relevance scores > 6 (e.g., 0.65).

. Initialize neural network with hidden layers (256, 128, 64)

: Configure mixed precision training with scaler s

: Function CALCULATE-RELEVANCE(W,,, W)

. Initialize aligned < 0, total < 0

: for each layer | in model parameters do

local_grad « sign(W )

global_grad + sign(ng)

aligned < aligned + (local_grad = global_grad)

total <+ total + size(local_grad)

10: end for

. 1+ aligned/total

12: return r

13: End Function

14: for each client ¢; in parallel do

15:  All clients train locally; updates are filtered server-side
post-training.

16:  Initialize client data loader with batch size b

17:  for epoch = 1 to num_epochs do

18: Enable mixed precision computation

19: for each batch Bj in client data do

20: Forward pass with dropout (p = 0.3)
21: Compute loss L with scaled gradients
22: Update model with optimizer

23: Update scaler s for next iteration

24: end for

25: Adjust learning rate n with scheduler

26:  end for
27:  relevance <~ CALCULATE-RELEVANCE(W,,, W)
28: if relevance > 6 then

29: Server: Accept W,, and aggregate into W,
30:  else

31 Server: Reject W,

32:  end if

33: end for

34: return Updated model weights W, Performance metrics
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Algorithm 1 demonstrates how our framework combines
architectural efficiency with optimization techniques. The se-
lected neural network configuration leverages dimensionality
reduction through its layer structure (256 — 128 — 64),
effectively capturing feature hierarchies while maintaining
computational efficiency. This architecture proved particularly
effective for anomaly detection, as it learned discriminative
patterns from both the feature-rich UNSW-NB15 (49 fea-
tures) and the specialized automotive ROAD dataset without
overfitting. Clients train locally in parallel (lines 14-33),
while the server evaluates each update using the gradient
alignment ratio (lines 3-12). The mixed precision training
implementation maximizes GPU utilization through strategic
use of 16-bit and 32-bit computations, and the empirically
determined threshold 6 = 0.65 balances rare attack inclusion
with noise reduction (see Table IV). Lower thresholds (< 0.6)
increased communication overhead without improving accu-
racy, whereas higher thresholds (> 0.7) risked excluding subtle
yet meaningful anomalies. This threshold proved effective
across both datasets, likely due to the class imbalance typical
in cybersecurity settings. For datasets with more outliers or
noisier data, a higher threshold might be preferable, whereas
more homogeneous datasets could benefit from a lower thresh-
old. Thus, while # = 0.65 serves as a robust baseline for
cybersecurity anomaly detection, fine-tuning it for specific data
distributions can further enhance model performance.

To ensure the correctness of Algorithm 1, we establish loop
invariants for both client selection and training loops. A loop
invariant is a property that holds true before and after each
iteration, ensuring algorithmic correctness. We validate these
invariants through three steps:

1) Loop Invariants:

e Outer Loop (Lines 14-33): Before iteration i, the
global model W, contains the weighted average of
all accepted updates from clients {1,...,7 — 1} where
relevance; > 0.

o Inner Loop (Lines 19-24): At batch B; in epoch e,
the local model parameters and gradient scaler ensure:

— All updates from batches {Bj,...,B;_1} are ap-
plied.

— Numerical precision is preserved via gradient scal-
ing.

2) Verification Steps:

« Initialization: At startup, W, contains initial weights,
and clients initialize local models with these weights.
Both invariants hold trivially.

« Maintenance:

— Outer loop: Updates W, only if relevance > 0,
preserving the invariant.

— Inner loop: Gradient accumulation and scaling fol-
low PyTorch’s mixed-precision rules, ensuring the
invariant.

o Termination:

— Outer loop: Terminates with W, aggregating all
valid client updates.

— Inner loop: Completes all batches and epochs,
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ensuring full local training.
3) Time Complexity: The algorithm’s time complexity is
O(C-E-%¥-M+C-M), where:
o C': Selected clients, E: Epochs, N: Samples per client,
B: Batch size, M: Model parameters.
o Training cost: O (C - E - & - M) for batch processing.
« Relevance calculation: O(C - M) for gradient align-
ment.

By maintaining these invariants, we ensure correctness.
Our implementation with F 5 (standard batches) and
E = 19 (batch size 1024) demonstrates practical efficiency
while preserving convergence.

