‘ ! ! . LLNL-CONF-870387

LAWRENCE
LIVERMORE
NATIONAL

wouro | \/@IIfY1O: ENsuring Correctness
of Consistency Semantics in
Parallel I/O

C. Wang, Z. Zhu, K. Mohror, S. Neuwirth, M. Snir

October 9, 2024

39th IEEE International Parallel & Distributed Processing
Symposium

Milan, Italy

June 3, 2025 through June 7, 2025

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

VeritylO: Verifying Adherence to Parallel 1/0
Consistency Semantics

Chen Wang
Lawrence Livermore
National Laboratory

Livermore, USA

Zhaobin Zhu
Johannes Gutenberg
University Mainz
Mainz, Germany

Kathryn Mohror
Lawrence Livermore
National Laboratory

Livermore, USA

Marc Snir
University of Illinois
Urbana-Champaign

Champaign, USA

Sarah Neuwirth
Johannes Gutenberg
University Mainz
Mainz, Germany

0000-0001-9297-0415 0009-0005-6916-100X 0000-0002-1366-1655 0000-0001-7409-153X 0000-0002-3504-2468

Abstract—High-performance computing (HPC) applications
generate and consume substantial amounts of data, typically
managed by parallel file systems. These applications access file
systems either through the POSIX interface or by using high-
level 1/O libraries. While the POSIX consistency model remains
dominant in HPC, emerging file systems and popular 1I/O libraries
increasingly adopt alternative consistency models that relax
semantics in various ways, creating significant challenges for
correctness and portability. This paper addresses these challenges
by proposing a trace-driven I/O consistency verification workflow,
implemented in our open-source tool, VerifylO, which collects
execution traces, detects data conflicts, and verifies proper syn-
chronization against specified consistency models. Our extensive
evaluation of 91 test case executions across three widely used
I/0 libraries with four I/O consistency models reveals critical
consistency issues at both application and implementation levels.

Index Terms—Consistency Semantics, POSIX Semantics, MPI-
10, I/O Consistency, Parallel File System

I. INTRODUCTION

HPC applications, such as scientific simulations and Al
training, generate and process vast amounts of data, impos-
ing significant demands on I/O systems to ensure efficient
and correct data handling. These I/O demands are typically
supported by parallel file systems. To ensure portability and
compatibility, most widely deployed parallel file systems, such
as Lustre [1] and GPFS [2], conform to the POSIX [3] stan-
dard, providing both the POSIX interface and its associated
consistency semantics. HPC applications access these parallel
file systems either directly through POSIX APIs or via higher-
level /O libraries (e.g., PnetCDF [4] and HDF5S [5]). These
libraries offer more user-friendly interfaces and implement
various parallel I/O optimizations such as I/O aggregation,
data sieving, and asynchronous I/O. While these libraries may
eventually invoke POSIX APIs for portability, they often adopt
relaxed consistency models (weaker than POSIX) for better
performance. For instance, HDF5 and PnetCDF, both built on
MPI-IO [6], use MPI-1O’s relaxed consistency model, which
diverges from the strict guarantees of POSIX.

On the storage side, though many HPC systems continue
to use POSIX-compliant file systems, recent trends show that
emerging file systems such as BurstFS [7], UnifyFS [8],
and GfarmBB [9]—are choosing to relax POSIX consistency
semantics while maintaining the POSIX interface. By keeping

the POSIX interface, they support legacy applications while
relaxing consistency semantics to improve performance. How-
ever, this trade-off introduces new risks related to portability
and correctness, especially when applications assume stricter
POSIX guarantees.

A key question emerges: How can we ensure that applica-
tions behave correctly on systems with different consistency
models? Even if an application and its associated 1/O libraries
are programmed using POSIX APIs, how can we verify that
they adhere to the specific consistency rules of the underlying
system—especially when those rules deviate from POSIX?
Furthermore, if a program violates these semantics, how can
we diagnose the cause of a violation, e.g., whether it is caused
by the application or the underlying I/O library? Answering
these questions is crucial for ensuring both the portability
and correctness of HPC applications, and also help pave the
road for adopting future non-POSIX systems. To the best
of our knowledge, no existing study directly addresses these
questions.

There are several challenges in tackling these questions.
First, verifying correctness requires formal specifications of
the target consistency model, as well as a rigorously designed
verification algorithm. Second, different I/O systems may relax
POSIX semantics in different ways, making it difficult to
design a generic verification algorithm that can account for all
possible variations. Third, as the I/O software stack deepens,
HPC applications may involve multiple libraries and middle-
ware, making it difficult to trace the root cause of semantics
violations. Lastly, the solution must be insightful, easy-to-use,
and capable of helping both application developers and 1/O
system designers identify and resolve consistency issues. This
requires significant designing and engineering efforts.

To tackle these challenges, we propose a trace-driven four-
step verification workflow that systematically collects execu-
tion traces and verifies their adherence to specific consistency
models. We use the framework from [10] to specify I/O
consistency models in a unified way. This aids in the design
of a generic verification algorithm that can handle differ-
ent consistency models. Further, we extend the framework
to define the concept of a properly-synchronized execution,
where no data conflicts occur, or all conflicts are properly
synchronized according to the specified consistency model.

https://orcid.org/0000-0001-9297-0415
https://orcid.org/0009-0005-6916-100X
https://orcid.org/0000-0002-1366-1655
https://orcid.org/0000-0001-7409-153X
https://orcid.org/0000-0002-3504-2468

For any execution, our algorithm examines the traces to verify
whether it is properly synchronized, i.e., whether it follows the
rules of the specified consistency model. Although a properly
synchronized execution does not guarantee that the entire
application is synchronized correctly, because applications
may follow different I/O execution paths. In our experience,
this is rare though, most HPC applications tend to have a
few if not one I/O path. More importantly, when an execution
is found to be improperly synchronized, it indicates the
presence of data races, suggesting potential consistency issues
or implementation bugs in either the application or the I/O
library.

We present VerifylO, an open-source project that imple-
ments the proposed verification workflow. VerifylO contains
four components, one for each step of the workflow: (1)
a tracing tool that collects execution traces with sufficient
information for later steps, (2) a conflict detection tool that
identifies data conflicts within the execution traces, (3) a
MPI matching tool that matches MPI calls to establish the
temporal order between all conflicting operations, and (4)
a verification tool that checks whether identified conflicts
are properly synchronized according to the target consistency
model. Additionally, VerifyIlO reports call-chain information
for improperly synchronized conflicts, offering insights into
whether the application or its I/O libraries are responsible for
the issue. This information helps pinpoint the root cause of
data races and can even expose underlying consistency bugs.

Overall, this paper makes the following key contributions:

o We present a trace-driven workflow for verifying /O
consistency semantics in HPC applications, implemented
in the VerifylO project. VerifylO supports common I/O
consistency models and reports detailed call-chain infor-
mation to aid in diagnosing semantics violations.

« We develop a tracing library within VerifylO that captures
all necessary information for verification, supporting a
complete set of APIs for three popular I/O libraries—a
feature existing tracing tools do not offer.

« We conduct an extensive study using 91 test case execu-
tions from three 1/O libraries, verifying each against four
I/O consistency models. Our results show that six tests
are not properly synchronized even under POSIX, and 28
exhibit synchronization issues across all four models. We
perform an in-depth analysis of the detected data races,
identifying several application- and implementation-level
consistency issues that could lead to incorrect result.

