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Abstract:

Organic nutrient management through the application of compost and/or cover crops
provides mineralizable sources of nutrients for plants while often building soil organic matter
(SOM) and various aspects of soil health. Variability in nutrient acquisition strategies between
crop genotypes may confer advantages under different soil health contexts and could be
important for crop selection and breeding, but crop response under field conditions remains
unexplored. We investigated the ability of different genotypes of winter wheat (7riticum
aestivum L.) to access nitrogen (N) from newly added cover crop residues in two soils with
contrasting levels of SOM and biological activity. We planted three previously characterized
wheat genotypes in a long-term dryland compost amendment field trial: 1) Byrd (current, deep
roots, low exudation), 2) Cheyenne (historic, drought susceptible, intermediate exudation), and
3) Snowmass (current, drought-susceptible, high exudation). >N-labelled cover crop residue was
added to each plot and traced into wheat tissue. In the low SOM soil, the high exudate genotype
Snowmass and historic genotype Cheyenne took up the most residue-derived N (6.4-8.1 kg N ha
1 compared to the low-exudate genotype Byrd (4.4 kg N ha'!), suggesting a strong exudate effect
in the more carbon-limited soil. However, the low-exudate, deep rooted genotype, Byrd, took up
the most residue N in the high SOM soils (4.6 kg N ha! vs. 2.8 and 3.3 hg N ha™! for Cheyenne
and Snowmass, respectively), which indicated higher native N cycling activities and great
importance of drought resistance. Enzyme activity, inorganic N, and microbial communities
were not influenced by genotype, though did show strong effects of compost application legacy.
Our results show that belowground allocation strategies that favor microbial stimulation may be
less successful under water limitation, especially when high SOM can support mineralization of
residue N without added investment in root inputs. Increased soil health through SOM-building
management likely enhances nutrient cycling, and may better support root strategies that invest

less in microbial stimulation in favor of other limiting resources.

Keywords: Triticum aestivum; soil organic matter; compost; cover crop; nitrogen mineralization;

organic nutrient management

1. Introduction:
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Improved soil health is a critical management goal for farmers, policy-makers and
society, as agriculture is increasingly asked to provide environmental services as well as sustain
food production. While there is on-going and vigorous debate regarding the definition and
measurement of soil health (Janzen et al., 2021), certain practices, such as the addition of organic
amendments, is generally thought to contribute to soil health by increasing levels of soil organic
matter (SOM) and biological activity, while reducing losses of reactive nitrogen (N) (Xia et al.,
2017). Organic amendments such as compost, manure, and leguminous cover crops (green
manure) are commonly utilized in organic agriculture to support crop nutrition where synthetic
fertilizers are not permitted. Composted manure primarily contains organic, mineralizable N,
which can provide a slow release of N during the growing season. Cover crops may also supply
sufficient N to meet crop demands if cover crop biomass production and N fixation is adequate
(Tonitto et al., 2006). Along with supplying crop nutrients, organic amendments can rapidly
improve many soil properties related to soil structure, water dynamics, and nutrient cycling (Six
et al., 2004).

In addition to nutrient inputs, plant roots can also affect SOM dynamics and microbial
communities through exudation. Roots of different plant types can stimulate soil N
mineralization, but the direct link to plant N availability and uptake remains unclear (Gan et al.,
2022; Huo et al., 2017). Root effects on N mineralization are mediated through stimulation
and/or selection of the rhizosphere microbial community and N cycling activities (Qu et al.,
2020; Yu et al., 2021). There is increasing evidence that plant rhizosphere microbiomes show
species and even genotypic specificity in selecting microbial taxa, which can perform soil
functions that contribute to plant success (Sanchez-Caiiizares et al., 2017). For example, plants
have been shown to use root exudation to recruit microbial taxa that assist in nutrient
mobilization, such as phosphorous (P) solubilization or N mineralization, or to exclude
pathogenic organisms (Fitzpatrick et al., 2018; Mendes et al., 2018).

Rhizosphere microbial interactions may be an integral part of plant resource acquisition
strategies that are just now being integrated into existing resource allocation frameworks. For
example, the root economic spectrum focuses on the amount and structure of root tissues
allocation in response to resource gradients (Reich, 2014). However, recent work on root traits
has unearthed evidence of another “collaboration” axis, where species with high microbial

associations have smaller root systems but produce more exudates (i.e., collaborative) to increase
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nutrient availability closer to the root (Bergmann et al., 2020; Wen et al., 2022). Indeed,
evidence from >1800 plant species supports a collaboration gradient with regard to root-
microbial symbioses (Bergmann et al., 2020).

Root exudation is a complex process controlled by many different genetic pathways, and
is likely subject to many of the same selection pressures as other plant traits (Schmidt et al.,
2016). It has been postulated that more recent efforts in plant breeding, especially under soil
environments with high inputs of inorganic nutrients, may have disrupted co-evolutionary
processes between plant roots and rhizosphere microbial communities, with potential to decrease
crop access to organic nutrient inputs (Pérez-Jaramillo et al., 2016; Schmidt et al., 2016). Work
in several crops, including maize and winter wheat, have found a shift in root-associated
microbial communities in modern vs. older genotypes (Hetrick et al., 1993; Schmidt et al., 2020;
Tkacz et al., 2020). This work suggests that recent breeding efforts may be responsible for
unintentional selection away from historical root-microbial interactions, which could affect crop
fitness in soils with high inputs of organic nutrient sources.

As agroecosystems move to improve environmental health through greater reliance on
cycling of organic nutrients, certain crop genotypes and traits may be better suited to
participating in and benefitting from microbially-mediated nutrient cycling activities. Genotype-
level variation in root architecture and exudate dynamics have been found in winter wheat
(Triticum aestivum L.), an important global staple crop (Kelly et al., 2022b). These differences in
root traits can confer varying levels of drought resistance and N use efficiency (Becker et al.,
2016; Foulkes et al., 2009) and likely affect the rhizosphere microbiome, with important
implications for nutrient cycling and plant access to organic nutrient sources. Different cultivars
of durum wheat (Triticum durum L.) have demonstrated unique exudation profiles related to root
morphology and rhizosphere community composition (Iannucci et al., 2021), but the implications
for rhizosphere functions like nutrient cycling remain poorly understood. It is especially critical
to investigate root-rhizosphere dynamics in the field to understand these relationships in realistic
scenarios, but there is very little research linking root traits to rhizosphere functions in a field
setting.

The objective of this study was to assess the relative ability of distinct winter wheat
genotypes to access residue-derived N under different soil health contexts. We hypothesized that

wheat genotypes with higher levels of exudation and less intensive breeding (i.e., older) will
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perform better in a high-SOM context since greater investment in microbial interactions should
provide greater access to organic nutrients. More specifically, we hypothesized that genotypes
with higher exudation rates will stimulate greater hydrolytic enzyme activity and available N,
driven by distinct microbial communities. To test these hypotheses, we utilized a long-term
compost amendment field trial to assess the effects of different levels of soil health, mainly
determined by differences in SOM and biological activity. Within this experiment, we planted
three different genotypes of winter wheat, selected from previous research demonstrating
differing belowground C allocation patterns. We applied *N-labelled cover crop residue to the
soil to trace the mineralization and uptake of residue-N into wheat tissue, and related these
dynamics to microbial community structure, enzyme activity, and available inorganic N in the
soil. Together, these methods allow us to relate crop genotype differences in belowground
allocation to microbial community structure and function, in the context of N flows and

transformations in an agroecosystem.

