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Abstract. This paper presents an approach to authoring a textbook titled Interactive
OpenMP Programming with the assistance of Large Language Models (LLMs). The writing
process utilized state-of-the-art LLMs, including Gemini Pro 1.5, Claude 3, and ChatGPT-4,
to generate the initial structure and outline of the book, as well as the initial content for spe-
cific chapters. This content included detailed descriptions of individual OpenMP constructs
and practical programming examples. The outline and content have then undergone extensive
manual revisions to meet our book goals. In this paper, we report our findings about the capa-
bilities and limitations of these LLMs. We address critical questions concerning the necessity
of textbook resources and the effectiveness of LLMs in creating fundamental and practical
programming content. Our findings suggest that while LLMs offer significant advantages in
generating textbook content, they require careful integration with traditional educational
methodologies to ensure depth, accuracy, and pedagogical effectiveness. The Interactive
OpenMP Programming book is developed with the framework of Jupyter Book, enabling the
execution of code within the book from the web browser, providing instant feedback and
a dynamic learning experience that stands in contrast to traditional educational resources.
The book represents a significant step towards modernizing programming education, offering
insights into practical strategies for generating the textbook through advanced Al tools.

Keywords: Large Language Model - OpenMP - Interactive Book - Gemini Pro 1.5 - Claude
3 - ChatGPT-4

1 Introduction

Given the increasing complexity of supercomputer node architectures in high-performance comput-
ing (HPC), high-level programming models have become essential to enhance productivity. OpenMP
is a critical programming model in parallel computing, widely used for multi-core, multi-threaded
processors, many-core accelerator architectures, and a combination of them. While interest in uti-
lizing OpenMP in HPC is growing, the OpenMP language has evolved to feature more complex
syntax. The length of the OpenMP specification has expanded from 318 pages in OpenMP 3.1 to
649 pages in OpenMP 5.2, creating a steep learning curve for this high-level programming model.
The OpenMP framework’s complexity, stemming from its advanced execution models and the in-
depth knowledge required to manage parallel tasks, poses significant educational challenges. Tra-
ditional educational resources, such as textbooks for OpenMP, often fail to incorporate the latest
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programming additions and lack the interactivity necessary for effective learning. Outdated content
and limited accessibility frequently hinder learning efficiency.

Recently, the landscape of computing and application has been evolving with the rapid ad-
vancement of artificial intelligence technologies, particularly large language models (LLMs) such
as Gemini Pro 1.5, Claude 3, and ChatGPT-4. LLMs provide a prompt-answer model of learning,
offering interactive and personalized educational experiences without the need for an actual human
teacher. These include grammar and syntax support, case-based learning, concept clarification,
and customized exercises and quizzes. While LLMs can significantly ease the learning process for
OpenMP, their utilization in this context presents unique challenges. LLLMs demonstrate proficiency
in handling specific tasks and adeptly addressing specific questions. However, they fall short of pro-
viding a comprehensive learning schedule covering all OpenMP aspects. In contrast to traditional
textbooks, LLMs are less effective in guiding students through a structured and progressive learn-
ing process. Additionally, effective prompts are crucial to optimizing the accuracy and relevance of
LLM-generated content.

To leverage the strengths of both LLMs and traditional resources while addressing their limita-
tions, we propose the development of an interactive OpenMP book. This book aims to stay updated
with the latest OpenMP advancements and implement an interactive learning experience. We uti-
lize LLMs’ powerful text generation capabilities to rapidly generate the initial version, including
explanations of OpenMP constructs, programming examples, and code interpretations. Designed
with a "learning by practice" approach, the book provides up-to-date code examples and allows
learners to experiment with them immediately. The interactive book is open-sourced and available
at https://passlab.github.io/InteractiveOpenMPProgramming/cover.html,

The main contributions of this work include:

Generating an interactive book named Interactive OpenMP Programming;

Proposing a method for rapidly generating OpenMP educational content using LLMs;
Evaluating the effectiveness and limitations of LLMs in creating both conceptual and practical
programming content;

— Demonstrating how well-designed prompts can significantly enhance the quality of content gen-
erated by LLMs, contributing to more accurate educational materials.

The rest of the paper is as follows: Section [2] discusses the background and the motivation for
using LLMs to develop the Interactive OpenMP Programming book and identifies the deficien-
cies of traditional textbooks. Section [3] details the methodology employed in utilizing LLMs to
create an interactive programming book, including the strategies for prompt design and content
validation. Section [4] assesses and discusses the content generated by the LLMs and the content in
Interactive OpenMP Programming book. Section [5| introduced the related work. The paper con-
cludes in Section [6] where we summarize our findings, outline future research avenues, and suggest
improvements for more effectively integrating LLMs into educational frameworks.

2 Background and Motivation

Learning OpenMP programming through LLMs and traditional textbooks each has its own set of
advantages and disadvantages. Table [1| provides a comparison of these methods.

LLMs offer several advantages over traditional textbooks. Primarily, they provide instant feed-
back and interactive engagement. They could provide immediate responses to inquiries, analyze
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user-submitted code in real time, and suggest enhancements. Additionally, LLMs are highly adapt-
able and customizable educational tools. They can tailor content and examples to match the user’s
skill level and learning preferences, potentially speeding up the learning process. Furthermore, LLMs
can access various information sources, providing diverse perspectives and solutions. In contrast,
traditional textbooks do not offer these advantages. They lack the interactivity essential for effective
learning and are unable to adjust content in real time based on students’ needs.

Learn from LLMs

Pros

Cons

- Deliver instantaneous feedback and interactive
engagement.

- Provide immediate responses to inquiries.

- Analyze user-submitted code in real-time and
suggest enhancements.

- Serve as highly adaptable and customizable ed-
ucational tools.

- Access a wide array of information sources, of-
fering diverse perspectives and solutions.

- Offer a relatively superficial depth of under-
standing of complex OpenMP constructs.

- Unable to verify the accuracy of the informa-
tion they generate.

- Unable to execute the code in real-time.

- Lack of a structured learning trajectory.

- Pre-trained with fixed knowledge about a field,
making it difficult to update with new informa-
tion.

Learn from Traditional Textbooks

Pros

Cons

- Provide a systematic and comprehensive explo-
ration of OpenMP programming, aligning with
the principle of progressive learning.

- Incorporate case studies and best practices that
are the culmination of years of expert experience
and scholarly research.

- Lack of the essential interactivity needed for
effective learning.

- Struggle to keep pace with the latest program-
ming paradigms and updates.

- Require high costs for purchase, making some
books less accessible.

