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Abstract: 14 

 Organic nutrient management through the application of compost and/or cover crops 15 

provides mineralizable sources of nutrients for plants while often building soil organic matter 16 

(SOM) and various aspects of soil health. Variability in nutrient acquisition strategies between 17 

crop genotypes may confer advantages under different soil health contexts and could be 18 

important for crop selection and breeding, but crop response under field conditions remains 19 

unexplored. We investigated the ability of different genotypes of winter wheat (Triticum 20 

aestivum L.) to access nitrogen (N) from newly added cover crop residues in two soils with 21 

contrasting levels of SOM and biological activity. We planted three previously characterized 22 

wheat genotypes in a long-term dryland compost amendment field trial: 1) Byrd (current, deep 23 

roots, low exudation), 2) Cheyenne (historic, drought susceptible, intermediate exudation), and 24 

3) Snowmass (current, drought-susceptible, high exudation). 15N-labelled cover crop residue was 25 

added to each plot and traced into wheat tissue. In the low SOM soil, the high exudate genotype 26 

Snowmass and historic genotype Cheyenne took up the most residue-derived N (6.4-8.1 kg N ha-27 
1) compared to the low-exudate genotype Byrd (4.4 kg N ha-1), suggesting a strong exudate effect 28 

in the more carbon-limited soil. However, the low-exudate, deep rooted genotype, Byrd, took up 29 

the most residue N in the high SOM soils (4.6 kg N ha-1 vs. 2.8 and 3.3 hg N ha-1 for Cheyenne 30 

and Snowmass, respectively), which indicated higher native N cycling activities and great 31 

importance of drought resistance. Enzyme activity, inorganic N, and microbial communities 32 

were not influenced by genotype, though did show strong effects of compost application legacy. 33 

Our results show that belowground allocation strategies that favor microbial stimulation may be 34 

less successful under water limitation, especially when high SOM can support mineralization of 35 

residue N without added investment in root inputs. Increased soil health through SOM-building 36 

management likely enhances nutrient cycling, and may better support root strategies that invest 37 

less in microbial stimulation in favor of other limiting resources.  38 

 39 

Keywords: Triticum aestivum; soil organic matter; compost; cover crop; nitrogen mineralization; 40 

organic nutrient management 41 

 42 

1. Introduction: 43 

 44 
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Improved soil health is a critical management goal for farmers, policy-makers and 45 

society, as agriculture is increasingly asked to provide environmental services as well as sustain 46 

food production. While there is on-going and vigorous debate regarding the definition and 47 

measurement of soil health (Janzen et al., 2021), certain practices, such as the addition of organic 48 

amendments, is generally thought to contribute to soil health by increasing levels of soil organic 49 

matter (SOM) and biological activity, while reducing losses of reactive nitrogen (N) (Xia et al., 50 

2017). Organic amendments such as compost, manure, and leguminous cover crops (green 51 

manure) are commonly utilized in organic agriculture to support crop nutrition where synthetic 52 

fertilizers are not permitted. Composted manure primarily contains organic, mineralizable N, 53 

which can provide a slow release of N during the growing season. Cover crops may also supply 54 

sufficient N to meet crop demands if cover crop biomass production and N fixation is adequate 55 

(Tonitto et al., 2006). Along with supplying crop nutrients, organic amendments can rapidly 56 

improve many soil properties related to soil structure, water dynamics, and nutrient cycling (Six 57 

et al., 2004).  58 

In addition to nutrient inputs, plant roots can also affect SOM dynamics and microbial 59 

communities through exudation. Roots of different plant types can stimulate soil N 60 

mineralization, but the direct link to plant N availability and uptake remains unclear (Gan et al., 61 

2022; Huo et al., 2017). Root effects on N mineralization are mediated through stimulation 62 

and/or selection of the rhizosphere microbial community and N cycling activities (Qu et al., 63 

2020; Yu et al., 2021). There is increasing evidence that plant rhizosphere microbiomes show 64 

species and even genotypic specificity in selecting microbial taxa, which can perform soil 65 

functions that contribute to plant success (Sánchez-Cañizares et al., 2017). For example, plants 66 

have been shown to use root exudation to recruit microbial taxa that assist in nutrient 67 

mobilization, such as phosphorous (P) solubilization or N mineralization, or to exclude 68 

pathogenic organisms (Fitzpatrick et al., 2018; Mendes et al., 2018).   69 

Rhizosphere microbial interactions may be an integral part of plant resource acquisition 70 

strategies that are just now being integrated into existing resource allocation frameworks. For 71 

example, the root economic spectrum focuses on the amount and structure of root tissues 72 

allocation in response to resource gradients (Reich, 2014). However, recent work on root traits 73 

has unearthed evidence of another “collaboration” axis, where species with high microbial 74 

associations have smaller root systems but produce more exudates (i.e., collaborative) to increase 75 
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nutrient availability closer to the root (Bergmann et al., 2020; Wen et al., 2022). Indeed, 76 

evidence from >1800 plant species supports a collaboration gradient with regard to root-77 

microbial symbioses (Bergmann et al., 2020). 78 

Root exudation is a complex process controlled by many different genetic pathways, and 79 

is likely subject to many of the same selection pressures as other plant traits (Schmidt et al., 80 

2016). It has been postulated that more recent efforts in plant breeding, especially under soil 81 

environments with high inputs of inorganic nutrients, may have disrupted co-evolutionary 82 

processes between plant roots and rhizosphere microbial communities, with potential to decrease 83 

crop access to organic nutrient inputs (Pérez-Jaramillo et al., 2016; Schmidt et al., 2016). Work 84 

in several crops, including maize and winter wheat, have found a shift in root-associated 85 

microbial communities in modern vs. older genotypes (Hetrick et al., 1993; Schmidt et al., 2020; 86 

Tkacz et al., 2020). This work suggests that recent breeding efforts may be responsible for 87 

unintentional selection away from historical root-microbial interactions, which could affect crop 88 

fitness in soils with high inputs of organic nutrient sources. 89 

As agroecosystems move to improve environmental health through greater reliance on 90 

cycling of organic nutrients, certain crop genotypes and traits may be better suited to 91 

participating in and benefitting from microbially-mediated nutrient cycling activities. Genotype-92 

level variation in root architecture and exudate dynamics have been found in winter wheat 93 

(Triticum aestivum L.), an important global staple crop (Kelly et al., 2022b). These differences in 94 

root traits can confer varying levels of drought resistance and N use efficiency (Becker et al., 95 

2016; Foulkes et al., 2009) and likely affect the rhizosphere microbiome, with important 96 

implications for nutrient cycling and plant access to organic nutrient sources. Different cultivars 97 

of durum wheat (Triticum durum L.) have demonstrated unique exudation profiles related to root 98 

morphology and rhizosphere community composition (Iannucci et al., 2021), but the implications 99 

for rhizosphere functions like nutrient cycling remain poorly understood. It is especially critical 100 

to investigate root-rhizosphere dynamics in the field to understand these relationships in realistic 101 

scenarios, but there is very little research linking root traits to rhizosphere functions in a field 102 

setting.  103 

The objective of this study was to assess the relative ability of distinct winter wheat 104 

genotypes to access residue-derived N under different soil health contexts. We hypothesized that 105 

wheat genotypes with higher levels of exudation and less intensive breeding (i.e., older) will 106 
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perform better in a high-SOM context since greater investment in microbial interactions should 107 

provide greater access to organic nutrients. More specifically, we hypothesized that genotypes 108 

with higher exudation rates will stimulate greater hydrolytic enzyme activity and available N, 109 

driven by distinct microbial communities. To test these hypotheses, we utilized a long-term 110 

compost amendment field trial to assess the effects of different levels of soil health, mainly 111 

determined by differences in SOM and biological activity. Within this experiment, we planted 112 

three different genotypes of winter wheat, selected from previous research demonstrating 113 

differing belowground C allocation patterns. We applied 15N-labelled cover crop residue to the 114 

soil to trace the mineralization and uptake of residue-N into wheat tissue, and related these 115 

dynamics to microbial community structure, enzyme activity, and available inorganic N in the 116 

soil. Together, these methods allow us to relate crop genotype differences in belowground 117 

allocation to microbial community structure and function, in the context of N flows and 118 

transformations in an agroecosystem.  119 

 120 

Methods 121 

 122 

2.1 Site and experimental design 123 

The study site was a long-term (10 yr) semi-arid dryland experiment established in 2010 124 

at the USDA-ARS Central Great Plains Research Station in Washington County, 125 

Colorado (40°09'22.4"N 103°08'26.1"W, altitude 1, 384 m). Two soil types are present at this 126 

location: Weld silt loam (fine, smectitic, mesic Aridic Argiustoll) and a Rago silt loam (fine, 127 

smectitic, mesic Pachic Argiustoll). Average high and low temperatures range from 32°C in July 128 

to -10°C in January, with average annual rainfall of 417.5 mm (Table S2). During the two study 129 

years considered here, total annual precipitation was 273 in 2020 and 461 mm in 2021 (Table 130 