Methods

2.1 Site and experimental design

The study site was a long-term (10 yr) semi-arid dryland experiment established in 2010
at the USDA-ARS Central Great Plains Research Station in Washington County,
Colorado (40°09'22.4"N 103°08"26.1"W, altitude 1, 384 m). Two soil types are present at this
location: Weld silt loam (fine, smectitic, mesic Aridic Argiustoll) and a Rago silt loam (fine,
smectitic, mesic Pachic Argiustoll). Average high and low temperatures range from 32°C in July
to -10°C in January, with average annual rainfall of 417.5 mm (Table S2). During the two study
years considered here, total annual precipitation was 273 in 2020 and 461 mm in 2021 (Table
S2). This study employed a two-year crop rotation with alternating years of winter wheat and
bare fallow. The fields were managed without synthetic fertilizers or herbicides, utilizing
shallow sweep tillage (8 cm depth) twice each summer for weed control (Calderon et al., 2018).
The only exception was in 2020, where glyphosate was applied twice before wheat planting in
September to control aggressive weed populations and avoid tillage (and associated soil moisture
loss). The plots utilized in this study included contrasting soil health management practices, with

biennial applications of beef feedlot compost applied before wheat planting at a rate of 109 Mg
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ha! (5x), which corresponds to roughly five times the expected crop N demand, versus a control
with 0 Mg ha'! (0x). Both phases of the crop rotation are present every year, with all compost
treatments and phases present in each of four replicate blocks. The compost, 80% dry matter
with a total N content to 1.9% and a C:N ratio of 9.0, was applied in 2019 before wheat planting.
Additional details on agronomic management, soil properties and compost composition are
reported by Calderdn et al. (2018) and Liu et al., (2021), as well as in Table S1.

Within the 0x and 5x compost plots, three sub-plots (5.5 x 1.6 m) were established within
the winter wheat phase of the rotation in 2019 and again in 2020. The three sub plots in each
main plot were randomly assigned one of three winter wheat cultivars selected for this study
based on diverging root traits reported by Kelly et al. (2022b). This study design was repeated
over two growing seasons: 2019-2020, and 2020-2021. In each year, the wheat was planted in
plots following a 14-month bare fallow to simulate the wheat-fallow rotation system common in
the region. Therefore, the planted plots differed between the years, though they were adjacent
within the same block layout. Wheat planting occurred on Sept 25, 2019 and Sept 24, 2020
using a cone planter (Hege Equipment Ltd., KS, USA) with 19 cm row spacing, 4 cm planting
depth, and planting density of 33 seeds m™! of row (175 seeds m™).

The three cultivars planted in the current study were: ‘Byrd’, a current hard red semi-
dwarf winter wheat (Haley et al., 2012); ‘Snowmass’, a current hard white semi-dwarf winter
wheat (Haley et al., 2011); and ‘Cheyenne’, a tall historic variety released in 1930 (Table 1).
Byrd is considered a drought-tolerant genotype and has been previously shown to have relatively
long, thin roots with low levels of exudation; Snowmass is drought-susceptible with short, coarse
roots and high exudation; Cheyenne has intermediate root length and exudation (Becker et al.,
2016; Kelly et al., 2022b, 2022a).

In 2019 prior to compost application, a 3 m? microplot was established in the center of
each cultivar sub-plot where compost was excluded to avoid an additional new N source. One
day prior to wheat planting in both 2019 and 2020, soil from a 1m? microplot was mixed with
5N-labelled cover crop material to a depth of 15 cm. The cover crop residue was a mixture of
hairy vetch (Vicia villosa L.) and Triticale (x Triticosecale Wittmack) and was applied at a rate
of 1600 kg ha™! (dry biomass), which is within the range of typical cover crop biomass
production in the region (Kelly et al., 2021). The cover crop mixture was grown in pure sand

supplied with N-free Hoagland’s solution (Hoagland & Arnon, 1950) amended with 9 atm%!>N-
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KNO; (Cambridge Isotope Laboratories, MA, USA). Cover crop material was prepared by oven
drying at 50 °C and coarsely chopping to ~ 5 cm pieces; in 2020, the root material was coarsely
ground to better facilitate even distribution in the microplot. Final enrichment for the cover crop
material was 8.03 atm% '°N, while total N concentration of the material was 23 g kg*!, foran N
application rate of 36.8 kg ha'!.

Due to extremely dry conditions during both years of the study, supplemental irrigation
was applied to the treatment plots using drip tape spaced at 30 cm intervals running the length of
the plots, as well as 1.5 m of buffer on either side. In early November 2019, 2 cm of water was
applied through surface drip irrigation to aid in stand establishment. In 2020, a larger quantity of
water was added to alleviate extreme drought conditions; 7.6 cm of water was applied using the
same drip tape method in late August, and an additional 2.5 cm of water was applied by hand in
to the microplots in late October to replace evaporative losses from mixing in the cover crop

residues during plot preparation.

2.2 Soil and plant sampling

We collected rhizosphere soil samples twice during the growing season, once at tillering
(early May) and again at heading/flowering (early June) in both sampling years. The root
systems of three separate plants from each cultivar sub-plot (outside the microplots) were gently
excavated down to about 15 cm, shaking off loose soil, and placing the root system with adhered
soil in a sterile Whirlpack bag. The loosely-adhered soil that fell off the root system was also
collected as “root zone” soil in a zip-top bag for nutrient analysis. All samples were kept on ice
for transport back to the lab. In the lab, we dislodged rhizosphere soil from roots by squeezing
the root bag to break up aggregates. We transferred ~0.3 g of rhizosphere soil into Zymo
BeadBashing tubes, added 700 mL BeadBashing Buffer, vortexed briefly, and kept frozen at -20
°C for DNA extraction (see below). We also transferred a 1 g subsample of rhizosphere soil into
120 mL specimen cups and kept at 4 °C for enzyme analysis (see below). “Root zone” soil was
2-mm sieved and ~8 g of fresh soil extracted with 40 mL 2 M KCl for inorganic N analysis.
Extracts were kept frozen until analysis for nitrate and ammonia on an Alpkem Flow Solution IV
system (O.I. Analytical, College Station, TX). Soil moisture content was also determined on this

soil using a ~50 g subsample.
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The final sampling occurred at wheat harvest (mid-July). Two 1-m rows of wheat were
harvested from the main plot by cutting the wheat plants ~5 cm from the soil surface for
determination of plant biomass and grain yield. Wheat biomass and grain samples were oven-
dried at 55 °C, weighed, grain was cleaned using a belt thresher (Agriculex, Ontario, CA) and the
grain weighed separately from the straw. From within the cover crop microplots, we harvested
wheat plants from the center three rows of the plots, at least 15 cm away from the plot edge to
minimize edge effects. These samples were also oven-dried at 55 °C and threshed to separate
wheat grain from straw.

