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Background: ]

= Operating profile of the existing coal-fired power plants has changed
from high-capacity-factor (baseload) operation to flexible operation.

" Increased cycling operations with increased thermal ramp rates, and
rapid changes in unit output have a major impact on reliability,
efficiency and cost of the coal-fired power plants.

= Cycling causes increased wear-and-tear on high-temperature and high-
pressure components, and shorter equipment lifespan due to thermal

expansion/fatigue, increased corrosion and cracking.

= Corrosion-related issues are emphasized as the major mechanism for
boiler tube failures under harsh-environments.
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Background: ]

* Health and temperature monitoring of metal components and
boiler tubes in the coal-fired power plants has technical
challenges due to 500-13002C and high steam- and/or flue gas-
related harsh-environments.

= Downtime inspection and metal loss coupons are common

techniques being utilized to assess the corrosion and related
failures in power plants.

Limitations:

= Slow response rate

= |Increased personnel required

= Limited testing/inspections possible

= Operating capability at various temperatures
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The Technology:

(a)

Equivalent Circuit  Single Frequency Micro Patch Multi Frequency Micro Patch
Sadidier Antenna Antenna
— E ’ Resonating
7 Capacitor Antenna(e)
Dielectric Layer

2-D Cross-Section
RFID T
Dielectric
Corrosion/Metal

(b)

Corrosion Layer

Metal/Boiler
Tube

—

Fugitive
Carrier Film

—

RFID Tag Deposited on
Decal Paper

RFID Tag Transfer RFID Tag Transferred to
Process Metal Component

Item (a): Schematic of proposed sensor cross-section and equivalent circuit, which includes the single and
mult-frequency micro-patch RFID tag printed onto ceramic barrier layer which will insulate and bond sensor
to the metal specimen.

Item (b): Representation of peel-and-stick deposition approach to transfer the chipless RFID tag sensor to
metal component.




Transmitter
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Outline of Experimentation:

Corrosion kinetics of boiler grade steel

Mass change
Thickness growth of the oxide layer

J

. . -, . )
Dielectric deposition and fabrication of sensors

Our dielectric materials investigated
Fabrication process

- J

(" Sensor interrogation )

ANSYS modelling
Signal collection and processing
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TGA Investigation of Mass Change:
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 Asample of SS 304H was heated to 600C in air and held for 24 hours
* A plateau effect on the mass change was identified at approximately

W 11.1 hours in the harsh environment
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hickness Change of SS 304H
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(Pre corrosion SEM image) (Post corrosion SEM image)

* SEM images of slivers of stainless steel before and after the corrosion process were
collected

e Slivers were induced in the harsh environment for a period of 1-5 days.




Thickness Change of SS 304H at 600 °C: _‘
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* Using imagel software the change in relative steel were calculated
* In our 600C harsh environment approximately 30 micrometres of steel were lost every 24 hours
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Inductor Designs: —I

(Image of three turn and five turn inductor)

 Initial sensor will be fabricated from commercially bought low temp

sealant glass via screen printing.

 Width of lines are 1 mm.
* Single resonance peaks are achieved with both designs (40 MHz-200

W MHz).
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Interrogation Set-up of RFID Sensor: _‘
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(Image simulating the
cycling occurring during
power plant operation)

1. During the ramp up to 600C
2. During the 5 day hold at 600C
3. During the ramp down to room temperature

.

(Image of VNA set up for
wireless interrogation)




Fabrication of Temperature sensing RFID sensoﬂ

* Our temperature based RFID sensor was fabricated via a screen printing process
* From our ANSYS modelling we determined a resonant frequency peak at 70 MHz

* Our sensors were then interrogated via near field loop antenna made from Pt

Near field Pt loop antenna
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(Image of five turn temperature RFID sensor)
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Interrogation of Temperature Sensor (Ramp up)T‘
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* Ourresonant frequency peak can be clearly seen at 70 MHz.

* Asthe temperature increases a downward shift in frequency can be observed with a widening effect on
our peak

* From our collected data we see our peak shifts around 10 KHz per 1 °C
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Fabrication of corrosion sensing RFID sensor: \

* Both the sealant glass layer and T ———
silver inductor were fabricated Electrode attachment
onto the steel via screen
printing Ag

Sealant glass

* Sealant glass was fired at 780 °C
for 1 hour with 2 °C/min ramp SS 304H
up and ramp down rate

Electrode attachment ’
* The silver ink was sintered in a

similar manner up 550 °C for 1

hour

Composition

Boron Oxide 37%
Barium Oxide 23%
Strontium oxide 5%
Silica 25%
Calcium oxide 5%
Alumina 5%
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Interrogation of Corrosion Sensor (Ramp Up) _‘
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* QOurresonance peak was identified at approximately 120-130 MHz

* Asthe temperature increases there is a downshift in frequency

* Certain geometry changes of the peak can be identified at increasing temperature due to oxide development
and spallation effects
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Interrogation of Corrosion Sensor (Steady Temp) _‘
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* OQOurresonance peak was identified at approximately 120-130 MHz
* Asthe oxide develops on the steel the dielectric of the ground plane changes causing a shift in our resonant
frequency. Stability within the resonant frequency geometry can seen after the first day.
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Conclusion - _l

* |dentified our linear trends in oxide layer growth for 600 °C in
air. Paired with identifying the plateau in mass change
withing boiler grade stainless steel.

* Fabricated wireless and passive RFID sensors designed to
measure changes in temperature and corrosion in situ in
harsh environments

 Modelled both sets of sensors on ANSYS to identify location
of resonant frequency peaks

 Demonstrated in situ interrogation of both our temperature
RFID sensor and also our steel back corrosion RFID sensor to
mimic cycling within coal based power plants

———————————————



Future Work

* |nvestigate thin film
development of sensors directly
onto stainless steel

[, & "
-

- Investigate different sensors designs in the far field
- Model our sensors on ANSYS software at high temperatures
to simulate our experimentation

- Interrogate our sensors at higher temperatures and harsher
environments simulating those in a coal based power plant.
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Thank you!

Questions

Dr. Edward Sabolsky:
ed.sabolsky@mail.wvu.edu

Dr. Daryl Reynolds:
daryl.reynolds@mail.wvu.edu

Brian Jordan:
brj00003@mix.wvu.edu
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