S2). This study employed a two-year crop rotation with alternating years of winter wheat and 131 

bare fallow.  The fields were managed without synthetic fertilizers or herbicides, utilizing 132 

shallow sweep tillage (8 cm depth) twice each summer for weed control (Calderón et al., 2018). 133 

The only exception was in 2020, where glyphosate was applied twice before wheat planting in 134 

September to control aggressive weed populations and avoid tillage (and associated soil moisture 135 

loss). The plots utilized in this study included contrasting soil health management practices, with 136 

biennial applications of beef feedlot compost applied before wheat planting at a rate of 109 Mg 137 
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ha-1 (5x), which corresponds to roughly five times the expected crop N demand, versus a control 138 

with 0 Mg ha-1 (0x). Both phases of the crop rotation are present every year, with all compost 139 

treatments and phases present in each of four replicate blocks. The compost, 80% dry matter 140 

with a total N content to 1.9% and a C:N ratio of 9.0, was applied in 2019 before wheat planting. 141 

Additional details on agronomic management, soil properties and compost composition are 142 

reported by Calderón et al. (2018) and Liu et al., (2021), as well as in Table S1.  143 

Within the 0x and 5x compost plots, three sub-plots (5.5 x 1.6 m) were established within 144 

the winter wheat phase of the rotation in 2019 and again in 2020. The three sub plots in each 145 

main plot were randomly assigned one of three winter wheat cultivars selected for this study 146 

based on diverging root traits reported by Kelly et al. (2022b). This study design was repeated 147 

over two growing seasons: 2019-2020, and 2020-2021. In each year, the wheat was planted in 148 

plots following a 14-month bare fallow to simulate the wheat-fallow rotation system common in 149 

the region. Therefore, the planted plots differed between the years, though they were adjacent 150 

within the same block layout.  Wheat planting occurred on Sept 25, 2019 and Sept 24, 2020 151 

using a cone planter (Hege Equipment Ltd., KS, USA) with 19 cm row spacing, 4 cm planting 152 

depth, and planting density of 33 seeds m-1 of row (175 seeds m-2).   153 

The three cultivars planted in the current study were: ‘Byrd’, a current hard red semi-154 

dwarf winter wheat (Haley et al., 2012); ‘Snowmass’, a current hard white semi-dwarf winter 155 

wheat (Haley et al., 2011); and ‘Cheyenne’, a tall historic variety released in 1930 (Table 1). 156 

Byrd is considered a drought-tolerant genotype and has been previously shown to have relatively 157 

long, thin roots with low levels of exudation; Snowmass is drought-susceptible with short, coarse 158 

roots and high exudation; Cheyenne has intermediate root length and exudation (Becker et al., 159 

2016; Kelly et al., 2022b, 2022a). 160 

In 2019 prior to compost application, a 3 m2 microplot was established in the center of 161 

each cultivar sub-plot where compost was excluded to avoid an additional new N source. One 162 

day prior to wheat planting in both 2019 and 2020, soil from a 1m2 microplot was mixed with 163 
15N-labelled cover crop material to a depth of 15 cm. The cover crop residue was a mixture of 164 

hairy vetch (Vicia villosa L.) and Triticale (x Triticosecale Wittmack) and was applied at a rate 165 

of 1600 kg ha-1 (dry biomass), which is within the range of typical cover crop biomass 166 

production in the region (Kelly et al., 2021). The cover crop mixture was grown in pure sand 167 

supplied with N-free Hoagland’s solution (Hoagland & Arnon, 1950) amended with 9 atm%15N-168 
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KNO3 (Cambridge Isotope Laboratories, MA, USA). Cover crop material was prepared by oven 169 

drying at 50 °C and coarsely chopping to ~ 5 cm pieces; in 2020, the root material was coarsely 170 

ground to better facilitate even distribution in the microplot. Final enrichment for the cover crop 171 

material was 8.03 atm% 15N, while total N concentration of the material was 23 g kg-1, for an N 172 

application rate of 36.8 kg ha-1.  173 

Due to extremely dry conditions during both years of the study, supplemental irrigation 174 

was applied to the treatment plots using drip tape spaced at 30 cm intervals running the length of 175 

the plots, as well as 1.5 m of buffer on either side. In early November 2019, 2 cm of water was 176 

applied through surface drip irrigation to aid in stand establishment. In 2020, a larger quantity of 177 

water was added to alleviate extreme drought conditions; 7.6 cm of water was applied using the 178 

same drip tape method in late August, and an additional 2.5 cm of water was applied by hand in 179 

to the microplots in late October to replace evaporative losses from mixing in the cover crop 180 

residues during plot preparation.  181 

 182 

2.2 Soil and plant sampling  183 

 We collected rhizosphere soil samples twice during the growing season, once at tillering 184 

(early May) and again at heading/flowering (early June) in both sampling years. The root 185 

systems of three separate plants from each cultivar sub-plot (outside the microplots) were gently 186 

excavated down to about 15 cm, shaking off loose soil, and placing the root system with adhered 187 

soil in a sterile Whirlpack bag. The loosely-adhered soil that fell off the root system was also 188 

collected as “root zone” soil in a zip-top bag for nutrient analysis. All samples were kept on ice 189 

for transport back to the lab. In the lab, we dislodged rhizosphere soil from roots by squeezing 190 

the root bag to break up aggregates. We transferred ~0.3 g of rhizosphere soil into Zymo 191 

BeadBashing tubes, added 700 mL BeadBashing Buffer, vortexed briefly, and kept frozen at -20 192 

°C for DNA extraction (see below). We also transferred a 1 g subsample of rhizosphere soil into 193 

120 mL specimen cups and kept at 4 °C for enzyme analysis (see below).  “Root zone” soil was 194 

2-mm sieved and ~8 g of fresh soil extracted with 40 mL 2 M KCl for inorganic N analysis. 195 

Extracts were kept frozen until analysis for nitrate and ammonia on an Alpkem Flow Solution IV 196 

system (O.I. Analytical, College Station, TX). Soil moisture content was also determined on this 197 

soil using a ~50 g subsample.  198 
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 The final sampling occurred at wheat harvest (mid-July). Two 1-m rows of wheat were 199 

harvested from the main plot by cutting the wheat plants ~5 cm from the soil surface for 200 

determination of plant biomass and grain yield. Wheat biomass and grain samples were oven-201 

dried at 55 °C, weighed, grain was cleaned using a belt thresher (Agriculex, Ontario, CA) and the 202 

grain weighed separately from the straw. From within the cover crop microplots, we harvested 203 

wheat plants from the center three rows of the plots, at least 15 cm away from the plot edge to 204 

minimize edge effects. These samples were also oven-dried at 55 °C and threshed to separate 205 

wheat grain from straw.  206 

Wheat straw and grain samples from within the microplots were ground and analyzed for 207 

total C, total N, and 15N signature at the UC Davis Stable Isotope Facility using a PDZ Europa 208 

20-20 isotope ratio mass spectrometer (Sercon, Ltd., Cheshire, UK), which allowed us to 209 

determine the amount of added cover crop-derived N taken up by the wheat plants. 210 

Immediately following wheat harvest, in-row soil cores (3.8-cm diameter) were taken 211 

down to 30 cm with a tractor-mounted hydraulic probe (Giddings, Windsor, CO, USA). Two 212 

cores were taken from within each microplot and kept on ice for transport back to the lab. In the 213 

lab, bags containing cores were weighed for determination of bulk density, and then soil was 214 

passed through a 2-mm sieve and wheat roots removed. A subsample of fresh soil was dried at 215 