- Uphold a high standard of information accu-
racy.
Table 1: Advantages and Limitations of Learning from LLMs and Traditional Textbooks

Despite the advantages, the drawbacks of learning using LLMs cannot be ignored. The first
drawback is the relatively superficial depth of understanding. From our experience with SIMD and
vector architecture in OpenMP, while LLMs can introduce the basic usage of #pragma omp simd,
they often fall short in providing detailed discussions on optimizing SIMD for specific hardware
configurations. In contrast, textbooks are typically authored by experienced experts and scholars,
ensuring a deeper understanding of the OpenMP content. Another issue is the absence of mecha-
nisms within LLMs to verify the accuracy of the information they generate, potentially leading to the
dissemination of incorrect or misleading content. For example, LLMs can generate explanations for
#pragma omp task depend, but we noticed that they fail to handle data race conditions in multi-
threading environments. In contrast, textbooks maintain a high standard of information accuracy.
Lastly, LLMs lack structured and progressive education procedures. Traditional textbooks typically
provide a more systematic and comprehensive exploration of OpenMP programming, incorporating
case studies and best practices. They follow pedagogical principles, building foundational knowledge
before advancing to complex topics. Although LLMs can be programmed to offer structured educa-
tion, their flexibility can lead to deviations. For example, traditional learning for GPU programming
starts with basic architecture and progresses to advanced topics like memory management. LLMs,
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however, might skip essential steps or present advanced topics prematurely based on user queries,
resulting in fragmented or incomplete understanding.

A common drawback of both LLMs and textbooks is their inability to stay updated with the
latest OpenMP specifications. LLMs, being pre-trained, possess fixed knowledge about a field and
are challenging to update with new information. For example, in the OpenMP specification 5.2, the
depend clause is no longer used with the ordered directive. Despite attempts to update ChatGPT
with the latest specifications, it still occasionally generates content that incorrectly uses the depend
clause. We find that this issue can be mitigated by directing the LLMs to learn and use specific new
information. However, beginners might not be aware of whether the content generated by an LLM
complies with the latest specifications, nor understand how to prompt the LLMs to produce updated
content. This problem is more pronounced and difficult to resolve in textbooks. Once published,
textbooks are hard to modify, and we often find that many contain outdated content that cannot
be promptly updated.

Based on these pros and cons, we aim to combine the best of both worlds by using LLMs
to help develop a structured, interactive textbook - Interactive OpenMP Programming. This in-
volves using advanced Al tools to modernize programming education and enhance its effectiveness,
thereby providing learners with a more interactive, engaging, and effective educational experience.
First, the decision to employ LLMs arises from the need to address the limitations of traditional
OpenMP educational resources. LLMs can quickly generate up-to-date educational content, solving
the problem of outdated material in traditional textbooks. Secondly, we will analyze the depth
of LLMs’ understanding of different OpenMP constructs and manually complete sections where
the LLM’s understanding is insufficient. At the same time, we will rigorously review the accuracy
of the content generated. This task is initially aimed at addressing issues with LLMs’ depth of
understanding of complex topics and the inability to audit the correctness of generated content.
Furthermore, our exploration will provide a reference for others studying LLMs’ comprehension
of OpenMP. Next, we will use Jupyter Notebooks to develop an interactive, progressive textbook,
where learners can execute their code directly to verify its correctness. This approach maintains the
structured learning benefits provided by traditional textbooks while addressing their limitations in
supporting interactive learning, the inability of LLMs to offer systematic, progressive learning, and
the lack of real-time code execution. Finally, the motivation also includes exploring how to optimize
LLM output through the strategic design of prompts, which is essential for enhancing the quality of
the generated content. This approach ensures that the material is not only technically accurate and
pedagogically sound but also tailored to the specific learning context of OpenMP programming.

3 Method

This study employs a multifaceted approach to address challenges in content generation for OpenMP
programming using Large Language Models (LLMs). By leveraging the strengths of multiple LLMs,
including Gemini Pro 1.5, Claude 3, and ChatGPT-4, we mitigate the limitations of individual
models. A Chain-of-Thought method is applied to overcome the context window size limit, dividing
the process into two stages: outline generation and content development. Prompt engineering is
optimized using the CO-STAR framework, while one-shot learning ensures consistency by referenc-
ing prior chapters. Evolving OpenMP specifications are incorporated through in-context learning,
enriching the generated content with official examples. Cross-model review and manual edits are
employed to enhance quality to address hallucinations and inconsistencies. Finally, the generated
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content is integrated into Jupyter Notebooks, facilitating interactive code execution and immedi-
ate feedback for learners. This approach effectively combines Al-driven generation with manual
refinement, ensuring accuracy and educational value.

3.1 Outlining the Book and Each Chapter with the Aid of LLMs

A combined approach of human expertise and machine-generated content is recommended to effec-
tively utilize LLMs in composing a comprehensive OpenMP programming book. The methodology
involves the following steps:

Generating Outlines of the Textbook Using various LLMs to create multiple book structures
based on their interpretations of the OpenMP API 5.2 Specification and analyses of the official
OpenMP API 5.2.2 Examples [4] will leverage the LLMs’ capability to quickly process and synthesize
extensive datasets. We used the prompt: "Here are the OpenMP 5.2 Specification and the official
examples. Please use this information to guide the creation of the textbook outline. Include sections
on basic and advanced topics, referencing specific constructs from the specification and relevant
examples. Outline a few initial chapters focusing on core concepts, synchronization, and tasking".

However, we discovered that the frameworks produced by the LLMs did not align with our in-
tended organizational approach. For instance, ChatGPT allocated substantial sections to discussing
the foundational concepts of OpenMP and the setup processes. However, the detailed explanations
and examples of the directives and the clauses were confined to merely two chapters-"Fundamentals
of OpenMP" and "Advanced OpenMP". Similarly, the other two LLMs we evaluated did not per-
form satisfactorily. Consequently, after reviewing the frameworks generated by three different LLMs
and integrating professional insights, we manually developed the book’s structure. Our book em-
phasizes analyzing and applying various directives and clauses, illustrated through a combination
of fundamental and advanced examples.