V. RESULTS

This section presents the evaluation results of our proposed FL
framework for network anomaly detection, detailing our exper-
imental setup, profiling analysis, and performance metrics. To
enable reproducibility, we make the code for our framework
publicly available on GitHub.! We conduct extensive profiling
and experimental analysis to evaluate the performance of our
proposed optimizations.

A. Experimental Setup

All experiments were conducted on the NERSC Perlmutter
system. Baseline runs used an AMD EPYC 7763 CPU node
(64 cores, 503GiB RAM), while distributed data-parallel
(DDP) experiments ran on a GPU node with four NVIDIA
A100-SXM GPUs (40 GiB each). We implemented our code
in Python 3.9, using PyTorch 1.11.0 and mpi4py.
a) Datasets

We evaluate our framework on two distinct datasets to
cover both general network traffic and specialized automotive
scenarios:

« UNSW-NB15 [7]: A comprehensive dataset with
2,540,043 samples (49 features) covering attacks like
DoS, Exploits, and Reconnaissance. We apply feature
scaling and one-hot encoding to standardize the data. The
training set (175,341 samples) and testing set (82,332
samples) each span 10 attack categories, with Normal
traffic forming the largest subset.

ROAD [8]: An automotive CAN dataset from Oak Ridge
National Laboratory, featuring 3.5 hours of recorded data
(3 hours training, 30 minutes testing) with physically
verified fabrication and masquerade attacks. We focus
on the correlated signal masquerade scenario, where
malicious wheel-speed injections can halt the vehicle.

b) Model architecture

Each client trains a three-layer fully connected network
(256, 128, 64 neurons) with ReLU activations and dropout
(rate=0.3). We also experimented with a deeper architecture
(five hidden layers: 512, 256, 128, 64, 32) but observed
no notable accuracy gains alongside increased computational
overhead, affirming our choice of the three-layer configuration
for an optimal efficiency—performance balance.

Thttps://github.com/billmj/UTEP_PNNL_DeepLearning_Optimization.
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B. Profiling Analysis and Evaluation Metrics

We evaluate our framework’s performance through profiling
analysis and model evaluation metrics. To assess system
efficiency, we profile GPU-based experiments using Nvidia
Nsight Systems [19], monitoring GPU activity, memory trans-
fers, and kernel execution times to analyze communication
overhead. This helps identify bottlenecks and optimize re-
source usage during client updates and aggregation. For model
evaluation, we use:

(i) Detection accuracy: Measures the proportion of correct
predictions among all instances.

(ii) AUC-ROC (Area under the receiver operating char-
acteristic curve): Assesses the model’s ability to distinguish
between normal and anomalous instances at varying thresh-
olds. This metric is particularly important given the class
imbalance in our datasets. We calculate the AUC-ROC as the
area under the Receiver Operatin% Characteristic (ROC) curve,
represented as: AUC-ROC = [ TPR(FPR™'(z)) dz, where
TPR represents the true positive rate and FPR represents the
false positive rate.

C. Framework Performance Analysis

We evaluate how different configurations balance communi-
cation overhead and detection accuracy, emphasizing the need
for a dynamic approach. Our framework is compared to state-
of-the-art methods, including CMFL [5], using accuracy and
communication time. Table I illustrates the shortcomings of
static FL configurations.

TABLE I: Baseline model performance across different batch
sizes and client counts

Clients | Batch Size | Accuracy | AUC-ROC | Time (s)
10 32 0.986 0.9838 700
10 64 0.977 0.9769 600
10 128 0.985 0.9846 500
10 256 0.970 0.9701 450
50 32 0.965 0.9605 750
50 64 0.961 0.9605 650
50 128 0.952 0.9523 600
50 256 0.938 0.9376 550
100 32 0.956 0.9535 950
100 64 0.953 0.9535 850
100 128 0.939 0.9385 800
100 256 0.551 0.8578 700

While Table I shows non-monotonic accuracy patterns
across batch sizes, these fluctuations stem from two main
factors: (i) asynchronous updates (where partial or delayed
client contributions can stall early convergence) and (ii) non-
[ID data distributions (which become more pronounced as the
number of clients increases). For instance, smaller batch sizes
(e.g., 32) can achieve high accuracy (98.6% with 10 clients)
but incur substantial communication overhead (700s). Con-
versely, at 100 clients and batch size 256, accuracy collapses
to 55.1%, underscoring how larger batches reduce update
frequency and delay the incorporation of diverse gradients,
particularly in asynchronous settings. Nonetheless, extending
the training duration or dynamically adjusting batch sizes can
restore high accuracy while retaining the efficiency benefits of
larger batches. For example, using batch size 1024 alongside
19 training rounds achieves 95.1% accuracy at markedly lower
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overhead, demonstrating that careful tuning of batch size
and training duration can mitigate the convergence delays
introduced by infrequent updates.