105 °C for soil moisture.   216 

 217 

2.3 Microbial communities and activity 218 

 Enzyme activity and amplicon sequencing were conducted on rhizosphere soil collected 219 

at the tillering and flowering timepoints.  Hydrolytic enzyme activity was measured 220 

fluorometrically following German et al. (2011) to assess the enzyme activities: L-leucine 221 

aminopeptidase (LAP), L-Tyrosine aminopeptidase (TAP), and N-Acetyl-β-D-glycosaminidase 222 

(NAG); β-1,4-glucosidase (BG) and β-D-cellobiosidase (CB); phosphatase (PHOS). LAP, TAP 223 

and NAG assess N cycling and mineralization potentials; BG and CB assess labile and more 224 

structural C cycling, respectively; and PHOS targets phosphorous (P) cycling. Briefly, 1 g fresh 225 

soil was blended with 120 mL 50 mM sodium acetate buffer for 1 min. to create soil slurries. We 226 

combined 200 𝜇L soil slurry with 50 𝜇L 200 𝜇M fluorescent substrate solution in replicates of 227 

16, and incubated for 4 hours at 25 °C. Control reactions were included in each plate: un-bound 228 

4-methylumbelliferone or methylcoumarin fluorescing agent with the soil slurry to estimate 229 
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quenching, and substrate combined with soil-free buffer to estimate background fluorescence. 230 

Fluorescence was measured on a microplate fluorometer (Infinite M200, Tecan, Switzerland) 231 

with 365 nm excitation and 450 nm emission filters. 232 

 We extracted genomic DNA from rhizosphere soils using the Quick-DNA Fecal/Soil 233 

Microbe kit (Zymo Research Corporation, Irvine, CA) following manufacturer’s instructions. 234 

Amplicon libraries were prepared for the 16S rRNA region using the 515/806 Earth Microbiome 235 

Project standard primer pair (Caporaso et al., 2011), and the V3-V4 region of the ITS gene (ITS-236 

2; White et al., 1990). Extracted DNA was quantified using the Qubit ds DNA High Sensitivity 237 

quantification system (Invitrogen). Sequencing was conducted at the University of Colorado – 238 

Anschutz using an Illumina MiSeq (2 x 250 bp). Sequence data will be uploaded to the NCBI 239 

SRA database under project ID PRJNA735275 upon acceptance for publication.  240 

 241 

2.4 Isotope calculations 242 

 By quantifying the amount of 15N in wheat grain and straw samples, we were able to 243 

determine the relative contribution of our added cover crop residue to the N in these tissues. The 244 

relative proportion of N derived from the 15N-labelled cover crop residue in the wheat plants was 245 

calculated using the mixing model:  246 

flabel= 
(atm%sample- atm%control) 
(atm%label- atm%control)

 247 

where flabel is the relative contribution of the labeled cover crop to the sample, atm%sample is the 248 

atom% of the sampled material, atm%control is the atom% of the natural abundance soil, and 249 

atm%label is the atom% of the 15N labelled cover crop residue. Due to slight differences in the 250 

background 15N values of the different soil treatments (0x vs 5x; Table S1), a different natural 251 

abundance end member was used for samples from each of these soils. We calculated the total 252 

uptake of cover crop-derived N in wheat by multiplying the flabel value above and multiplying it 253 

by the concentration of N in the sample (wheat grain or straw).  254 

 255 

2.5 Statistical analysis of plant and soil metrics 256 

 We used two-way ANOVA to test the effect of wheat genotype and soil treatment 257 

(compost vs. no compost) on various metrics of wheat performance and N utilization. For soil 258 

enzyme activity and inorganic N measurements, the sample period (tillering or 259 
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heading/flowering) was also included as a fixed effect. Block was included as a random effect 260 

for single-timepoint measures, while plot was included in the models for enzyme activity and 261 

inorganic N measures that were repeated throughout the growing season. The model was 262 

implemented using the lmer function in the lme4 package, and the lmerTest package used for 263 

ANOVA implementation (Bates et al., 2015; Kuznetsova et al., 2017). An alpha value of p < 0.1 264 

was used to evaluate statistical significance to account for inherent variability in field conditions. 265 

Log transformations were applied as needed to meet the assumptions of ANOVA. All statistical 266 

analyses were performed in R version 4.0.3 (R Core Team, 2020), and plots were constructed 267 

using ggplot2 (Wickham et al., 2018).  268 

 269 

2.6 Microbial community analysis 270 

 Amplicon sequences data (16S and ITS) were processed using QIIME2 2 v 2019.2. 271 

Denoising was performed using DADA2 on paired-end reads for 16S data and forward reads for 272 

ITS data to improve feature clustering (Callahan et al., 2016). 16s forward and reverse reads 273 

were trimmed to 247 and 186 base-pairs, respectively, and ITS forward reads trimmed to 200 274 

base-pairs. We used a Native Bayes taxonomic classifier trained on our study primer pairs 275 

through QIIME2 (Bokulich et al., 2018) that utilized the SILVA and UNITE reference databases 276 

for bacteria/archaea sequences and ITS sequences, respectively (Abarenkov et al., 2020; Quast et 277 

al., 2013). Features that only appeared once and without classification past Kingdom were 278 

removed from both datasets, with chloroplast and mitochondrial sequences removed from the 279 

16S dataset. Sequence data is available in the NCBI SRA under PRJNA735275 SUB11809024.  280 

 We computed alpha diversity metrics on rarefied data to account for uneven sampling 281 

depth using the QIIME2 Core Metrics function (Bolyen et al., 2019). We completed additional 282 

multivariate analysis on family-level data after completing additional filtering steps: features that 283 

appeared less than 4 times in 20% of samples were excluded, as well as 10% lowest variance 284 

features according to inter-quartile range, as these are unlikely to show treatment effects. The 285 

abundance data was then scaled using the Cumulative Sum of Squares method (Paulson et al., 286 

2013). We assessed treatment effects on overall community composition with PERMANOVA 287 

and visualized with PCoA using Bray-Curtis dissimilarities.  288 

Differential abundance of specific families based on our treatments were tested using 289 

Linear Discriminant Analysis (LDA) Effect Size (LEfSe; Segata et al., 2011). The LEfSe allows 290 
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for statistically robust identification of features that are most likely to explain differences 291 

between experimental groups. Briefly, the method first uses a non-parametric Kruskal-Wallis 292 

sum-rank test to detect differentially abundant features across groups, followed by unpaired 293 

Wilcoxon rank-sum test, and finally LDA to estimate the effect size of each differentially 294 

abundant feature (Segata et al., 2011). LEfSe analysis was completed on taxa grouped at the 295 

family level, and significance was determined by FDR-adjusted p-value < 0.01 and log LDA 296 

score greater than 1.5. Multivariate analysis and visualization were implemented in the web-297 

based tool MicrobiomeAnalyst (Chong et al., 2020).  298 

 299 

3. Results 300 

3.1 Genotype and soil treatment effects on plant growth and N uptake 301 

Wheat yield strongly differed by year; due to severe drought in 2020, wheat yields were 302 

on average 695 kg ha-1, with even lower yield in the 15N microplots due to reduced moisture 303 

from 304 

soil 305 

disturbance to incorporate the residue. Therefore, the 2019-2020 wheat data was excluded from 306 

analysis, and all wheat yield and N uptake data is reported for the 2020-2021 season only. Wheat 307 

yield data from the excluded 2019-2020 season is reported in Table S3. Wheat yields from 2021 308 

averaged 2217 kg ha-1. Wheat grain yield in 2021 was 62% greater in the 0x than 5x plots (Fig. 309 

1a), while wheat straw yield was not different between soil treatment and averaged 11,698 kg ha-310 
1 (Fig. 1b). Harvest index was 54% higher in the 0x than the 5x treatment (Fig. 1c).    311 

 312 

Figure 1. Wheat yield metrics from a wheat genotype and compost amendment field trial in Akron, 
CO. Soil treatments are biennial (every 2 years) application of beef feedlot compost at a rate of 0 t 
ha-1 (0x) or 109 t ha-1 (5x). Bars are colored by wheat genotype with mean ± standard error. Two-
way ANOVA p - values are given in the top right of each panel. Data is from a single year of the 
trial (2020-2021 season) due to drought failure. 
 