II. BACKGROUND

Before we dive into the proposed workflow and implemen-
tation, we use this section to give the background information
on consistency models and I/O libraries, with a special focus
on the ones that we will use in our evaluation.

A. Consistency Models

A consistency model defines the contract between the pro-
grammer and the system, specifying the rules under which

shared data remains consistent. Adherence to the model en-
sures that the outcomes of read, write, and update operations
are predictable and correct. While POSIX consistency is the
dominant model in HPC, other consistency models are also
used in real-world I/O libraries and file systems. As mentioned
earlier, despite their differences, these models can be specified
uniformly [10], which makes designing a generic verification
algorithm feasible.

1) POSIX Consistency: The POSIX standard [3] defines a
strong consistency model that requires all writes to be im-
mediately visible to all subsequent reads. While this model is
simple to maintain in single-node environments, it is expensive
to implement at scale [11], [12]. Nevertheless, major parallel
file systems such as Lustre [1], GPFS [2], and BeeGFS [13]
continue to support POSIX consistency due to its compatibility
and widespread adoption.

2) Commit Consistency: Commit consistency offers a re-
laxed model often used in user-level parallel file systems, such
as BSCFS [14], UnifyFS [8], and SymphonyFS [15]. Here,
synchronization is explicitly performed by issuing “commit”
operations, typically by writers, to ensure data becomes glob-
ally visible. The data written prior to a commit is only visible
after the commit operation completes. In practice, file systems
using commit consistency may map a commit to an existing
POSIX call; for example, UnifyFS uses the fsync call to
signal a commit.

3) Session Consistency: Session consistency, also known
as close-to-open consistency, is another relaxed model that
synchronizes data between processes when one process closes
a file and another subsequently opens it. This model addresses
cases where global visibility (ensured by commit consistency)
is unnecessary, such as when only a subset of processes
perform reads. Session consistency uses close and open
operations to control visibility between processes.

4) MPI-IO Consistency: MPI-IO [6], a part of the MPI
standard [16], specifies MPI’s I/O functionalities. MPI-
I0’s relaxed model ensures sequential consistency for con-
flicting accesses through a sync-barrier-sync construct. In
this pattern, MPI_File_open, MPI_File_close, and
MPI_File_sync serve as synchronization points for flush-
ing or retrieving data, while barriers (e.g., MPI_Barrier, or
point-to-point communications like MPI_Send/MPI_Recv)
ensure proper ordering.

B. I/O Libraries

I/O libraries provide portability, efficiency, and scalability
at different layers of the I/O stack. This work focuses on
HDFS5 [5], NetCDF [17], and PnetCDF [4], which are widely
used for managing large, multi-dimensional datasets in HPC.
These libraries are designed to provide machine-independent
data formats and high-level APIs for accessing scientific data.
Ensuring their correctness, especially with respect to data
consistency, is critical given their extensive use in real-world
applications.

HDF5 [5] is a data model and library designed for the
storage and management of complex data objects. It provides

advanced data structures, such as groups and datasets, to
organize and store scientific data. HDF5 supports various
optimizations like hyperslab selections for non-continuous
access and asynchronous I/0, allowing applications to overlap
I/O with computation to improve performance.

NetCDF [17] is designed for array-oriented scientific data,
with a simple data model consisting of dimensions, variables,
and attributes. It allows users to define and store multi-
dimensional arrays, and is commonly used in climatology,
meteorology and oceanography application. The latest version
of NetCDF can use either HDF5 or PnetCDF as its backend.

PnetCDF (Parallel netCDF) [4] is a parallel I/O library tai-
lored for high-performance applications that use the NetCDF
format. Built on MPI-IO, PnetCDF offers over 900 APIs
for handling files, variables, and attributes, with features
like collective I/O and non-blocking operations to maximize
performance in parallel environments.

III. METHODOLOGY

The proposed workflow is built around a generic semantics
verification algorithm designed for commonly used I/O models
in HPC systems. These models are specified using a unified
framework proposed in [10]. We adopt the same terminol-
ogy and define when an execution is considered properly-
synchronized for a given consistency model, i.e., the execution
abides the rules of the consistency model. Based on this
definition, we then outline the overall verification workflow.

A. A Formal Definition

We define two types of I/O operations: An I/O operation is
either a data operation or a synchronization operation. Data
operations are operations that read or write storage, such as
fread or fwrite. Data operations include the specification
of the storage location to be read or written. Synchronization
operations are special I/O operations that can be used to
impose order on data operations, such as fsync, fopen,
or fclose. Synchronization operations are model-specific.

We consider the execution of a multiprocess program, in an
environment that provides well-defined mechanisms to syn-
chronize concurrent processes, such as MPI message-passing.
These mechanisms define a program order and synchroniza-
tion order on the executed operations of the program:

Def. 1 [Program Order (ﬂ)]: The program order of a pro-
cess is a total order on the execution of the process’
operations as specified by the program text. To keep the
discussion simple, we ignore the extensions needed to
deal with multithreaded processes.

Def. 2 [Synchronization Order 1 A synchronization
order is a partial order specified between operations
executed by distinct processes. This partial order is
consistent with the program order, and 2% U 2 s
acyclic.

A properly-synchronized execution is defined as follows.

Def. 3 [Happens-Before Order (ﬂ)]: The happens-before
order of an execution is the transitive closure of 2=

U 2%. The outcome of a parallel execution should be
as if all instructions were executed in the order specified
by ﬂ Thus, if ow and or are, respectively, a write
and a read to the same location, and ow ﬂ) or, then
or will return the value written by ow, unless there
is a%)ther sz(l))re ow’ to the same location such that
ow — ow’ — or.

Def. 4 [Conflict]: Two data operations conflict iff (if and
only if) their access ranges (contiguous file offset ranges)
overlap, and at least one of them is a write.

Def. 5 [Minimum Synchronization Construct (MSC)]: An
MSC specifies a minimum sequence of synchronization
operations required to synchronize two conflicting data
operations. An MSC consists of k synchronization
operations and k + 1 edges, where k > 0:

T —
MSC =" 6, 26, 2 L g TRy

For each i, 1 < i < k and S; € S, where S is the
set of synchronization operations to be defined by the
specific consistency model. For each j, 0 < 5 < k and
LN RN

Table I shows the S and MSC for the four consistency
models discussed in Sec II-A.

6 [Properly-Synchronized Relation (£5)]: Two con-
flicting data operations X and Y are properly synchro-

nized, i.e., X N Y, iff one of the following holds:

1) X is a read operation and X by,

2) X is a write operation, and there exists an MSC
between X and Y in the happens-before order.

Def.

Def. 7 [Data Race]: Two data operations X and Y in an
execution form a data race iff they conflict and they are
not properly synchronized.

Def. 8 [Properly-Synchronized Execution]: An execution
is properly synchronized iff for every sequentially
consistent execution of the program, all /O operations
can be distinguished by the system as either data or
synchronization, and there are no data races in the
execution.

B. Workflow and Challenges

The proposed workflow aims to verify whether a given
execution is properly synchronized under a specific consis-
tency model. It is structured into four steps, as illustrated in
Fig. 1. Below, we outline each step and discuss its associated
challenges.

|
o} ? ©
o> B>
Execution
Trace

v R
<P0:write, P1:read> @ @

D

Happens-Before
Graph

<Pl:write, P2:write>

Conflicts Data Races

Program

Fig. 1: Verification workflow

Consistency Models S

MSC

POSIX Consistency {}

Commit Consistency {commit}

Session Consistency

MPI-IO Consistency {MPI_File_sync,
MPI_File_close,

MPI_File_open}

{session_close, session_open}

hb
—

hb .. hb
— commit —

po . hb . po
— SeSSlOn_ClOS@ —> sSesslon_open —

po hb po
—> §1 —> S —

s1 € {MPI_File_close, MPI_File_sync}
sp € {MPI_File_sync, MPI_File_open}

TABLE I: The synchronization operation set (S) and the minimum synchronization construct (MSC) for four commonly-seen

storage consistency models.