Generating Outlines for Chapters Although the LLMs offered limited assistance in establishing
the overall framework, they proved highly beneficial in crafting detailed outlines and contents for
individual chapters. To ask the LLMs to generate the outline of the chapter "2.4. Synchronization of
Threads Using Barrier and Ordered Directive," we first had the LLMs learn about synchronization
in parallel computing scenarios from OpenMP Specification and official examples. Then, we up-
loaded a manually completed chapter on the teams construct to serve as a reference for the LLMs.
To use the proper prompts, we incorporate the CO-STAR framework, which outlines a structured
approach to crafting prompts that can significantly enhance the effectiveness and professionalism
of the content generated by LLMs [2]. Developed by GovTech Singapore’s Data Science and Ar-
tificial Intelligence Division, CO-STAR stands for Context, Objective, Style, Tone, Audience, and
Response. The prompt guidelines, explanations, and examples are shown in Table [2}

The prompts are progressive and interactive, involving multiple steps, including learning from
uploaded material, analyzing a previous chapter, and developing a new chapter outline. This ap-
proach generates a more detailed and contextually enriched outline. We’ve found that the structure
generated by this set of prompts closely resembles that of the previous teams chapter and incor-
porates many terms like explore, understanding, analysis, and apply that are more apt for
educational contexts. The generated and revised outlines are demonstrated in Table [3]

5
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Guidelines |Explanation Our Prompts
Context(C) |Providing background informa-|I am currently writing a book on OpenMP parallel pro-
tion gramming aimed at teaching others. I have completed a

chapter on teams, which follows a specific outline style. I
am now focusing on the synchronization of OpenMP,
specifically on barrier and order constructs.

Objective Clearly defining the task Generate an outline for the chapter on synchronization,
(O) focusing on barrier and order constructs. The outline should
be based on the style used in the previous chapter on teams.
Style (S) Specifying the writing style Educational, structured

Tone (T) Setting the tone Instructional, clear

Audience Identifying the intended audi-|Readers are students and programmers new to parallel pro-

(A) ence gramming, as well as educators looking for teaching re-
sources.

Response Providing the response format |Provide a structured outline in text format that details

(R) sections and subsections for the chapter on synchroniza-
tion, including key points to cover for barrier and order
constructs.

Table 2: The CO-STAR Framework and Its Example Use for Outlining the Chapter on Synchro-
nization

Assessment and Selection of the Outlines We followed a three-step assessment process to
ensure the quality and accuracy of the generated outlines. First, we conducted a cross-model re-
view, where one LLM critiqued another’s outlines, enhancing them through mutual learning. Next,
according to OpenMP Specification, we manually inspected each outline’s comprehensiveness and
accuracy. Finally, we integrated the structures. We merged the best aspects of each outline, balanc-
ing their strengths and weaknesses to create an optimized and effective structure.

The outlines generated by different LLMs have distinct characteristics. The outline generated
by Gemini Pro 1.5 is concise, focusing on practical applications and key concepts. It briefly in-
troduces the basic usage and examples of barrier and ordered directives, explaining how to set
synchronization points and maintain execution order. However, Gemini lacks comprehensive de-
tail in practical application examples and discussions of advanced topics. The outline generated
by ChatGPT 4 features clearly structured steps and examples, such as the basic usage of Barrier
directives and compatibility with the doacross clause. This outline may offer some technical depth
while maintaining good generality and overview. The outline generated by Claude 3 is a highly
detailed structure covering basic concepts and uses while exploring various complex scenarios and
performance considerations, such as teaching advanced uses of barrier and ordered directives like
nested directives and interoperability with task scheduling. However, it might be overly complex,
including some unnecessary details, especially for beginners, requiring a longer learning curve.

3.2 Content Generation, Including Code Examples using Three LLMs

Understanding and Explaining Fundamental Constructs This subsection outlines our anal-
ysis of how LLMs generate specific text. We show the prompts used in Table [4] and show the
descriptions of the task directive generated by different LLMs in Figure
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Outline generated by Gemini Pro 1.5

Introduction
Barrier Directive
e Establishing Synchronization Points
e Example
The Ordered Directive: Maintaining Sequential
Steps
e Enforcing Order in the Parallel Ballet
e doacross Clause: Specifying Dependencies
Implicit Barriers: Automatic Synchronization
e Removing Implicit Barriers with nowait
Best Practices for Using Barrier and Ordered Di-
rectives

Outline generated by ChatGPT-4

Introduction
Barrier Directive
e Purpose of the Barrier Directive
e Usage
e Example: Using the Barrier Directive
e Considerations
Ordered Directive
e Purpose of the Ordered Directive
e Usage
e Compatibility with the doacross Clause
e Example: Serial Output in Parallel Loop
e Considerations
Summary
o Key Takeaways

Outline generated by Claude 3

Introduction

e Importance of Thread Synchronization

e Overview of the Barrier and Ordered Directives
Barrier Directive

e Purpose and Usage

e Syntax and Examples

e Barrier Regions

e Synchronization Points
Ordered Directive

o Purpose and Usage

e Syntax and Examples

e Enforcing Execution Order

e Ordered Regions

e Stand-alone Ordered Construct

e Block-associated Ordered Construct

e Interaction with Loop Constructs and Clauses

e Best Practices
Combining Barrier and Ordered Directives

e Use Cases for Combining Directives

e Examples and Code Snippets

o Considerations and Potential Issues
Implicit Barriers

e Implicit Barrier Regions

e Execution Model Events and Tool Callbacks
Advanced Topics

o Nested Barrier and Ordered Directives

e Interoperability with Other Synchronization Mecha-

nisms

e Synchronization in the Context of Tasking

e Debugging and Profiling Synchronization Issues
Performance Considerations

e Overhead and Scalability

e Load Balancing and Synchronization Granularity

e Performance Tuning and Optimization
Summary and Conclusion

Revised Outline

Introduction

e Importance of Thread Synchronization

e Overview of the Barrier and Ordered Directives
Barrier Directive

e Purpose and Usage

e Syntax and Practical Examples

e Barrier Regions and Synchronization Points
Ordered Directive

e Purpose and Usage

e Syntax and Practical Examples

e Interaction with Loop Constructs and doacross

Clause

e Best Practices and Considerations
Combining Barrier and Ordered Directives

e Use Cases for Combining Directives

e Examples and Code Snippets

e Considerations and Potential Issues
Implicit Barriers

e Overview and Automatic Synchronization

e Controlling Implicit Barriers
Advanced Topics

e Nested Directives and Interoperability

e Synchronization in the Context of Tasking

e Debugging and Profiling Synchronization Issues
Performance Considerations

e Overhead and Scalability

e Load Balancing and Synchronization Granularity
Summary and Conclusion

e Recap of Key Points

e Further Learning and Applications

Table 3: Outlines Generated by Gemini Pro 1.5, ChatGPT-4 and Claude 3, and the Revised Outline
Used in the Textbook for Section 2.4. Synchronization of Threads Using Barrier and Ordered
Directives

Here, we only present the results generated by ChatGPT and Gemini, as the content generated

by Claude was too simplistic and lacked depth and detail, thus not included. ChatGPT’s output
provided a clear and concise explanation of the task directive in OpenMP, focusing on its use for
parallelizing irregular workloads. The generated code example was simple and effective, demon-
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CO-STAR Our Prompts
Guidelines
Context(C) The task directive is an essential component of OpenMP used to define independent

units of work that can be executed in parallel. It’s particularly useful for handling
irregular workloads in parallel computing.

