

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-840344

Soil management legacy interacts with wheat genotype to determine access to organic N in a dryland system

C. Kelly, P. F. Byrne, M. E. Schipanski, J. Schneekloth, F. Calderon, S. J. Fonte

September 27, 2022

Agriculture, Ecosystems and Environment

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 Title: Soil management legacy interacts with wheat genotype to determine access to organic N in
2 a dryland system

3

4 Authors: Courtland Kelly^{1,2}, Patrick F. Byrne², Meagan Schipanski², Joel Schneekloth³,
5 Francisco Calderón⁴, Steven. J. Fonte¹

6

7 ¹ Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore,
8 CA

9 ² Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO

10 ³ US Central Plains Research Station, Colorado State University, Akron, CO

11 ⁴ Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR, USA

12

13 **LLNL IM Release #: LLNL-JRNL-840344**

14 Abstract:

15 Organic nutrient management through the application of compost and/or cover crops
16 provides mineralizable sources of nutrients for plants while often building soil organic matter
17 (SOM) and various aspects of soil health. Variability in nutrient acquisition strategies between
18 crop genotypes may confer advantages under different soil health contexts and could be
19 important for crop selection and breeding, but crop response under field conditions remains
20 unexplored. We investigated the ability of different genotypes of winter wheat (*Triticum*
21 *aestivum* L.) to access nitrogen (N) from newly added cover crop residues in two soils with
22 contrasting levels of SOM and biological activity. We planted three previously characterized
23 wheat genotypes in a long-term dryland compost amendment field trial: 1) Byrd (current, deep
24 roots, low exudation), 2) Cheyenne (historic, drought susceptible, intermediate exudation), and
25 3) Snowmass (current, drought-susceptible, high exudation). ^{15}N -labelled cover crop residue was
26 added to each plot and traced into wheat tissue. In the low SOM soil, the high exudate genotype
27 Snowmass and historic genotype Cheyenne took up the most residue-derived N ($6.4\text{--}8.1\text{ kg N ha}^{-1}$)
28 compared to the low-exudate genotype Byrd (4.4 kg N ha^{-1}), suggesting a strong exudate effect
29 in the more carbon-limited soil. However, the low-exudate, deep rooted genotype, Byrd, took up
30 the most residue N in the high SOM soils (4.6 kg N ha^{-1} vs. 2.8 and 3.3 hg N ha^{-1} for Cheyenne
31 and Snowmass, respectively), which indicated higher native N cycling activities and great
32 importance of drought resistance. Enzyme activity, inorganic N, and microbial communities
33 were not influenced by genotype, though did show strong effects of compost application legacy.
34 Our results show that belowground allocation strategies that favor microbial stimulation may be
35 less successful under water limitation, especially when high SOM can support mineralization of
36 residue N without added investment in root inputs. Increased soil health through SOM-building
37 management likely enhances nutrient cycling, and may better support root strategies that invest
38 less in microbial stimulation in favor of other limiting resources.

39

40 Keywords: *Triticum aestivum*; soil organic matter; compost; cover crop; nitrogen mineralization;
41 organic nutrient management

42

43 1. Introduction:

44

45 Improved soil health is a critical management goal for farmers, policy-makers and
46 society, as agriculture is increasingly asked to provide environmental services as well as sustain
47 food production. While there is on-going and vigorous debate regarding the definition and
48 measurement of soil health (Janzen et al., 2021), certain practices, such as the addition of organic
49 amendments, is generally thought to contribute to soil health by increasing levels of soil organic
50 matter (SOM) and biological activity, while reducing losses of reactive nitrogen (N) (Xia et al.,
51 2017). Organic amendments such as compost, manure, and leguminous cover crops (green
52 manure) are commonly utilized in organic agriculture to support crop nutrition where synthetic
53 fertilizers are not permitted. Composted manure primarily contains organic, mineralizable N,
54 which can provide a slow release of N during the growing season. Cover crops may also supply
55 sufficient N to meet crop demands if cover crop biomass production and N fixation is adequate
56 (Tonitto et al., 2006). Along with supplying crop nutrients, organic amendments can rapidly
57 improve many soil properties related to soil structure, water dynamics, and nutrient cycling (Six
58 et al., 2004).

59 In addition to nutrient inputs, plant roots can also affect SOM dynamics and microbial
60 communities through exudation. Roots of different plant types can stimulate soil N
61 mineralization, but the direct link to plant N availability and uptake remains unclear (Gan et al.,
62 2022; Huo et al., 2017). Root effects on N mineralization are mediated through stimulation
63 and/or selection of the rhizosphere microbial community and N cycling activities (Qu et al.,
64 2020; Yu et al., 2021). There is increasing evidence that plant rhizosphere microbiomes show
65 species and even genotypic specificity in selecting microbial taxa, which can perform soil
66 functions that contribute to plant success (Sánchez-Cañizares et al., 2017). For example, plants
67 have been shown to use root exudation to recruit microbial taxa that assist in nutrient
68 mobilization, such as phosphorous (P) solubilization or N mineralization, or to exclude
69 pathogenic organisms (Fitzpatrick et al., 2018; Mendes et al., 2018).

70 Rhizosphere microbial interactions may be an integral part of plant resource acquisition
71 strategies that are just now being integrated into existing resource allocation frameworks. For
72 example, the root economic spectrum focuses on the amount and structure of root tissues
73 allocation in response to resource gradients (Reich, 2014). However, recent work on root traits
74 has unearthed evidence of another “collaboration” axis, where species with high microbial
75 associations have smaller root systems but produce more exudates (i.e., collaborative) to increase

76 nutrient availability closer to the root (Bergmann et al., 2020; Wen et al., 2022). Indeed,
77 evidence from >1800 plant species supports a collaboration gradient with regard to root-
78 microbial symbioses (Bergmann et al., 2020).

79 Root exudation is a complex process controlled by many different genetic pathways, and
80 is likely subject to many of the same selection pressures as other plant traits (Schmidt et al.,
81 2016). It has been postulated that more recent efforts in plant breeding, especially under soil
82 environments with high inputs of inorganic nutrients, may have disrupted co-evolutionary
83 processes between plant roots and rhizosphere microbial communities, with potential to decrease
84 crop access to organic nutrient inputs (Pérez-Jaramillo et al., 2016; Schmidt et al., 2016). Work
85 in several crops, including maize and winter wheat, have found a shift in root-associated
86 microbial communities in modern vs. older genotypes (Herrick et al., 1993; Schmidt et al., 2020;
87 Tkacz et al., 2020). This work suggests that recent breeding efforts may be responsible for
88 unintentional selection away from historical root-microbial interactions, which could affect crop
89 fitness in soils with high inputs of organic nutrient sources.

90 As agroecosystems move to improve environmental health through greater reliance on
91 cycling of organic nutrients, certain crop genotypes and traits may be better suited to
92 participating in and benefitting from microbially-mediated nutrient cycling activities. Genotype-
93 level variation in root architecture and exudate dynamics have been found in winter wheat
94 (*Triticum aestivum* L.), an important global staple crop (Kelly et al., 2022b). These differences in
95 root traits can confer varying levels of drought resistance and N use efficiency (Becker et al.,
96 2016; Foulkes et al., 2009) and likely affect the rhizosphere microbiome, with important
97 implications for nutrient cycling and plant access to organic nutrient sources. Different cultivars
98 of durum wheat (*Triticum durum* L.) have demonstrated unique exudation profiles related to root
99 morphology and rhizosphere community composition (Iannucci et al., 2021), but the implications
100 for rhizosphere functions like nutrient cycling remain poorly understood. It is especially critical
101 to investigate root-rhizosphere dynamics in the field to understand these relationships in realistic
102 scenarios, but there is very little research linking root traits to rhizosphere functions in a field
103 setting.

104 The objective of this study was to assess the relative ability of distinct winter wheat
105 genotypes to access residue-derived N under different soil health contexts. We hypothesized that
106 wheat genotypes with higher levels of exudation and less intensive breeding (i.e., older) will

107 perform better in a high-SOM context since greater investment in microbial interactions should
108 provide greater access to organic nutrients. More specifically, we hypothesized that genotypes
109 with higher exudation rates will stimulate greater hydrolytic enzyme activity and available N,
110 driven by distinct microbial communities. To test these hypotheses, we utilized a long-term
111 compost amendment field trial to assess the effects of different levels of soil health, mainly
112 determined by differences in SOM and biological activity. Within this experiment, we planted
113 three different genotypes of winter wheat, selected from previous research demonstrating
114 differing belowground C allocation patterns. We applied ^{15}N -labelled cover crop residue to the
115 soil to trace the mineralization and uptake of residue-N into wheat tissue, and related these
116 dynamics to microbial community structure, enzyme activity, and available inorganic N in the
117 soil. Together, these methods allow us to relate crop genotype differences in belowground
118 allocation to microbial community structure and function, in the context of N flows and
119 transformations in an agroecosystem.

120

121 Methods

122

123 2.1 Site and experimental design

124 The study site was a long-term (10 yr) semi-arid dryland experiment established in 2010
125 at the USDA-ARS Central Great Plains Research Station in Washington County,
126 Colorado (40°09'22.4"N 103°08'26.1"W, altitude 1,384 m). Two soil types are present at this
127 location: Weld silt loam (fine, smectitic, mesic Aridic Argiustoll) and a Rago silt loam (fine,
128 smectitic, mesic Pachic Argiustoll). Average high and low temperatures range from 32°C in July
129 to -10°C in January, with average annual rainfall of 417.5 mm (Table S2). During the two study
130 years considered here, total annual precipitation was 273 in 2020 and 461 mm in 2021 (Table
131 S2). This study employed a two-year crop rotation with alternating years of winter wheat and
132 bare fallow. The fields were managed without synthetic fertilizers or herbicides, utilizing
133 shallow sweep tillage (8 cm depth) twice each summer for weed control (Calderón et al., 2018).
134 The only exception was in 2020, where glyphosate was applied twice before wheat planting in
135 September to control aggressive weed populations and avoid tillage (and associated soil moisture
136 loss). The plots utilized in this study included contrasting soil health management practices, with
137 biennial applications of beef feedlot compost applied before wheat planting at a rate of 109 Mg

138 ha^{-1} (5x), which corresponds to roughly five times the expected crop N demand, versus a control
139 with 0 Mg ha^{-1} (0x). Both phases of the crop rotation are present every year, with all compost
140 treatments and phases present in each of four replicate blocks. The compost, 80% dry matter
141 with a total N content to 1.9% and a C:N ratio of 9.0, was applied in 2019 before wheat planting.
142 Additional details on agronomic management, soil properties and compost composition are
143 reported by Calderón et al. (2018) and Liu et al., (2021), as well as in Table S1.

144 Within the 0x and 5x compost plots, three sub-plots (5.5 x 1.6 m) were established within
145 the winter wheat phase of the rotation in 2019 and again in 2020. The three sub plots in each
146 main plot were randomly assigned one of three winter wheat cultivars selected for this study
147 based on diverging root traits reported by Kelly et al. (2022b). This study design was repeated
148 over two growing seasons: 2019-2020, and 2020-2021. In each year, the wheat was planted in
149 plots following a 14-month bare fallow to simulate the wheat-fallow rotation system common in
150 the region. Therefore, the planted plots differed between the years, though they were adjacent
151 within the same block layout. Wheat planting occurred on Sept 25, 2019 and Sept 24, 2020
152 using a cone planter (Hege Equipment Ltd., KS, USA) with 19 cm row spacing, 4 cm planting
153 depth, and planting density of 33 seeds m^{-1} of row (175 seeds m^{-2}).

154 The three cultivars planted in the current study were: 'Byrd', a current hard red semi-
155 dwarf winter wheat (Haley et al., 2012); 'Snowmass', a current hard white semi-dwarf winter
156 wheat (Haley et al., 2011); and 'Cheyenne', a tall historic variety released in 1930 (Table 1).
157 Byrd is considered a drought-tolerant genotype and has been previously shown to have relatively
158 long, thin roots with low levels of exudation; Snowmass is drought-susceptible with short, coarse
159 roots and high exudation; Cheyenne has intermediate root length and exudation (Becker et al.,
160 2016; Kelly et al., 2022b, 2022a).