1) Generating Execution Trace: The first step involves run-
ning the target program and collecting an execution trace. This
trace is used for later verification steps. The main challenge
here is ensuring that the tracing tool collects all the necessary
function calls and their arguments, including the complete
call chain for any potential violations. The trace needs to
cover multiple I/O layers (e.g., NetCDF, PnetCDF, MPI-IO,
and POSIX) to capture all relevant function calls. Further, the
desired tracing tool must also handle additional complexities,
such as maintaining mappings between file descriptors and file
names, as well as distinguishing between nested open/close
calls on the same file. While many tracing tools exist, none
fully meet our requirements.

2) Detecting Conflicts: Once the execution trace is gen-
erated, the next step is to detect conflicts (Def. 4) between
I/O operations. Conflicts occur when two or more operations
access the same file location, and at least one is a write.
Challenges arise when retrieving access details for operations
that do not explicitly include file locations in their arguments
(e.g., fwrite). In such cases, previous metadata calls like
lseek or f£seek must be examined to recover the location
information. Additionally, the detection algorithm must handle
corner cases, such as I/O operations using different file handles
for the same file. The output of this step is a list of conflict
groups. Each group contains a conflicting operation and a
mapping of ranks (processes) to other conflicting operations.
We denote a conflict group as (X, (), where X is a data
operation, ¢ is the mapping, then for each Y € (., X and
Y form a conflict pair.

3) Establishing Happens-Before Order: For each conflict,
the happens-before order (Def. 3) must be established to
determine whether the conflicting operations are properly
synchronized. This order is derived from the program order
and the synchronization order defined by the MPI calls. Thus,
our tracing library also needs to intercept and store MPI
calls. This step matches the captured MPI calls (essentially
replaying them) to establish the synchronization order. To do
so, we need to collect many extra information. For example, to
match MPI_Sendto a MPI_Irecv, we need to intercept the
MPI_Wait or MPI_Test on the receive side. Additionally,
we need to keep track of the request id of each MPI request.

4) Verifying Consistency Semantics: In the final step, the
verification algorithm examines these conflicts to determine

whether they are properly synchronized (Def. 6) according to
the target consistency model. One challenge in this step is the
potentially large number of conflict pairs to verify. In some
cases, even small programs can produce millions of conflicts
(e.g., pmulti_dset in Section V), making it essential to optimize
the verification process for efficiency. In particular, pruning
strategies are necessary to reduce the number of conflicts
to examine. Finally, when a data race (Def. 7) is detected,
the algorithm should report the complete call chain involved,
helping users pinpoint the root cause.

IV. VERIFYIO

VerifylO is an open-source project! that implements the
entire workflow and addresses the challenges outlined in
Section III-B. Its primary goal is to provide the /O community
with a tool for verifying and ensuring the correctness of 1/O
semantics, especially as we move away from POSIX. We aim
to make VerifylO as user-friendly, generic, and flexible as
possible. Specifically, the tracing library (step one) is designed
for easy extension to support additional I/O libraries, while the
verification algorithm (step four) is capable of working with
various consistency models.

This section follows the four steps of the proposed workflow
described earlier, with each subsection detailing the imple-
mentation of one workflow step. An illustrative example is
provided in Fig. 2.

A. Generating Execution Trace

The tracing tool is a crucial component of VerifylO, as it
collects the data necessary for subsequent steps. In particular,
it captures I/O calls for conflict detection, MPI calls for
establishing synchronization order, and both I/O and MPI calls
for the final semantics verification and call-chain reporting.

While many tracing tools exist, none meet all the require-
ments of VerifylO as discussed in Section III-B. Among the
tools we studied, Recorder [18] came closest to fulfilling our
needs. Recorder intercepts POSIX, MPI, MPI-IO, and HDF5
functions, capturing all arguments of each intercepted call.
However, it only supports a single I/O library (HDF5) and pro-
vides incomplete coverage—supporting 84 HDF5 functions,
while the latest HDFS5 version includes over 700 APIs.

Uhttps://https://github.com/wangvsa/VerifyIO

https://https://github.com/wangvsa/VerifyIO

Step 1: Generating Execution Trace

Step 2: Detecting Conflicts Step 4: Verifying Consistency Semantics

Program s

Trace File - Rank 0

MPI_File_open (MPI_COMM WORLD, ...);
MPI_Comm comm = MPI_COMM_WORLD; int fd = open("./test", O_RDWR);
MPI_Info info = MPI_INFO_NULL; MPI_File write_at (fh,

MPI_File fh; I e | C 4, 0)
MPI_Status status; MPI_File_sync (fh);

MPI_File open(comm, "./test", fsync (£d) ;
MPI_MODE_RDWR, info, &fh); MPI Barrier (MPI_COMM WORLD) ;
if (rank == 0) { - T -

MPI_File_close (fh);
close (fd);
L

int data = 7;

0, &data, ...):

-

ot] ¢ 4 Properly Synchronized

<Rank 0: pwrite("./teset", [0-3]), Semantics
LRank 1: pread("./test", [0-3])> POSIX v

Step 3: Establishing Happens-before Order Commit ;

Session
[MPI_File open](—)(MPI _File open] MPI-IO X
(open] (open)
Explanation:

{ip1_File write_at MPI File sync |

The execution is properly synchronized under
POSIX because there exists a path between the

MPI_File read_at(fh, 0,

} _ MPI File close(fh);
MPI_File_ close(&fh); close (£d) ;

.

MPI_File_sync(fh); Trace File - Rank 1 (pwrite) fsync) two conflictin, - . .

MPI Barrier (comm); g operations, suggesting pwrite
} - MPI_File open (MPI_COMM WORLD, ...); (i Fire e TR Earmer happens-before pread, which is sufficient for
if (rank == 1) { int fd = open("./test", O_RDWR); = = POSIX consistency.

int data; MPI File sync(fh); Addtiionally, this path contains a commit

MPI_File_sync (fh); fsy;c (fd)7; feync / PL Filejread . a k| (f£sync) operation, which satisfies the Commit

MPI_Barrier (comm) ; MPI_Barrier (MPI_COMM_WORLD) ; i semantics requirement.

&data, ...); MPI_Bqrrier J (pread However, there is no close-to-open pair and

sync-barrier-sync construct in this path, thus it
is not properly synchronized under Session
consistency and MPI-IO consistency.

(MPT_File close J¢—>{MPT File close]
¥ v

[close] [close]

Fig. 2: And example of the verification workflow. The target program performs a write on rank O followed by a read on rank
1, with I/O operations carried out via MPI-IO. In the first step, the program is executed, and an execution trace is collected.
The trace captures not only the MPI-IO calls made by the program but also the underlying POSIX calls invoked by the
MPI-IO implementation. In the second step, conflicts in the trace are identified. Here, the pwrite operation conflicts with
the pread operation, as both attempt to access the first four bytes of the same file. Next, the happens-before relationship
is established using program order and synchronization order. In the resulting happens-before graph, each node represents a
function call, while each edge denotes a happens-before relationship. In the final step, the workflow verifies whether all detected
conflicts are properly synchronized based on the specified consistency semantics. In this example, pwrite and pread are
properly synchronized under the POSIX and Commit consistency models (indicated by the pink path), but they are not properly

synchronized under the Session or MPI-IO semantics.