Genotype: p = 0.86
Soil: p = 0.52

Genotype x Soil: p = 0.85

Genotype: p = 0.98
Soil: p = 0.02

Genotype x Soil: p = 0.63

Genotype: p = 0.90
Soil: p = 0.01

Genotype x Soil: p = 0.74

a) b) c)
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 313 

Total N uptake in the wheat tissue was affected by soil treatment but not by wheat 314 

genotype. While grain N concentration was the same across soil treatments (average: 2.9%), 315 

straw N concentration was 86% higher in the 5x soil treatment (1.8% vs. 0.95%). This led to 316 

more than twice as much straw N uptake in the 5x soil treatment (Table S4). However, the higher 317 

grain yield in the 0x treatment resulted in 55% more total N in the 0x (6.0 - 9.0 g N m-2) grain 318 

compared to 5x grain (3.9 - 5.8 g N m-2; Table S3). Overall N uptake in the wheat biomass (grain 319 

+ straw) was on average 48% greater in the 5x soils, though not significant (p = 0.12), and there 320 

was no effect of genotype or a genotype x soil interaction (Table S4). 321 

The uptake of cover crop-derived N was overall higher in the 0x treatment and exhibited 322 

a genotype x soil treatment interaction. Cheyenne showed the greatest plasticity in cover crop-N 323 

uptake across soil treatments, having 82% greater cover crop N uptake compared to Byrd within 324 

the 0x treatment, but then had the lowest relative cover crop-N uptake in the 5x treatment, 41% 325 

less than Byrd (Fig 2a).  Snowmass also had almost half the cover crop-N uptake in the 5x 326 

treatment relative to the 0x treatments, but Byrd was consistent with no change across the 327 

different compost treatments. Across all samples, the wheat took up an average of 4.9 kg of 328 

cover crop N per ha, 13% (range: 7%-22%) of the added residue N (Fig. 2a). 329 

The relative concentration of wheat tissue N derived from the added cover crop residue 330 

was consistent with trends in total residue N uptake (Fig. 2b). Plants in the 0x soil treatment had 331 

3.0 – 4.4% of their grain N derived from the added cover crop residue, but this was reduced to 332 

1.1-1.9% in the 5x soils (Fig. 2b). Enrichment was on average 0.54 atm% 15N in grain samples 333 

and 0.55 atm% 15N in straw. This translated to an average of 2.4% of grain N and 2.6% of the 334 

Figure 2. Total uptake (a) and relative fraction (b) of cover-crop residue (CC) derived N in wheat biomass 
tissue in different winter wheat genotypes and compost amendment treatments in field trial in Akron, CO. 
Soil treatments are biennial (every 2 years) application of beef feedlot compost at a rate of 0 t ha-1 (0x) or 
109 t ha-1 (5x). Bars are colored by wheat genotype with mean ± standard error. Two-way ANOVA p - 
values are given in the top right.  Data is from a single year of the trial (2020-2021 season) due to drought 
failure in year 1. 
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straw N being derived from the cover crop. 335 

 336 
 337 

3.2 Enzyme activities 338 

 Enzyme activities responded strongly to soil treatment but not to wheat genotype. For all 339 

enzymes assayed, activities in the 5x soil were greater than the 0x soil except for PHOS, which 340 

had higher activity in the 0x soil (Table 2). Enzyme activity was 40-48% higher at the second 341 

sampling timepoint (heading/flowering) in all enzymes except the two aminopeptidases, LAP 342 

and TAP (Table 2). In all enzymes except TAP, activity was higher in the second, wetter season 343 

(2019-2020; Table 2). Both years of data were included in enzyme analysis, as well as for 344 

inorganic N and microbiome analyses below, as these samples were collected from the main 345 

genotype plot earlier in the season before severe water limitation, and patterns were aligned with 346 

the 2021 data.   347 

 348 

3.3 Soil N and water 349 

 Soil nitrate and ammonium concentrations at tillering and heading showed differences 350 

based on soil treatment, but there was no effect of wheat genotype on either form of inorganic N. 351 

Both ammonium and nitrate were higher in the 5x soil (Table 3). We did not observe a 352 

relationship between enzyme activity and inorganic N levels after accounting for the large effect 353 

of compost addition (data not shown). Sampling timepoint effects varied by N form and year; in 354 

2020, ammonium levels were higher at tillering with no change in nitrate, while in 2021, nitrate 355 

levels were higher at tillering with no change in ammonium (Table 3).  356 

Genotype: p =  0.52
Soil: p < 0.001

Genotype x Soil: p < 0.01

Genotype: p = 0.31
Soil: p < 0.001

Genotype x Soil: p = 0.013

a) b)
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 Gravimetric water content (GWC) in the top 30 cm of soil decreased over the course of 357 

the growing season. GWC in the surface soil was ~10-20% higher the 5x rhizosphere soil 358 

samples during the growing season (tillering and heading), but the differences faded by the 359 

harvest sampling (Table S6).  360 

 361 

3.4 Rhizosphere microbiome analysis 362 

 Following initial feature filtering, we observed 8,640 distinct bacterial/archaeal features 363 

and 1,985 fungal features across bother years. The total number of features in a single sample 364 

ranged from 21, 177 to 151, 505, and we did not have to exclude any samples due to low read 365 

counts. Rhizosphere bacterial communities were dominated by Actinobacteria and 366 

Proteobacteria, and Ascomycota was overwhelmingly dominant in the fungal community (Fig. 367 

S3, S4).  368 

 Shannon diversity of both bacterial/archaeal and fungal taxa were 2.6 and 7.6% lower, 369 

respectively, in the 5x compost treatments than the 0x treatments, and there was a marginally 370 

significant genotype effect on fungal diversity (Table S5). Specifically, the historic genotype 371 

Cheyenne had 7.3% higher fungal diversity (Shannon) compared to Byrd (Table S5). Across 372 

both years, all three metrics of bacterial diversity were greater at the later heading timepoint, 373 

while only fungal richness showed an increase at heading. The effect of year was different for 374 

fungi vs. bacteria, with bacterial diversity and richness being greater in 2020, but fungal diversity 375 

higher in 2021.  376 

Both bacterial and fungal communities showed high separation due to soil treatment (Fig. 377 

3a,d), but there were no differences based on genotype (Fig. 3b,e) or sampling timepoint (Fig. 378 

3c,e)). LEfSe analysis identified a suite of bacterial and fungal families that contributed to the 379 

soil treatment differences observed (Fig. S1, Fig. S2). For bacterial families, we found that 380 

Rubrobacteriaceae and Sphingomonadaceae were strongly associated with the 0x soils, while 381 

Planococcaceae, Devosiaceae, Rhizobiaceae, and Pseudomonadaceae were associated with 5x 382 

soil. At the phylum level, Proteobacteria, Bacteriodetes and Firmicutes were most associated 383 

with 5x soil, while Actinobacteria were more abundant in the 0x soil (Fig. S2). For fungi, 384 

Chaetomiaceae and Sporomiaceae were associated with 5x soil, and Aspergillaceae and 385 

Lasiosphaeriaceae with the 0x soil (Fig. S1). No bacterial or fungal taxa were identified as 386 

contributing significantly to group separation by wheat genotype according to LEfSe analysis. 387 
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Due to additional filtering of rare and low-variability features, 1862 bacterial and 302 fungal 388 

features were ultimately used in multivariate analysis.  389 

   390 

4. Discussion 391 

4.1 Yield response 392 

Treatment effects on wheat grain yield were different than expected, and appeared to be 393 

strongly influenced by precipitation patterns. We found higher grain yield in the no-compost 394 

plots, though overall higher biomass production in the 5x treatment. This is despite the typical 395 

indicators of N availability and N cycling being greater in the 5x treatment, which was expected 396 

due to nutrient addition (Table 2, Table 3). The unexpected yield results, whereby grain yield 397 

was higher in the 0x treatment, was likely explained by the seasonal rainfall patterns experienced 398 

in 2021.  399 

We suspect that relatively high rainfall in the spring and early summer supported strong 400 

vegetative growth, especially in the 5x treatment with higher overall nutrient availability. 401 