161 In 2019 prior to compost application, a 3 m^2 microplot was established in the center of
162 each cultivar sub-plot where compost was excluded to avoid an additional new N source. One
163 day prior to wheat planting in both 2019 and 2020, soil from a 1 m^2 microplot was mixed with
164 ^{15}N -labelled cover crop material to a depth of 15 cm. The cover crop residue was a mixture of
165 hairy vetch (*Vicia villosa* L.) and Triticale (x *Triticosecale* Wittmack) and was applied at a rate
166 of 1600 kg ha^{-1} (dry biomass), which is within the range of typical cover crop biomass
167 production in the region (Kelly et al., 2021). The cover crop mixture was grown in pure sand
168 supplied with N-free Hoagland's solution (Hoagland & Arnon, 1950) amended with 9 atm% ^{15}N -

169 KNO_3 (Cambridge Isotope Laboratories, MA, USA). Cover crop material was prepared by oven
170 drying at 50 °C and coarsely chopping to ~ 5 cm pieces; in 2020, the root material was coarsely
171 ground to better facilitate even distribution in the microplot. Final enrichment for the cover crop
172 material was 8.03 atm% ^{15}N , while total N concentration of the material was 23 g kg⁻¹, for an N
173 application rate of 36.8 kg ha⁻¹.

174 Due to extremely dry conditions during both years of the study, supplemental irrigation
175 was applied to the treatment plots using drip tape spaced at 30 cm intervals running the length of
176 the plots, as well as 1.5 m of buffer on either side. In early November 2019, 2 cm of water was
177 applied through surface drip irrigation to aid in stand establishment. In 2020, a larger quantity of
178 water was added to alleviate extreme drought conditions; 7.6 cm of water was applied using the
179 same drip tape method in late August, and an additional 2.5 cm of water was applied by hand in
180 to the microplots in late October to replace evaporative losses from mixing in the cover crop
181 residues during plot preparation.

182

183 2.2 Soil and plant sampling

184 We collected rhizosphere soil samples twice during the growing season, once at tillering
185 (early May) and again at heading/flowering (early June) in both sampling years. The root
186 systems of three separate plants from each cultivar sub-plot (outside the microplots) were gently
187 excavated down to about 15 cm, shaking off loose soil, and placing the root system with adhered
188 soil in a sterile Whirlpack bag. The loosely-adhered soil that fell off the root system was also
189 collected as “root zone” soil in a zip-top bag for nutrient analysis. All samples were kept on ice
190 for transport back to the lab. In the lab, we dislodged rhizosphere soil from roots by squeezing
191 the root bag to break up aggregates. We transferred ~0.3 g of rhizosphere soil into Zymo
192 BeadBashing tubes, added 700 mL BeadBashing Buffer, vortexed briefly, and kept frozen at -20
193 °C for DNA extraction (see below). We also transferred a 1 g subsample of rhizosphere soil into
194 120 mL specimen cups and kept at 4 °C for enzyme analysis (see below). “Root zone” soil was
195 2-mm sieved and ~8 g of fresh soil extracted with 40 mL 2 M KCl for inorganic N analysis.
196 Extracts were kept frozen until analysis for nitrate and ammonia on an Alpkem Flow Solution IV
197 system (O.I. Analytical, College Station, TX). Soil moisture content was also determined on this
198 soil using a ~50 g subsample.

199 The final sampling occurred at wheat harvest (mid-July). Two 1-m rows of wheat were
200 harvested from the main plot by cutting the wheat plants ~5 cm from the soil surface for
201 determination of plant biomass and grain yield. Wheat biomass and grain samples were oven-
202 dried at 55 °C, weighed, grain was cleaned using a belt thresher (Agriculex, Ontario, CA) and the
203 grain weighed separately from the straw. From within the cover crop microplots, we harvested
204 wheat plants from the center three rows of the plots, at least 15 cm away from the plot edge to
205 minimize edge effects. These samples were also oven-dried at 55 °C and threshed to separate
206 wheat grain from straw.

207 Wheat straw and grain samples from within the microplots were ground and analyzed for
208 total C, total N, and ¹⁵N signature at the UC Davis Stable Isotope Facility using a PDZ Europa
209 20-20 isotope ratio mass spectrometer (Sercon, Ltd., Cheshire, UK), which allowed us to
210 determine the amount of added cover crop-derived N taken up by the wheat plants.

211 Immediately following wheat harvest, in-row soil cores (3.8-cm diameter) were taken
212 down to 30 cm with a tractor-mounted hydraulic probe (Giddings, Windsor, CO, USA). Two
213 cores were taken from within each microplot and kept on ice for transport back to the lab. In the
214 lab, bags containing cores were weighed for determination of bulk density, and then soil was
215 passed through a 2-mm sieve and wheat roots removed. A subsample of fresh soil was dried at
216 105 °C for soil moisture.

217

218 2.3 Microbial communities and activity

219 Enzyme activity and amplicon sequencing were conducted on rhizosphere soil collected
220 at the tillering and flowering timepoints. Hydrolytic enzyme activity was measured
221 fluorometrically following German et al. (2011) to assess the enzyme activities: *L*-leucine
222 aminopeptidase (LAP), *L*-Tyrosine aminopeptidase (TAP), and N-Acetyl- β -D-glycosaminidase
223 (NAG); β -1,4-glucosidase (BG) and β -D-cellobiosidase (CB); phosphatase (PHOS). LAP, TAP
224 and NAG assess N cycling and mineralization potentials; BG and CB assess labile and more
225 structural C cycling, respectively; and PHOS targets phosphorous (P) cycling. Briefly, 1 g fresh
226 soil was blended with 120 mL 50 mM sodium acetate buffer for 1 min. to create soil slurries. We
227 combined 200 μ L soil slurry with 50 μ L 200 μ M fluorescent substrate solution in replicates of
228 16, and incubated for 4 hours at 25 °C. Control reactions were included in each plate: un-bound
229 4-methylumbellif erone or methylcoumarin fluorescing agent with the soil slurry to estimate

230 quenching, and substrate combined with soil-free buffer to estimate background fluorescence.
231 Fluorescence was measured on a microplate fluorometer (Infinite M200, Tecan, Switzerland)
232 with 365 nm excitation and 450 nm emission filters.

233 We extracted genomic DNA from rhizosphere soils using the Quick-DNA Fecal/Soil
234 Microbe kit (Zymo Research Corporation, Irvine, CA) following manufacturer's instructions.
235 Amplicon libraries were prepared for the 16S rRNA region using the 515/806 Earth Microbiome
236 Project standard primer pair (Caporaso et al., 2011), and the V3-V4 region of the ITS gene (ITS-
237 2; White et al., 1990). Extracted DNA was quantified using the Qubit ds DNA High Sensitivity
238 quantification system (Invitrogen). Sequencing was conducted at the University of Colorado –
239 Anschutz using an Illumina MiSeq (2 x 250 bp). Sequence data will be uploaded to the NCBI
240 SRA database under project ID PRJNA735275 upon acceptance for publication.

241

242 2.4 Isotope calculations

243 By quantifying the amount of ^{15}N in wheat grain and straw samples, we were able to
244 determine the relative contribution of our added cover crop residue to the N in these tissues. The
245 relative proportion of N derived from the ^{15}N -labelled cover crop residue in the wheat plants was
246 calculated using the mixing model:

$$247 f_{label} = \frac{(atm\%_{sample} - atm\%_{control})}{(atm\%_{label} - atm\%_{control})}$$

248 where f_{label} is the relative contribution of the labeled cover crop to the sample, $atm\%_{sample}$ is the
249 atom% of the sampled material, $atm\%_{control}$ is the atom% of the natural abundance soil, and
250 $atm\%_{label}$ is the atom% of the ^{15}N labelled cover crop residue. Due to slight differences in the
251 background ^{15}N values of the different soil treatments (0x vs 5x; Table S1), a different natural
252 abundance end member was used for samples from each of these soils. We calculated the total
253 uptake of cover crop-derived N in wheat by multiplying the f_{label} value above and multiplying it
254 by the concentration of N in the sample (wheat grain or straw).

255

256 2.5 Statistical analysis of plant and soil metrics

257 We used two-way ANOVA to test the effect of wheat genotype and soil treatment
258 (compost vs. no compost) on various metrics of wheat performance and N utilization. For soil
259 enzyme activity and inorganic N measurements, the sample period (tillering or

heading/flowering) was also included as a fixed effect. Block was included as a random effect for single-timepoint measures, while plot was included in the models for enzyme activity and inorganic N measures that were repeated throughout the growing season. The model was implemented using the *lmer* function in the *lme4* package, and the *lmerTest* package used for ANOVA implementation (Bates et al., 2015; Kuznetsova et al., 2017). An alpha value of $p < 0.1$ was used to evaluate statistical significance to account for inherent variability in field conditions. Log transformations were applied as needed to meet the assumptions of ANOVA. All statistical analyses were performed in R version 4.0.3 (R Core Team, 2020), and plots were constructed using *ggplot2* (Wickham et al., 2018).

269

270 2.6 Microbial community analysis

271 Amplicon sequences data (16S and ITS) were processed using QIIME2 2 v 2019.2. Denoising was performed using DADA2 on paired-end reads for 16S data and forward reads for 273 ITS data to improve feature clustering (Callahan et al., 2016). 16s forward and reverse reads 274 were trimmed to 247 and 186 base-pairs, respectively, and ITS forward reads trimmed to 200 275 base-pairs. We used a Native Bayes taxonomic classifier trained on our study primer pairs 276 through QIIME2 (Bokulich et al., 2018) that utilized the SILVA and UNITE reference databases 277 for bacteria/archaea sequences and ITS sequences, respectively (Abarenkov et al., 2020; Quast et 278 al., 2013). Features that only appeared once and without classification past Kingdom were 279 removed from both datasets, with chloroplast and mitochondrial sequences removed from the 280 16S dataset. Sequence data is available in the NCBI SRA under PRJNA735275 SUB11809024.

281 We computed alpha diversity metrics on rarefied data to account for uneven sampling 282 depth using the QIIME2 Core Metrics function (Bolyen et al., 2019). We completed additional 283 multivariate analysis on family-level data after completing additional filtering steps: features that 284 appeared less than 4 times in 20% of samples were excluded, as well as 10% lowest variance 285 features according to inter-quartile range, as these are unlikely to show treatment effects. The 286 abundance data was then scaled using the Cumulative Sum of Squares method (Paulson et al., 287 2013). We assessed treatment effects on overall community composition with PERMANOVA 288 and visualized with PCoA using Bray-Curtis dissimilarities.

289 Differential abundance of specific families based on our treatments were tested using 290 Linear Discriminant Analysis (LDA) Effect Size (LEfSe; Segata et al., 2011). The LEfSe allows

291 for statistically robust identification of features that are most likely to explain differences
 292 between experimental groups. Briefly, the method first uses a non-parametric Kruskal-Wallis
 293 sum-rank test to detect differentially abundant features across groups, followed by unpaired
 294 Wilcoxon rank-sum test, and finally LDA to estimate the effect size of each differentially
 295 abundant feature (Segata et al., 2011). LEfSe analysis was completed on taxa grouped at the
 296 family level, and significance was determined by FDR-adjusted p-value < 0.01 and log LDA
 297 score greater than 1.5. Multivariate analysis and visualization were implemented in the web-
 298 based tool MicrobiomeAnalyst (Chong et al., 2020).