Objective (O) Provide a comprehensive explanation of the task directive, including its syntax,
clauses, examples, and best practices for using it in OpenMP programs.

Style (S) Educational, detailed, and structured

Tone (T) Informative, encouraging, and supportive

Audience (A) Students, programmers, and practitioners who are learning OpenMP and wish to
understand how to effectively utilize the task directive for parallel programming.

Response (R) Generate the content in a clear, step-by-step manner suitable for textbook material.

Include an explanation of the task directive, examples with code snippets, and guid-
ance on when and how to use it effectively.
Table 4: Prompts Used for Generating the Descriptions of task Directive

strating basic syntax and task creation. In contrast, Gemini generated a more detailed explanation,
covering both explicit and implicit tasks, and introduced task dependencies using the depend clause.
This additional depth makes it more suitable for beginner and intermediate readers.

However, we identified several errors in the content generated by both LLMs, which we have
highlighted in red in the images. In ChatGPT’s output, the statement "if(condition): Determines
whether the code block should be executed as a task or not, based on the condition" is inaccurate.
In fact, when an if clause is present on a task construct and the expression evaluates to false, an
undeferred task is generated, and the encountering thread must suspend the current task region.
Execution cannot resume until the structured block associated with the generated task is completed.
Additionally, using a variable in the if clause expression causes an implicit reference to the variable
in all enclosing constructs. The evaluation of the if clause expression occurs outside the context of
the task construct.

In Gemini’s output, the statement "Implicit tasks: Created automatically by OpenMP when
certain constructs, like parallel loops with nested tasks, are encountered" is incorrect. Implicit tasks
are created by OpenMP parallel regions. Additionally, when explaining the generated example, the
assertion that "task 2 must wait for task 1 to complete" is incorrect. Task 2 does not need to wait
for task 1 unless explicit dependencies are defined, making the description inaccurate.

These examples highlight the need for a manual review of LLM-generated content. While LLMs
can generate informative and accessible technical content, errors, oversimplifications, and inaccu-
racies can still occur. Therefore, human oversight is essential to ensure that the content is both
technically accurate and complete.

All three LLMs accurately describe the basic functionality of the barrier directive for tech-
nical accuracy. Claude provides a straightforward introduction to the barrier directive’s role in
thread synchronization, focusing on its basic functionality. Gemini and ChatGPT provide a detailed
and context-rich explanation, emphasizing the barrier directive’s critical role in preventing race
conditions, which could be very beneficial in understanding more complex scenarios.

Considering the educational purpose, Claude offers a more generalized and accessible introduc-
tion, making it suitable for beginners just starting to learn about thread synchronization in parallel
programming. ChatGPT balances a general introduction and a specific application, making it ideal
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The task Directive in OpenMP

The task directive in OpenMP is used to specify a block of code that should
be executed asynchronously in parallel. This is particularly useful for
parallelizing irregular workloads, where the amount of work might vary
dynamically. By using the task directive, you can express independent
units of work that can be executed concurrently, allowing for better utilization
of parallel computing resources.

Basic Syntax:

#pragma omp task [clauses]

// Code block to be executed as a task
}
The task directive can be placed before a structured block of code, which
will then be treated as a separate unit of work (task) that can be executed by
any available thread in the team.
Key Points:
e  Each time a task directive is encountered, a new task is generated.
& Tasks are executed by threads in the parallel region, but not
necessarily by the thread that creates them.
e Task execution is deferred until a thread becomes available.
Common Clauses Used with task:
. if(condition): Determines whether the code block should be
executed as a task or not, based on the condition.
e untied: Allows the task to be suspended and resumed by any
thread, not just the one that started it.
e default(shared | none): Specifies the data-sharing attributes
for variables in the task.
o shared(variable-list): Specifies variables that will be shared
among tasks.
e private(variable-1list): Specifies variables that will be private
to each task.
e firstprivate(variable-1list): Initializes variables to have the
same values as they had in the task-generating context

Example:
#include <stdio.h=
#include <omp.h=

int main() {
#pragma omp parallel

#pragma omp single
{

for (int 1 = 8; 1 < 4; i++) {
#pragma omp task
{

printf("Task %d executed by thread %d\n", i,
omp_get_thread_num());

}
}

return @;
}
In this example, the task directive is used inside a s1ngle region to generate tasks. The single
directive ensures that only one thread creates tasks, but any thread in the parallel region can execute
them
When to Use task Directive:
*  When working with irregular workloads, such as recursive algorithms, dynamic data structures
(e.g., linked lists, trees), or workloads with unpredictable execution times.
*  When you want to achieve finer control over the parallel execution of independent tasks.
Task Synchronization:
s taskwait: Used to ensure that all child tasks generated up to this point are completed before
the program continues.
e taskgroup: Allows synchronization of a group of tasks, ensuring all tasks within the
taskgroup block are finished before moving forward.
Using the task directive effectively can lead to significant performance improvements, especially in
scenarios with dynamic or irregular parallelism. However, it is important to manage task creation and
synchronization carefully to avoid overhead and ensure efficient execution.

The OpenMP Task Directive

The OpenMP task directive is a powerful tool for
expressing parallelism in your programs. It allows you to
encapsulate a block of code as a fask that can be
executed concurrently with other tasks.

Key Features

s  Encapsulates Work: A task defines a
self-contained unit of work within your program.
This promotes modularity and makes it easier to
reason about parallel execution.

e Potential for Concurrency: The OpenMP runtime
system is responsible for scheduling and executing
tasks, patentially in parallel on multiple threads.
This allows you to leverage the available hardware
resources efficiently.

* Implicit and Explicit Tasks: OpenMP supports
both implicit and explicit tasks.

o Explicit tasks: Created directly using the
task directive. They give you precise
control over when and how tasks are
created and executed.

o Implicit tasks: Created automatically by
OpenMP when certain constructs, like
parallel loops with nested tasks, are
encountered. They simplify parallelization in
common scenarios.

* Task Dependencies: OpenMP provides
mechanisms for expressing dependencies between
tasks. This ensures that tasks are executed in the
correct order when data dependencies exist.

e  Task Scheduling: The OpenMP runtime uses
sophisticated algorithms to schedule tasks
efficiently on the available threads. This helps to
minimize overhead and maximize performance.

(2)
Basic Syntax
#pragma omp task [clause ...]