However, this growth eventually led to water limitation in June and July when precipitation was 402 

below average (Table S2), such that the larger plants in the 5x plots were transpiring more and 403 

ran out of water during grain filling, resulting in low grain production for this treatment and a 404 

lower harvest index (Fig. 1c). We suspect that water limitation also impeded N translocation to 405 

the grain, resulting in high N concentration in the biomass of the 5x wheat, though not reflected 406 
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Figure 3. Principle Coordinate Analysis (PCoA) of winter wheat rhizosphere communities based on 16S 
(top) and ITS (bottom) amplicon sequencing. Samples are colored based on long-term compost amendment 
(left), wheat genotype (center), or sampling timepoint (right). PERMANOVA p - values are indicated in the 
bottom right corner for the significance of the groupings. Figure includes data from both growing seasons. 
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in the grain. Despite the higher nutrients in the 5x soil, previous research from these plots 407 

similarly found no significant difference in wheat biomass between the compost amendment 408 

treatments, though greater N concentration in wheat tissues (Calderón et al., 2018).  409 

We did not observe genotype differences in grain or straw yield, despite the historic 410 

genotype, Cheyenne, being a tall variety and not possessing the semi-dwarfing allele common in 411 

many modern cultivars, including the two current genotypes included in the study (Table 1). This 412 

result further highlights the importance of environmental effects that may obscure even well-413 

established genetic differences.  414 

 415 

4.2 Differential genotype uptake patterns of residue N   416 

 Our results suggest that wheat genotypes with different nutrient acquisition strategies 417 

(i.e., “cooperative” vs. competitive”) have varying ability to access cover crop N depending on 418 

the soil status. In contrast to our hypothesis, the older and high-exudate genotypes were not more 419 

successful in the high SOM (5x) environment; instead, it appears that the high SOM context 420 

provided the background microbial activity necessary to drive the turnover of residue N, 421 

supported by increased enzyme activity and extractable N in the 5x treatment (Table 2, 3), 422 

allowing other root traits, like drought tolerance, to determine relative success at organic nutrient 423 

acquisition.  424 

 Genotypic variation in belowground allocation has been previously observed for 425 

different types of wheat (Iannucci et al., 2021; Kelly et al., 2022b) which lends evidence for 426 

different resource acquisition strategies, even within a species. Different acquisition strategies 427 

may include the “collaborative” strategy, where high levels of exudation support microbial 428 

activity and encourages nutrient mineralization proximate to the root zone (Henneron et al., 429 

2020). In contrast, a more competitive strategy dedicates resources to root structures for better 430 

soil exploration and more direct uptake of nutrients instead of promoting microbial partnerships 431 

(Bergmann et al., 2020; Wen et al., 2019, 2022). Though we did not measure root exudation in 432 

this study directly, the genotypes used in this study have been previously shown to exhibit both 433 

high exudate (Snowmass) and low-exudation (Byrd) strategies, while the historic germplasm 434 

Cheyenne had intermediate exudation but may have other differences in root traits from its 435 

distinct lineage (Kelly et al., 2022b). Our findings suggest that long-term compost amendment, 436 

which alters the microbial community (Fig. 3) and increases enzyme activity and nutrient 437 
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availability (Table 2, Table 3), likely influences the relative success of these different strategies, 438 

and that water limitation further increases the complexity of plant-soil-microbe interactions.  439 

 Cheyenne and Snowmass were more successful than Byrd at taking up residue-derived N 440 

in the 0x soil (Fig. 1), which we suspect was due to higher exudation rates (Kelly et al., 2022b), 441 

resulting in greater microbial mineralization of organic N, in this more C- and N-limited soil. 442 

Both Cheyenne and Snowmass have been reported to be drought susceptible due to shallower 443 

root systems (Kim et al., 2016), and so likely concentrated more of their roots near the surface in 444 

proximity to the added N-rich residue. Importantly, Snowmass has also been shown to have high 445 

levels of root exudation, and has more recently been shown to recruit specific microbial taxa, 446 

compared to Byrd (Kelly et al., 2022b, 2022a). We suspect that in the 0x soils, which have lower 447 

native SOM and biological activity, microbes were in a C-limited state, and thus more responsive 448 

to exudate additions. Previous work has found that soil condition affects the microbial 449 

mineralization response to exudation regarding litter decomposition (Tian et al., 2019). Though 450 

we did not measure N mineralization rates directly in this study, we assume that residue N 451 

uptake provides a practical estimate of plant-available mineralized N. Our results indicate that, 452 

under C and N limitation in degraded agricultural soils, genotypes with greater exudation, i.e. 453 

more “collaborative”, have greater access to organic N sources than in the high SOM soil, and 454 

that the success of different nutrient acquisition strategies are dependent on the soil 455 

characteristics.  456 

While we did not observe genotype differences in enzyme activity (Table S3), we note 457 

that our samples were collected outside of the residue-addition microplots and so rhizosphere 458 

responses to the added residue were not specifically tested. Root exudation has been shown to 459 

stimulate N cycling enzyme activity and N availability in field and greenhouse settings, as 460 

microbes release enzymes to alleviate N limitation (Hamilton & Frank, 2001; Kelly et al., 2022b; 461 

Zhu et al., 2014). While a previous greenhouse experiment found high exudation to impede 462 

short-term residue N uptake in low-SOM soil under greenhouse conditions (Kelly et al., 2022a), 463 

field conditions and a longer growing season create a different nutrient dynamic. Specifically, 464 

the longer growing time tested here allows for greater microbial turnover of added residues, 465 

allowing plants to access previously-immobilized microbial N (Kuzyakov & Xu, 2013). This 466 

suggests that it is important to consider full-season biogeochemical cycling when translating 467 

greenhouse work to the field.  468 
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In the compost-amended soil, wheat genotype performance with regard to residue N 469 

uptake showed a different trend. While Byrd took up the lowest residue-N in the 0x soil, it 470 

surpassed the other genotypes in the 5x soil (Fig. 1). In the 5x soil, high levels of SOM and 471 

microbial activity (i.e. enzymes; Table 2) likely muted or diluted the exudate effect. Indeed, 472 

exudate stimulation of litter decomposition was reduced in high-SOM soil (Tian et al., 2019). In 473 

the high-SOM soils of this experiment, therefore, water became a more important factor for 474 

success, and thus drought tolerance a key genotype trait. Unlike the other genotypes, Byrd has 475 

been reported to be drought-tolerant with a deep-rooting morphology (Becker et al., 2016). 476 

Greater access to water deeper in the soil profile may have allowed Byrd to continue to grow and 477 

access residue N throughout the dry summer season. While not significantly different, we note 478 

that Byrd had on average the highest grain yield and harvest index in the 5x treatments (Fig. 479 

1a,c), suggesting that it may have been able to maintain growth later in the season when 480 

conditions became especially dry, with relatively less vegetative growth to maintain. 481 

Together, our data suggests that in higher SOM environments, exudation may be less 482 

important in mobilizing organic N sources, increasing the importance other limiting resources 483 

(i.e., water) in nutrient acquisition (Fig. 4). Thus, while less successful at accessing residue N in 484 

low-SOM and low-activity soil, we suspect that greater drought tolerance within the microbially-485 

active 5x soil was a key driver for Byrd in the uptake of residue-derived N. Our results highlight 486 

the importance of the environmental context in elevating the relative importance of genotype 487 

traits and different nutrient acquisition strategies, as high levels of soil health indicators may 488 
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effectively drive nutrient mineralization without plant investment.  489 

 490 

 491 

4.3 Microbial community 492 

 Microbial community structure and function was strongly affected by compost 493 

amendment, but we did not observe any differences due to wheat genotype or sampling time (Fig 494 

3; Table 2). Both C and N cycling enzymes were elevated in soil with long-term compost 495 

amendment, which was likely due to higher levels of complex C and N substrates (Bowles et al., 496 

2014). Phosphatase activity (PHOS) was lower in the 5x soils, reflecting the well-documented 497 

inverse relationship between available P and phosphatase activity (Kitayama, 2013; Sinsabaugh 498 

et al., 2008). We were unable to observe genotype differences in enzyme activity, which could 499 

be partly due assay limitations in sensitivity and field variability (Trasar-Cepeda et al., 2000). 500 

 The higher Shannon diversity in the 0x treatment suggests that a lower nutrient 501 

environment created more niche opportunities and less dominance by copiotrophic taxa (Fierer et 502 

al., 2007). Lower microbial diversity has been reported for high-nutrient soil environments like 503 

the rhizosphere and soils with organic additions (Brisson et al., 2019), though others have found 504 