299

300 3. Results

301 3.1 Genotype and soil treatment effects on plant growth and N uptake

302 Wheat yield strongly differed by year; due to severe drought in 2020, wheat yields were
 303 on average 695 kg ha⁻¹, with even lower yield in the ¹⁵N microplots due to reduced moisture

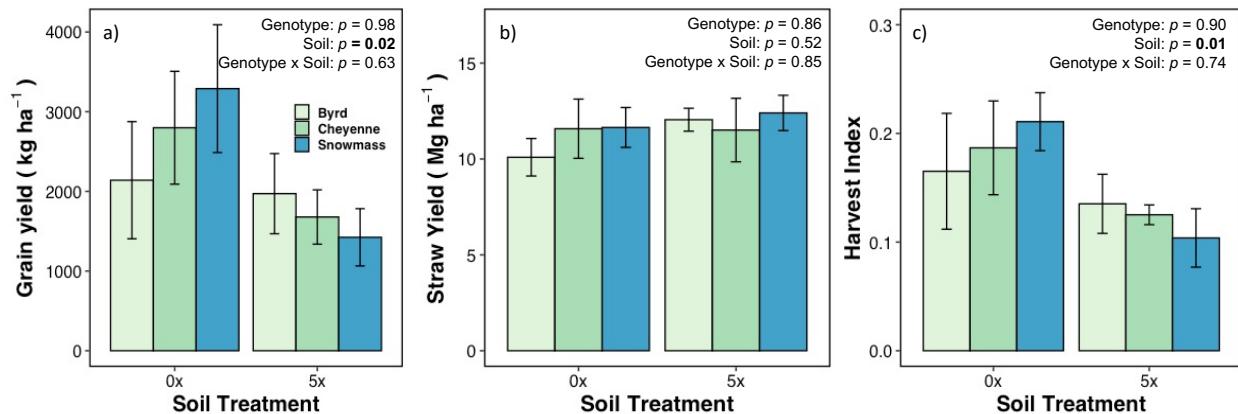
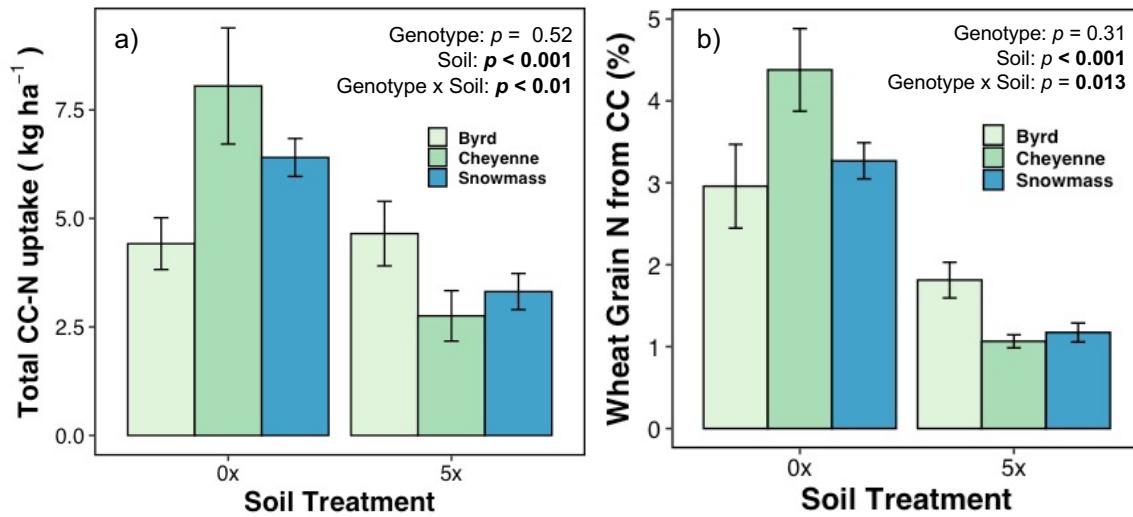


Figure 1. Wheat yield metrics from a wheat genotype and compost amendment field trial in Akron, CO. Soil treatments are biennial (every 2 years) application of beef feedlot compost at a rate of 0 t ha⁻¹ (0x) or 109 t ha⁻¹ (5x). Bars are colored by wheat genotype with mean ± standard error. Two-way ANOVA p - values are given in the top right of each panel. Data is from a single year of the trial (2020-2021 season) due to drought failure.

from
soil

306 disturbance to incorporate the residue. Therefore, the 2019-2020 wheat data was excluded from
 307 analysis, and all wheat yield and N uptake data is reported for the 2020-2021 season only. Wheat
 308 yield data from the excluded 2019-2020 season is reported in Table S3. Wheat yields from 2021
 309 averaged 2217 kg ha⁻¹. Wheat grain yield in 2021 was 62% greater in the 0x than 5x plots (Fig.
 310 1a), while wheat straw yield was not different between soil treatment and averaged 11,698 kg ha⁻
¹ (Fig. 1b). Harvest index was 54% higher in the 0x than the 5x treatment (Fig. 1c).

312


313
314 Total N uptake in the wheat tissue was affected by soil treatment but not by wheat
315 genotype. While grain N concentration was the same across soil treatments (average: 2.9%),
316 straw N concentration was 86% higher in the 5x soil treatment (1.8% vs. 0.95%). This led to
317 more than twice as much straw N uptake in the 5x soil treatment (Table S4). However, the higher
318 grain yield in the 0x treatment resulted in 55% more total N in the 0x (6.0 - 9.0 g N m⁻²) grain
319 compared to 5x grain (3.9 - 5.8 g N m⁻²; Table S3). Overall N uptake in the wheat biomass (grain
320 + straw) was on average 48% greater in the 5x soils, though not significant ($p = 0.12$), and there
321 was no effect of genotype or a genotype x soil interaction (Table S4).

322 The uptake of cover crop-derived N was overall higher in the 0x treatment and exhibited
323 a genotype x soil treatment interaction. Cheyenne showed the greatest plasticity in cover crop-N
324 uptake across soil treatments, having 82% greater cover crop N uptake compared to Byrd within
325 the 0x treatment, but then had the lowest relative cover crop-N uptake in the 5x treatment, 41%
326 less than Byrd (Fig 2a). Snowmass also had almost half the cover crop-N uptake in the 5x
327 treatment relative to the 0x treatments, but Byrd was consistent with no change across the
328 different compost treatments. Across all samples, the wheat took up an average of 4.9 kg of
329 cover crop N per ha, 13% (range: 7%-22%) of the added residue N (Fig. 2a).

330 The relative concentration of wheat tissue N derived from the added cover crop residue
331 was consistent with trends in total residue N uptake (Fig. 2b). Plants in the 0x soil treatment had
332 3.0 – 4.4% of their grain N derived from the added cover crop residue, but this was reduced to
333 1.1-1.9% in the 5x soils (Fig. 2b). Enrichment was on average 0.54 atm% ¹⁵N in grain samples
334 and 0.55 atm% ¹⁵N in straw. This translated to an average of 2.4% of grain N and 2.6% of the

Figure 2. Total uptake (a) and relative fraction (b) of cover-crop residue (CC) derived N in wheat biomass tissue in different winter wheat genotypes and compost amendment treatments in field trial in Akron, CO. Soil treatments are biennial (every 2 years) application of beef feedlot compost at a rate of 0 t ha⁻¹ (0x) or 109 t ha⁻¹ (5x). Bars are colored by wheat genotype with mean \pm standard error. Two-way ANOVA p - values are given in the top right. Data is from a single year of the trial (2020-2021 season) due to drought failure in year 1.

335 straw N being derived from the cover crop.

336

337

338 3.2 Enzyme activities

339 Enzyme activities responded strongly to soil treatment but not to wheat genotype. For all
340 enzymes assayed, activities in the 5x soil were greater than the 0x soil except for PHOS, which
341 had higher activity in the 0x soil (Table 2). Enzyme activity was 40-48% higher at the second
342 sampling timepoint (heading/flowering) in all enzymes except the two aminopeptidases, LAP
343 and TAP (Table 2). In all enzymes except TAP, activity was higher in the second, wetter season
344 (2019-2020; Table 2). Both years of data were included in enzyme analysis, as well as for
345 inorganic N and microbiome analyses below, as these samples were collected from the main
346 genotype plot earlier in the season before severe water limitation, and patterns were aligned with
347 the 2021 data.

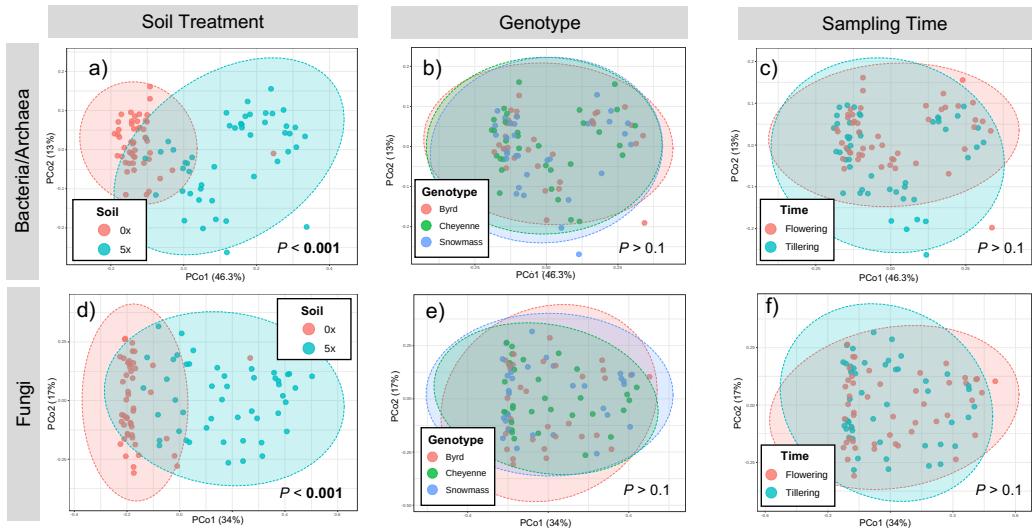
348

349 3.3 Soil N and water

350 Soil nitrate and ammonium concentrations at tillering and heading showed differences
351 based on soil treatment, but there was no effect of wheat genotype on either form of inorganic N.
352 Both ammonium and nitrate were higher in the 5x soil (Table 3). We did not observe a
353 relationship between enzyme activity and inorganic N levels after accounting for the large effect
354 of compost addition (data not shown). Sampling timepoint effects varied by N form and year; in
355 2020, ammonium levels were higher at tillering with no change in nitrate, while in 2021, nitrate
356 levels were higher at tillering with no change in ammonium (Table 3).

357 Gravimetric water content (GWC) in the top 30 cm of soil decreased over the course of
358 the growing season. GWC in the surface soil was ~10-20% higher the 5x rhizosphere soil
359 samples during the growing season (tillering and heading), but the differences faded by the
360 harvest sampling (Table S6).

361


362 3.4 Rhizosphere microbiome analysis

363 Following initial feature filtering, we observed 8,640 distinct bacterial/archaeal features
364 and 1,985 fungal features across both years. The total number of features in a single sample
365 ranged from 21, 177 to 151, 505, and we did not have to exclude any samples due to low read
366 counts. Rhizosphere bacterial communities were dominated by Actinobacteria and
367 Proteobacteria, and Ascomycota was overwhelmingly dominant in the fungal community (Fig.
368 S3, S4).

369 Shannon diversity of both bacterial/archaeal and fungal taxa were 2.6 and 7.6% lower,
370 respectively, in the 5x compost treatments than the 0x treatments, and there was a marginally
371 significant genotype effect on fungal diversity (Table S5). Specifically, the historic genotype
372 Cheyenne had 7.3% higher fungal diversity (Shannon) compared to Byrd (Table S5). Across
373 both years, all three metrics of bacterial diversity were greater at the later heading timepoint,
374 while only fungal richness showed an increase at heading. The effect of year was different for
375 fungi vs. bacteria, with bacterial diversity and richness being greater in 2020, but fungal diversity
376 higher in 2021.

377 Both bacterial and fungal communities showed high separation due to soil treatment (Fig.
378 3a,d), but there were no differences based on genotype (Fig. 3b,e) or sampling timepoint (Fig.
379 3c,e)). LEfSe analysis identified a suite of bacterial and fungal families that contributed to the
380 soil treatment differences observed (Fig. S1, Fig. S2). For bacterial families, we found that
381 Rubrobacteriaceae and Sphingomonadaceae were strongly associated with the 0x soils, while
382 Planococcaceae, Devosiaceae, Rhizobiaceae, and Pseudomonadaceae were associated with 5x
383 soil. At the phylum level, Proteobacteria, Bacteriodes and Firmicutes were most associated
384 with 5x soil, while Actinobacteria were more abundant in the 0x soil (Fig. S2). For fungi,
385 Chaetomiaceae and Sporomiaceae were associated with 5x soil, and Aspergillaceae and
386 Lasiosphaeriaceae with the 0x soil (Fig. S1). No bacterial or fungal taxa were identified as
387 contributing significantly to group separation by wheat genotype according to LEfSe analysis.

388 Due to additional filtering of rare and low-variability features, 1862 bacterial and 302 fungal
 389 features were ultimately used in multivariate analysis.

390

Figure 3. Principle Coordinate Analysis (PCoA) of winter wheat rhizosphere communities based on 16S (top) and ITS (bottom) amplicon sequencing. Samples are colored based on long-term compost amendment (left), wheat genotype (center), or sampling timepoint (right). PERMANOVA p - values are indicated in the bottom right corner for the significance of the groupings. Figure includes data from both growing seasons.

391 4. Discussion

392 4.1 Yield response

393 Treatment effects on wheat grain yield were different than expected, and appeared to be
 394 strongly influenced by precipitation patterns. We found higher grain yield in the no-compost
 395 plots, though overall higher biomass production in the 5x treatment. This is despite the typical
 396 indicators of N availability and N cycling being greater in the 5x treatment, which was expected
 397 due to nutrient addition (Table 2, Table 3). The unexpected yield results, whereby grain yield
 398 was higher in the 0x treatment, was likely explained by the seasonal rainfall patterns experienced
 399 in 2021.