To address these gaps, we extended Recorder, creating a
new version called Recorder™, which can be easily adapted
to support additional functions and libraries. Recorder™ in-
tercepts I/O calls through LD_PRELOAD and redirects them
to the corresponding wrapper functions. The wrapper function
records pre-invocation information (e.g., entry timestamp and
thread id), invokes the original function, stores all runtime
arguments, then returns to the original caller. In contrast to the
original Recorder, where these wrappers were manually writ-
ten (making it difficult and error-prone to extend), Recorder™
uses a redesigned and automated approach, as shown below.

wrapper (func, ret_type,
prologue () ;
ret_type ret =
epilogue (n_args,
return ret;

n_args, args) {

func (args) ;
args) ;

The prologue and epilogue handle the storage of pre-
and post-invocation arguments and are implemented using
macros to support arbitrary argument types. The wrapper func-
tion is also implemented as a macro, removing dependencies
on function signatures. In companion, we developed a code-
generation tool that takes a function signature file (think it as
a header file) as input and automatically generates wrapper
functions for each function in the file. The generated code can
be easily compiled as a plugin to extend Recorder™ to support
new functions. In this work, Recorder™ covers the complete
function sets of three I/O libraries, as shown in Table II.

The remaining components of Recorder, such as compres-

Tracing Tool HDFS5 NetCDF PnetCDF
Recorder 84 - -
Recordert 749 300 915

TABLE II: Supported functions comparison. Recorder™ pro-
vides full coverage for HDF5, NetCDF, and PnetCDF APIs.

sion and caching, are remain unchanged. Recorder typically
incurs less than 10% of execution overhead to collect all
the required information [18]. We observed similarly results
for Recorder™. Although the tracing tool’s overhead is not a
primary concern for this work, we include this information for
completeness.

B. Detecting Conflicts

The second step detects conflicting operations in the execu-
tion trace. We first encode each data operation as an interval
tuple I = (fid, type,os,oe), where fid is a unique file
identifier, type is a binary indicator for read or write, and
osloe are the access start/end offsets. The conflict detection
algorithm scans the trace to retrieve interval lists for each file
and reports conflicts according to Def. 4.

A unique file identifier is necessary because the same file
can be accessed using different interfaces with varying file
handle representations. For example, it is possible to write to
the same file using pwrite and fwrite simultaneously, as
shown below, even though they use different file handle types
(int vs FILE~). To address this, we track each file’s open

call in the execution trace and assign it a unique identifier,
associating subsequent I/O calls with this identifier.

size_t count, off_t off);
size_t count,
FILE*x stream);

pwrite (int fd, void xbuf,
fwrite (void* buf, size_t size,

Access sizes can be directly retrieved from the trace (e.g.,
from the third argument of pwrite and by multiplying the
second and third arguments for fwrite). However, determin-
ing access locations is not always straightforward. Functions
like fwrite lack explicit offset arguments, so we derive them
from earlier metadata operations. We maintain a (F'P, EOF)
pair for each opened file, where F'P is the current file pointer
(offset) and EOF is the current file size. Whenever we
encounter an I/O operation, we update the (F'P, EOF') pair
accordingly. For example, a 1seek (fd, 0, SEEK_END)
call sets FP = FEOF, and a write (fd, buf, 100)
call moves F'P 100 bytes forward and set EOF = FP if
FP > EOF. Using the update-to-date (F'P, EOF'), we can
accurately track offsets for each I/O operation.

The conflict detection algorithm proceeds by marking con-
flicts between overlapping intervals where at least one is a
write, as shown below:

// IS: intervals groupd by the file identifier
// and sorted by the start offset
void conflict_detection (Interval* IS) {

for each fid:

M = len(IS[fid])
for i = 0 .. M:
for j =1 .. M:

I = IS[fid][i]; T =
if (J.os > I.oe)

Is[£id] [J1;

// subsequent Intervals (Js) will
// not conflict with I
break;
if (I.type == WRITE || J.type == WRITE)

conflicts([i, j] = TRUE;

C. Establishing Happens-before Order

In this step, we match all MPI calls recorded in the
execution trace to establish synchronization orders between
I/O operations. MPI communications are categorized into
two types: point-to-point and collective. Point-to-point calls
involve two processes, while collective calls involve multiple
processes within the same communicator. The synchronization
imposed by these MPI calls form the happens-before order
among other I/O operations. For instance, in Fig. 2, the
MPI_Barrier calls impose an order between the pwrite
operation from rank 0 and the pread operation from rank 1.

Point-to-point calls are matched by comparing the desti-
nation, source, and tag arguments. For calls with wildcard
arguments (i.e., MPI_ANY_TAG and MPI_ANY_SRC), we
recover and compare the actual tag and source information
from the MPI_Status argument returned by the receiver.

Collective calls are matched based on their communicator
and in program order, e.g., two MPI_Barrier calls on the
same communicator will never be matched out of order. One
complexity arises with user-created communicators (e.g., not

the builtin ones like MPI_COMM_WORLD). To handle this,
we track communicator creation and duplication operations at
tracing time and assign each communicator a globally unique
identifier. When matching collective calls, we simply compare
the communicator identifier passed by each process.

Handling non-blocking calls, such as MPI_TIsend and
MPI_Tallreduce, is especially tricky. These calls must be
matched with the corresponding MPT_Wait+ or MPI_Test«
calls. It can be particularly difficult when they are paired with
MPI_Testsome calls, since the associated MPI_Request
may not yet be complete. We must first determine which
requests have completed, then retrieve and compare them
against the request generated by the original non-blocking
call. While we cannot cover all corner cases due to space
constraints, our implementation handles the most common
scenarios, and we manually confirmed that it correctly matches
all MPI calls used in our evaluations.

Once all MPI calls are matched, we construct a happens-
before graph, denoted as G = (V| E). Here, V represents the
vertices of G, each corresponding to either a conflicting I/O
operation or a synchronization event. The edges, F, capture the
happens-before relationships between operations, derived from
program order and synchronization order. For two vertices v;
and vy in G, v, ﬂ vo if there is a path from v; to va.

D. Verifying Consistency Semantics

In the final step, VerifylO examines the detected conflicts
and determines whether they are properly synchronized. If a
data race is found, the algorithm reports the entire call-chain
to help identify the root cause.

A naive implementation would exhaustively check each
conflicting pair, which can be expensive in the case of large
numbers of conflicts. To optimize this, VerifylO applies run-
time pruning techniques to reduce unnecessary checks. As
described earlier, we use conflict groups to organize conflicts
based on process ranks and program order. The algorithm
iterates over each conflict group, with four runtime pruning
opportunities, as illustrated in Fig. 3. Here, X represents a data
operation invoked by process P,, and Y7, Y5, ...,Y,, represent
conflicting data operations (sorted by program order) invoked
by process P,. The four pruning scenarios are:

D) If X 25 ¥, then X 25 Y, for all i € [2,n).

2) Conversely, if V;, 2 X, then ¥; 25 X for all i €
[1,n—1].

3) If X does not LEN Y,,, then it does not LEN Y, for any
earlier Y;, because if it did, it would also have to LN Y.,..