/I Code to be executed as a task

Common Clauses
e if(scalar_expression): Creates a task only if the
scalar expression evaluales lo true.
o depend(dependence_type: list): Specifies

dependencies between tasks. Dependence types include:

o in: Task depends on data being input from the
listed variables.
o out: Task produces data that will be output to the
listed variables.
o inout: Task both inputs and outputs data to the
listed variables.
Example Usage
#pragma omp parallel

fipragma omp single

#pragma omp task
il Task 1 code

Lpragma omp task depend(out: data)
/I Task 2 code (produces ‘data’)

Lpragma omp task depend(in: data)
/f Task 3 code (consumes ‘dala’)

}

}
)

In this example:

& Task 1 can execute immediately.

& Task 2 must wait for Task 1 to complete before it
can start

e Task 3 must wait for Task 2 to complete before it
can start.

Important Considerations

e  Overhead: Task creation and management have
some overhead. For very small tasks, the
overhead may outweigh the benefits of
parallelization.

#  Load Balancing: It's essential to design your
tasks to have a reasonable amount of work so that
the workload is balanced across threads.

When to Use Tasks
The task directive is a good choice when:

& You have irregular or nested parallelism that's
difficult to express with simple parallel loops.

& You want to encapsulate work units and express
dependencies between them explicitly.

e You want to leverage the flexibility of the OpenMP
runtime’s task scheduling capabilities.

Remember, mastering the task directive requires
practice and careful consideration of your program's
structure and data dependencies. Used effectively, it can
unlock significant performance gains on modern
multi-core and many-core systems.

Let me know if you would like more detailed examples or
want to explore specific use cases of the OpenMP task
directive!

(b)

Fig. 1: Descriptions of the task Directive Generated by Different LLMs

for intermediate learners. With its detailed explanations of particular scenarios like race conditions,
Gemini targets readers with some background in parallel programming and looking to deepen their
understanding of synchronization challenges.



© W N oW N e

10 X. Yiet al.

Generation and Explanation of Examples Different LLMs showcase unique difficulty, depth,
and correctness attributes when analyzing the generated examples. The prompt we used to generate
the examples is shown in Table

CO-STAR Our Prompts
Guidelines
Context(C) I am currently writing a book on OpenMP parallel programming aimed at teaching
others. In this chapter, we will focus on [directive name)].

Objective (O) |Create an example that demonstrates the use of a [directive name]| directive, par-
ticularly illustrating the functionality of a named clause and how it can help manage

parallelism.
Style (S) Educational, detailed
Tone (T) Instructional, clear

Audience (A) |Programmers and computer science students who are learning about thread synchro-

nization and parallel processing.

Response (R) |Provide a code snippet in C or C++ that uses the specified directive and clause.
Table 5: Prompts Used for Generating Examples and Example Explanation

#include <stdio.h> 1 #include <stdio.h> 1 #include <stdio.h>
#include <omp.h> 2 2
#define N 1000 3 #define N 1024 3 int main() {
int main() { 4 4 float a[N], b[N], c[N];
float a[N], b[N], result[N]; 5 int main() { 5 float sum = 0.0;
float factor = 0.5; 6 float a[N], b[N], c[N]; 6 int i;
// Initialize arrays 7 // Initialize arrays 7
for (int i = 0; i < N; i++){ 8 for (int i = 0; i < N; i++) { 8 // Initialize the arrays
afil = i * 1.0f; 9 ali]l = i * 2.0f; 9 // Do the sum
bl[i] = (N - i) * 1.0f; 10 bl[i]l = i * 3.0f; 10 #pragma omp simd
¥ 11 } 11 for (i = 0; i < Nj i++) {
// Apply SIMD directive with 12 12 cl[i] = al[i] + b[I];
// linear clause 13 // SIMD computation with 13 }
#pragma omp simd \ 14 // preferred simdlen of 4 14 #pragma omp parallel for \
linear(factor:0.1) 15 #pragma omp simd simdlen(4) 15 reduction(+:sum)
for (int i = 0; i < N; i++) { 16 for (int i = 0; i < N; i++) { 16 for (i = 0; i < Nj i++) {
result[i]l=a[i]+b[i]*factor; 17 c[i] = a[i]l + b[I]; 17 sum += c[I];
} 18 18 }
return 0; 19 return 0; 19 return O;
} 20 } 20 }
(a) OpenMP SIMD Example Gener- (b) OpenMP SIMD Example Gener- (¢) OpenMP SIMD Example Gener-
ated by ChatGPT ated by Gemini ated by Claude

Fig. 2: Comparison of SIMD Implementations Generated by GPT-4, Gemini Pro 1.5, and Claude 3.

Figure [2| shows three examples of OpenMP SIMD code generated by GPT-4, Gemini Pro 1.5,
and Claude 3 demonstrate different levels of detail and approach when handling SIMD directives
in OpenMP. Each example reflects varying styles and technical nuances, which could affect their
educational value and applicability in practice.

In the GPT-4 generated code, a basic OpenMP SIMD example is provided, where the simd direc-
tive is applied with a linear clause. The code initializes two arrays (a[] and b[]), and then performs
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element-wise multiplication, storing the results in result []. The inclusion of the 1inear (factor:0.1)
clause ensures that the factor variable is adjusted incrementally across iterations. This example is
more sophisticated because it illustrates the use of a clause that modifies a variable within the loop,
giving learners a more advanced understanding of how OpenMP SIMD can be applied with spe-
cific optimization directives. However, the SIMD directive applied here does not specify a preferred
vector length, leaving the optimization choices to the compiler.

The code generated by Gemini Pro 1.5 uses a slightly different approach. The SIMD directive
includes the simdlen(4) clause, explicitly specifying a preferred vector length for SIMD operations,
indicating a more performance-optimized approach. The example similarly initializes arrays but
focuses on element-wise addition (c[]1 = a[]l + b[]). By specifying a vector length, this example
provides a clear way to control the hardware-level parallelism, making it highly suitable for users
interested in low-level performance tuning. The use of simdlen(4) also shows an important feature
in SIMD that allows fine-tuning of vectorization to match the underlying hardware capabilities.

Claude 3’s generated example is the simplest of the three. The code initializes three arrays
and performs a sum reduction using both SIMD and parallel reduction directives. The first part
of the code uses the simd directive for the element-wise addition (c[] = al[] + b[]), followed by
a parallelized sum reduction across the array c[]. This example demonstrates the combination of
SIMD with another common parallel construct (reduction), which is useful for illustrating more
complex parallel patterns. However, it lacks detailed optimization controls (such as the simdlen
clause or any additional optimizations), making it more suitable for beginners or those focusing on
basic syntax and functionality.