Figure 4. Summary figure of interactive effects of soil management legacy and genotype on nitrogen (N) 
cycling and uptake. Size of blue arrows indicates relative rate of N cycling and plant uptake based on our 
research findings. 
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increased bacterial diversity with compost additions (Mickan et al., 2018; Zhen et al., 2014). 505 

Fungal diversity was highest in the historic genotype Cheyenne, which echoes previous work 506 

showing that historic varieties of wheat had greater reliance mycorrhizal association than modern 507 

varieties (Hetrick et al., 1993).  508 

We did not identify any bacterial or fungal taxa that were differentially abundant across 509 

genotypes, which suggests that genotype-level variation in rhizosphere community selection 510 

were overwhelmed by the strong environmental differences between the 0x and 5x compost 511 

soils. We note that some weed presence may have obscured genotype effects, especially in 2020 512 

before herbicide use was implemented. Similar to our findings, a study of different wheat 513 

genotypes cultivated with different farm management and drought treatments found that drought 514 

and farming system explained significant variability in microbial communities, but genotype 515 

effects were not apparent (Breitkreuz et al., 2021). Even under similar conditions, genotype 516 

effects on rhizosphere communities are often subtle and difficult to detect (Kelly et al., 2022b). 517 

Studies comparing rhizosphere microbiomes of different genotypes for a variety of crops have 518 

suggested that genotype differences can influence microbiome assembly, but that different 519 

environmental conditions (soil type, nutrient management) have a larger effect (Schmidt et al., 520 

2020).  521 

Acidobacteria, which were highly indicative of the 0x soil and have species known to be 522 

ecological “stress tolerators”, were found to be the most abundant phylum in undisturbed natural 523 

soils across a range of ecosystems (Fierer, 2017). The higher-nutrient environment of the 5x soil 524 

likely favored more competitive taxa, including members of Pseudomonas which were found to 525 

be highly abundant (Fig. S1a). Also common in the 5x soils was the Rhizobiaceae, which 526 

includes many species of Rhizobia, common soil and plant-associated bacteria and include N-527 

fixers as well as plant pathogens (Alves, 2013).  528 

  529 

Conclusions   530 

 As agroecosystems evolve to provide additional ecosystem services like nutrient retention 531 

and C storage, there will be a greater reliance on organic nutrient provision. It has been 532 

hypothesized that unintended consequences of plant breeding on rhizosphere interactions maybe 533 

cause disadvantages to modern crops in a soils with fewer synthetic inputs.  We found that soils 534 

with high levels of SOM better support nutrient cycling activities, regardless of crop genotype. In 535 
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addition, stronger rhizosphere partnerships via exudation may be more important in degraded, C-536 

depleted soils. Importantly, we suspect a been a trade-off between microbial stimulation via 537 

exudation and deep rooting morphology led to genotype differences under water limitation. 538 

Therefore, it is critical to consider the coupling of biological activity, nutrient cycling and water 539 

availability when breeding and selecting crop traits for agroecosystems in a changing 540 

environment.  541 

  542 
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Table 1. Previously determined characteristics of the winter wheat (Triticum aestivum) genotypes used in this study  
 
 
 Byrd Cheyenne Snowmass 
Acc. No.1 PI 664257 CItr 8885 PI 658597 
Origin Colorado State Univ. Univ. Nebraska Colorado State Univ. 
Release Date 2011 1933 2009 
Stature Semi-dwarf2 Tall Semi-dwarf 
Root architecture3 Long, thin Intermediate Short, thick 
Exudation level3 Low Intermediate High 
Drought Susceptibility4 Tolerant Susceptible Susceptible 

1 Accession number in the USDA-ARS GRIN database (http://www.ars-grin.gov/).  
2 Semi-dwarf genotypes possess either allele Rht-B1b or Rht-D1b, and Tall genotypes lack both those alleles. 
3 Based on previous data from Kelly et al. 2022a,b 
4From Haley et al.  
  



 32 

 
Table 2. Soil rhizosphere enzyme activities at tillering and heading/flowering stages in wheat genotype x compost amendment field 
study based in Akron, CO over two growing seasons. Values are average (n = 4) ± standard error in nmol g-1 soil hr-1.  LAP and PHOS 
measurements were not taken at tillering in the 2019-2020 season. ANOVA p-values are presented at the bottom of the table.  
 

Year Sampling Period Soil Trt. Variety TAP1 NAG BG CB LAP PHOS 
2020 Tillering 0x Byrd 76 ± 21 95 ± 18 358 ± 39 105 ± 18   

   Cheyenne 51 ± 9 63 ± 16 283 ± 89 78 ± 27   
   Snowmass 71 ± 8 77 ± 21 314 ± 57 88 ± 21   
  5x Byrd 96 ± 14 79 ± 14 254 ± 32 83 ± 15   
   Cheyenne 114 ± 24 94 ± 17 277 ± 46 101 ± 23   
   Snowmass 117 ± 16 102 ± 16 330 ± 89 105 ± 10   
 Heading/Flowering 0x Byrd 70 ± 37 117 ± 60 238 ± 72 64 ± 30 108 ± 51 286 ± 90 

   Cheyenne 73 ± 17 62 ± 6 201 ± 18 48 ± 6 77 ± 11 300 ± 55 

   Snowmass 63 ± 7 61 ± 8 206 ± 17 48 ± 8 81 ± 14 275 ± 82 
  5x Byrd 97 ± 26 108 ± 43 248 ± 51 68 ± 16 175 ± 64 164 ± 39 

   Cheyenne 86 ± 19 88 ± 14 262 ± 36 67 ± 10 143 ± 34 148 ± 24 

   Snowmass 93 ± 17 98 ± 31 240 ± 39 62 ± 17 154 ± 44 200 ± 35 
2021 Tillering 0x Byrd 51 ± 10 145 ± 21 372 ± 6 133 ± 15 131 ± 18 428 ± 27 

   Cheyenne 54 ± 14 129 ± 25 374 ± 58 125 ± 24 122 ± 20 414 ± 73 
   Snowmass 42 ± 10 103 ± 11 324 ± 38 97 ± 13 98 ± 10 380 ± 48 
  5x Byrd 111 ± 35 265 ± 72 519 ± 105 188 ± 54 453 ± 132 305 ± 85 
   Cheyenne 101 ± 16 277 ± 87 504 ± 81 166 ± 42 390 ± 67 252 ± 65 
   Snowmass 111 ± 25 356 ± 107 557 ± 127 206 ± 61 491 ± 130 313 ± 76 
 Heading/Flowering 0x Byrd 72 ± 25 122 ± 17 295 ± 50 105 ± 16 140 ± 21 304 ± 26 
   Cheyenne 52 ± 15 72 ± 8 204 ± 19 68 ± 9 99 ± 10 282 ± 41 
   Snowmass 41 ± 9 68 ± 12 177 ± 26 56 ± 11 90 ± 14 274 ± 36 
  5x Byrd 105 ± 18 234 ± 38 411 ± 50 159 ± 32 407 ± 69 197 ± 37 
   Cheyenne 94 ± 9 238 ± 36 372 ± 37 138 ± 15 381 ± 32 203 ± 12 
   Snowmass 100 ± 8 178 ± 24 338 ± 18 119 ± 10 409 ± 37 203 ± 6 

  ANOVA P-values       
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  Genotype 0.62 0.28 0.68 0.52 0.73 0.85 

  Soil Treatment <0.001 <0.001 0.0034 0.0003 0.0001 0.0001 

  Sampling Period 0.61 0.14 0.39 0.71 0.0066 0.047 
  Year  0.3 <0.001 0.0002 0.0001 0.0001 0.0001 

  Genotype x Soil Treatment 0.55 0.099 0.48 0.63 0.61 0.48 
1 TAP, L-Tyrosine aminopeptidase; NAG,  N-Acetyl-β-D-glycosaminidase; BG, β-1,4-glucosidase; CB, β-D-cellobiosidase; LAP,  L-leucine 
aminopeptidase; PHOS, phosphatase  
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Table 3. Extractable inorganic N values for rhizosphere soil samples collected from wheat genotypes and different sampling times. 
Below are ANOVA p-values for wheat genotype, long-term soil treatment, and sampling timepoint effects on inorganic N levels in 
rhizosphere soil samples. Analysis is conducted for 2020 and 20201 separately.  
   2020  2021 