Wheat straw and grain samples from within the microplots were ground and analyzed for
total C, total N, and >N signature at the UC Davis Stable Isotope Facility using a PDZ Europa
20-20 isotope ratio mass spectrometer (Sercon, Ltd., Cheshire, UK), which allowed us to
determine the amount of added cover crop-derived N taken up by the wheat plants.

Immediately following wheat harvest, in-row soil cores (3.8-cm diameter) were taken
down to 30 cm with a tractor-mounted hydraulic probe (Giddings, Windsor, CO, USA). Two
cores were taken from within each microplot and kept on ice for transport back to the lab. In the
lab, bags containing cores were weighed for determination of bulk density, and then soil was
passed through a 2-mm sieve and wheat roots removed. A subsample of fresh soil was dried at

105 °C for soil moisture.

2.3 Microbial communities and activity

Enzyme activity and amplicon sequencing were conducted on rhizosphere soil collected
at the tillering and flowering timepoints. Hydrolytic enzyme activity was measured
fluorometrically following German et al. (2011) to assess the enzyme activities: L-leucine
aminopeptidase (LAP), L-Tyrosine aminopeptidase (TAP), and N-Acetyl-B-D-glycosaminidase
(NAG); B-1,4-glucosidase (BG) and B-D-cellobiosidase (CB); phosphatase (PHOS). LAP, TAP
and NAG assess N cycling and mineralization potentials; BG and CB assess labile and more
structural C cycling, respectively; and PHOS targets phosphorous (P) cycling. Briefly, 1 g fresh
soil was blended with 120 mL 50 mM sodium acetate buffer for 1 min. to create soil slurries. We
combined 200 uL soil slurry with 50 uL 200 uM fluorescent substrate solution in replicates of
16, and incubated for 4 hours at 25 °C. Control reactions were included in each plate: un-bound

4-methylumbelliferone or methylcoumarin fluorescing agent with the soil slurry to estimate
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quenching, and substrate combined with soil-free buffer to estimate background fluorescence.
Fluorescence was measured on a microplate fluorometer (Infinite M200, Tecan, Switzerland)
with 365 nm excitation and 450 nm emission filters.

We extracted genomic DNA from rhizosphere soils using the Quick-DNA Fecal/Soil
Microbe kit (Zymo Research Corporation, Irvine, CA) following manufacturer’s instructions.
Amplicon libraries were prepared for the 16S rRNA region using the 515/806 Earth Microbiome
Project standard primer pair (Caporaso et al., 2011), and the V3-V4 region of the ITS gene (ITS-
2; White et al., 1990). Extracted DNA was quantified using the Qubit ds DNA High Sensitivity
quantification system (Invitrogen). Sequencing was conducted at the University of Colorado —
Anschutz using an [llumina MiSeq (2 x 250 bp). Sequence data will be uploaded to the NCBI
SRA database under project ID PRINA735275 upon acceptance for publication.

2.4 Isotope calculations
By quantifying the amount of '°N in wheat grain and straw samples, we were able to
determine the relative contribution of our added cover crop residue to the N in these tissues. The
relative proportion of N derived from the !°N-labelled cover crop residue in the wheat plants was
calculated using the mixing model:
(@tm%, 10~ Aoty

label 0 7
ae (atm%)label' atmﬁcantrol)

where fiurer 1S the relative contribution of the labeled cover crop to the sample, atm%sampie 1s the
atom% of the sampled material, atm%conror s the atom% of the natural abundance soil, and
atm%iaver is the atom% of the 1N labelled cover crop residue. Due to slight differences in the
background N values of the different soil treatments (0x vs 5x; Table S1), a different natural
abundance end member was used for samples from each of these soils. We calculated the total
uptake of cover crop-derived N in wheat by multiplying the fiapes value above and multiplying it

by the concentration of N in the sample (wheat grain or straw).

2.5 Statistical analysis of plant and soil metrics
We used two-way ANOVA to test the effect of wheat genotype and soil treatment
(compost vs. no compost) on various metrics of wheat performance and N utilization. For soil

enzyme activity and inorganic N measurements, the sample period (tillering or
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heading/flowering) was also included as a fixed effect. Block was included as a random effect
for single-timepoint measures, while plot was included in the models for enzyme activity and
inorganic N measures that were repeated throughout the growing season. The model was
implemented using the /mer function in the /me4 package, and the /merTest package used for
ANOVA implementation (Bates et al., 2015; Kuznetsova et al., 2017). An alpha value of p <0.1
was used to evaluate statistical significance to account for inherent variability in field conditions.
Log transformations were applied as needed to meet the assumptions of ANOVA. All statistical
analyses were performed in R version 4.0.3 (R Core Team, 2020), and plots were constructed

using ggplot2 (Wickham et al., 2018).

2.6 Microbial community analysis

Amplicon sequences data (16S and ITS) were processed using QIIME2 2 v 2019.2.
Denoising was performed using DADA?2 on paired-end reads for 16S data and forward reads for
ITS data to improve feature clustering (Callahan et al., 2016). 16s forward and reverse reads
were trimmed to 247 and 186 base-pairs, respectively, and ITS forward reads trimmed to 200
base-pairs. We used a Native Bayes taxonomic classifier trained on our study primer pairs
through QIIME2 (Bokulich et al., 2018) that utilized the SILVA and UNITE reference databases
for bacteria/archaea sequences and ITS sequences, respectively (Abarenkov et al., 2020; Quast et
al., 2013). Features that only appeared once and without classification past Kingdom were
removed from both datasets, with chloroplast and mitochondrial sequences removed from the
16S dataset. Sequence data is available in the NCBI SRA under PRINA735275 SUB11809024.

We computed alpha diversity metrics on rarefied data to account for uneven sampling
depth using the QIIME2 Core Metrics function (Bolyen et al., 2019). We completed additional
multivariate analysis on family-level data after completing additional filtering steps: features that
appeared less than 4 times in 20% of samples were excluded, as well as 10% lowest variance
features according to inter-quartile range, as these are unlikely to show treatment effects. The
abundance data was then scaled using the Cumulative Sum of Squares method (Paulson et al.,
2013). We assessed treatment effects on overall community composition with PERMANOVA
and visualized with PCoA using Bray-Curtis dissimilarities.

Differential abundance of specific families based on our treatments were tested using

Linear Discriminant Analysis (LDA) Effect Size (LEfSe; Segata et al., 2011). The LEfSe allows

10
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for statistically robust identification of features that are most likely to explain differences
between experimental groups. Briefly, the method first uses a non-parametric Kruskal-Wallis
sum-rank test to detect differentially abundant features across groups, followed by unpaired
Wilcoxon rank-sum test, and finally LDA to estimate the effect size of each differentially
abundant feature (Segata et al., 2011). LEfSe analysis was completed on taxa grouped at the
family level, and significance was determined by FDR-adjusted p-value < 0.01 and log LDA
score greater than 1.5. Multivariate analysis and visualization were implemented in the web-

based tool MicrobiomeAnalyst (Chong et al., 2020).