4) Similarly, if Y,, does not LN e , then none of the earlier
Y, will 25 X

Each pruning opportunity reduces the number of checks
from n to 1. In practice, most conflict groups fall into one of
these scenarios, meaning verification needs to be performed
only once per conflict group. If a conflict group does not fit
these scenarios, we fall back to checking every conflict pair
within the group.

o @

Fig. 3: Four runtime pruning scenarios, each reducing the
number of check from n to 1.

As defined in Def. 6, the pair-wise verification of proper
synchronization involves checking the existence of a happens-
before order and verifying the M SC' (Def. 5) between two 1/O
operations. M SC' is determined by examining trace records,
while the happens-before order can be determined using one
of four approaches:

1) Vector Clock: Vector clock tracks event order across
distributed processes and helps determine the partial order
between two events. In our case, each event is a vertex in
the happens-before graph. Since we already constructed the
graph, computing vector clocks is straightforward. We perform
a topological sort on the graph and propagate vector clocks
through nodes in that order. This takes O(V + E) time, and
once the clocks are computed, determining the happens-before
order between any two operations takes O(1) time.

2) Graph Reachability: Graph reachability queries whether
there exists a path from vertex v; to vertex v, in a directed
acyclic graph. To determine if X LLN Y, we treat X and Y
as vertices in the happens-before graph and use reachability
algorithms. VerifylO employs the reachability method from
the NetworkX [19] package, which operates with a time
complexity of O(V + E) per query.

3) Transitive Closure: Transitive closure captures all pairs
of vertices (v1,v2) in a directed acyclic graph such that a path
exists from v; to vs. Computing the transitive closure takes
(’)(V3) in the worst case, but once done, it allows pair-wise
verification in O(1) time.

4) On-the-fly: This algorithm determines the happens-
before order at the time of verification, without the need to
pre-build the happens-before graph. It matches MPI commu-
nications during each verification step to establish the order,
checking for matching MPI events occurred in between the
two conflicting I/O operations. In the worst case, when no
match is found, the algorithm must go through all MPI calls
of the involved processes.

After analyzing the complexity of each algorithm, it’s clear
that transitive closure and graph reachability are generally
slower than vector clocks. Depending on the number of
conflicts and the size of the graph, the on-the-fly algorithm
may prove beneficial as it does not require pre-building the
happens-before graph. Nevertheless, performance evaluation
is not the primary focus of this work, and we leave it for
future work. For validation purposes, we implemented all four
approaches, using at least two in our experiments to ensure
consistent results.

V. EVALUATION

We selected 91 built-in tests from three widely-used I/O
libraries as our target applications. These tests were chosen
because they are self-contained and typically focus only on
I/O operations. Additionally, these tests are usually created by
the library developers to validate implementation correctness
and system compatibility. As a result, they are more likely to
adhere strictly to system rules and are less prone to library-
usage errors.

We used the latest stable versions of the libraries available
at the time of writing: HDF5 1.14.4.3, PnetCDF 1.13.0, and
NetCDF 4.9.2. Our test cases include: 15 from HDFS5, 17 from
NetCDF, and 59 from PnetCDF. We verified each test against
four I/O consistency models: POSIX, Commit, Session, and
MPI-10O. All the tests were parallel in nature, and we executed
them using the test scripts provided by the respective libraries.
Initially, we ran the tests without VerifylO to ensure they
passed on our system, before rerunning them with VerifyIO to
collect execution traces and verify their consistency semantics.

All experiments were conducted on Lassen at Lawrence
Livermore National Laboratory, a system with 795 nodes, each
equipped with an IBM Power9 CPU and 256 GB of memory.
The I/O libraries were compiled using GCC and Spectrum
MPI. The verification process was performed on a single node,
with most runs completing within minutes, while a few larger
tests took under an hour.

A. Summary

Fig. 4 illustrates the number of data races detected for each
test across the four consistency models. Each row represents
a test execution, and the columns display the number of
data races detected for the POSIX, Commit, Session, and
MPI-IO models. HDFS tests are the largest among the three
libraries, with many containing thousands of lines of code.
In our experiments, over 800 million conflicts were detected
across 7 of the 15 HDFS5 test executions. In some tests, such
as shapesame and testphdf5, hundreds of thousands of data
races were reported under the weaker consistency models.
In contrast, NetCDF tests are fewer in number and generally
smaller in size. VerifylO identified 53,793 conflicts across 9
of the 17 test executions, with over 9,000 data races detected
under the relaxed models. For PnetCDF, VerifylO identified a
total of 107,185 conflicts across 12 out of 59 test executions,
with 35,048 data races found under the relaxed consistency
models. Additionally, three tests (marked in gray) were unable
to complete the verification process due to unmatched MPI
calls, which we will further discuss in Section V-D.

Table III summarizes the number of test executions that
were not properly synchronized. Interestingly, we found that
6 out of 91 tests from all three libraries were not properly
synchronized under POSIX semantics. This was unexpected,
as data races under POSIX suggest that some read or write
operations return undefined results. Notably, these 6 tests do
not validate data integrity after each I/O operation, since they
all pass on GPFS, a POSIX-compliant system. Section V-B
will investigate the underlying causes.

2Gio -
bigio

cache

filters_paralle

init_term

mpi

pflush2 -

pmulti_dse

test case

pread

prestar

pshutdown

select_io_dse

shapesame

vid

testphdf5

POSIX Commit Session MPI-10

consistency semantics

NetCDF

test case

parallel

parallel2 _

parallel3

parallel4(2)

parallel5 -
quantize_par _
simplerw_coll.r _-
simplerw_coll.r
1 N N

h_par_compress

test case

Session

Commit
consistency semantics

mix_ coll(ctives s

test_vard. mu]tlpl(‘ —

PnetCDF

add_var —

ey ———— |
buftype_free —

Teef

buftype

- —
feivlc - N S N R SO R
oy ——— |
fesile.oy - S
fesible v - I I B
sl s N S —

10°

I — —
ot s T ST NI
lglf - S S S

10

vocioh: - S
nonblockin - S N N
il
putall kinds - T NS TN R TN
T — 1]

put_parameter

number of data races

: I
st ol - S N N IR
) ——

10%

test._ Vardf —
i R ———
det a5 ————
d(‘l 1ttr —
ot I R
*redein: - T N T NCUER

k10!

‘ars I 10()

Session MPI-IO

Commit
consistency semantics

Fig. 4: Number of data races detected. Each row represents a test execution, and each column shows the number of data races
under a specific consistency model. Green boxes indicate properly synchronized executions (i.e., zero data races). Gray rows
indicate executions where VerifylO detected unmatched MPI calls, due to potential library implementation issues.

Semantics HDF5 (15) NetCDF (17) PnetCDF (59) Total (91)
POSIX 3 1 2 6
Commit 7 9 12 28
Session 7 9 12 28
MPI-IO 7 9 12 28

TABLE III: Test executions that are not properly synchronized.

Another unexpected finding relates to the behavior of the
libraries under MPI-IO semantics. Since all three libraries use
MPI-IO under the hood, we expected no additional data races
when moving from POSIX to MPI-IO. However, the results
in Fig. 4 and Table III show more data races detected under

MPI-IO semantics. This suggests that although these libraries
are developed using MPI-IO, they still assume a POSIX
file system as the backend, potentially skipping some MPI
synchronizations and relying solely on POSIX guarantees.
This assumption is risky and can lead to significant correctness
issues, which we will explore in Section V-C.