To validate our approach, we compare performance with
existing FL methods through controlled experiments simu-
lating real-world conditions. We implemented random client
dropouts using a probability-based simulation where each
client has a chance of disconnecting during training (dropout
rates ranging from 0.1 to 0.5). Under these conditions, the
synchronous CMFL-inspired baseline achieves 89.21% accu-
racy, ACFL 90.62%, and FedL2P 90.12%, while our frame-
work maintains 98.6% accuracy. This significant improvement
stems from our framework’s combined optimization strategy:
efficient client selection mechanisms identify reliable clients
based on historical performance, asynchronous communication
patterns prevent system-wide delays from individual dropouts,
and adaptive checkpointing preserves training progress by
maintaining state information at intervals determined by our
Weibull-based failure prediction model.

To evaluate generalizability, we extended our experiments
to the ROAD dataset [8], which features automotive CAN data
with correlated signal masquerade attacks. While maintaining
similar performance trends, the framework achieved 971.4%
accuracy on ROAD compared to 98.6% on UNSW-NB15, with
the difference primarily attributed to the unique characteristics
of automotive network attacks. Importantly, our framework
maintained its performance advantage over baseline methods
across both datasets, demonstrating robustness in diverse net-
work anomaly detection scenarios.

TABLE II: Comparison with state-of-the-art methods

Method Time(s) | Acc.(%) | AUC Scale* FTT

Proposed 16.8 95.10 0.983 | Stable | 98.6%
CMFL 700.0 89.21 0.960 Deg. 85.0%
FedL2P 800.0 88.50 0.955 Deg. 82.0%

*Scalability with 100 clients; TFault Tolerance at 0.5 dropout

a) Comparison with baselines.

Table II compares our approach against state-of-the-art
FL methods. Our framework reduces end-to-end runtime by
97.6% (16.8 s vs. 700.0 s for CMFL) while maintaining higher
accuracy (95.10% vs. 89.21%). In scalability tests with 100
clients, our method remains stable, whereas baselines degrade
by up to 25%. Under a 0.5 dropout rate, our approach retains
98.6% accuracy, outperforming CMFL (85.0%) and FedL2P
(82.0%). Table II shows that our approach consistently out-
performs baselines in runtime, accuracy, and fault tolerance,
complementing the scalability findings in Fig. 3.

These findings motivate our subsequent analysis of dis-
tributed parallel training and adaptive communication strate-
gies, demonstrating how our framework dynamically balances
efficiency and accuracy in FL environments.

D. Communication Optimization Assessment

Our implementation combines batch size optimization, client
selection, and asynchronous updates to dynamically balance
communication overhead against detection accuracy. While
our framework was evaluated on both UNSW-NBI15 and
ROAD datasets, we focus our detailed profiling analysis on
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UNSW-NBI15 due to its superior baseline performance and
more diverse attack patterns, making it a more stringent
test case for our optimization strategies. The ROAD dataset
results followed similar optimization patterns but with lower
absolute performance metrics, as discussed in Section V-C.
Table IIT shows the effectiveness of these optimizations across
different configurations, demonstrating how our framework
adapts based on system requirements.

TABLE III: DDP results: Batch size, client selection, and
communication time (s)

Config Batch size | Accuracy | Time (s)
Sync (Baseline) 64 0.9512 600.0
Sync + Client selection 64 0.9521 90.4
Async + Client selection 64 0.9511 75.6
Sync (Baseline) 512 0.7799 450.0
Async + Client selection 512 0.7801 22.0
Sync (Baseline) 1024 0.7465 700.0
Async + Client selection 1024 0.7470 16.8

At a batch size of 64, combining asynchronous updates
and client selection reduced communication time by 87.4%
(from 600.0s to 75.6s) while maintaining comparable accuracy
(95.11% vs. 95.12%). For batch size 1024, our combined
optimizations decreased communication time by 97.6% (from
700.0s to 16.8s), and extending training to 19 rounds restored
accuracy while preserving communication efficiency. Even
synchronous client selection showed significant improvements,
reducing communication time to 90.4s at batch size 64 with a
slight accuracy increase to 95.21%.

a) Sensitivity analysis of alignment threshold.