The GPT-4 and Gemini Pro 1.5 examples offer more advanced usage of SIMD compared to
Claude 3, with GPT-4 focusing on linear variable adjustments and Gemini Pro 1.5 incorporating
hardware-level optimizations through the simdlen clause. Claude 3’s example is simpler, combining
basic SIMD operations with a parallel reduction. Gemini Pro 1.5 stands out in terms of performance
optimization, providing explicit control over vector length, which can lead to better performance
on specific hardware. GPT-4 uses the linear clause, which is educational for variable handling
in SIMD but does not provide low-level performance tuning. GPT-4’s example is valuable for
understanding how clauses like linear can be used within SIMD loops, making it suitable for
learners exploring variable handling in parallel loops. Gemini Pro 1.5’s example is ideal for those
focusing on performance tuning with SIMD. Claude 3’s example, while simpler, effectively shows
how SIMD can be integrated with parallel reduction, making it more approachable for beginners
or as a first introduction to combined parallel constructs.

We conducted a detailed analysis of each generated example, noting that each LLM demon-
strated varying levels of understanding for different directives. Overall, in terms of both generating
and explaining examples, GPT-4 consistently performed the best, followed by Gemini.

The Workflow of Generating Interactive Format with the Help from LLMs In this sub-
section, we will elaborate on generating and updating content for an interactive book with the help
of LLMs, which we ultimately create and edit as JSON files in a Jupyter Notebook. Theoretically,
it is possible to have LLMs produce text in a specific format since generating formatted text is a
strength of LLMs. However, in practice, it is not as straightforward. One of the interactive features
of our designed book allows users to enter their code directly into a code input box and execute it to
receive feedback. This necessitates the setting up of separate code cells, specifying the programming
language (C/C++ or Fortran) and the compiler. Initially, LLMs do not always generate the format
we want, often requiring repetitive debugging and constant modification of our instructions to make
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the LLM understand the desired format, which is quite inefficient. Moreover, different LLMs have
varying levels of understanding and capability. For instance, ChatGPT can usually generate text in
different formats, Gemini may not fulfill formatting requirements, and Claude can produce Mark-
down format but cannot separate code from textual descriptions. Therefore, we only have LLMs
generate content, ideally in Markdown format, without insisting that they produce directly usable
JSON files, which must be manually adjusted for format and cell type later.

Updating the Interactive OpenMP Programming book is straightforward. When changes are
needed, we can update the content in the local repository and then upload these changes to the
online repository using the standard GitHub pull request process. The online GitHub repository
automatically manages the book deployment. Typically, the book is compiled locally before upload-
ing to ensure there are no compilation errors that could hinder proper deployment. Similarly, we
allow users to add content to the book or upload their code. The difference is that users need to
apply before uploading. Our administrators review the content and decide whether to merge it into
our book.

3.3 Interactive and Incremental Development of a Programming Book

The design of the interactive OpenMP programming book is shown in Figure [3| On the client side,
users can access the book from a browser on any web-enabled device. Besides conventional reading
instructions, they can modify the corresponding Jupyter notebooks and conduct experiments. For
the server side, all the book sources are stored on GitHub. This generates both the book and Jupyter
notebooks. The reading materials are provided as HTML files [3]. The Jupyter notebooks, which
act as a coding sandbox, are served via JupyterLab with a native kernel. There are three ways to
deploy the book, each with strengths and limitations.

—
/ I Jupyter notebook in I' b X
e I the browser Jjupyter
Clients ~ b . N’
Serving notebook
Browseron via native kernel Lt
users Modification
computer
jupyter book builds web server/binder pulls /
Server and books in HTML, notebook from repo, runs
services i -\ hosted via github jupyterlab with native
(' 4 pagesoronweb kernel installed locally or in - (*,] binder
e Y server docker . ’ ) ;':
~ Jupyterh
Web Se\rvez ~

Static HTML for book

github ci automates the
process of book
generation when there is

a commit. GitHub

Jupyter notebook,
source code, and
native kernel

Fig. 3: Client and Server Architecture of Interactive OpenMP Programming Book

Local Deployment We can deploy the interactive OpenMP programming book on a local Linux
machine by installing JupyterBook and JupyterLab. JupyterBook generates the book website in
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HTML. JupyterLab runs the code examples in the book on demand. Local deployment is suitable
for trial runs and development. The user can quickly modify the book content or backend server
configuration and review the changes.

Self-hosting Deployment Self-hosting is similar to local deployment in most aspects, except a
server for the public or a specific private network is required. The benefit of self-hosting deployment
is that we can create a more capable programming sandbox for users. For example, a local laptop
may not support OpenMP GPU offloading, while a self-hosting server does. However, a self-hosting
server requires more professional maintenance work. It typically must provide uninterrupted service.

Third-party-hosting Deployment Another way to deploy the programming book is to utilize
third-party services like Binder [I]. Instead of setting up the service from scratch on a local or
remote machine under control, we can create a Dockerfile to specify what OS and software should
be installed. Binder will create an online virtual machine based on the Dockerfile and set up the
sandbox accordingly. However, users can’t control Binder server’s hardware configuration, which is
typically not very powerful.

4 Assessment and Discussion

4.1 Comparing the Learning Capabilities of Different Models

We have analyzed and evaluated the capability of various LLMs to learn from uploaded materials.
The results are summarized in Table [6

Aspect of ChatGPT Gemini Claude

Evaluation

Initial e Incorrect Correct (doacross e Failed (did not

Understanding (used depend) clause) recognize)

Comprehensiveness Detailed after Limited explanation |e Missed key details
guidance

Practical Examples Provided examples Theoretical only e No examples

Handling of Understood after Noted but shallow e Missed key changes

Changes guidance

Depth of Deep with guidance Moderate, e Lacked understanding

Understanding limited depth

Table 6: Comparison of Document Handling by Different Models

We demonstrate the learning capabilities of different models through an example that illustrates
their ability to acquire new knowledge and explain it effectively. The doacross clause, introduced in
the OpenMP 5.2 specification, is used with the ordered directive. Although doacross concept was
mentioned in version 5.1, it was not formally specified as a clause until version 5.2. We tasked three
LLMs with analyzing content from the OpenMP specifications about the ordered directive and
then generating descriptions of the ordered directive and its clauses. Ideally, they would ascertain
that the doacross clause is now the only clause used with the ordered directive and understand
how to use it. The primary objective of this study was to evaluate the LLMs’ ability to extract
and understand detailed information, with a specific focus on their comprehension of the doacross

13
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clause. Additionally, significant changes in the ordered directive have led to the removal of the
use of simd, threads, and depend clauses, making doacross the sole clause used with ordered
directive. Our analysis evaluated whether the LLMs could effectively learn from input files and not
merely rely on pre-existing knowledge.