Finally, as we can see from Table III, all three libraries ex-
hibited more synchronization issues under weaker consistency
models. Interestingly, VerifylO reported identical results for
the Commit, Session, and MPI-IO models. This suggests that
while Session and MPI-IO provide weaker guarantees than
Commit, they do not break more applications. This insight

is valuable when selecting a weaker consistency model, as it
suggests that adopting the weakest model can improve per-
formance without sacrificing application correctness. VerifylO
proves useful in this context, helping to determine the extent
to which consistency models can be relaxed while maintaining
correctness.

B. POSIX Data Races

POSIX data races are almost always problematic, especially
in HPC applications, which are typically deterministic and as-
sume the use of a POSIX-compliant file system. Consequently,
such applications should not exhibit data races when running
on POSIX systems. Due to space constraints, we focus here
on the NetCDF and PnetCDF tests that exhibited POSIX data
races. We discuss not only the causes but also whether the
responsibility to fix these issues lies with the users or the
library developers.

1) NetCDF: The test parallel5 from NetCDF is the only
one that exhibited POSIX data races. These races are largely
triggered by the high-level function nc_put_var_schar,
which writes an entire variable in a single operation. Analyzing
the call chain reveals that NetCDF implements this function
using a sequence of HDF5 APIs. Specifically, H5Dwrite
calls MPI_File_write_at, which writes the same offset
and number of bytes to the same file from different processes,
leading to a data race. A review of the test source code
shows that it creates a variable with the NC_BYTE type and
then writes to it concurrently from multiple processes. This
is an incorrect use of nc_put_var_schar and should be
addressed at the application level, by correcting the test source
code itself.

2) PnetCDF: The tests null_args and test_erange both
exhibited POSIX data races due to similar issues. These
races occur when multiple processes concurrently invoke
pwrite to write to the same location in the same file.
Tracing the call chain reveals that pwrite is called
by MPI_File_write_at_all, which, in turn, is in-
voked by ncmpi_put_varl_text_all innull_args.c and
ncmpi_put_var_uchar_all in fest_erange.c. Upon re-
viewing the source code, we determined that the root cause is
that multiple processes attempt to write to the same variable
without proper synchronization. As with the NetCDF issue,
this is not the intended use of these PnetCDF functions.
They are designed to be collective calls for writing to distinct
variables. Therefore, the data races in these cases are also
caused by improper usage at the application level and should
be corrected by the user.

C. MPI-IO Semantics Violations

All three libraries in our study use MPI-IO internally, so
they are expected to adhere to MPI-IO semantics. However,
as briefly mentioned earlier, this is not always the case. In this
subsection, we provide a deeper examination of how PnetCDF
and HDFS5 violate MPI-IO semantics.

1) PnetCDF: To illustrate the MPI-IO violation in
PnetCDF, we analyze the test case flexible. Fig. 5
shows a code snippet from flexible.c (with some de-
tails omitted for readability). The code defines a two-
dimensional array variable, initializes it to NULL using
ncmpi_set_fill, and later populates it with actual values
through ncmpi_put_vara_all. By examining the call
chain, we identified that MPI_File_write_at_all is
invoked twice internally: first by ncmpi_enddef and then by
ncmpi_put_vara_all. In the first MPI write, each rank
writes NULLs to distinct areas of the file. However, before
the second write, PnetCDF internally modifies the MPI file
view, which triggers MPI-1O’s aggregation optimization. As a
result, rank O performs the entire second write, causing data
races between rank 0 and the other ranks.

For typical users, it is difficult to discern which PnetCDF
functions are responsible for the actual write or whether they
access overlapping file regions. Therefore, expecting users to
handle this with appropriate synchronizations is impractical.
The issue should instead be resolved at the library level, where
there is a complete understanding of when and where actual
I/O occurs and how file access patterns change.

During a review of recent code changes in the PnetCDF
tests, we discovered that a workaround had been intro-
duced: ncmpi_sync/MPI_Barrier/ncmpi_sync calls
were added between potentially conflicting PnetCDF opera-
tions. However, these safeguards are only applied on non-
POSIX systems and are not enabled by default. This supports
our analysis and indicates that the library developers are
aware of the issue. Nonetheless, addressing the problem at the
application level does not fully resolve the underlying MPI-10
semantics violations within the library’s implementation.

Code snippet that leads to MPI-IO semantics violations

MPI_File_write_at_all()
e
MPI_File_write_at_all()

Offset——>

ncmpi_def dim(ncid, "Y", NC_UNLIMITED,
&dimids [0]);
NX*nprocs,

&dimids([1]);

ncmpi_def dim(ncid, "X",

ncmpi_set_fill (ncid, NC_FILL, NULL);
(ncid) ;

(ncid, varidl, start, coﬂ-ﬂ-,/

bufptr, 1, buftypeﬂj

-

Fig. 5: Code snippet from flexible.c. In this execution,
MPI_File_write_at_all is invoked twice, causing a
conflict that is not properly synchronized according to MPI-10
semantics.

2) HDF5: We identified a recurring pattern in HDFS5 tests
(e.g., shapesame) that leads to MPI-10 data races. This pattern
involves three core functions, shown on the left side of Fig. 6.
Specifically, the functions H5Dwrite and H5Dread access
the same dataset, with only an MPI barrier between them.
Variations of this pattern exist in other codes, for instance,
with H5Dwrite and H5Dread replaced by other calls, such
as H5Awrite and HS5Aread. However, regardless of the
specific functions, accessing the same dataset (or attribute)
with this pattern consistently leads to a synchronization issue.

(Incorrect HDF5 code w (Correct HDFS5 code w

H5Dwrite (dset, ...);

HS5Dwrite (dset, ...); H5Fflush (dset, ...);
MPI_Barrier (comm) ; MPI_Barrier (comm) ;
H5Dread (dset, ...); H5Fflush(dset, ...);

H5Dread (dset, ...);

Fig. 6: Improperly vs. properly synchronized HDF5 code

The problem arises because the data returned by H5Dread
is undefined according to the MPI standard, due to the lack
of proper synchronization with the preceding H5Dwrite.
While the MPI barrier enforces a temporal order, this is only
sufficient on systems that provide POSIX consistency. Ac-
cording to MPI-IO semantics, two additional synchronization
operations are required, as shown on the right side of Fig. 6.
These two H5Ff1ush calls will invoke MPT_File_sync to
ensure consistency.

However, these flush calls introduce significant overhead,
as they force cached data to be written to disk. Since this is
unnecessary on POSIX systems, the HDFS developers (as con-
firmed in discussions with them) intentionally omit these calls
to optimize performance. The assumption is that users will
mostly run their code on POSIX systems, where this omission
has no impact. Nevertheless, this incorrect synchronization
pattern can lead to silent data corruptions when executed on
non-POSIX systems, making the issue extremely difficult to
detect and resolve.

3) Discussion: At first glance, the MPI-1IO violations ap-
pear to stem from insufficient MPI synchronizations. How-
ever, a deeper examination reveals that this is sometimes an
intentional trade-off for performance. In essence, correctness
on non-POSIX systems is sacrificed to gain performance on
POSIX systems. This reluctance to add MPI synchronizations,
in particular MPI_File_sync, is primarily due to the high
cost of this function. MPI_File_sync is designed to ensure
both persistency and consistency, though many high-level I/O
libraries require only consistency, not persistency. To address
this, we have begun an initiative to revise the MPI standard to
include a new MPI-IO API that guarantees consistency without
forcing a flush to disk. Once this new API is available, high-
level libraries will be able to achieve both consistency and
improved performance.