400 We suspect that relatively high rainfall in the spring and early summer supported strong
 401 vegetative growth, especially in the 5x treatment with higher overall nutrient availability.
 402 However, this growth eventually led to water limitation in June and July when precipitation was
 403 below average (Table S2), such that the larger plants in the 5x plots were transpiring more and
 404 ran out of water during grain filling, resulting in low grain production for this treatment and a
 405 lower harvest index (Fig. 1c). We suspect that water limitation also impeded N translocation to
 406 the grain, resulting in high N concentration in the biomass of the 5x wheat, though not reflected

407 in the grain. Despite the higher nutrients in the 5x soil, previous research from these plots
408 similarly found no significant difference in wheat biomass between the compost amendment
409 treatments, though greater N concentration in wheat tissues (Calderón et al., 2018).

410 We did not observe genotype differences in grain or straw yield, despite the historic
411 genotype, Cheyenne, being a tall variety and not possessing the semi-dwarfing allele common in
412 many modern cultivars, including the two current genotypes included in the study (Table 1). This
413 result further highlights the importance of environmental effects that may obscure even well-
414 established genetic differences.

415

416 4.2 Differential genotype uptake patterns of residue N

417 Our results suggest that wheat genotypes with different nutrient acquisition strategies
418 (i.e., “cooperative” vs. competitive”) have varying ability to access cover crop N depending on
419 the soil status. In contrast to our hypothesis, the older and high-exudate genotypes were not more
420 successful in the high SOM (5x) environment; instead, it appears that the high SOM context
421 provided the background microbial activity necessary to drive the turnover of residue N,
422 supported by increased enzyme activity and extractable N in the 5x treatment (Table 2, 3),
423 allowing other root traits, like drought tolerance, to determine relative success at organic nutrient
424 acquisition.

425 Genotypic variation in belowground allocation has been previously observed for
426 different types of wheat (Iannucci et al., 2021; Kelly et al., 2022b) which lends evidence for
427 different resource acquisition strategies, even within a species. Different acquisition strategies
428 may include the “collaborative” strategy, where high levels of exudation support microbial
429 activity and encourages nutrient mineralization proximate to the root zone (Henneron et al.,
430 2020). In contrast, a more competitive strategy dedicates resources to root structures for better
431 soil exploration and more direct uptake of nutrients instead of promoting microbial partnerships
432 (Bergmann et al., 2020; Wen et al., 2019, 2022). Though we did not measure root exudation in
433 this study directly, the genotypes used in this study have been previously shown to exhibit both
434 high exudate (Snowmass) and low-exudation (Byrd) strategies, while the historic germplasm
435 Cheyenne had intermediate exudation but may have other differences in root traits from its
436 distinct lineage (Kelly et al., 2022b). Our findings suggest that long-term compost amendment,
437 which alters the microbial community (Fig. 3) and increases enzyme activity and nutrient

438 availability (Table 2, Table 3), likely influences the relative success of these different strategies,
439 and that water limitation further increases the complexity of plant-soil-microbe interactions.

440 Cheyenne and Snowmass were more successful than Byrd at taking up residue-derived N
441 in the 0x soil (Fig. 1), which we suspect was due to higher exudation rates (Kelly et al., 2022b),
442 resulting in greater microbial mineralization of organic N, in this more C- and N-limited soil.
443 Both Cheyenne and Snowmass have been reported to be drought susceptible due to shallower
444 root systems (Kim et al., 2016), and so likely concentrated more of their roots near the surface in
445 proximity to the added N-rich residue. Importantly, Snowmass has also been shown to have high
446 levels of root exudation, and has more recently been shown to recruit specific microbial taxa,
447 compared to Byrd (Kelly et al., 2022b, 2022a). We suspect that in the 0x soils, which have lower
448 native SOM and biological activity, microbes were in a C-limited state, and thus more responsive
449 to exudate additions. Previous work has found that soil condition affects the microbial
450 mineralization response to exudation regarding litter decomposition (Tian et al., 2019). Though
451 we did not measure N mineralization rates directly in this study, we assume that residue N
452 uptake provides a practical estimate of plant-available mineralized N. Our results indicate that,
453 under C and N limitation in degraded agricultural soils, genotypes with greater exudation, i.e.
454 more “collaborative”, have greater access to organic N sources than in the high SOM soil, and
455 that the success of different nutrient acquisition strategies are dependent on the soil
456 characteristics.

457 While we did not observe genotype differences in enzyme activity (Table S3), we note
458 that our samples were collected outside of the residue-addition microplots and so rhizosphere
459 responses to the added residue were not specifically tested. Root exudation has been shown to
460 stimulate N cycling enzyme activity and N availability in field and greenhouse settings, as
461 microbes release enzymes to alleviate N limitation (Hamilton & Frank, 2001; Kelly et al., 2022b;
462 Zhu et al., 2014). While a previous greenhouse experiment found high exudation to impede
463 short-term residue N uptake in low-SOM soil under greenhouse conditions (Kelly et al., 2022a),
464 field conditions and a longer growing season create a different nutrient dynamic. Specifically,
465 the longer growing time tested here allows for greater microbial turnover of added residues,
466 allowing plants to access previously-immobilized microbial N (Kuzyakov & Xu, 2013). This
467 suggests that it is important to consider full-season biogeochemical cycling when translating
468 greenhouse work to the field.

469 In the compost-amended soil, wheat genotype performance with regard to residue N
470 uptake showed a different trend. While Byrd took up the lowest residue-N in the 0x soil, it
471 surpassed the other genotypes in the 5x soil (Fig. 1). In the 5x soil, high levels of SOM and
472 microbial activity (i.e. enzymes; Table 2) likely muted or diluted the exudate effect. Indeed,
473 exudate stimulation of litter decomposition was reduced in high-SOM soil (Tian et al., 2019). In
474 the high-SOM soils of this experiment, therefore, water became a more important factor for
475 success, and thus drought tolerance a key genotype trait. Unlike the other genotypes, Byrd has
476 been reported to be drought-tolerant with a deep-rooting morphology (Becker et al., 2016).
477 Greater access to water deeper in the soil profile may have allowed Byrd to continue to grow and
478 access residue N throughout the dry summer season. While not significantly different, we note
479 that Byrd had on average the highest grain yield and harvest index in the 5x treatments (Fig.
480 1a,c), suggesting that it may have been able to maintain growth later in the season when
481 conditions became especially dry, with relatively less vegetative growth to maintain.

482 Together, our data suggests that in higher SOM environments, exudation may be less
483 important in mobilizing organic N sources, increasing the importance other limiting resources
484 (i.e., water) in nutrient acquisition (Fig. 4). Thus, while less successful at accessing residue N in
485 low-SOM and low-activity soil, we suspect that greater drought tolerance within the microbially-
486 active 5x soil was a key driver for Byrd in the uptake of residue-derived N. Our results highlight
487 the importance of the environmental context in elevating the relative importance of genotype
488 traits and different nutrient acquisition strategies, as high levels of soil health indicators may

489 effectively drive nutrient mineralization without plant investment.

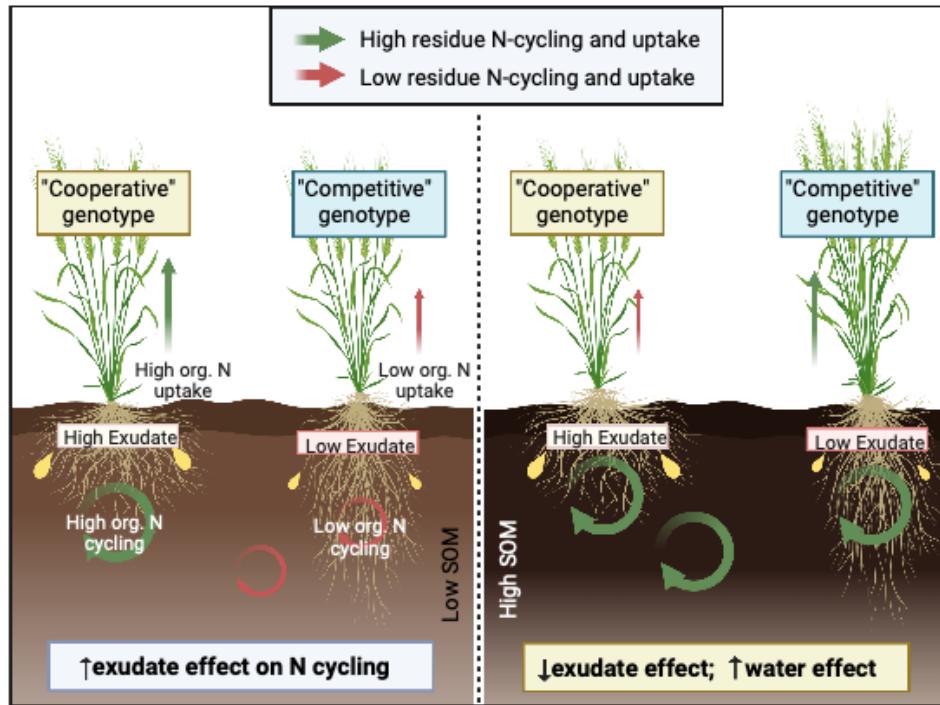


Figure 4. Summary figure of interactive effects of soil management legacy and genotype on nitrogen (N) cycling and uptake. Size of blue arrows indicates relative rate of N cycling and plant uptake based on our research findings.

491

492 4.3 Microbial community

493 Microbial community structure and function was strongly affected by compost
494 amendment, but we did not observe any differences due to wheat genotype or sampling time (Fig
495 3; Table 2). Both C and N cycling enzymes were elevated in soil with long-term compost
496 amendment, which was likely due to higher levels of complex C and N substrates (Bowles et al.,
497 2014). Phosphatase activity (PHOS) was lower in the 5x soils, reflecting the well-documented
498 inverse relationship between available P and phosphatase activity (Kitayama, 2013; Sinsabaugh
499 et al., 2008). We were unable to observe genotype differences in enzyme activity, which could
500 be partly due assay limitations in sensitivity and field variability (Trasar-Cepeda et al., 2000).

501 The higher Shannon diversity in the 0x treatment suggests that a lower nutrient
502 environment created more niche opportunities and less dominance by copiotrophic taxa (Fierer et
503 al., 2007). Lower microbial diversity has been reported for high-nutrient soil environments like
504 the rhizosphere and soils with organic additions (Brisson et al., 2019), though others have found

505 increased bacterial diversity with compost additions (Mickan et al., 2018; Zhen et al., 2014).
506 Fungal diversity was highest in the historic genotype Cheyenne, which echoes previous work
507 showing that historic varieties of wheat had greater reliance mycorrhizal association than modern
508 varieties (Herrick et al., 1993).

509 We did not identify any bacterial or fungal taxa that were differentially abundant across
510 genotypes, which suggests that genotype-level variation in rhizosphere community selection
511 were overwhelmed by the strong environmental differences between the 0x and 5x compost
512 soils. We note that some weed presence may have obscured genotype effects, especially in 2020
513 before herbicide use was implemented. Similar to our findings, a study of different wheat
514 genotypes cultivated with different farm management and drought treatments found that drought
515 and farming system explained significant variability in microbial communities, but genotype
516 effects were not apparent (Breitkreuz et al., 2021). Even under similar conditions, genotype
517 effects on rhizosphere communities are often subtle and difficult to detect (Kelly et al., 2022b).
518 Studies comparing rhizosphere microbiomes of different genotypes for a variety of crops have
519 suggested that genotype differences can influence microbiome assembly, but that different
520 environmental conditions (soil type, nutrient management) have a larger effect (Schmidt et al.,
521 2020).

522 Acidobacteria, which were highly indicative of the 0x soil and have species known to be
523 ecological “stress tolerators”, were found to be the most abundant phylum in undisturbed natural
524 soils across a range of ecosystems (Fierer, 2017). The higher-nutrient environment of the 5x soil
525 likely favored more competitive taxa, including members of Pseudomonas which were found to
526 be highly abundant (Fig. S1a). Also common in the 5x soils was the Rhizobiaceae, which
527 includes many species of Rhizobia, common soil and plant-associated bacteria and include N-
528 fixers as well as plant pathogens (Alves, 2013).