To validate our choice of # = 0.65 for gradient alignment,
we conducted a brief sensitivity study on UNSW-NB15 by
testing thresholds in {0.50,0.60,0.65,0.70,0.75}. Table IV
shows that thresholds below 0.60 introduce noisy updates
(increasing communication overhead by up to 20%), whereas
thresholds above 0.70 reject too many updates (reducing
accuracy by 1-2%). 8§ = 0.65 consistently yields the best
trade-off between reduced overhead and high accuracy.

TABLE IV: Sensitivity analysis for alignment threshold 6 on
UNSW-NB15

Threshold | Accuracy (%) | Overhead (s)
0.50 94.6 120.0
0.60 94.8 100.0
0.65 95.1 90.0
0.70 94.4 85.0
0.75 93.9 80.0

Fig. 3 illustrates the impact of our optimization strategies
on communication patterns and scalability. The left plot shows
how asynchronous updates and client selection enable more
frequent model updates as the system scales. At 100 clients,
our approach achieves 6 updates per round compared to
the baseline’s single update. The right plot demonstrates the
scalability of our approach; while the synchronous baseline’s
communication time increases from 600s to nearly 900s with
more clients, our optimized framework maintains relatively
stable communication time, increasing only from 100s to
200s as client count grows. This efficient scaling stems from
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asynchronous updates reducing wait times and selective client
participation minimizing unnecessary communication.
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Fig. 3: Communication patterns: (left) update frequency per
round; (right) time scaling with increasing clients.
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Fig. 4: Fault tolerance performance evaluation across increas-
ing dropout rates. Results averaged over 100 experimental
runs.

These results support our hypothesis that effective commu-
nication overhead reduction requires a multi-faceted approach
rather than relying on single optimization techniques. The
synergistic effect of combining DDP with asynchronous up-
dates and selective client participation enables frequent model
updates while maintaining low communication costs, proving
particularly valuable for large-scale deployments where tradi-
tional synchronous methods face scalability limitations.

To evaluate our framework’s fault tolerance mechanisms
described in Section IV-C, we tested performance under in-
creasing dropout rates from 0.1 to 0.5. Fig. 4 compares the
accuracy of our optimized approach against the synchronized
baseline (CMFL) [5], ACFL [11], and FedL2P [4]. To ensure
statistical significance, each dropout rate configuration was
tested across 100 different random dropout patterns. The
results demonstrate that our framework maintains consistently
higher accuracy across all dropout rates, with the Weibull-
based checkpointing mechanism effectively preserving training
progress even under high client unavailability (0.5 dropout
rate).

To understand why our optimization strategies effectively
reduce communication overhead while maintaining detection
accuracy, we analyze system performance using Nvidia Nsight
Systems profiling [19]. Our analysis focuses on the config-
uration with 10 clients, implementing our combined DDP,
asynchronous updates, and client selection strategy over 6
rounds (5 epochs per round).

Table V (NVTX range analysis) demonstrates the progres-
sive impact of our optimization strategy. The full experiment
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TABLE V: NVTX Range data summary (seconds) for 10 Clients

Metric Batch 64 | Batch 128 | Batch 256 | Batch 512 | Batch 1024
Full Experiment 121.0 66.3 53.8 333 26.1
Client Update 109.0 58.4 353 229 16.8
Avg Update 1.82 0.97 0.59 0.38 0.28
Profiling Rounds 37.0 19.4 12.0 7.37 5.59
Avg Round Time 18.6 9.80 5.93 3.86 2.84

TABLE VI: CUDA API Summary: Time (s) and Calls (thousands) for 10 Clients

Metric Batch 64 | Batch 128 | Batch 256 | Batch 512 | Batch 1024
cudaLaunchKernel (s) 12.8 6.54 3.35 1.73 0.99
cudaLaunchKernel (K calls) 2,130 1,080 538 273 147
cudaMemcpyAsync (s) 2.55 1.44 0.75 0.40 0.25
cudaMemcpyAsync (K calls) 371 187 93.8 47.0 25.4
cudaStreamSync (s) 1.01 0.53 0.29 0.17 0.12
cudaStreamSync (K calls) 124 62.5 31.3 15.7 8.48

time reduces by 78.4% from batch size 64 to 1024, with
average client update time improving by 84.6%. Although this
significant reduction in processing time initially affected model
accuracy, our extended training (19 rounds at batch size 1024)
preserved detection performance and efficiency gains.