D. Potential Implementation Bugs

An additional benefit of VerifylO is its ability to detect
unmatched MPI calls. During its second phase, VerifylO
matches all stored MPI operations, flagging any mismatches or
unmatched calls. For example, a collective MPI function must
be invoked by all processes within the same communicator;
otherwise, VerifylO will report an error.

In our analysis, we identified three PnetCDF test exe-
cutions (represented by gray rows in Figure 4) with un-
matched MPI calls. The collective_error test, as the name
suggests, is designed to trigger such errors, and VerifylO
successfully detected this intentional behavior. After manually
inspecting the the other two tests, we found the mismatch
was caused by the ncmpi_wait call. Specifically, during

execution, this function splits into two paths: rank 0 calls
MPI_File_write_at_all, while the other ranks call
MPI_File_write_all, which appears to be an implemen-
tation bug.

E. Overhead and Reproducibility

We conducted an extensive overhead analysis of VerifylO.
Due to space constraints, we present results from the three
test cases with the longest verification times. The full set of
overhead experiment results is available in VerifylO’s project
repository.

Table IV provides a breakdown of execution times for these
three cases. Our observations indicate that most of the work-
flow execution time is spent either on building the happens-
before graph or during the verification step. For instance,
pmulti_dset had the longest runtime, taking approximately
50 minutes to complete. Constructing the happens-before
graph, including MPI call matching, took only 69 seconds,
resulting in a graph with 119,569 MPI edges and 1,750,025
nodes. The bulk of the time was spent on verification, as
it had over 780 million conflict pairs, which were verified
sequentially. In contrast, cache took around 23 minutes,
with nearly all of this time spent on matching MPI calls and
building the happens-before graph. This is due to the large
number of MPI calls in this test, leading to a final graph with
over 16 million nodes and 8 million MPI edges.

It is important to note that some test cases in our evalua-
tion generated significantly larger traces and identified more
conflicts than typical real-world applications. In practice, most
applications use a limited set of I/O library APIs, make fewer
I/O calls, and exhibit fewer conflicts. As a result, we expect
VerifylO to process real-world application traces within a
reasonable time frame, if not faster.

Finally, to promote reproducibility and support further
research, we have made the source code, collected traces,
execution scripts, and all experimental results from this paper
publicly available?.

VI. RELATED WORK

In the context of shared-memory systems, consistency
models [20], [21], [22], [23], along with the verification of
semantics and program correctness [24], [25], [26], [27], have
been extensively studied. However, similar studies in the realm
of HPC I/O systems remain sparse. This gap exists despite the
increasing complexity and importance of storage consistency
in HPC environments.

One reason for this disparity is that HPC I/O stacks lack the
compiler layer present in shared-memory systems, which helps
programs achieving portability regardless of the underlying
consistency models provided by the hardware. As a result,
many applications rely on the POSIX [3] interface to ensure

2The VerifyIO repository (http:/github.com/wangvsa/VerifyIO) includes the
source code, execution scripts, and all results presented in this work. The col-
lected trace files can be accessed at https://doi.org/10.5281/zenodo.14553174,
and the reproducibility document is available at https://verifyio.readthedocs.
io/en/latest/ipdps.html.

http://github.com/wangvsa/VerifyIO
https://doi.org/10.5281/zenodo.14553174
https://verifyio.readthedocs.io/en/latest/ipdps.html
https://verifyio.readthedocs.io/en/latest/ipdps.html

nc4perf (NetCDF)

cache (HDF5) pmulti_dset (HDFS5)

Read Trace

Build the Happens-before Graph
Generate Vector Clock
Verification

Total

59 20 381
11 1305 69
3 92 9
167 0 2608
240 1417 3067

TABLE IV: VerifylO workflow execution time (seconds) breakdown of the three slowest tests.

portability and compatibility across systems. Given POSIX’s
dominance in HPC environments, much of the existing work
on semantics verification [28], [29], [30] has focused on
ensuring program correctness under POSIX semantics.

On the other hand, POSIX enforces strict consistency by
ensuring that operations are serialized and immediately visible,
but this comes at the cost of performance, especially in
distributed environments [11], [31]. To overcome this, modern
I/O systems, including parallel file systems [7], [8], [9],
[32], [33] and /O libraries [5], [6], [34], are increasingly
adopting weaker consistency models. These models, such as
commit consistency, session consistency, and MPI-IO consis-
tency, relax the strict guarantees of POSIX in favor of higher
performance and scalability. However, they increase the risk
of data races or incorrect behavior in applications that assume
POSIX consistency.

Consequently, recent efforts have attempted to address
these risks by expanding the scope of consistency checks.
AtomFS [35] introduced a formal framework for building
verified concurrent file systems, while other work [36] devel-
oped a formal model for the Google File System, describing
its read/write behaviors and encoding the model in a way
that allows automatic verification. Despite these advances,
such efforts often focus on a single file system or a specific
consistency model, limiting their generality and applicability
to other I/O systems and libraries. In parallel, a few projects
have explored verification of parallel I/O codes against mul-
tiple models. For example, in [37], the authors studied the
requirements of consistency semantics of HPC applications
and proposed a method for detecting data races for three I/O
consistency models. However, the proposed method is based
on examining the timestamp of each I/O operation, which
is only a proximity of the happens-before order and may
result in incorrect results. A follow-up work [38] addresses
this shortcoming by examining synchronization events when
detecting data races. However, the method remained limited
to specific file systems and consistency models, and it only
reported the existence of data races without providing detailed
information to help developers resolve the issues.

In contrast, VerifylO addresses these limitations by pro-
viding a generic verification framework that supports widely
used HPC I/O models. VerifylO detects data races, identifies
mismatched MPI calls, and additionally reports the full call
chain associated with detected violations. These features help
answer the key questions posed in Section I, offering a more
comprehensive solution than existing tools for detecting and
diagnosing 1/O consistency issues in HPC environments.

VII. CONCLUSION

In this work, we present a trace-driven verification work-
flow, implemented in VerifylO, for determining I/O consis-
tency issues in parallel programs. VerifylO’s tracing tool
supports complete API sets of three widely-used I/O libraries,
and is easy to extend to support more. The verification tool is
capable of handling various consistency models for any given
execution trace. Through an extensive study of 91 tests across
these I/O libraries, VerifylO successfully identified consistency
issues, providing valuable insights into both application and
library-level issues. Finally, all tools in VerifylO and all
collected data and results are made publicly accessible for
further study.

To enhance the usefulness of VerifylO, one area of future
work is improving the reported call chain. In many applica-
tions, the same function may be called multiple times from
different locations, requiring manual inspection during data
race analysis. To reduce this manual effort, we plan to explore
the integration of a backtrace feature to complement the call
chain. Another planned feature is the dynamic selection of the
verification algorithm. Since VerifylO includes four different
algorithms, it could dynamically choose the most efficient one
based on factors such as the number of conflicts, the size of
the happens-before graph, and other relevant metrics.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 and was sup-
ported by the LLNL-LDRD Program under Project No. 23-
ERD-053. LLNL-CONF-870387. This work was supported by
NSF SHF Collaborative grant 1763540. This material is based
upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research
under the DOE Early Career Research Program.

REFERENCES

[11 SUN, “High-Performance Storage Architecture and Scalable Cluster File
System,” tech. rep., Sun Microsystems, Inc, 2007.

[2] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” in Proceedings of the 1st USENIX Confer-
ence on File and Storage Technologies, FAST’02, (USA), pp. 231-244,
USENIX Association, 2002.