529

530 Conclusions

531 As agroecosystems evolve to provide additional ecosystem services like nutrient retention
532 and C storage, there will be a greater reliance on organic nutrient provision. It has been
533 hypothesized that unintended consequences of plant breeding on rhizosphere interactions maybe
534 cause disadvantages to modern crops in a soils with fewer synthetic inputs. We found that soils
535 with high levels of SOM better support nutrient cycling activities, regardless of crop genotype. In

536 addition, stronger rhizosphere partnerships via exudation may be more important in degraded, C-
537 depleted soils. Importantly, we suspect a been a trade-off between microbial stimulation via
538 exudation and deep rooting morphology led to genotype differences under water limitation.
539 Therefore, it is critical to consider the coupling of biological activity, nutrient cycling and water
540 availability when breeding and selecting crop traits for agroecosystems in a changing
541 environment.

542

543 Acknowledgements

544

545 The authors would like to acknowledge the help of Brandon Peterson, Cody Hardy, and David
546 Poss at the USDA-ARS in Akron for their help with experimental implementation and data
547 collection. The authors also thank Carolita Landers for help with sample processing and Kristen
548 Otto for logistical support in amplicon sequencing. We also thank the anonymous reviewers who
549 provided valuable feedback on earlier versions of this manuscript. This project was funded by
550 the USDA National Institute of Food and Agriculture (Award No. 2018-67013-27398). Work at
551 LLNL was performed under the auspices of the US Department of Energy at Lawrence
552 Livermore National Laboratory under Contract DE-AC52-07NA27344.

553

554 Data Availability

555

556 All sequencing data is available online in the NCBI SRA databased under project and submission
557 PRJNA735275 SUB11809024. Biogeochemical data will be uploaded to an online repository
558 upon acceptance of this manuscript.

559

560

561

562

- 563 Literature Cited
- 564
- 565 Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., & Kõljalg, U.
- 566 (2020). UNITE QIIME release for Fungi. Version 04.02.2020. *UNITE Community*.
- 567 <https://doi.org/https://doi.org/10.15156/BIO/786385>
- 568 Alves. (2013). *The Family Rhizobiaceae*. Springer. https://doi.org/10.1007/978-3-642-30197-1_297
- 569
- 570 Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
- 571 Using lme4. *Journal of Statistical Software*, 67(1), 1–48.
- 572 <https://doi.org/10.18637/jss.v067.i01>
- 573 Becker, S. R., Byrne, P. F., Reid, S. D., Bauerle, W. L., McKay, J. K., & Haley, S. D. (2016).
- 574 Root traits contributing to drought tolerance of synthetic hexaploid wheat in a greenhouse
- 575 study. *Euphytica*, 207(1), 213–224. <https://doi.org/10.1007/s10681-015-1574-1>
- 576 Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D. C., Kuyper, T. W., Guerrero-Ramirez,
- 577 N., Valverde-Barrantes, O. J., Bruelheide, H., Freschet, G. T., Iversen, C. M., Kattge, J.,
- 578 McCormack, M. L., Meier, I. C., Rillig, M. C., Roumet, C., Semchenko, M., Sweeney, C.
- 579 J., van Ruijven, J., York, L. M., & Mommer, L. (2020). The fungal collaboration gradient
- 580 dominates the root economics space in plants. *Sci. Adv.*, 6. <https://www.science.org>
- 581 Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.
- 582 A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene
- 583 amplicon sequences with QIIME 2's q2-feature-classifier plugin. *Microbiome*, 6(1), 1–
- 584 17. <https://doi.org/10.1186/s40168-018-0470-z>
- 585 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A.,
- 586 Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger,
- 587 K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A.
- 588 M., Chase, J., ... Caporaso, J. G. (2019). Reproducible, interactive, scalable and
- 589 extensible microbiome data science using QIIME 2. *Nature Biotechnology*, 37(8), 852–
- 590 857. <https://doi.org/10.1038/s41587-019-0209-9>
- 591 Bowles, T. M., Acosta-Martínez, V., Calderón, F., & Jackson, L. E. (2014). Soil enzyme
- 592 activities, microbial communities, and carbon and nitrogen availability in organic
- 593 agroecosystems across an intensively-managed agricultural landscape. *Soil Biology and*
- 594 *Biochemistry*, 68, 252–262. <https://doi.org/10.1016/j.soilbio.2013.10.004>

- 595 Breitkreuz, C., Herzig, L., Buscot, F., Reitz, T., & Tarkka, M. (2021). Interactions between soil
596 properties, agricultural management and cultivar type drive structural and functional
597 adaptations of the wheat rhizosphere microbiome to drought. *Environmental*
598 *Microbiology*, 23(10), 5866–5882. <https://doi.org/10.1111/1462-2920.15607>
- 599 Brisson, V. L., Schmidt, J. E., Northen, T. R., Vogel, J. P., & Gaudin, A. C. M. (2019). Impacts
600 of Maize Domestication and Breeding on Rhizosphere Microbial Community
601 Recruitment from a Nutrient Depleted Agricultural Soil. *Scientific Reports*, 9(1), 1–14.
602 <https://doi.org/10.1038/s41598-019-52148-y>
- 603 Calderón, F. J., Vigil, M. F., & Benjamin, J. (2018). Compost Input Effect on Dryland Wheat
604 and Forage Yields and Soil Quality. *Pedosphere*, 28(3), 451–462.
605 [https://doi.org/10.1016/S1002-0160\(17\)60368-0](https://doi.org/10.1016/S1002-0160(17)60368-0)
- 606 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P.
607 (2016). DADA2: High-resolution sample inference from Illumina amplicon data. *Nature*
608 *Methods*, 13(7), 581–583. <https://doi.org/10.1038/nmeth.3869>
- 609 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P.
610 J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of
611 millions of sequences per sample. *Proceedings of the National Academy of Sciences of*
612 *the United States of America*, 108(SUPPL. 1), 4516–4522.
613 <https://doi.org/10.1073/pnas.1000080107>
- 614 Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive
615 statistical, functional, and meta-analysis of microbiome data. *Nature Protocols*, 15(3),
616 799–821. <https://doi.org/10.1038/s41596-019-0264-1>
- 617 Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil
618 microbiome. *Nature Reviews Microbiology*, 15(10), 579–590.
619 <https://doi.org/10.1038/nrmicro.2017.87>
- 620 Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil
621 bacteria. *Ecology*, 88(6), 1354–1364. <https://doi.org/10.1890/05-1839>
- 622 Fitzpatrick, C. R., Copeland, J., Wang, P. W., Guttman, D. S., Kotanen, P. M., & Johnson, M. T.
623 J. (2018). Assembly and ecological function of the root microbiome across angiosperm
624 plant species. *Proceedings of the National Academy of Sciences*, 201717617.
625 <https://doi.org/10.1073/pnas.1717617115>

- 626 Foulkes, M. J., Hawkesford, M. J., Barraclough, P. B., Holdsworth, M. J., Kerr, S., Kightley, S.,
627 & Shewry, P. R. (2009). Identifying traits to improve the nitrogen economy of wheat:
628 Recent advances and future prospects. In *Field Crops Research* (Vol. 114, Issue 3, pp.
629 329–342). <https://doi.org/10.1016/j.fcr.2009.09.005>
- 630 Gan, D., Zeng, H., & Zhu, B. (2022). The rhizosphere effect on soil gross nitrogen
631 mineralization: A meta-analysis. *Soil Ecology Letters*, 4(2), 144–154.
632 <https://doi.org/10.1007/s42832-021-0098-y>
- 633 German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. L., Rinkes, Z. L., & Allison, S. D.
634 (2011). Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies.
635 *Soil Biology and Biochemistry*, 43(7), 1387–1397.
636 <https://doi.org/10.1016/j.soilbio.2011.03.017>
- 637 Haley, S. D., Johnson, J. J., Peairs, F. B., Stromberger, J. A., Heaton, E. E., Seifert, S. A.,
638 Kottke, R. A., Rudolph, J. B., Martin, T. J., Bai, G., Chen, X., Bowden, R. L., Jin, Y.,
639 Kolmer, J. A., Seifers, D. L., Chen, M.-S., & Seabourn, B. W. (2011). Registration of
640 ‘Snowmass’ Wheat. *Journal of Plant Registrations*, 5(1), 87–90.
641 <https://doi.org/10.3198/JPR2010.03.0175CRC>
- 642 Haley, S. D., Johnson, J. J., Peairs, F. B., Stromberger, J. A., Hudson, E. E., Seifert, S. A.,
643 Kottke, R. A., Valdez, V. A., Rudolph, J. B., Bai, G., Chen, X., Bowden, R. L., Jin, Y.,
644 Kolmer, J. A., Chen, M.-S., & Seabourn, B. W. (2012). Registration of ‘Byrd’ Wheat.
645 *Journal of Plant Registrations*, 6(3), 302–305.
646 <https://doi.org/10.3198/jpr2011.12.0672crc>
- 647 Hamilton, E. W., & Frank, D. A. (2001). Can plants stimulate soil microbes and their own
648 nutrient supply? Evidence from a grazing tolerant grass. *Ecology*, 82(9), 2397–2402.
649 [https://doi.org/10.1890/0012-9658\(2001\)082\[2397:CPSSMA\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2)
- 650 Henneron, L., Kardol, P., Wardle, D. A., Cros, C., & Fontaine, S. (2020). Rhizosphere control of
651 soil nitrogen cycling: a key component of plant economic strategies. *New Phytologist*,
652 228(4), 1269–1282. <https://doi.org/10.1111/nph.16760>
- 653 Hetrick, B. A. D., Wilson, G. W. T., & Cox, T. S. (1993). Mycorrhizal dependence of modern
654 wheat cultivars and ancestors: a synthesis. *Canadian Journal of Botany*, 71(3), 512–518.
655 <https://doi.org/10.1139/b93-056>

- 656 Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without
657 soil. *Circular: California Agricultural Experiment Station*, 347(2).
- 658 Huo, C., Luo, Y., & Cheng, W. (2017). Rhizosphere priming effect: A meta-analysis. *Soil
659 Biology and Biochemistry*, 111, 78–84. <https://doi.org/10.1016/j.soilbio.2017.04.003>
- 660 Iannucci, A., Canfora, L., Nigro, F., de Vita, P., & Beleggia, R. (2021). Relationships between
661 root morphology, root exudate compounds and rhizosphere microbial community in
662 durum wheat. *Applied Soil Ecology*, 158(February 2020).
663 <https://doi.org/10.1016/j.apsoil.2020.103781>
- 664 Janzen, H. H., Janzen, D. W., & Gregorich, E. G. (2021). The ‘soil health’ metaphor:
665 Illuminating or illusory? *Soil Biology and Biochemistry*, 159, 108167.
666 <https://doi.org/10.1016/J.SOILBIO.2021.108167>
- 667 Kelly, C., Haddix, M. L., Byrne, P. F., Cotrufo, M. F., Schipanski, M. E., Kallenbach, C. M.,
668 Wallenstein, M. D., & Fonte, S. J. (2022a). Long-term compost amendment modulates
669 wheat genotype differences in belowground carbon allocation, microbial rhizosphere
670 recruitment and nitrogen acquisition. *Soil Biology and Biochemistry*, 172, 108768.
671 <https://doi.org/10.1016/j.soilbio.2022.108768>
- 672 Kelly, C., Haddix, M. L., Byrne, P. F., Cotrufo, M. F., Schipanski, M., Kallenbach, C. M.,
673 Wallenstein, M. D., & Fonte, S. J. (2022b). Divergent belowground carbon allocation
674 patterns of winter wheat shape rhizosphere microbial communities and nitrogen cycling
675 activities. *Soil Biology and Biochemistry*, 165, 108518.
676 <https://doi.org/10.1016/j.soilbio.2021.108518>
- 677 Kelly, C., Schipanski, M. E., Tucker, A., Trujillo, W., Obour, A., Holman, J. D., Johnson, S. K.,
678 Brummer, J. E., Haag, L., & Fonte, S. J. (2021). Dryland cover crop soil health benefits
679 are maintained with grazing in the U.S. High and Central Plains. *Agriculture, Ecosystems
680 & Environment*, 313, 107358. <https://doi.org/10.1016/j.agee.2021.107358>
- 681 Kim, K. S., Anderson, J. D., Newell, M. A., Grogan, S. M., Byrne, P. F., Baenziger, P. S., &
682 Butler, T. J. (2016). Genetic diversity of great plains hard winter wheat germplasm for
683 forage. *Crop Science*, 56(5), 2297–2305. <https://doi.org/10.2135/CROPSCI2015.08.0519>
- 684 Kitayama, K. (2013). The activities of soil and root acid phosphatase in the nine tropical rain
685 forests that differ in phosphorus availability on Mount Kinabalu, Borneo. *Plant and Soil*,
686 367(1–2), 215–224. <https://doi.org/10.1007/s11104-013-1624-1>