3. Results
3.1 Genotype and soil treatment effects on plant growth and N uptake
Wheat yield strongly differed by year; due to severe drought in 2020, wheat yields were

on average 695 kg ha'!, with even lower yield in the '’N microplots due to reduced moisture

| Genotype: p = 0.98 Genotype: p = 0.86 0.3 Genotype: p = 0.90
40001 a) Soil: p = 0.02 b) Soil: p = 0.52 c) Soil: p = 0.01
enotype x Soil: p = 0.63 154 Genotype x Soil: p = 0.85 Genotype x Soil: p = 0.74
" 3000 s T
2 (B:x’e(\’/enne 'g, L s 0.2
g} Snowmass = 10 I -'g-
T 2000 T 1] T
2 ] o l
ES i~ E
£ 2 5 £ 01
£ 1000 g
© )
0 0- 0.0
0x 5x 0x 5x
SOIl Treatment Soil Treatment Soil Treatment
Figure 1. Wheat yield metrics from a wheat genotype and compost amendment field trial in Akron, from
CO. Soil treatments are biennial (every 2 years) application of beef feedlot compost at a rate of 0 t 1
ha! (0x) or 109 t ha! (5x). Bars are colored by wheat genotype with mean =+ standard error. Two- so1

way ANOVA p - values are given in the top right of each panel. Data is from a single year of the
trial (2020-2021 season) due to drought failure.

disturbance to incorporate the residue. Therefore, the 2019-2020 wheat data was excluded from
analysis, and all wheat yield and N uptake data is reported for the 2020-2021 season only. Wheat
yield data from the excluded 2019-2020 season is reported in Table S3. Wheat yields from 2021
averaged 2217 kg ha'!. Wheat grain yield in 2021 was 62% greater in the 0x than 5x plots (Fig.
la), while wheat straw yield was not different between soil treatment and averaged 11,698 kg ha

' (Fig. 1b). Harvest index was 54% higher in the Ox than the 5x treatment (Fig. 1c).

11
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Total N uptake in the wheat tissue was affected by soil treatment but not by wheat
genotype. While grain N concentration was the same across soil treatments (average: 2.9%),
straw N concentration was 86% higher in the 5x soil treatment (1.8% vs. 0.95%). This led to
more than twice as much straw N uptake in the 5x soil treatment (Table S4). However, the higher
grain yield in the Ox treatment resulted in 55% more total N in the 0x (6.0 - 9.0 g N m™?) grain
compared to 5x grain (3.9 - 5.8 ¢ N m2; Table S3). Overall N uptake in the wheat biomass (grain
+ straw) was on average 48% greater in the 5x soils, though not significant (p = 0.12), and there
was no effect of genotype or a genotype x soil interaction (Table S4).

The uptake of cover crop-derived N was overall higher in the Ox treatment and exhibited
a genotype x soil treatment interaction. Cheyenne showed the greatest plasticity in cover crop-N
uptake across soil treatments, having 82% greater cover crop N uptake compared to Byrd within
the Ox treatment, but then had the lowest relative cover crop-N uptake in the 5x treatment, 41%
less than Byrd (Fig 2a). Snowmass also had almost half the cover crop-N uptake in the 5x
treatment relative to the Ox treatments, but Byrd was consistent with no change across the
different compost treatments. Across all samples, the wheat took up an average of 4.9 kg of
cover crop N per ha, 13% (range: 7%-22%) of the added residue N (Fig. 2a).

The relative concentration of wheat tissue N derived from the added cover crop residue
was consistent with trends in total residue N uptake (Fig. 2b). Plants in the 0x soil treatment had
3.0 — 4.4% of their grain N derived from the added cover crop residue, but this was reduced to
1.1-1.9% in the 5x soils (Fig. 2b). Enrichment was on average 0.54 atm% '°N in grain samples

and 0.55 atm% '°N in straw. This translated to an average of 2.4% of grain N and 2.6% of the

Figure 2. Total uptake (a) and relative fraction (b) of cover-crop residue (CC) derived N in wheat biomass
tissue in different winter wheat genotypes and compost amendment treatments in field trial in Akron, CO.
Soil treatments are biennial (every 2 years) application of beef feedlot compost at a rate of 0 t ha-1 (0x) or
109 t ha-1 (5x). Bars are colored by wheat genotype with mean + standard error. Two-way ANOVA p -
values are given in the top right. Data is from a single year of the trial (2020-2021 season) due to drought
failure in year 1.
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straw N being derived from the cover crop.
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3.2 Enzyme activities

Enzyme activities responded strongly to soil treatment but not to wheat genotype. For all
enzymes assayed, activities in the 5x soil were greater than the 0x soil except for PHOS, which
had higher activity in the 0x soil (Table 2). Enzyme activity was 40-48% higher at the second
sampling timepoint (heading/flowering) in all enzymes except the two aminopeptidases, LAP
and TAP (Table 2). In all enzymes except TAP, activity was higher in the second, wetter season
(2019-2020; Table 2). Both years of data were included in enzyme analysis, as well as for
inorganic N and microbiome analyses below, as these samples were collected from the main
genotype plot earlier in the season before severe water limitation, and patterns were aligned with

the 2021 data.

3.3 Soil N and water

Soil nitrate and ammonium concentrations at tillering and heading showed differences
based on soil treatment, but there was no effect of wheat genotype on either form of inorganic N.
Both ammonium and nitrate were higher in the 5x soil (Table 3). We did not observe a
relationship between enzyme activity and inorganic N levels after accounting for the large effect
of compost addition (data not shown). Sampling timepoint effects varied by N form and year; in
2020, ammonium levels were higher at tillering with no change in nitrate, while in 2021, nitrate

levels were higher at tillering with no change in ammonium (Table 3).

13



357 Gravimetric water content (GWC) in the top 30 cm of soil decreased over the course of
358 the growing season. GWC in the surface soil was ~10-20% higher the 5x rhizosphere soil

359 samples during the growing season (tillering and heading), but the differences faded by the

360 harvest sampling (Table S6).

361

362 3.4 Rhizosphere microbiome analysis

363 Following initial feature filtering, we observed 8,640 distinct bacterial/archaeal features
364 and 1,985 fungal features across bother years. The total number of features in a single sample
365 ranged from 21, 177 to 151, 505, and we did not have to exclude any samples due to low read
366  counts. Rhizosphere bacterial communities were dominated by Actinobacteria and

367  Proteobacteria, and Ascomycota was overwhelmingly dominant in the fungal community (Fig.
368  S3, S4).

369 Shannon diversity of both bacterial/archaeal and fungal taxa were 2.6 and 7.6% lower,
370  respectively, in the 5x compost treatments than the Ox treatments, and there was a marginally
371  significant genotype effect on fungal diversity (Table S5). Specifically, the historic genotype
372 Cheyenne had 7.3% higher fungal diversity (Shannon) compared to Byrd (Table S5). Across
373  both years, all three metrics of bacterial diversity were greater at the later heading timepoint,
374  while only fungal richness showed an increase at heading. The effect of year was different for
375  fungi vs. bacteria, with bacterial diversity and richness being greater in 2020, but fungal diversity
376  higher in 2021.