[3] IEEE, “Standard for Information Technology—Portable Operating Sys-
tem Interface (POSIX(TM)) Base Specifications, Issue 7,” IEEE Std
1003.1, 2013 Edition (incorporates IEEE Std 1003.1-2008, and IEEE
Std 1003.1-2008/Cor 1-2013), pp. 1-3906, 2013.

[4] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel NetCDF:
A High-Performance Scientific I/O Interface,” in Proceedings of the
2003 ACM/IEEE Conference on Supercomputing, SC *03, (New York,
NY, USA), p. 39, Association for Computing Machinery, 2003.

[5]

[6]

[8]

[9]

[10]

(11]

(12]
[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
Overview of the HDF5 Technology Suite and Its Applications,” in
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,
AD’11, (New York, NY, USA), p. 3647, Association for Computing
Machinery, 2011.

P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost,
M. Snir, B. Traversat, and P. Wong, “Overview Of The MPI-1O Parallel
1/O Interface,” 1995.

T. Wang, K. Mohror, A. Moody, W. Yu, and K. Sato, “BurstFS: A
Distributed Burst Buffer File System for Scientific Applications,” in The
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2015.

M. J. Brim, A. T. Moody, S.-H. Lim, R. Miller, S. Boehm, C. Stanavige,
K. M. Mohror, and S. Oral, “UnifyFS: A User-level Shared File
System for Unified Access to Distributed Local Storage,” in 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pp. 290-300, IEEE, 2023.

O. Tatebe, S. Moriwake, and Y. Oyama, “Gfarm/BB—Gfarm File
System for Node-Local Burst Buffer,” Journal of Computer Science and
Technology, vol. 35, no. 1, pp. 61-71, 2020.

C. Wang, K. Mohror, and M. Snir, “Formal Definitions and Performance
Comparison of Consistency Models for Parallel File Systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 6,
pp. 937-951, 2024.

M. Vilayannur, S. Lang, R. Ross, R. Klundt, L. Ward, et al., “Extending
the POSIX I/O Interface: A Parallel File System Perspective,” tech. rep.,
Argonne National Lab.(ANL), Argonne, IL (United States), 2008.

D. Kimpe and R. Ross, “Storage Models: Past, Present, and Future,”
High Performance Parallel 1/0, pp. 335-345, 2014.

F. Herold and S. Breuner, “An introduction to BeeGFS,” tech. rep.,
ThinkParQ, 2018.

IBM, “Burst Buffer Shared Checkpoint File System,” Apr. 2020.

S. Oral, S. S. Vazhkudai, F. Wang, C. Zimmer, C. Brumgard, J. Hanley,
G. Markomanolis, R. Miller, D. Leverman, S. Atchley, et al., “End-
to-end I/O Portfolio for the Summit Supercomputing Ecosystem,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-14, 2019.

“MPI: A Message-Passing Interface Standard Version 4.0.” https://www.
mpi-forum.org/docs/mpi-4.0/mpid0-report.pdf, 2021.

R. Rew and G. Davis, “NetCDF: An Interface for Scientific Data
Access,” IEEE computer graphics and applications, vol. 10, no. 4,
pp. 76-82, 1990.

C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, ‘“Recorder
2.0: Efficient Parallel I/O Tracing and Analysis,” in 2020 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), (New Orleans, LA, USA), pp. 1-8, IEEE, 2020.

A. Hagberg, P. J. Swart, and D. A. Schult, “Exploring Network Structure,
Dynamics, and Function using NetworkX,” tech. rep., Los Alamos
National Laboratory (LANL), Los Alamos, NM, USA, 2008.

M. Dubois, C. Scheurich, and F. Briggs, “Memory Access Buffering in
Multiprocessors,” ACM SIGARCH computer architecture news, vol. 14,
no. 2, pp. 434442, 1986.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, “Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors,” ACM SIGARCH Computer Architec-
ture News, vol. 18, no. 2SI, pp. 15-26, 1990.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: A Rigorous and Usable Programmer’s Model for x86 Multipro-
cessors,” Communications of the ACM, vol. 53, no. 7, pp. 89-97, 2010.
L. Lamport, “Time, Clocks and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, p. 558, 1978.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

[36]

(37]

(38]

G. Rosu, W. Schulte, and T. F. Serbdnutd, “Runtime Verification of C
Memory Safety,” in International Workshop on Runtime Verification,
pp. 132-151, Springer, 2009.

M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi, “On the
Verification Problem for Weak Memory Models,” in Proceedings of
the 37th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 7-18, 2010.

A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu, “Semantics-Based
Program Verifiers for All Languages,” ACM SIGPLAN Notices, vol. 51,
no. 10, pp. 74-91, 2016.

A. Bouajjani, E. Derevenetc, and R. Meyer, “Checking and Enforcing
Robustness Against TSO,” in Programming Languages and Systems:

22nd European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings 22, pp. 533—
553, Springer, 2013.

P. Rockai, Z. Baranovd, J. Mrazek, K. Kejstovd, and J. Barnat, “Re-
producible Execution of POSIX Programs with DiOS,” Software and
Systems Modeling, vol. 20, no. 2, pp. 363-382, 2021.

L. Freitas, J. Woodcock, and A. Butterfield, “POSIX and the Verification
Grand Challenge: A Roadmap,” in 13th IEEE International Conference
on Engineering of Complex Computer Systems (iceccs 2008), pp. 153—
162, IEEE, 2008.

G. Ntzik, P. da Rocha Pinto, J. Sutherland, and P. Gardner, “A
Concurrent Specification of POSIX File Systems,” in 32nd European
Conference on Object-Oriented Programming (ECOOP 2018), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

D. Kimpe and R. Ross, “Storage Models: Past, Present, and Future,”
High Performance Parallel I/0, pp. 335-345, 2014.

S. Oral, S. S. Vazhkudai, F. Wang, C. Zimmer, C. Brumgard, J. Hanley,
G. Markomanolis, R. Miller, D. Leverman, S. Atchley, and V. V. Larrea,
“End-to-end 1/O Portfolio for the Summit Supercomputing Ecosystem,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC *19, (New York, NY,
USA), Association for Computing Machinery, 2019.

A. Miranda, R. Nou, and T. Cortes, “echofs: A Scheduler-Guided
Temporary Filesystem to Leverage Node-local NVMs,” in 2018 30th
International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), pp. 225-228, IEEE, 2018.

H. Tang, S. Byna, F. Tessier, T. Wang, B. Dong, J. Mu, Q. Koziol,
J. Soumagne, V. Vishwanath, J. Liu, and R. Warren, “Toward Scalable
and Asynchronous Object-Centric Data Management for HPC,” in
Proceedings of the 18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid ’18, p. 113-122, IEEE Press, 2018.
M. Zou, H. Ding, D. Du, M. Fu, R. Gu, and H. Chen, “Using Concurrent
Relational Logic with Helpers for Verifying the AtomFS File System,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pp. 259-274, 2019.

B. Li, M. Wang, Y. Zhao, G. Pu, H. Zhu, and F. Song, “Modeling
and Verifying Google File System,” in 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering, pp. 207-214,
IEEE, 2015.

C. Wang, K. Mohror, and M. Snir, “File System Semantics Require-
ments of HPC Applications,” in Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing,
HPDC 21, (New York, NY, USA), p. 19-30, Association for Computing
Machinery, 2021.

S. Yellapragada, C. Wang, and M. Snir, “Verifying IO Synchronization
from MPI Traces,” in 2021 IEEE/ACM Sixth International Parallel Data
Systems Workshop (PDSW), pp. 41-46, IEEE, 2021.

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