- 687 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in
688 linear Mixed Effects Models. *Journal of Statistical Software*, 82(13), 1–26.
689 <https://doi.org/10.18637/jss.v082.i13>
- 690 Kuzyakov, Y., & Xu, X. (2013). Competition between roots and microorganisms for nitrogen:
691 mechanisms and ecological relevance. *New Phytologist*, 198(3), 656–669.
692 <https://doi.org/10.1111/nph.12235>
- 693 Liu, J., Calderón, F. J., & Fonte, S. J. (2021). Compost inputs, cropping system, and rotation
694 phase drive aggregate-associated carbon. *Soil Science Society of America Journal*, 85(3),
695 829–846. <https://doi.org/10.1002/saj2.20252>
- 696 Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Mendes, R., & Tsai, S. M. (2018).
697 Influence of resistance breeding in common bean on rhizosphere microbiome
698 composition and function. *ISME Journal*, 12(1), 212–224.
699 <https://doi.org/10.1038/ismej.2017.158>
- 700 Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M., &
701 Jenkins, S. N. (2018). Application of compost and clay under water-stressed conditions
702 influences functional diversity of rhizosphere bacteria. *Biology and Fertility of Soils*,
703 54(1), 55–70. <https://doi.org/10.1007/s00374-017-1238-5>
- 704 Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013). Differential abundance analysis for
705 microbial marker-gene surveys. *Nature Methods*, 10(12), 1200–1202.
706 <https://doi.org/10.1038/nmeth.2658>
- 707 Pérez-Jaramillo, J. E., Mendes, R., & Raaijmakers, J. M. (2016). Impact of plant domestication
708 on rhizosphere microbiome assembly and functions. *Plant Molecular Biology*, 90(6),
709 635–644. <https://doi.org/10.1007/s11103-015-0337-7>
- 710 Qu, Q., Zhang, Z., Peijnenburg, W. J. G. M., Liu, W., Lu, T., Hu, B., Chen, J., Chen, J., Lin, Z.,
711 & Qian, H. (2020). Rhizosphere Microbiome Assembly and Its Impact on Plant Growth.
712 In *Journal of Agricultural and Food Chemistry* (Vol. 68, Issue 18, pp. 5024–5038).
713 American Chemical Society. <https://doi.org/10.1021/acs.jafc.0c00073>
- 714 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F.
715 O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing
716 and web-based tools. *Nucleic Acids Research*, 41(D1), 590–596.
717 <https://doi.org/10.1093/nar/gks1219>

- 718 R Core Team. (2020). *R: A Language and Environment for Statistical Computing*. <https://www.r-project.org/>
- 719
- 720 Reich, P. B. (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto.
721 *Journal of Ecology*, 102(2), 275–301. <https://doi.org/10.1111/1365-2745.12211>
- 722 Sánchez-Cañizares, C., Jorrín, B., Poole, P. S., & Tkacz, A. (2017). Understanding the holobiont:
723 the interdependence of plants and their microbiome. *Current Opinion in Microbiology*,
724 38, 188–196. <https://doi.org/10.1016/j.mib.2017.07.001>
- 725 Schmidt, J. E., Bowles, T. M., & Gaudin, A. C. M. (2016). Using Ancient Traits to Convert Soil
726 Health into Crop Yield: Impact of Selection on Maize Root and Rhizosphere Function.
727 *Frontiers in Plant Science*, 7(March), 1–11. <https://doi.org/10.3389/fpls.2016.00373>
- 728 Schmidt, J. E., Rodrigues, J. L. M., Brisson, V. L., Kent, A., & Gaudin, A. C. M. (2020). Impacts
729 of directed evolution and soil management legacy on the maize rhizobiome. *Soil Biology
730 and Biochemistry*, 145, 107794. <https://doi.org/10.1016/j.soilbio.2020.107794>
- 731 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C.
732 (2011). Metagenomic biomarker discovery and explanation. *Genome Biology*, 12(6).
733 <https://doi.org/10.1186/gb-2011-12-6-r60>
- 734 Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C.,
735 Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E.,
736 Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M.
737 P., Wallenstein, M. D., ... Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at
738 global scale. *Ecology Letters*, 11(11), 1252–1264. <https://doi.org/10.1111/j.1461-0248.2008.01245.x>
- 739
- 740 Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between
741 (micro)aggregates, soil biota, and soil organic matter dynamics. *Soil and Tillage
742 Research*, 79(1), 7–31. <https://doi.org/10.1016/j.still.2004.03.008>
- 743 Tian, K., Kong, X., Yuan, L., Lin, H., He, Z., Yao, B., Ji, Y., Yang, J., Sun, S., & Tian, X.
744 (2019). Priming effect of litter mineralization: the role of root exudate depends on its
745 interactions with litter quality and soil condition. *Plant and Soil*, 440(1–2), 457–471.
746 <https://doi.org/10.1007/s11104-019-04070-5>
- 747 Tkacz, A., Pini, F., Turner, T. R., Bestion, E., Simmonds, J., Howell, P., Greenland, A., Cheema,
748 J., Emms, D. M., Uauy, C., & Poole, P. S. (2020). Agricultural Selection of Wheat Has

779 enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen
780 deprivation. *Nature Plants*, 7(4), 481–499. <https://doi.org/10.1038/s41477-021-00897-y>
781 Zhen, Z., Liu, H., Wang, N., Guo, L., & Meng, J. (2014). Effects of Manure Compost
782 Application on Soil Microbial Community Diversity and Soil Microenvironments in a
783 Temperate Cropland in China. *PLoS ONE*, 9(10), 108555.
784 <https://doi.org/10.1371/journal.pone.0108555>
785 Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M. K., & Cheng, W.
786 (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization.
787 *Soil Biology and Biochemistry*, 76, 183–192.
788 <https://doi.org/10.1016/j.soilbio.2014.04.033>
789
790
791
792
793
794

Table 1. Previously determined characteristics of the winter wheat (*Triticum aestivum*) genotypes used in this study

	Byrd	Cheyenne	Snowmass
Acc. No.¹	PI 664257	CItr 8885	PI 658597
Origin	Colorado State Univ.	Univ. Nebraska	Colorado State Univ.
Release Date	2011	1933	2009
Stature	Semi-dwarf ²	Tall	Semi-dwarf
Root architecture³	Long, thin	Intermediate	Short, thick
Exudation level³	Low	Intermediate	High
Drought Susceptibility⁴	Tolerant	Susceptible	Susceptible

¹ Accession number in the USDA-ARS GRIN database (<http://www.ars-grin.gov/>).

² Semi-dwarf genotypes possess either allele *Rht-B1b* or *Rht-D1b*, and Tall genotypes lack both those alleles.

³ Based on previous data from Kelly et al. 2022a,b

⁴From Haley et al.

Table 2. Soil rhizosphere enzyme activities at tillering and heading/flowering stages in wheat genotype x compost amendment field study based in Akron, CO over two growing seasons. Values are average ($n = 4$) \pm standard error in nmol g⁻¹ soil hr⁻¹. LAP and PHOS measurements were not taken at tillering in the 2019-2020 season. ANOVA *p*-values are presented at the bottom of the table.

Year	Sampling Period	Soil Trt.	Variety	TAP ¹	NAG	BG	CB	LAP	PHOS
2020	Tillering	0x	Byrd	76 \pm 21	95 \pm 18	358 \pm 39	105 \pm 18		
			Cheyenne	51 \pm 9	63 \pm 16	283 \pm 89	78 \pm 27		
			Snowmass	71 \pm 8	77 \pm 21	314 \pm 57	88 \pm 21		
		5x	Byrd	96 \pm 14	79 \pm 14	254 \pm 32	83 \pm 15		
			Cheyenne	114 \pm 24	94 \pm 17	277 \pm 46	101 \pm 23		
			Snowmass	117 \pm 16	102 \pm 16	330 \pm 89	105 \pm 10		
	Heading/Flowering	0x	Byrd	70 \pm 37	117 \pm 60	238 \pm 72	64 \pm 30	108 \pm 51	286 \pm 90
			Cheyenne	73 \pm 17	62 \pm 6	201 \pm 18	48 \pm 6	77 \pm 11	300 \pm 55
			Snowmass	63 \pm 7	61 \pm 8	206 \pm 17	48 \pm 8	81 \pm 14	275 \pm 82
		5x	Byrd	97 \pm 26	108 \pm 43	248 \pm 51	68 \pm 16	175 \pm 64	164 \pm 39
			Cheyenne	86 \pm 19	88 \pm 14	262 \pm 36	67 \pm 10	143 \pm 34	148 \pm 24
			Snowmass	93 \pm 17	98 \pm 31	240 \pm 39	62 \pm 17	154 \pm 44	200 \pm 35
2021	Tillering	0x	Byrd	51 \pm 10	145 \pm 21	372 \pm 6	133 \pm 15	131 \pm 18	428 \pm 27
			Cheyenne	54 \pm 14	129 \pm 25	374 \pm 58	125 \pm 24	122 \pm 20	414 \pm 73
			Snowmass	42 \pm 10	103 \pm 11	324 \pm 38	97 \pm 13	98 \pm 10	380 \pm 48
		5x	Byrd	111 \pm 35	265 \pm 72	519 \pm 105	188 \pm 54	453 \pm 132	305 \pm 85
			Cheyenne	101 \pm 16	277 \pm 87	504 \pm 81	166 \pm 42	390 \pm 67	252 \pm 65
			Snowmass	111 \pm 25	356 \pm 107	557 \pm 127	206 \pm 61	491 \pm 130	313 \pm 76
	Heading/Flowering	0x	Byrd	72 \pm 25	122 \pm 17	295 \pm 50	105 \pm 16	140 \pm 21	304 \pm 26
			Cheyenne	52 \pm 15	72 \pm 8	204 \pm 19	68 \pm 9	99 \pm 10	282 \pm 41
			Snowmass	41 \pm 9	68 \pm 12	177 \pm 26	56 \pm 11	90 \pm 14	274 \pm 36
		5x	Byrd	105 \pm 18	234 \pm 38	411 \pm 50	159 \pm 32	407 \pm 69	197 \pm 37
			Cheyenne	94 \pm 9	238 \pm 36	372 \pm 37	138 \pm 15	381 \pm 32	203 \pm 12
			Snowmass	100 \pm 8	178 \pm 24	338 \pm 18	119 \pm 10	409 \pm 37	203 \pm 6

ANOVA P-values

Genotype	0.62	0.28	0.68	0.52	0.73	0.85
Soil Treatment	<0.001	<0.001	0.0034	0.0003	0.0001	0.0001
Sampling Period	0.61	0.14	0.39	0.71	0.0066	0.047
Year	0.3	<0.001	0.0002	0.0001	0.0001	0.0001
Genotype x Soil Treatment	0.55	0.099	0.48	0.63	0.61	0.48

¹TAP, *L*-Tyrosine aminopeptidase; NAG, N-Acetyl- β -D-glycosaminidase; BG, β -1,4-glucosidase; CB, β -D-cellobiosidase; LAP, *L*-leucine aminopeptidase; PHOS, phosphatase

Table 3. Extractable inorganic N values for rhizosphere soil samples collected from wheat genotypes and different sampling times. Below are ANOVA *p*-values for wheat genotype, long-term soil treatment, and sampling timepoint effects on inorganic N levels in rhizosphere soil samples. Analysis is conducted for 2020 and 20201 separately.

Supplemental Material

Soil management legacy interacts with wheat genotype to determine access to organic N in a dryland system

Courtland Kelly^{1,2}, Patrick F. Byrne¹, Meagan Schipanski¹, Joel Schneekloth³, Francisco Calderón⁴, Steven. J. Fonte¹

¹ Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO

² Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA

³ US Central Plains Research Station, Colorado State University, Akron, CO

⁴ Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR, USA

Table S1. Soil characteristics (0 – 30 cm) for different long-term compost-amended soil treatments, applied every two years for 10 years at a rate of 0 t ha⁻¹ (0x) or 109 t ha⁻¹ (5x). The final compost application occurred in fall 2019.

Soil Management	SOC (g kg ⁻¹)	Total N (g kg ⁻¹)	$\delta^{15}\text{N}$	NO ₃ -N (mg kg ⁻¹)	NH ₄ -N (mg kg ⁻¹)	Extractable P (mg kg ⁻¹) ^a	1:1 pH
No compost	14.1	1.9	14.66	21.8	4.5	5.1	7.3
5x Compost	19.0	2.4	26.63	30.7	6.8	47.3	7.2

Table S2. Monthly weather data during two field growing seasons of winter wheat in Akron, CO.