Sampling Period 
Soil 
Treatment Variety 

Nitrate  
(mg kg-1) 

Ammonium  
(mg kg-1) 

 Nitrate  
(mg kg-1) 

Ammonium 
(mg kg-1) 

Tillering 0x Byrd 21.1 ± 15.0 9.6 ± 1.7  17.1 ± 8.4 1.9 ± 1.1 
  Cheyenne 19.4 ± 12.5 12.8 ± 3.9  8.7 ± 2.4 1.5 ± 0.7 
  Snowmass 9.8 ± 4.7 7.8 ± 2.9  9.3 ± 3.9 1.9 ± 0.9 
 5x Byrd 25.3 ± 6.8 1.2 ± 0.2  25.0 ± 6.3 3.1 ± 1.2 
  Cheyenne 57.2 ± 26.8 3.2 ± 1.2  19.5 ± 4.2 1.4 ± 0.1 
  Snowmass 22.5 ± 10.5 5.1 ± 0.8  23.6 ± 4.0 2.1 ± 0.4 
Heading/flowering 0x Byrd 15.1 ± 9.1 5.6 ± 1.1  3.5 ± 0.4 1.5 ± 0.0 
  Cheyenne 13.4 ± 7.6 7.3 ± 2.0  3.8 ± 1.0 1.3 ± 0.1 
  Snowmass 9.6 ± 4.8 4.7 ± 1.5  2.7 ± 0.3 1.3 ± 0.0 
 5x Byrd 35.6 ± 7.7 1.6 ± 0.5  20.1 ± 4.9 2.2 ± 0.6 
  Cheyenne 36.2 ± 15.7 2.3 ± 0.6  14.6 ± 3.6 2.1 ± 0.3 
  Snowmass 32.5 ± 2.8 3.1 ± 0.4  19.0 ± 1.9 1.9 ± 0.2 
 ANOVA P    

 
  

  Genotype 0.75 0.53  0.43 0.59 
  Soil 0.01 0.001  <0.001 0.02 
  Timepoint 0.46 <0.001  <0.001 0.75 

  
Genotype x 
Soil 0.97 0.30 

 
0.44 0.87 
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Table S1. Soil characteristics (0 – 30 cm) for different long-term compost-amended soil treatments, applied every two years for 10 
years at a rate of 0 t ha-1 (0x) or 109 t ha-1 (5x). The final compost application occurred in fall 2019.  
 
 
 
Soil 
Management 

SOC  
(g kg-1) 

Total N 

(g kg-1) 
𝛿15N NO3-N  

(mg kg-1) 
NH4-N 
(mg kg-1) 

Extractable P  
(mg kg-1)a 

1:1 
pH 

No compost 14.1 1.9  14.66 21.8 4.5 5.1 7.3 

5x Compost 19.0 2.4 26.63 30.7 6.8 47.3 7.2 
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Table S2. Monthly weather data during two field growing seasons of winter wheat in Akron, CO.  
 
 
   Month   
Season  Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul  Total  
2019-2020 Avg. Max Temp (C) 30.5 28.9 14.8 9.7 6.3 7.9 5.8 11.6 15.4 21.6 31.4 32.2   
 Avg. Min Temp (C) 14.7 11.6 -1.7 -4.8 -5.9 -7.6 -9.0 -2.3 -1.5 6.2 12.4 15.4   
 Total Precip (mm) 60.5 6.9 13.0 27.9 2.0 4.1 6.6 16.5 9.9 76.5 31.8 17.5  273.1 
2020-2021 Avg. Max Temp (C) 33.0 25.6 16.7 14.0 5.8 5.1 0.9 10.5 14.2 19.2 28.4 32.0   
 Avg. Min Temp (C) 14.9 8.6 -0.5 -2.4 -7.4 -7.2 -11.4 -3.1 -0.4 7.0 12.8 14.4   
 Total Precip (mm) 33.0 32.0 7.6 7.1 11.2 7.9 10.9 57.7 87.1 176.3 18.3 11.7  460.8 
113 Year Mean Avg. max Temp (C) 30.6 25.8 18.8 10.6 4.8 3.8 6.0 10.3 15.9 21.2 27.6 31.7   
 Avg. Min Temp (C) 13.6 8.4 1.7 -4.8 -9.3 -10.4 -8.3 -4.6 0.3 5.9 11.2 14.6   
 Total Precip (mm) 53.9 31.7 23.0 13.6 10.4 8.3 9.3 21.6 42.0 76.3 61.9 65.5  417.5 
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Table S3. Wheat yield from the excluded 2019-2020 season. Despite supplemental irrigation in Fall 2019 to improve germination, 
wheat yields were far below average. Values are mean ± standard error.  
 
 
Soil 
Treatment Genotype 

Wheat grain yield 
(kg ha-1) 

Wheat straw yield 
(kg ha-1) 

Total wheat biomass 
 (kg ha-1) 

0x Byrd 881 ± 158 5,507 ± 899 6,388 ± 1,049 
 Cheyenne 612 ± 184 5,230 ± 323 5,842 ± 470 
 Snowmass 754 ± 153 4,732 ± 551 5,487 ± 679 
5x Byrd 521 ± 261 5,453 ± 1,701 5,974 ± 1,949 
 Cheyenne 691 ± 223 6,691 ± 809 7,381 ± 977 
 Snowmass 714 ± 253 5,115 ± 1,200 5,829 ± 1,347 
P values    
Genotype  0.88 0.49 0.62 
Soil Treatment 0.44 0.40 0.55 
Genotype x Soil Treatment 0.42 0.66 0.61 
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Table S4. Nitrogen content and total uptake of wheat grain and straw in wheat genotype x compost treatment field study in Akron, 
CO. Samples were collected from 1 m2 microplots amended with 15N labelled cover crop residues. Values represent the means (n = 4) 
± standard error for wheat sampled in the 2021 season.  
 

Soil 
Treatment Genotype 

Grain N conc. 
(g kg-1) 

Straw N conc. 
(g kg-1) 

Grain N uptake 
(g m-2) 

Straw N uptake  
(g m-2) 

Total N uptake 
(g m-2) 

0x Byrd 30.0 ± 2.0 9.4 ± 1.5 6.0 ± 1.9 9.6 ± 2.0 15.6 ± 2.2 
 Cheyenne 27.3 ± 0.7 9.5 ± 1.8 7.6 ± 2.0 10.6 ± 1.6 18.2 ± 1.7 
 Snowmass 29.5 ± 3.0 9.5 ± 1.6 9.0 ± 1.4 10.6 ± 0.9 19.6 ± 0.8 
5x Byrd 30.3 ± 1.5 16.4 ± 0.3 5.8 ± 1.3 19.7 ± 0.7 25.5 ± 1.8 
 Cheyenne 29.7 ± 1.0 17.3 ± 1.3 4.9 ± 0.8 20.2 ± 3.7 25.1 ± 4.4 
 Snowmass 29.1 ± 2.1 19.6 ± 1.3 3.9 ± 0.8 24.6 ± 3.3 28.5 ± 3.3 
P values      
Genotype  0.67 0.5 0.92 0.43 0.29 
Soil Treatment 0.64 <0.001 0.03 <0.001 0.12 
Genotype x Soil 
Treatment 0.75 0.53 0.26 0.59 0.56 
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Table S5. Rhizosphere microbiome diversity metrics for bacterial/archaeal markers and fungal marker genes. Values are means ± 
standard error, and ANOVA analysis results (p-values) are presented at the bottom of the table. Shannon and Pielou diversity indices 
are presented, and Richness is expressed as total features per sample.  
    Bacteria/Archaea (16S) Fungi (ITS) 
Year Timepoint Soil.trt Variety Shannon Pielou Richness Shannon Pielou Richness 