377 Both bacterial and fungal communities showed high separation due to soil treatment (Fig.
378  3a,d), but there were no differences based on genotype (Fig. 3b,e) or sampling timepoint (Fig.
379  3c,e)). LEfSe analysis identified a suite of bacterial and fungal families that contributed to the
380 soil treatment differences observed (Fig. S1, Fig. S2). For bacterial families, we found that

381 Rubrobacteriaceae and Sphingomonadaceae were strongly associated with the Ox soils, while
382  Planococcaceae, Devosiaceae, Rhizobiaceae, and Pseudomonadaceae were associated with 5x
383  soil. At the phylum level, Proteobacteria, Bacteriodetes and Firmicutes were most associated
384  with 5x soil, while Actinobacteria were more abundant in the 0x soil (Fig. S2). For fungi,

385 Chaetomiaceae and Sporomiaceae were associated with 5x soil, and Aspergillaceae and

386  Lasiosphaeriaceae with the Ox soil (Fig. S1). No bacterial or fungal taxa were identified as

387  contributing significantly to group separation by wheat genotype according to LEfSe analysis.
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Due to additional filtering of rare and low-variability features, 1862 bacterial and 302 fungal

features were ultimately used in multivariate analysis.
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Figure 3. Principle Coordinate Analysis (PCoA) of winter wheat rhizosphere communities based on 16S
(top) and ITS (bottom) amplicon sequencing. Samples are colored based on long-term compost amendment
(left), wheat genotype (center), or sampling timepoint (right). PERMANOVA p - values are indicated in the
bottom right corner for the significance of the groupings. Figure includes data from both growing seasons.
4. Discussion
4.1 Yield response

Treatment effects on wheat grain yield were different than expected, and appeared to be
strongly influenced by precipitation patterns. We found higher grain yield in the no-compost
plots, though overall higher biomass production in the 5x treatment. This is despite the typical
indicators of N availability and N cycling being greater in the 5x treatment, which was expected
due to nutrient addition (Table 2, Table 3). The unexpected yield results, whereby grain yield
was higher in the 0x treatment, was likely explained by the seasonal rainfall patterns experienced
in 2021.

We suspect that relatively high rainfall in the spring and early summer supported strong
vegetative growth, especially in the 5x treatment with higher overall nutrient availability.
However, this growth eventually led to water limitation in June and July when precipitation was
below average (Table S2), such that the larger plants in the 5x plots were transpiring more and
ran out of water during grain filling, resulting in low grain production for this treatment and a
lower harvest index (Fig. 1c). We suspect that water limitation also impeded N translocation to

the grain, resulting in high N concentration in the biomass of the 5x wheat, though not reflected
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in the grain. Despite the higher nutrients in the 5x soil, previous research from these plots
similarly found no significant difference in wheat biomass between the compost amendment
treatments, though greater N concentration in wheat tissues (Calderon et al., 2018).

We did not observe genotype differences in grain or straw yield, despite the historic
genotype, Cheyenne, being a tall variety and not possessing the semi-dwarfing allele common in
many modern cultivars, including the two current genotypes included in the study (Table 1). This
result further highlights the importance of environmental effects that may obscure even well-

established genetic differences.

4.2 Differential genotype uptake patterns of residue N

Our results suggest that wheat genotypes with different nutrient acquisition strategies
(i.e., “cooperative” vs. competitive”) have varying ability to access cover crop N depending on
the soil status. In contrast to our hypothesis, the older and high-exudate genotypes were not more
successful in the high SOM (5x) environment; instead, it appears that the high SOM context
provided the background microbial activity necessary to drive the turnover of residue N,
supported by increased enzyme activity and extractable N in the 5x treatment (Table 2, 3),
allowing other root traits, like drought tolerance, to determine relative success at organic nutrient
acquisition.

Genotypic variation in belowground allocation has been previously observed for
different types of wheat (Iannucci et al., 2021; Kelly et al., 2022b) which lends evidence for
different resource acquisition strategies, even within a species. Different acquisition strategies
may include the “collaborative” strategy, where high levels of exudation support microbial
activity and encourages nutrient mineralization proximate to the root zone (Henneron et al.,
2020). In contrast, a more competitive strategy dedicates resources to root structures for better
soil exploration and more direct uptake of nutrients instead of promoting microbial partnerships
(Bergmann et al., 2020; Wen et al., 2019, 2022). Though we did not measure root exudation in
this study directly, the genotypes used in this study have been previously shown to exhibit both
high exudate (Snowmass) and low-exudation (Byrd) strategies, while the historic germplasm
Cheyenne had intermediate exudation but may have other differences in root traits from its
distinct lineage (Kelly et al., 2022b). Our findings suggest that long-term compost amendment,

which alters the microbial community (Fig. 3) and increases enzyme activity and nutrient
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availability (Table 2, Table 3), likely influences the relative success of these different strategies,
and that water limitation further increases the complexity of plant-soil-microbe interactions.

Cheyenne and Snowmass were more successful than Byrd at taking up residue-derived N
in the Ox soil (Fig. 1), which we suspect was due to higher exudation rates (Kelly et al., 2022b),
resulting in greater microbial mineralization of organic N, in this more C- and N-limited soil.
Both Cheyenne and Snowmass have been reported to be drought susceptible due to shallower
root systems (Kim et al., 2016), and so likely concentrated more of their roots near the surface in
proximity to the added N-rich residue. Importantly, Snowmass has also been shown to have high
levels of root exudation, and has more recently been shown to recruit specific microbial taxa,
compared to Byrd (Kelly et al., 2022b, 2022a). We suspect that in the 0x soils, which have lower
native SOM and biological activity, microbes were in a C-limited state, and thus more responsive
to exudate additions. Previous work has found that soil condition affects the microbial
mineralization response to exudation regarding litter decomposition (Tian et al., 2019). Though
we did not measure N mineralization rates directly in this study, we assume that residue N
uptake provides a practical estimate of plant-available mineralized N. Our results indicate that,
under C and N limitation in degraded agricultural soils, genotypes with greater exudation, i.e.
more “collaborative”, have greater access to organic N sources than in the high SOM soil, and
that the success of different nutrient acquisition strategies are dependent on the soil
characteristics.

While we did not observe genotype differences in enzyme activity (Table S3), we note
that our samples were collected outside of the residue-addition microplots and so rhizosphere
responses to the added residue were not specifically tested. Root exudation has been shown to
stimulate N cycling enzyme activity and N availability in field and greenhouse settings, as
microbes release enzymes to alleviate N limitation (Hamilton & Frank, 2001; Kelly et al., 2022b;
Zhu et al., 2014). While a previous greenhouse experiment found high exudation to impede
short-term residue N uptake in low-SOM soil under greenhouse conditions (Kelly et al., 2022a),
field conditions and a longer growing season create a different nutrient dynamic. Specifically,
the longer growing time tested here allows for greater microbial turnover of added residues,
allowing plants to access previously-immobilized microbial N (Kuzyakov & Xu, 2013). This
suggests that it is important to consider full-season biogeochemical cycling when translating

greenhouse work to the field.
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In the compost-amended soil, wheat genotype performance with regard to residue N
uptake showed a different trend. While Byrd took up the lowest residue-N in the 0x soil, it
surpassed the other genotypes in the 5x soil (Fig. 1). In the 5x soil, high levels of SOM and
microbial activity (i.e. enzymes; Table 2) likely muted or diluted the exudate effect. Indeed,
exudate stimulation of litter decomposition was reduced in high-SOM soil (Tian et al., 2019). In
the high-SOM soils of this experiment, therefore, water became a more important factor for
success, and thus drought tolerance a key genotype trait. Unlike the other genotypes, Byrd has
been reported to be drought-tolerant with a deep-rooting morphology (Becker et al., 2016).
Greater access to water deeper in the soil profile may have allowed Byrd to continue to grow and
access residue N throughout the dry summer season. While not significantly different, we note
that Byrd had on average the highest grain yield and harvest index in the 5x treatments (Fig.
la,c), suggesting that it may have been able to maintain growth later in the season when
conditions became especially dry, with relatively less vegetative growth to maintain.