Season		Month												Total
		Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	
2019-2020	Avg. Max Temp (C)	30.5	28.9	14.8	9.7	6.3	7.9	5.8	11.6	15.4	21.6	31.4	32.2	
	Avg. Min Temp (C)	14.7	11.6	-1.7	-4.8	-5.9	-7.6	-9.0	-2.3	-1.5	6.2	12.4	15.4	
	Total Precip (mm)	60.5	6.9	13.0	27.9	2.0	4.1	6.6	16.5	9.9	76.5	31.8	17.5	273.1
2020-2021	Avg. Max Temp (C)	33.0	25.6	16.7	14.0	5.8	5.1	0.9	10.5	14.2	19.2	28.4	32.0	
	Avg. Min Temp (C)	14.9	8.6	-0.5	-2.4	-7.4	-7.2	-11.4	-3.1	-0.4	7.0	12.8	14.4	
	Total Precip (mm)	33.0	32.0	7.6	7.1	11.2	7.9	10.9	57.7	87.1	176.3	18.3	11.7	460.8
113 Year Mean	Avg. max Temp (C)	30.6	25.8	18.8	10.6	4.8	3.8	6.0	10.3	15.9	21.2	27.6	31.7	
	Avg. Min Temp (C)	13.6	8.4	1.7	-4.8	-9.3	-10.4	-8.3	-4.6	0.3	5.9	11.2	14.6	
	Total Precip (mm)	53.9	31.7	23.0	13.6	10.4	8.3	9.3	21.6	42.0	76.3	61.9	65.5	417.5

Table S3. Wheat yield from the excluded 2019-2020 season. Despite supplemental irrigation in Fall 2019 to improve germination, wheat yields were far below average. Values are mean \pm standard error.

Soil Treatment	Genotype	Wheat grain yield (kg ha ⁻¹)	Wheat straw yield (kg ha ⁻¹)	Total wheat biomass (kg ha ⁻¹)
0x	Byrd	881 \pm 158	5,507 \pm 899	6,388 \pm 1,049
	Cheyenne	612 \pm 184	5,230 \pm 323	5,842 \pm 470
	Snowmass	754 \pm 153	4,732 \pm 551	5,487 \pm 679
5x	Byrd	521 \pm 261	5,453 \pm 1,701	5,974 \pm 1,949
	Cheyenne	691 \pm 223	6,691 \pm 809	7,381 \pm 977
	Snowmass	714 \pm 253	5,115 \pm 1,200	5,829 \pm 1,347
P values				
Genotype		0.88	0.49	0.62
Soil Treatment		0.44	0.40	0.55
Genotype x Soil Treatment		0.42	0.66	0.61

Table S4. Nitrogen content and total uptake of wheat grain and straw in wheat genotype x compost treatment field study in Akron, CO. Samples were collected from 1 m² microplots amended with ¹⁵N labelled cover crop residues. Values represent the means ($n = 4$) \pm standard error for wheat sampled in the 2021 season.

Soil Treatment	Genotype	Grain N conc. (g kg ⁻¹)	Straw N conc. (g kg ⁻¹)	Grain N uptake (g m ⁻²)	Straw N uptake (g m ⁻²)	Total N uptake (g m ⁻²)
0x	Byrd	30.0 \pm 2.0	9.4 \pm 1.5	6.0 \pm 1.9	9.6 \pm 2.0	15.6 \pm 2.2
	Cheyenne	27.3 \pm 0.7	9.5 \pm 1.8	7.6 \pm 2.0	10.6 \pm 1.6	18.2 \pm 1.7
	Snowmass	29.5 \pm 3.0	9.5 \pm 1.6	9.0 \pm 1.4	10.6 \pm 0.9	19.6 \pm 0.8
5x	Byrd	30.3 \pm 1.5	16.4 \pm 0.3	5.8 \pm 1.3	19.7 \pm 0.7	25.5 \pm 1.8
	Cheyenne	29.7 \pm 1.0	17.3 \pm 1.3	4.9 \pm 0.8	20.2 \pm 3.7	25.1 \pm 4.4
	Snowmass	29.1 \pm 2.1	19.6 \pm 1.3	3.9 \pm 0.8	24.6 \pm 3.3	28.5 \pm 3.3
P values						
Genotype		0.67	0.5	0.92	0.43	0.29
Soil Treatment		0.64	<0.001	0.03	<0.001	0.12
Genotype x Soil Treatment		0.75	0.53	0.26	0.59	0.56

Table S5. Rhizosphere microbiome diversity metrics for bacterial/archaeal markers and fungal marker genes. Values are means \pm standard error, and ANOVA analysis results (p -values) are presented at the bottom of the table. Shannon and Pielou diversity indices are presented, and Richness is expressed as total features per sample.

Year	Timepoint	Soil.trt	Variety	Bacteria/Archaea (16S)			Fungi (ITS)		
				Shannon	Pielou	Richness	Shannon	Pielou	Richness
2020	Tillering	0x	Byrd	9.0 \pm 0.10	0.91 \pm 0.01	1,003 \pm 68	4.9 \pm 0.49	0.60 \pm 0.05	283 \pm 28
			Cheyenne	8.9 \pm 0.13	0.90 \pm 0.01	952 \pm 40	5.5 \pm 0.26	0.67 \pm 0.03	313 \pm 13
			Snowmass	8.8 \pm 0.05	0.89 \pm 0.00	1,006 \pm 47	5.4 \pm 0.19	0.66 \pm 0.02	281 \pm 22
		5x	Byrd	8.8 \pm 0.11	0.88 \pm 0.01	979 \pm 51	4.9 \pm 0.35	0.61 \pm 0.04	242 \pm 29
			Cheyenne	8.7 \pm 0.12	0.87 \pm 0.01	997 \pm 56	5.4 \pm 0.07	0.67 \pm 0.01	255 \pm 9
			Snowmass	8.3 \pm 0.19	0.85 \pm 0.02	840 \pm 40	5.2 \pm 0.13	0.66 \pm 0.02	227 \pm 6
	Heading/Flowering	0x	Byrd	9.0 \pm 0.12	0.90 \pm 0.01	1,032 \pm 46	5.1 \pm 0.46	0.61 \pm 0.05	304 \pm 32
			Cheyenne	9.0 \pm 0.04	0.91 \pm 0.00	1,006 \pm 3	5.6 \pm 0.37	0.67 \pm 0.04	321 \pm 18
			Snowmass	9.2 \pm 0.09	0.91 \pm 0.00	1,126 \pm 63	5.5 \pm 0.32	0.66 \pm 0.03	330 \pm 16
		5x	Byrd	8.8 \pm 0.33	0.89 \pm 0.02	956 \pm 130	4.6 \pm 0.18	0.60 \pm 0.01	222 \pm 31
		Cheyenne	9.2 \pm 0.04	0.90 \pm 0.00	1,156 \pm 18	5.4 \pm 0.13	0.67 \pm 0.01	271 \pm 11	
		Snowmass	9.0 \pm 0.15	0.90 \pm 0.00	1,006 \pm 88	4.9 \pm 0.17	0.62 \pm 0.01	234 \pm 27	
2021	Tillering	0x	Byrd	9.4 \pm 0.17	0.91 \pm 0.01	1,294 \pm 227	4.2 \pm 0.27	0.53 \pm 0.03	264 \pm 21
			Cheyenne	9.2 \pm 0.02	0.91 \pm 0.00	1,131 \pm 22	4.7 \pm 0.36	0.58 \pm 0.04	301 \pm 21
			Snowmass	9.3 \pm 0.05	0.91 \pm 0.00	1,162 \pm 39	5.1 \pm 0.20	0.62 \pm 0.02	303 \pm 15
		5x	Byrd	9.1 \pm 0.16	0.90 \pm 0.01	1,192 \pm 88	4.9 \pm 0.12	0.65 \pm 0.02	191 \pm 6
			Cheyenne	9.1 \pm 0.09	0.90 \pm 0.01	1,080 \pm 34	4.4 \pm 0.12	0.60 \pm 0.02	168 \pm 8
			Snowmass	9.1 \pm 0.15	0.91 \pm 0.00	1,038 \pm 110	4.5 \pm 0.15	0.61 \pm 0.02	163 \pm 11
	Heading/flowering	0x	Byrd	9.5 \pm 0.10	0.92 \pm 0.00	1,354 \pm 132	4.6 \pm 0.44	0.56 \pm 0.05	292 \pm 20
			Cheyenne	9.2 \pm 0.12	0.91 \pm 0.01	1,099 \pm 58	5.2 \pm 0.31	0.62 \pm 0.03	356 \pm 28
			Snowmass	9.4 \pm 0.05	0.91 \pm 0.00	1,226 \pm 42	5.3 \pm 0.23	0.64 \pm 0.03	322 \pm 14
		5x	Byrd	9.1 \pm 0.15	0.90 \pm 0.01	1,162 \pm 110	4.6 \pm 0.24	0.62 \pm 0.02	189 \pm 19
		Cheyenne	9.1 \pm 0.11	0.90 \pm 0.01	1,102 \pm 96	4.3 \pm 0.14	0.57 \pm 0.02	177 \pm 7	
		Snowmass	9.0 \pm 0.08	0.89 \pm 0.00	1,111 \pm 44	3.7 \pm 0.41	0.50 \pm 0.05	170 \pm 7	

ANOVA P						
Genotype	0.46	0.6	0.42	0.099	0.14	0.18
Soil	<0.001	< 0.001	0.12	0.007	0.92	< 0.001
Timepoint	0.001	< 0.001	0.036	0.86	0.43	0.02
Year	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002

Table S5. Gravimetric water content of soil from rhizosphere (Tillering & Heading) and surface 0-30 cm (Harvest) samples. All values are expressed as percent of dry soil in mean \pm standard error. ANOVA results (*p*-values) are presented at the bottom of the table.

Year	Soil Treatment	Variety	Timepoint		
			Tillering	Heading/Flowering	Harvest
2020	0x	Byrd	24.0 \pm 1.5	7.8 \pm 0.9	7.2 \pm 0.9
		Cheyenne	25.5 \pm 2.7	7.4 \pm 0.8	8.0 \pm 0.4
		Snowmass	25.0 \pm 1.3	8.1 \pm 0.9	6.4 \pm 1.1
	5x	Byrd	25.6 \pm 1.6	9.3 \pm 1.4	7.3 \pm 1.2
		Cheyenne	27.3 \pm 1.7	7.9 \pm 1.0	7.5 \pm 1.6
		Snowmass	29.4 \pm 1.9	8.6 \pm 1.0	7.5 \pm 1.5
2021	0x	Byrd	25.6 \pm 1.8	17.9 \pm 2.3	8.0 \pm 0.6
		Cheyenne	28.5 \pm 1.9	19.0 \pm 3.0	9.1 \pm 0.3
		Snowmass	25.5 \pm 1.3	16.0 \pm 2.5	8.3 \pm 0.2
	5x	Byrd	32.0 \pm 1.6	23.0 \pm 3.5	8.2 \pm 0.3
		Cheyenne	32.5 \pm 2.1	23.4 \pm 4.7	9.1 \pm 0.3
		Snowmass	30.8 \pm 1.7	20.5 \pm 2.5	9.2 \pm 0.5

ANOVA P	
Genotype	0.54
Soil	< 0.001
Year	< 0.001
Sample Period	< 0.001
Soil x Year	0.11