2020 Tillering 0x Byrd 9.0 ± 0.10 0.91 ± 0.01 1,003 ± 68 4.9 ± 0.49 0.60 ± 0.05 283 ± 28 

   Cheyenne 8.9 ± 0.13 0.90 ± 0.01 952 ± 40 5.5 ± 0.26 0.67 ± 0.03 313 ± 13 

   Snowmass 8.8 ± 0.05 0.89 ± 0.00 1,006 ± 47 5.4 ± 0.19 0.66 ± 0.02 281 ± 22 

  5x Byrd 8.8 ± 0.11 0.88 ± 0.01 979 ± 51 4.9 ± 0.35 0.61 ± 0.04 242 ± 29 

   Cheyenne 8.7 ± 0.12 0.87 ± 0.01 997 ± 56 5.4 ± 0.07 0.67 ± 0.01 255 ± 9 

   Snowmass 8.3 ± 0.19 0.85 ± 0.02 840 ± 40 5.2 ± 0.13 0.66 ± 0.02 227 ± 6 

 Heading/Flowering 0x Byrd 9.0 ± 0.12 0.90 ± 0.01 1,032 ± 46 5.1 ± 0.46 0.61 ± 0.05 304 ± 32 

   Cheyenne 9.0 ± 0.04 0.91 ± 0.00 1,006 ± 3 5.6 ± 0.37 0.67 ± 0.04 321 ± 18 

   Snowmass 9.2 ± 0.09 0.91 ± 0.00 1,126 ± 63 5.5 ± 0.32 0.66 ± 0.03 330 ± 16 

  5x Byrd 8.8 ± 0.33 0.89 ± 0.02 956 ± 130 4.6 ± 0.18 0.60 ± 0.01 222 ± 31 

   Cheyenne 9.2 ± 0.04 0.90 ± 0.00 1,156 ± 18 5.4 ± 0.13 0.67 ± 0.01 271 ± 11 

   Snowmass 9.0 ± 0.15 0.90 ± 0.00 1,006 ± 88 4.9 ± 0.17 0.62 ± 0.01 234 ± 27 
2021 Tillering 0x Byrd 9.4 ± 0.17 0.91 ± 0.01 1,294 ± 227 4.2 ± 0.27 0.53 ± 0.03 264 ± 21 

   Cheyenne 9.2 ± 0.02 0.91 ± 0.00 1,131 ± 22 4.7 ± 0.36 0.58 ± 0.04 301 ± 21 

   Snowmass 9.3 ± 0.05 0.91 ± 0.00 1,162 ± 39 5.1 ± 0.20 0.62 ± 0.02 303 ± 15 

  5x Byrd 9.1 ± 0.16 0.90 ± 0.01 1,192 ± 88 4.9 ± 0.12 0.65 ± 0.02 191 ± 6 

   Cheyenne 9.1 ± 0.09 0.90 ± 0.01 1,080 ± 34 4.4 ± 0.12 0.60 ± 0.02 168 ± 8 

   Snowmass 9.1 ± 0.15 0.91 ± 0.00 1,038 ± 110 4.5 ± 0.15 0.61 ± 0.02 163 ± 11 

 Heading/flowering 0x Byrd 9.5 ± 0.10 0.92 ± 0.00 1,354 ± 132 4.6 ± 0.44 0.56 ± 0.05 292 ± 20 

   Cheyenne 9.2 ± 0.12 0.91 ± 0.01 1,099 ± 58 5.2 ± 0.31 0.62 ± 0.03 356 ± 28 

   Snowmass 9.4 ± 0.05 0.91 ± 0.00 1,226 ± 42 5.3 ± 0.23 0.64 ± 0.03 322 ± 14 

  5x Byrd 9.1 ± 0.15 0.90 ± 0.01 1,162 ± 110 4.6 ± 0.24 0.62 ± 0.02 189 ± 19 

   Cheyenne 9.1 ± 0.11 0.90 ± 0.01 1,102 ± 96 4.3 ± 0.14 0.57 ± 0.02 177 ± 7 

   Snowmass 9.0 ± 0.08 0.89 ± 0.00 1,111 ± 44 3.7 ± 0.41 0.50 ± 0.05 170 ± 7 
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   ANOVA P       
   Genotype 0.46 0.6 0.42 0.099 0.14 0.18 

   Soil <0.001 < 0.001 0.12 0.007 0.92 < 0.001 

   Timepoint 0.001 < 0.001 0.036 0.86 0.43 0.02 

   Year <0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 
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Table S5. Gravimetric water content of soil from rhizosphere (Tillering & Heading) and surface 0-30 cm (Harvest) samples. All 
values are expressed as percent of dry soil in mean ± standard error. ANOVA results (p-values) are presented at the bottom of the 
table.   

    Timepoint 

Year 
Soil 
Treatment Variety 

 
Tillering Heading/Flowering Harvest 

2020 0x Byrd  24.0 ± 1.5 7.8 ± 0.9 7.2 ± 0.9 
  Cheyenne  25.5 ± 2.7 7.4 ± 0.8 8.0 ± 0.4 
  Snowmass  25.0 ± 1.3 8.1 ± 0.9 6.4 ± 1.1 
 5x Byrd  25.6 ± 1.6 9.3 ± 1.4 7.3 ± 1.2 
  Cheyenne  27.3 ± 1.7 7.9 ± 1.0 7.5 ± 1.6 
  Snowmass  29.4 ± 1.9 8.6 ± 1.0 7.5 ± 1.5 

2021 0x Byrd  25.6 ± 1.8 17.9 ± 2.3 8.0 ± 0.6 
  Cheyenne  28.5 ± 1.9 19.0 ± 3.0 9.1 ± 0.3 
  Snowmass  25.5 ± 1.3 16.0 ± 2.5 8.3 ± 0.2 
 5x Byrd  32.0 ± 1.6 23.0 ± 3.5 8.2 ± 0.3 
  Cheyenne  32.5 ± 2.1 23.4 ± 4.7 9.1 ± 0.3 
  Snowmass  30.8 ± 1.7 20.5 ± 2.5 9.2 ± 0.5 
ANOVA P       
Genotype 0.54      
Soil < 0.001      
Year < 0.001      
Sample Period < 0.001      
Soil x Year 0.11      
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Figure S1. Linear Discriminate Analysis Effect Size (LEfSe) analysis results for family-level a) bacterial communities based on 16S 
amplicon sequencing and b) fungal families based on ITS sequencing. Analysis identifies families important for indicating grouping 
by soil compost treatment (bar colors), with larger absolute LDA scores indicating greater importance. Data shown for both years.   
 

Rubrobacteriaceae

Sphingomonadaceae

Solirubrobacteraceae

Beijerinckiaceae

67_14

Xanthobacteraceae

Bacillaceae

Sphingobacteriaceae

Xanthomonadaceae

Microscillaceae

Microbacteriaceae

Pseudomonadaceae

Rhizobiaceae

Devosiaceae

Planococcaceae

-2 -1 0 1 2
LDA score

Fe
at

ur
es Class

0x
5x

Lasiosphaeriaceae

Aspergillaceae

V32

Phaeosphaeriaceae

Pleosporaceae

Microdochiaceae

Pseudeurotiaceae

Ascobolaceae

Filobasidiaceae

Bolbitiaceae

Microascaceae

Gymnoascaceae

Pyronemataceae

Sporormiaceae

Chaetomiaceae

-2 0 2 4
LDA score

Fe
at

ur
es Class

0x
5x

B
ac

te
ria

l F
am

ili
es

Fu
ng

al
 F

am
ili

es

a) b)

Soil Treatment

Nectriaceae

Lasiosphaeriaceae

Aspergillaceae

V48

Pleosporaceae

Phaeosphaeriaceae

Didymellaceae

unidentified

Thelebolaceae

Bolbitiaceae

Microascaceae

Gymnoascaceae

Pyronemataceae

Sporormiaceae

Chaetomiaceae

-2 0 2 4
LDA score

Fe
at

ur
es Class

0x
5x



 44 

 
Figure S2. Linear Discriminate Analysis Effect Size (LEfSe) analysis results for a) bacterial phyla based on 16S amplicon sequencing 
and b) fungal phyla based on ITS sequencing. Analysis indicates families important for indicating groups (bar colors), with higher 
absolute LDA scores indicating greater importance.  
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Figure S3. Bacterial phylum relative abundances based on 16S sequencing. Bar lengths depict merged (summed) abundances for each 
soil-by-genotype combination and are colored by phylum.  
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Figure S4. Fungal abundances based on ITS sequencing. Bar lengths depict the sum total relative abundance across all samples in each 
soil-by-genotype group.  
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