Together, our data suggests that in higher SOM environments, exudation may be less
important in mobilizing organic N sources, increasing the importance other limiting resources
(i.e., water) in nutrient acquisition (Fig. 4). Thus, while less successful at accessing residue N in
low-SOM and low-activity soil, we suspect that greater drought tolerance within the microbially-
active 5x soil was a key driver for Byrd in the uptake of residue-derived N. Our results highlight
the importance of the environmental context in elevating the relative importance of genotype

traits and different nutrient acquisition strategies, as high levels of soil health indicators may
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Figure 4. Summary figure of interactive effects of soil management legacy and genotype on nitrogen (N)
cycling and uptake. Size of blue arrows indicates relative rate of N cycling and plant uptake based on our
research findings.

4.3 Microbial community

Microbial community structure and function was strongly affected by compost
amendment, but we did not observe any differences due to wheat genotype or sampling time (Fig
3; Table 2). Both C and N cycling enzymes were elevated in soil with long-term compost
amendment, which was likely due to higher levels of complex C and N substrates (Bowles et al.,
2014). Phosphatase activity (PHOS) was lower in the 5x soils, reflecting the well-documented
inverse relationship between available P and phosphatase activity (Kitayama, 2013; Sinsabaugh
et al., 2008). We were unable to observe genotype differences in enzyme activity, which could
be partly due assay limitations in sensitivity and field variability (Trasar-Cepeda et al., 2000).

The higher Shannon diversity in the 0x treatment suggests that a lower nutrient
environment created more niche opportunities and less dominance by copiotrophic taxa (Fierer et
al., 2007). Lower microbial diversity has been reported for high-nutrient soil environments like

the rhizosphere and soils with organic additions (Brisson et al., 2019), though others have found
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increased bacterial diversity with compost additions (Mickan et al., 2018; Zhen et al., 2014).
Fungal diversity was highest in the historic genotype Cheyenne, which echoes previous work
showing that historic varieties of wheat had greater reliance mycorrhizal association than modern
varieties (Hetrick et al., 1993).

We did not identify any bacterial or fungal taxa that were differentially abundant across
genotypes, which suggests that genotype-level variation in rhizosphere community selection
were overwhelmed by the strong environmental differences between the Ox and 5x compost
soils. We note that some weed presence may have obscured genotype effects, especially in 2020
before herbicide use was implemented. Similar to our findings, a study of different wheat
genotypes cultivated with different farm management and drought treatments found that drought
and farming system explained significant variability in microbial communities, but genotype
effects were not apparent (Breitkreuz et al., 2021). Even under similar conditions, genotype
effects on rhizosphere communities are often subtle and difficult to detect (Kelly et al., 2022b).
Studies comparing rhizosphere microbiomes of different genotypes for a variety of crops have
suggested that genotype differences can influence microbiome assembly, but that different
environmental conditions (soil type, nutrient management) have a larger effect (Schmidt et al.,
2020).

Acidobacteria, which were highly indicative of the Ox soil and have species known to be
ecological “stress tolerators”, were found to be the most abundant phylum in undisturbed natural
soils across a range of ecosystems (Fierer, 2017). The higher-nutrient environment of the 5x soil
likely favored more competitive taxa, including members of Pseudomonas which were found to
be highly abundant (Fig. S1a). Also common in the 5x soils was the Rhizobiaceae, which
includes many species of Rhizobia, common soil and plant-associated bacteria and include N-

fixers as well as plant pathogens (Alves, 2013).

Conclusions

As agroecosystems evolve to provide additional ecosystem services like nutrient retention
and C storage, there will be a greater reliance on organic nutrient provision. It has been
hypothesized that unintended consequences of plant breeding on rhizosphere interactions maybe
cause disadvantages to modern crops in a soils with fewer synthetic inputs. We found that soils

with high levels of SOM better support nutrient cycling activities, regardless of crop genotype. In
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addition, stronger rhizosphere partnerships via exudation may be more important in degraded, C-
depleted soils. Importantly, we suspect a been a trade-off between microbial stimulation via
exudation and deep rooting morphology led to genotype differences under water limitation.
Therefore, it is critical to consider the coupling of biological activity, nutrient cycling and water
availability when breeding and selecting crop traits for agroecosystems in a changing

environment.
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Table 1. Previously determined characteristics of the winter wheat (7riticum aestivum) genotypes used in this study

Byrd Cheyenne Snowmass
Acc. No.! PI 664257 Cltr 8885 PI 658597
Origin Colorado State Univ. Univ. Nebraska Colorado State Univ.
Release Date 2011 1933 2009
Stature Semi-dwarf? Tall Semi-dwarf
Root architecture’ Long, thin Intermediate Short, thick
Exudation level® Low Intermediate High
Drought Susceptibility* Tolerant Susceptible Susceptible

! Accession number in the USDA-ARS GRIN database (http://www.ars-grin.gov/).

? Semi-dwarf genotypes possess either allele Rht-B1b or Rht-D1b, and Tall genotypes lack both those alleles.
3 Based on previous data from Kelly et al. 2022a,b

4From Haley et al.
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Table 2. Soil rhizosphere enzyme activities at tillering and heading/flowering stages in wheat genotype x compost amendment field
study based in Akron, CO over two growing seasons. Values are average (n = 4) + standard error in nmol g*! soil hr'!. LAP and PHOS
measurements were not taken at tillering in the 2019-2020 season. ANOVA p-values are presented at the bottom of the table.