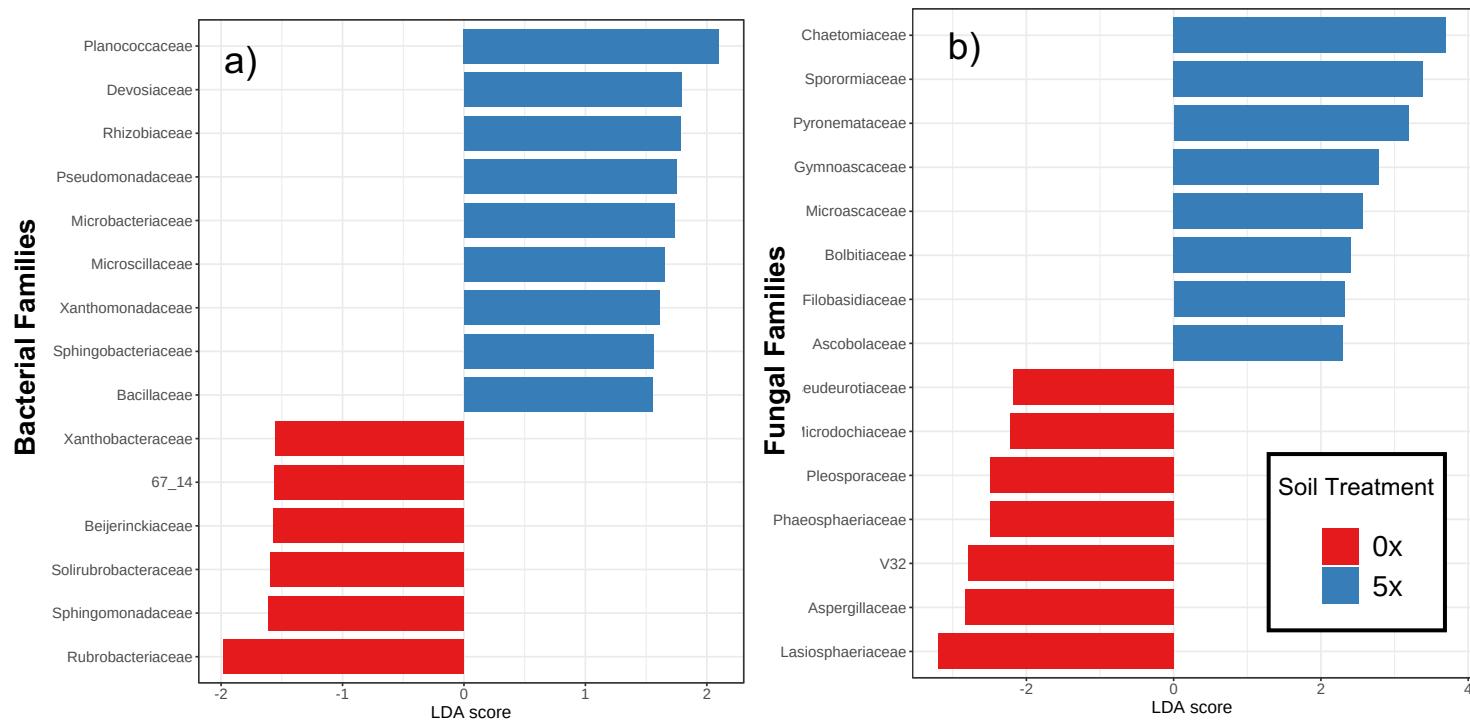


Figure S1. Linear Discriminate Analysis Effect Size (LEfSe) analysis results for family-level a) bacterial communities based on 16S amplicon sequencing and b) fungal families based on ITS sequencing. Analysis identifies families important for indicating grouping by soil compost treatment (bar colors), with larger absolute LDA scores indicating greater importance. Data shown for both years.

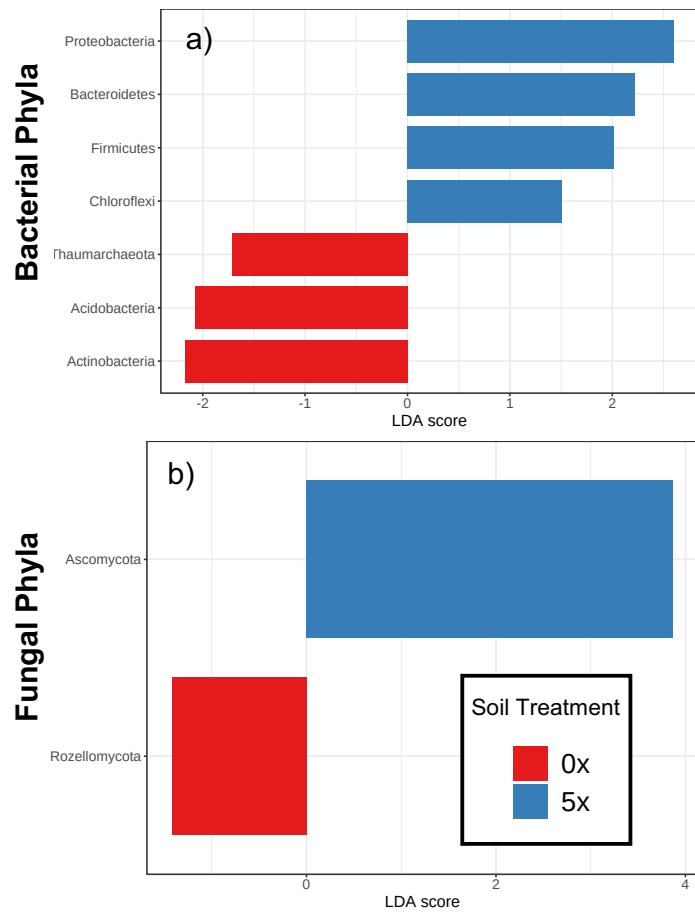


Figure S2. Linear Discriminate Analysis Effect Size (LEfSe) analysis results for a) bacterial phyla based on 16S amplicon sequencing and b) fungal phyla based on ITS sequencing. Analysis indicates families important for indicating groups (bar colors), with higher absolute LDA scores indicating greater importance.

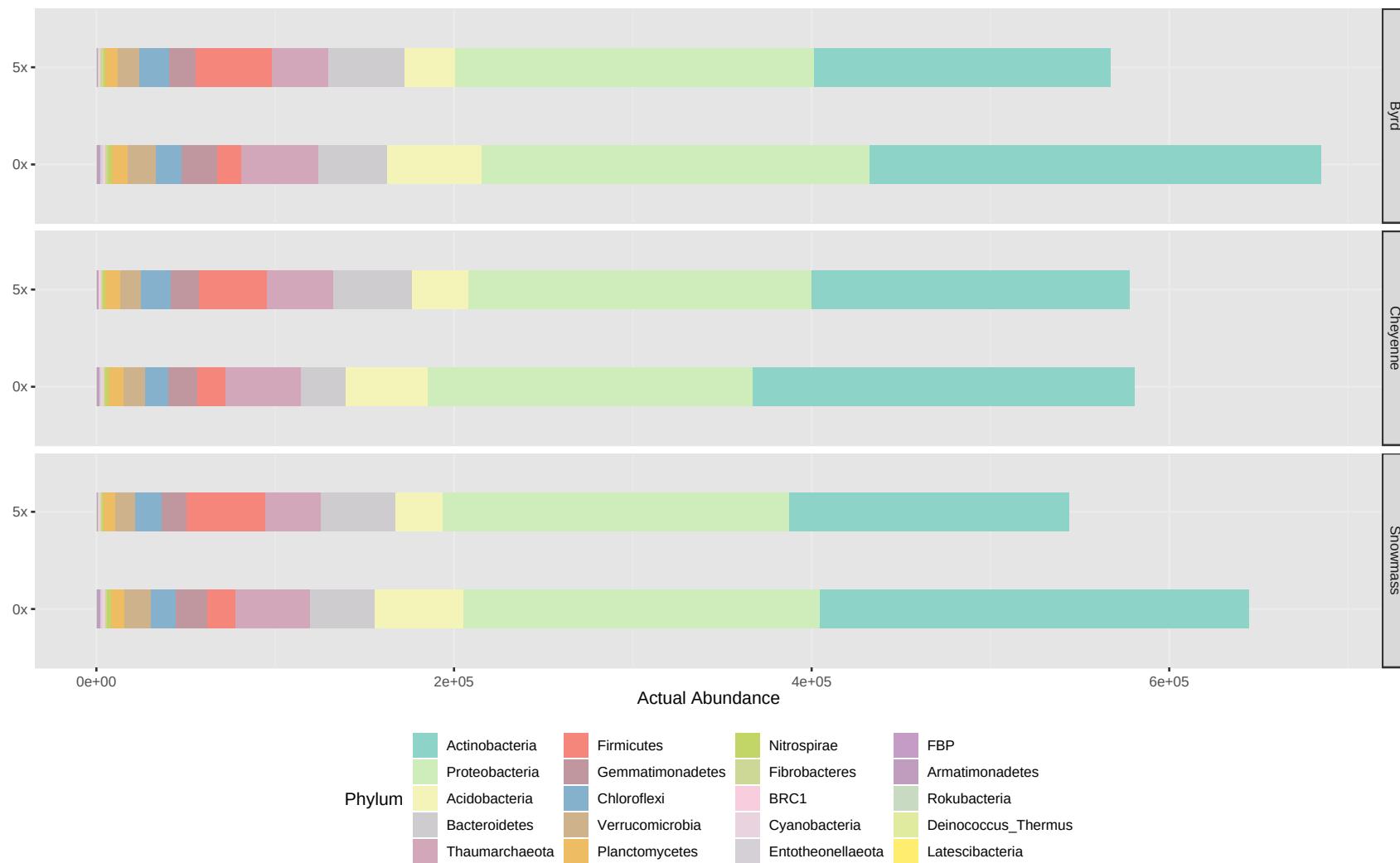


Figure S3. Bacterial phylum relative abundances based on 16S sequencing. Bar lengths depict merged (summed) abundances for each soil-by-genotype combination and are colored by phylum.

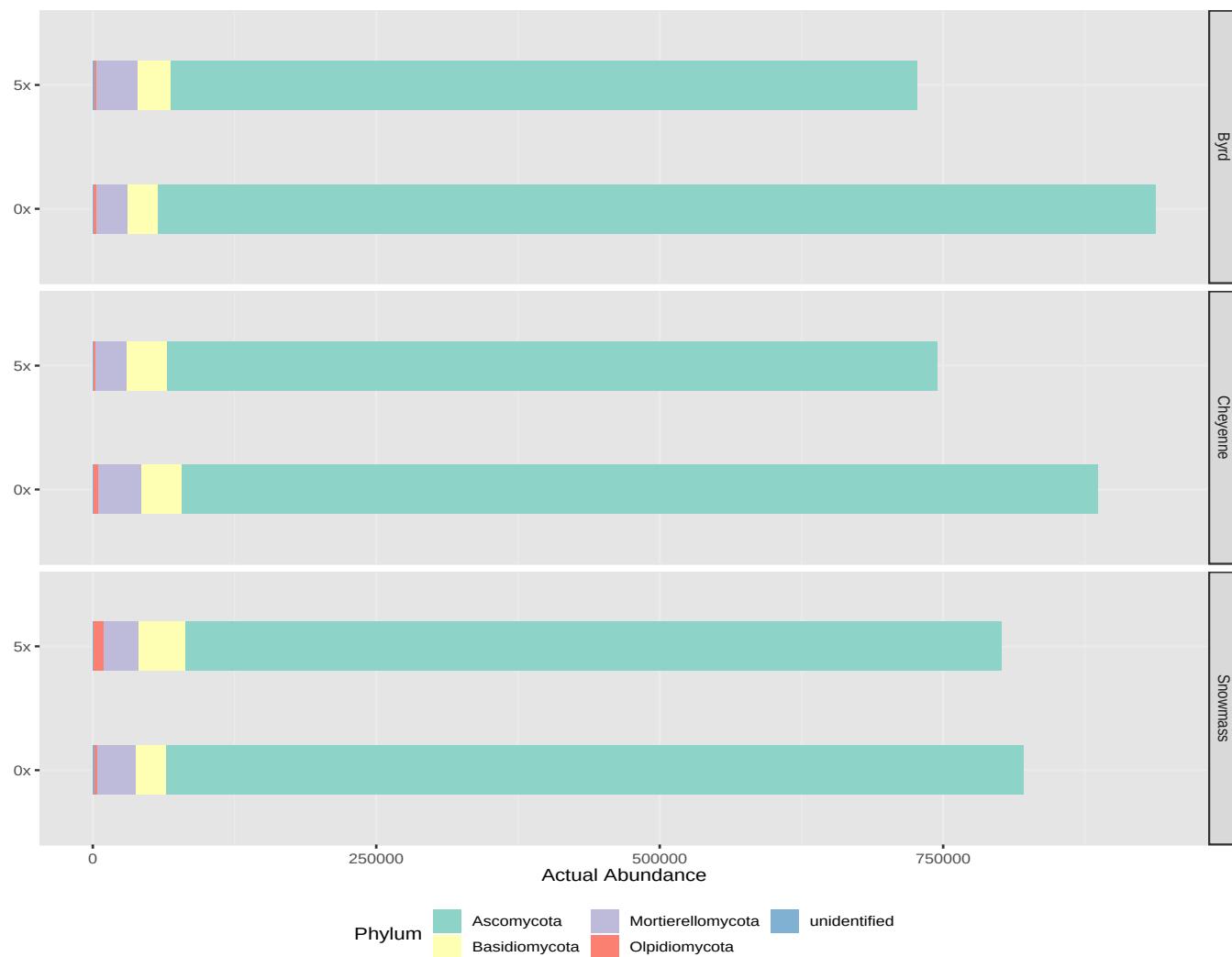


Figure S4. Fungal abundances based on ITS sequencing. Bar lengths depict the sum total relative abundance across all samples in each soil-by-genotype group.