By analyzing the generated content, we noted that Claude’s responses primarily offered general
explanations and reiterations of the specification of the doacross concept. However, Claude did not
provide specific insights into the doacross clause, such as its usage, functionalities, or applications.
We believe that it failed to identify information specifically about the doacross clause, instead
finding descriptions of the doacross concept in a different chapter. In other words, Claude does not
seem to understand that doacross has been defined as a clause. Conversely, Gemini explained that
the doacross is defined as a clause and this clause is used to specify explicit dependencies between
iterations in parallel-executed loops. It highlighted that this enables the compiler to ensure the
correctness of data dependencies as defined by developers, which is particularly crucial in scenarios
with complex dependencies.

ChatGPT initially did not retrieve any content about the doacross clause when directed to
study the ordered directive and its clauses. Instead, it used the depend clause incorrectly. How-
ever, when explicitly directed to focus on the doacross clause, ChatGPT demonstrated a deeper
understanding and provided a more comprehensive response. It accurately recognized that doacross
was defined as a clause, explained its use, and even described its compatibility with the ordered
directive: the ordered directive can be effectively combined with the doacross loop scheduling to
provide finer control over dependencies in loop iterations. The doacross clause allows specifying
dependencies between loop iterations, which is crucial for ensuring that iteration ¢ completes spe-
cific tasks before iteration ¢ + 1 can commence. It also showcased, through example code, how to
use the ordered and doacross clauses to manage dependencies, applicable in scenarios requiring
tightly coupled iterative operations.

The varying levels of understanding among the three LLMs concerning the newly added doacross
clause present an interesting topic. Initially, we verified that all three LLMs could learn from new
input materials and were not solely dependent on existing knowledge. ChatGPT does not process
documents in detail, tends to overlook some content, and largely relies on existing knowledge bases.
Yet, it can effectively understand and explain these details when specifically directed to extract
particular content. Gemini shows strong abilities in processing the input materials; it was the only
model to recognize doacross as a clause without being explicitly prompted to focus on doacross
clause. However, its explanations remain limited, resembling more a rephrasing of the specifica-
tion content without offering an in-depth explanation or practical demonstrations of usage. Claude
reads the input but fails to understand it correctly. It identifies content related to doacross but
does not recognize it as a clause nor grasp its application. It is unclear whether this is due to a
misunderstanding or incorrect information retrieval.

Determining how much LLMs rely on user-uploaded content versus pre-existing knowledge is
challenging. This issue is a key area of interest in LLM algorithm design. In our work, we focus
on evaluating the understanding capabilities of these models and the quality of the content they
generate, without emphasizing the source of the information.

4.2 Assessment of the Interactive OpenMP Programming Books

Quantitative Analysis of Generated Textbook In our published version of the Interactive
OpenMP Programming book, there are over 200 OpenMP examples and more than 17,000 lines of
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text or code. We check the generated content for the text segments for accuracy and depth of
understanding. This involves guiding the LLMs through several revisions or having different LLMs
revise the content. We resort to manual edits if the ideal output is not achieved after multiple
attempts. Typically, it takes a few minutes to generate the initial version of a chapter, followed by
several hours of revisions. Completing the same volume of work totally manually usually requires
over a week to finish a chapter’s initial draft and revisions.

The code examples generated by ChatGPT and Gemini have been validated. They differ entirely
from the official OpenMP examples, demonstrating that the LLMs do not simply copy content from
input files. However, about 60% of the complicated examples generated by Claude are directly from
official examples from our experience. Most simple cases are completely accurate and do not require
modifications, but more complex examples often need manual corrections or optimizations, with
over 70%.

Official OpenMP Examples Versus Interactive Book Demonstrations We compared the
examples using the SIMD directive in the Interactive OpenMP Programming book and the official
OpenMP examples in Figure[d The official example is a function that processes two double-precision
arrays using SIMD directives for parallel reduction, emphasizing modularity in a potentially larger
application. It uses a private temporary variable to ensure thread safety during the sum computa-
tion. In contrast, the example in our book is a complete standalone program within a main function,
utilizing a single float array and demonstrating OpenMP’s SIMD capabilities in a straightforward
educational format. It includes array initialization, directly adds each element to the sum, and out-
puts the result, making it highly accessible for learning. Unlike the official example, which returns
the computed sum for use elsewhere, the example in our book prints the sum directly, emphasizing
immediate visual feedback for learners.

#include <stdio.h> double work(double *a, double *b, int n) {
#define N 1024 int i;
double tmp, sum;

int main() { sum = 0.0;

float al[N]; float sum = 0.0f; #pragma omp simd private (tmp) \

for (int i=0; i<N; i++) al[i]l = i*1.0f; reduction (+: sum)

// Vectorize the loop for (i = 0; i < n; i++) {

#pragma omp simd reduction (+:sum) tmp = ali] + bl[il;

for (int i=0; i<N; i++) sum += al[il; sum += tmp;

printf ("Sum:%f\n", sum); }

return 0; return sum;
} }
(a) Code Example of SIMD in Interactive (b) Code Example of SIMD from Official OpenMP
OpenMP Programming Book Examples

Fig. 4: Comparative Analysis of Code Examples

5 Related Work

5.1 Existing Books for OpenMP Programming

In this section, we discuss notable contributions to OpenMP programming education, highlighting
their relevance to our current study while identifying unique features, commonalities, and limita-
tions.

15
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"Parallel Programming in OpenMP" is one of the pioneering texts [7]. Although it offers a
historical and technical foundation, enriching our study’s depth, the content has become significantly
outdated, limiting its contemporary relevance. "Using OpenMP — Portable Shared Memory Parallel
Programming" offers a comprehensive introduction to OpenMP, addressing hardware developments
and comparing OpenMP with other programming interfaces [§]. "OpenMP Common Core: Making
OpenMP Simple Again" simplifies OpenMP by focusing on its twenty-one essential components [11].
These books provide foundational knowledge and are rich in details and examples. However, they
predominantly focus on basics and lack extensive real-world applications, with most missing in-
depth optimization discussions.

"Using OpenMP — The Next Step" explores OpenMP’s advanced features, such as tasking,
thread affinity, and accelerators, delving into complex programming scenarios [13]. "High-Performance
Parallel Runtimes" provides an in-depth analysis of parallel programming models suitable for
modern high-performance multi-core processors, with detailed discussions on optimizing key algo-
rithms [I0]. "Programming Your GPU with OpenMP" focuses on GPU programming with OpenMP,
emphasizing heterogeneous programming and performance optimization [9]. These books cover ad-
vanced features in OpenMP’s new standards and discuss deep optimization techniques, particularly
hardware-specific optimizations, including CPUs and GPUs. While they offer valuable insights for
optimizing performance, their complexity may pose challenges for beginners.