Year Sampling Period Soil Trt. Variety TAP! NAG BG CB LAP PHOS
2020 Tillering 0x Byrd 76 £21 95+ 18 358 £39 105+£18
Cheyenne 51+9 63 £16 283 + 89 78 £27
Snowmass 71+£8 77 +£21 314+ 57 88+ 21
5x Byrd 96 + 14 79+ 14 254 £32 83+ 15
Cheyenne 114+ 24 94 + 17 277 £46 101 £23
Snowmass 117+16 102+ 16 330+ 89 105+ 10
Heading/Flowering o Byrd 70 + 37 117 + 60 238+ 72 64 + 30 108 + 51 286 + 90
Cheyenne 73+ 17 62+6 201+ 18 48+ 6 77+ 11 300+ 55
Snowmass 63+7 61£8 206+ 17 48 £8 81+ 14 275+ 82
5x Byrd 97 £ 26 108 £43 248 £ 51 68 £ 16 175+ 64 164 + 39
Cheyenne 86+ 19 88+ 14 262 + 36 67+10 143 +34 148 +24
Snowmass 93+17 98 £31 240 + 39 62+17 154 + 44 200 + 35
2021 Tillering 0x Byrd 5110 145+ 21 372+ 6 133£15 131 £18 428 £27
Cheyenne 54+ 14 129 £25 374 + 58 125+ 24 122 £ 20 414 +73
Snowmass 42+ 10 10311 324 +£38 97+ 13 98+ 10 380 +£48
5x Byrd 111 £35 265+ 72 519 £ 105 188 + 54 453 £132 305+ 85
Cheyenne 10116 277+ 87 504 + 81 166 + 42 390 £ 67 252 £ 65
Snowmass 111£25 356 £ 107 557+ 127 206 + 61 491 + 130 313+£76
Heading/Flowering ok Byrd 72 +25 122+ 17 295 + 50 105+ 16 140 + 21 304 +26
Cheyenne 52415 72+8 204 £ 19 68+9 99+ 10 282 £41
Snowmass 41+9 68+ 12 177 +26 56+ 11 90 + 14 274 + 36
5x Byrd 105 £ 18 234 + 38 411 £50 159 £32 407 £ 69 197 + 37
Cheyenne 94+9 238 £36 372 +£37 138+ 15 381 +32 203+12
Snowmass 100+ 8 178 £24 338+ 18 119£10 409 +37 203+6

ANOVA P-values
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Genotype 0.62 0.28 0.68 0.52 0.73 0.85
Soil Treatment <0.001 <0.001 0.0034 0.0003 0.0001 0.0001
Sampling Period 0.61 0.14 0.39 0.71 0.0066 0.047
Year 0.3 <0.001 0.0002 0.0001 0.0001 0.0001
Genotype x Soil Treatment 0.55 0.099 0.48 0.63 0.61 0.48

"' TAP, L-Tyrosine aminopeptidase; NAG, N-Acetyl-B-D-glycosaminidase; BG, p-1,4-glucosidase; CB, p-D-cellobiosidase; LAP, L-leucine

aminopeptidase; PHOS, phosphatase
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Table 3. Extractable inorganic N values for rhizosphere soil samples collected from wheat genotypes and different sampling times.
Below are ANOVA p-values for wheat genotype, long-term soil treatment, and sampling timepoint effects on inorganic N levels in
rhizosphere soil samples. Analysis is conducted for 2020 and 20201 separately.

2020 2021
Soil Nitrate Ammonium Nitrate Ammonium
Sampling Period  Treatment  Variety (mg kg (mg kg (mg kg (mg kg™)
Tillering 0x Byrd 21.1£150 9.6=+1.7 17.1£8.4 1.9+1.1
Cheyenne 194+125 12.8+3.9 8.7+24 1.5+0.7
Snowmass 9.8+4.7 7.8+29 93+39 1.9+09
5x Byrd 253+6.8 1.2+0.2 25.0+6.3 3.1+1.2
Cheyenne 572+£268 32+12 19.5+4.2 1.4+0.1
Snowmass 225+£105 5.1+£0.8 23.6+4.0 2.1+04
Heading/flowering 0x Byrd 15.1+9.1 56+1.1 3504 1.5+0.0
Cheyenne 13.4+7.6 73+2.0 3.8+1.0 1.3+0.1
Snowmass 9.6+48 47+15 27+£03 1.3+£0.0
5x Byrd 35.6£7.7 1.6 +0.5 20.1+4.9 2.2+0.6
Cheyenne 36.2+157 23+£0.6 14.6 £3.6 2.1+0.3
Snowmass 32.5+2.8 3.1+04 190+1.9 1.9+0.2
ANOVA P
Genotype 0.75 0.53 0.43 0.59
Soil 0.01 0.001 <0.001 0.02
Timepoint 0.46 <0.001 <0.001 0.75
Genotype x
Soil 0.97 0.30 0.44 0.87
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Table S1. Soil characteristics (0 — 30 cm) for different long-term compost-amended soil treatments, applied every two years for 10
years at a rate of 0 t ha! (0x) or 109 t ha'! (5x). The final compost application occurred in fall 2019.

Soil SOC Total N SN NO;-N NH4-N Extractable P 1:1
Management  (gkg") (gkg™") (mgkg!) (mgkg") (mgkg') pH
No compost ~ 14.1 1.9 14.66 21.8 4.5 5.1 7.3
5x Compost 19.0 24 26.63 30.7 6.8 473 7.2
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Table S2. Monthly weather data during two field growing seasons of winter wheat in Akron, CO.

Month

Season Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Total
2019-2020 Avg. Max Temp (C) 30.5 289 148 97 63 7.9 58 116 154 21.6 314 322

Avg. Min Temp (C) 147 116 -1.7 -48 -59 -7.6 90 23 -15 62 124 154

Total Precip (mm) 605 69 13.0 279 2.0 4.1 6.6 16.5 9.9 76.5 31.8 175 273.1
2020-2021 Avg. Max Temp (C) 330 256 167 140 58 5.1 09 105 142 19.2 284 32.0

Avg. Min Temp (C) 149 86 -05 -24 -74 -72 -114 31 -04 7.0 128 144

Total Precip (mm) 330 320 76 7.1 11.2 79 109 577 87.1 1763 183 11.7 460.8
113 Year Mean  Avg. max Temp (C) 30,6 258 188 10.6 48 3.8 6.0 103 159 212 276 31.7

Avg. Min Temp (C) 13.6 84 1.7 -48 -93 -104 83 -46 03 59 112 146

Total Precip (mm) 539 317 230 136 104 8.3 93 21.6 420 76.3 619 655 417.5
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Table S3. Wheat yield from the excluded 2019-2020 season. Despite supplemental irrigation in Fall 2019 to improve germination,
wheat yields were far below average. Values are mean =+ standard error.

Soil Wheat grain yield =~ Wheat straw yield =~ Total wheat biomass

Treatment Genotype (kg ha'!) (kg ha'!) (kg ha'!)

0x Byrd 881 + 158 5,507 + 899 6,388 = 1,049
Cheyenne 612+ 184 5,230 + 323 5,842 +£470
Snowmass 754 £ 153 4,732 £ 551 5,487 £ 679

5x Byrd 521 £261 5,453 £ 1,701 5,974 + 1,949
Cheyenne 691 +223 6,691 + 809 7,381 £ 977
Snowmass 714 £ 253 5,115 £ 1,200 5,829 + 1,347

P values

Genotype 0.88 0.49 0.62

Soil Treatment 0.44 0.40 0.55

Genotype x Soil Treatment 0.42 0.66 0.61
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Table S4. Nitrogen content and total uptake of wheat grain and straw in wheat genotype x compost treatment field study in Akron,
CO. Samples were collected from 1 m? microplots amended with >N labelled cover crop residues. Values represent the means (n = 4)
+ standard error for wheat sampled in the 2021 season.