Table VI (CUDA API analysis) shows how our combined
optimization approach drastically reduces GPU operations and
synchronization overhead. With batch size 1024, we achieve
dramatic reductions across all operations: kernel launches
decrease by 92.3% (from 2.13M to 147K calls), memory
transfers reduce by 90.2%, and synchronization overhead
drops by 88.2%. These specific reductions in GPU operations,
combined with our asynchronous updates and client selection
mechanisms, prevent idle time and enable our framework to
achieve both efficient communication and accurate detection.

Note that due to the fine-grained nature of Nvidia Nsight
Systems profiling visualizations, we make the full resolution
profiling data and reports available at our repository [9]. Our
profiling reveals systematic performance improvements with
increasing batch sizes, showing clear reductions in operation
density and execution time across configurations. These pro-
filing results align with the quantitative improvements shown
in Tables V and VL

E. Statistical Validation

We performed a Mann-Whitney U [20] test to assess AUC-
ROC differences between our optimized approach and three
baselines (CMFL, ACFL, FedL2P) on UNSW-NBI15 and
ROAD. This non-parametric test does not assume normality,
making it suitable for our dataset distributions. The null
hypothesis (Hp) is that there is no significant difference in
performance, while the alternative (H;) is that our method
outperforms the baselines. At o = 0.05, Table VII shows p-
values < 0.05 for all comparisons, allowing us to reject Hy
and confirm our method’s significant improvement.

Notably, while our method demonstrates stronger perfor-
mance on UNSW-NBI1S5, it also achieves significant gains on
ROAD, confirming that our combined optimization strategy
not only reduces overhead but also yields statistically signifi-
cant improvements across diverse network anomaly detection
scenarios.
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TABLE VII: Mann-Whitney U test results showing the statis-
tical significance of the optimized approach compared to the
baseline (CMFL), ACFL, and FedL2P across UNSW-NB15
and ROAD datasets.

Comparison Dataset U Statistic | p-value
Optimized vs. CMFL UNSW-NBI5 11856.0 4.67e-17
Optimized vs. ACFL UNSW-NBI15 12012.0 3.15e-17
Optimized vs. FedL2P | UNSW-NBI5 11934.0 3.98e-16
Optimized vs. CMFL ROAD 9785.0 1.02e-08
Optimized vs. ACFL ROAD 9901.0 5.67e-09
Optimized vs. FedL2P ROAD 9823.0 8.45¢-08

VI. DISCUSSION

Our findings confirm that balancing batch size optimization,
asynchronous updates, and selective client filtering can reduce
communication overhead by over 97% while preserving high
detection accuracy across UNSW-NB15 and ROAD. Profiling
analysis shows that larger batches (e.g., 1024) significantly
reduce GPU operations and memory transfers, although they
require extended training to maintain accuracy.

Trade-offs and alternatives: Larger batch sizes boost
efficiency but need careful tuning to avoid accuracy drops.
Asynchronous updates scale reliably to 100 clients—crucial
for real-world anomaly detection. While we optimize client-
server interactions, compression (e.g., gradient quantization)
remains a complementary option for bandwidth-constrained
scenarios.

Limitations and future Work: We plan to explore real-
time hyperparameter tuning and resource-aware scheduling, as
well as hybrid strategies (e.g., compression + client filtering)
to further reduce overhead in edge environments.

VII. CONCLUSION

This paper presents an adaptive FL framework that dynam-
ically balances communication efficiency and detection ac-
curacy for network anomaly detection. By integrating batch
size optimization, asynchronous updates, and gradient-aligned
client filtering, our approach reduces communication overhead
by 97.6% (16.8s vs. 700.0s) while achieving comparable
accuracy to centralized methods (95.10%). The framework’s
scalability and fault tolerance are validated on both general
(UNSW-NB15) and domain-specific (ROAD) datasets, demon-
strating broad applicability. Future work will explore real-time
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adaptation mechanisms and integration with data compression
techniques to further enhance edge deployment capabilities.
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