A collective examination of these OpenMP programming books reveals that they adhere to ed-
ucational principles, structuring content from simple to complex, gradually deepening understand-
ing. They emphasize practical learning through extensive examples, which are crucial for learners
to grasp complex concepts practically. However, common limitations include rapid obsolescence due
to the fast-paced evolution of parallel programming technologies, the inability to provide real-time
feedback to users, and the long development cycle of traditional publishing, which cannot quickly
address limitations once published.

Our Interactive OpenMP Programming book leverages LLMs like Gemini Pro 1.5, Claude 3,
and ChatGPT-4 to quickly generate up-to-date content, enabling real-time code execution and
a dynamic learning experience via Jupyter books. This "learning by practice" approach provides
immediate feedback and practical application, making the material more engaging and customizable
to individual learning needs. Additionally, the Interactive OpenMP Programming book is open-
sourced and accessible online, reducing costs and increasing accessibility compared to traditional
textbooks, which often require purchase and can be less accessible.

5.2 The Use of LLM in Education and Textbook Writing

LLMs like ChatGPT have demonstrated potential in aiding various stages of writing, including
organizing material, drafting, and proofreading. One of the major challenges highlighted in educa-
tional settings is the accuracy and relevance of the information provided by the LLM, particularly
how it integrates into the developers’ workflow without disrupting it. Xiao et al.’s study examines
the utilization of ChatGPT for generating personalized reading comprehension exercises for mid-
dle school English learners in China [I5]. Their research addresses the challenge of outdated and
non-engaging educational materials by deploying ChatGPT to produce tailored reading passages
and questions, thereby enhancing student engagement and material relevance. Through automated
and manual evaluations, the system demonstrated its ability to generate educational content that
often surpassed the quality of traditional methods. In a similar vein, Nam et al. (2024) explore the
potential of using LLMs to enhance code understanding and development within an Integrated De-
velopment Environment (IDE) through their prototype tool, GILT [12]. This tool integrates directly
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into the IDE to provide context-aware, real-time information support, aiming to help developers
understand and expand unfamiliar code more effectively. Their study involved a user study with
32 participants, showing that using GILT significantly improves task completion rates compared to
traditional web searches. However, no significant gains were found regarding time savings or deeper
understanding, suggesting areas for further improvement.

Another example concerning the relevance and accuracy of responses from LLMs comes from the
work of Arora et al. (2024), who analyzed the usage patterns of LLMs among undergraduate and
graduate students in advanced computing courses at an Indian university [6]. Their research focused
on how students employ LLMs for programming assignments, particularly in code generation, de-
bugging, and conceptual understanding. Employing a mixed-method approach, combining surveys
and interviews, the study highlighted that while LLMs significantly enhance student productivity
by generating boilerplate code and aiding in debugging, they also present challenges regarding re-
sponse accuracy and integration with student-generated code. This necessitates substantial student
interaction with LLMs to integrate and troubleshoot system components effectively. The findings
emphasize the role of LLMs as supplementary tools in educational settings, suggesting the impor-
tance of proper prompts to enhance the utility and accuracy of LLM outputs in complex academic
tasks. People should be very careful when verifying the accuracy of the generated code when using
LLMs.

Altmée et al. explore the use of ChatGPT in scientific writing, particularly focusing on its
application in drafting a manuscript for reproductive medicine [5]. The study illustrates the poten-
tial and challenges of using Al in academic writing, highlighting ChatGPT’s role in streamlining
content creation, manuscripts’ initial composition, and refinement. Key challenges noted include
the accuracy and relevance of Al-generated content, requiring significant human oversight to en-
sure scientific integrity, and raising ethical concerns about authorship and the potential for Al to
discourage deep learning. This exploration aligns with broader discussions on integrating Al in
educational tools, as seen in other research focused on programming education. It suggests AI’s
utility as a supplementary aid in complex intellectual tasks, provided its limitations are carefully
managed.

Literature surveys are fundamental in academia and education, providing essential overviews of
existing research and identifying future research directions. The study by Wang et al. introduces
AutoSurvey, an innovative system designed to automate the creation of comprehensive literature
surveys. Employing a systematic approach that encompasses initial retrieval and outline gener-
ation, subsection drafting by specialized LLMs, integration, refinement, and rigorous evaluation,
AutoSurvey adeptly addresses the challenges posed by the vast volume and complexity of infor-
mation. By leveraging the capabilities of LLMs, the system not only enhances the efficiency and
quality of literature surveys but also demonstrates significant improvements in both citation and
content quality compared to traditional methods. This exploration not only highlights the potential
of LLMs to drastically reduce the time required to produce high-quality academic surveys but also
underscores ongoing challenges such as context window limitations and the reliability of parametric
knowledge within these models [14].

The commonality among the studies above lies in their utilization of the powerful reading,
understanding, and text-generation capabilities of LLMs. This aligns closely with our work. How-
ever, our research specifically focuses on generating OpenMP textbooks, emphasizing the teaching of
OpenMP programming. We deeply explore the abilities of various LLMs to understand and interpret
different OpenMP structures, parallel computing logics, and the generation of OpenMP examples.
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Additionally, we discuss how to continuously leverage LLMs to rapidly update textbook content,
thereby addressing the critical issue of textbooks lagging behind during updates in OpenMP.

6 Conclusion

In conclusion, this paper has explored the innovative use of Large Language Models (LLMs) such
as Gemini Pro 1.5, Claude 3, and ChatGPT-4 for creating the Interactive OpenMP Programming
book. Our research indicates that while LLMs significantly enhance the interactivity and dynamism
of educational content, they must be strategically integrated with traditional educational method-
ologies to maintain the depth and accuracy essential for effective learning. The developed interac-
tive book, facilitated by Jupyter Notebooks, stands out by enabling real-time code execution and
feedback, which is a considerable advancement over static learning materials. The success of our
approach demonstrates that LLMs can play a crucial role in modernizing educational practices,
especially in complex technical domains like OpenMP programming.

Future research should focus on refining the integration of LLMs into educational frameworks,
enhancing the accuracy of content through improved prompt design, and exploring the scalability
of this approach across other programming languages and frameworks. We also recommend ongoing
assessments of the pedagogical impact of these tools to ensure they meet educational standards and
effectively support learners. By continuing to leverage cutting-edge Al technologies, educators can
better prepare students for the evolving demands of the tech-driven world, making learning not
only more interactive but also more attuned to the needs of contemporary students.
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