Soil Grain N conc.  Straw N conc. Grain N uptake Straw N uptake Total N uptake
Treatment  Genotype (gkgh (gkgh) (g m?) (g m?) (g m?)
0x Byrd 30.0+2.0 94+1.5 6.0+19 9.6+£2.0 15.6+22
Cheyenne 27.3+0.7 95+1.8 7.6+2.0 10.6 £ 1.6 182+1.7
Snowmass 29.5+3.0 9.5+1.6 9.0+£1.4 10.6 £ 0.9 19.6 £ 0.8
5x Byrd 303+ 1.5 16.4+0.3 58+1.3 19.7+0.7 255+1.8
Cheyenne 29.7+ 1.0 173+ 1.3 49+0.8 20.2+3.7 25.1+44
Snowmass 29.1£2.1 196+1.3 3.9+0.8 24,6 +3.3 28.5+3.3
P values
Genotype 0.67 0.5 0.92 0.43 0.29
Soil Treatment 0.64 <0.001 0.03 <0.001 0.12
Genotype x Soil 0.75 0.53 0.26 0.59 056

Treatment
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Table S5. Rhizosphere microbiome diversity metrics for bacterial/archaeal markers and fungal marker genes. Values are means +

standard error, and ANOVA analysis results (p-values) are presented at the bottom of the table. Shannon and Pielou diversity indices
are presented, and Richness is expressed as total features per sample.

Bacteria/Archaea (16S) Fungi (ITS)

Year Timepoint Soil.trt Variety Shannon Pielou Richness Shannon Pielou Richness
2020 Tillering 0x Byrd 9.0+0.10 091+0.01 1,003 + 68 49+0.49 0.60 £ 0.05 283 +28
Cheyenne 89+0.13 090+0.01 952+40 5.5+0.26 0.67 £0.03 313+13
Snowmass 8.8+0.05 0.89+0.00 1,006=+47 54+0.19 0.66 + 0.02 281 +22
5x Byrd 88+0.11 0.88+0.01 979+5l1 49+035 0.61 £0.04 242 +£29

Cheyenne 87+0.12 0.87+0.01 997 + 56 5.4+0.07 0.67+0.01 255+9

Snowmass 83+£0.19 0.85+0.02 84040 52+0.13 0.66 + 0.02 227+ 6
Heading/Flowering 0x Byrd 9.0+0.12 0.90+0.01 1,032 + 46 5.1+0.46 0.61+0.05 304 +£32
Cheyenne 9.0+0.04 091+0.00 1,006+3 5.6+0.37 0.67 £0.04 321 +18
Snowmass 924£0.09 091+0.00 1,126+63 5.5+0.32 0.66 +0.03 330+ 16
5x Byrd 88+033 0.89+0.02 956+130 4.6 +0.18 0.60 +0.01 222 +£31
Cheyenne 92+0.04 090+0.00 1,156+ 18 54+0.13 0.67 £ 0.01 27111
Snowmass 9.0+£0.15 090+0.00 1,006+ 88 49+0.17 0.62 +0.01 234 +27
2021 Tillering 0x Byrd 94+0.17 091+0.01 1,294 +227  42+0.27 0.53+£0.03 264 +£21
Cheyenne 92+0.02 091+0.00 1,131 +22 4.7+0.36 0.58 +£0.04 301 +£21
Snowmass 93+£0.05 091+0.00 1,162+39 51+0.20 0.62 +0.02 303+ 15

5x Byrd 91+£0.16 0.90+0.01 1,192 + 88 49+0.12 0.65+0.02 191+6

Cheyenne 91+£0.09 0.90+0.01 1,080 + 34 44+0.12 0.60 + 0.02 168 £8
Snowmass 9.1+0.15 091+0.00 1,038+110 4.5+0.15 0.61 +0.02 163+ 11
Heading/flowering  0x Byrd 95+0.10 092+0.00 1,354+132 4.6+0.44 0.56 £ 0.05 292 +£20
Cheyenne 92+0.12 091+0.01 1,099 + 58 52+0.31 0.62 +£0.03 356 £28
Snowmass 94+0.05 091+0.00 1,226+42 53+0.23 0.64 +0.03 322+ 14
5x Byrd 91+£0.15 090+0.01 1,162+ 110 4.6+0.24 0.62 +0.02 189+ 19

Cheyenne 9.1+0.11 0.90+0.01 1,102 £ 96 43+0.14 0.57+0.02 1777

Snowmass 9.0+0.08 0.89+0.00 1,111+44 3.7+£0.41 0.50 £ 0.05 170 £7
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ANOVAP

Genotype 0.46 0.6 0.42 0.099 0.14 0.18
Soil <0.001 <0.001 0.12 0.007 0.92 <0.001
Timepoint 0.001 <0.001 0.036 0.86 0.43 0.02
Year <0.001 <0.001 <0.001 <0.001 <0.001 0.002
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Table S5. Gravimetric water content of soil from rhizosphere (Tillering & Heading) and surface 0-30 cm (Harvest) samples. All
values are expressed as percent of dry soil in mean + standard error. ANOVA results (p-values) are presented at the bottom of the
table.

Timepoint
Soil
Year Treatment Variety Tillering Heading/Flowering Harvest
2020 0Ox Byrd 240+1.5 7.8+0.9 72+09
Cheyenne 25.5+2.7 74+0.8 8.0+0.4
Snowmass 250+1.3 8.1+0.9 64+1.1
5x Byrd 25.6+1.6 93+14 73+12
Cheyenne 273+1.7 79+1.0 75+1.6
Snowmass 294+1.9 8.6+1.0 75+1.5
2021 Ox Byrd 256+1.8 17.9+£2.3 8.0+0.6
Cheyenne 285+ 1.9 19.0+3.0 9.1+0.3
Snowmass 255+1.3 16.0+2.5 83+0.2
5x Byrd 320+ 1.6 23.0£3.5 82+0.3
Cheyenne 325+2.1 23.4+4.7 9.1+0.3
Snowmass 308+ 1.7 20.5+2.5 9.2+0.5
ANOVA P
Genotype 0.54
Soil <0.001
Year <0.001
Sample Period < 0.001
Soil x Year 0.11
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Figure S1. Linear Discriminate Analysis Effect Size (LEfSe) analysis results for family-level a) bacterial communities based on 16S
amplicon sequencing and b) fungal families based on ITS sequencing. Analysis identifies families important for indicating grouping
by soil compost treatment (bar colors), with larger absolute LDA scores indicating greater importance. Data shown for both years.
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Figure S2. Linear Discriminate Analysis Effect Size (LEfSe) analysis results for a) bacterial phyla based on 16S amplicon sequencing

and b) fungal phyla based on ITS sequencing. Analysis indicates families important for indicating groups (bar colors), with higher
absolute LDA scores indicating greater importance.
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Figure S3. Bacterial phylum relative abundances based on 16S sequencing. Bar lengths depict merged (summed) abundances for each
soil-by-genotype combination and are colored by phylum.
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Figure S4. Fungal abundances based on ITS sequencing. Bar lengths depict the sum total relative abundance across all samples in each
soil-by-genotype group.

46



47



