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Executive Summary

I nverse problems, which aim to infer unknown properties of a system using experimental and
observational data, are central to addressing many of the U.S. Department of Energy’s (DOE)
most critical scientific and engineering challenges. Accurate, computationally efficient, and

data-efficient solutions to inverse problems are essential for advancing DOE mission-critical science
drivers, including analyzing data from large-scale experimental facilities, optimizing fusion reactor
performance, accelerating materials discovery, enhancing geophysical imaging, improving wildfire
predictions, and enabling autonomous systems and digital twins.

However, these problems are becoming increasingly complex, often involving nonlinear, high-
dimensional, and interconnected systems and models that span multiple physics and scales, while
relying on data with varying quantity, quality, and information content. Compounding these
challenges is the uncertainty inherent in DOE-relevant systems, where errors in inputs, noise in
data, incompleteness of data, and discrepancies between models and reality constrain the accuracy
and precision of solutions. At the same time, the convergence of recent scientific computing
trends—scientific machine learning, artificial intelligence, and computing advances such as exascale
computing—is creating unprecedented opportunities for tackling these challenges.

The cross-cutting nature of inverse problems, combined with their growing complexity and
rapidly evolving data and algorithmic demands, strongly motivates the formulation of a priori-
tized research agenda to maximize their capabilities and impact. In response to this need, DOE’s
Advanced Scientific Computing Research (ASCR) program in the Office of Science convened the
Workshop on Basic Research Needs for Inverse Problems for Complex Systems Under Uncertainty
in June 2025. This workshop brought together experts across disciplines to identify grand chal-
lenges and major opportunities in the field. Through collaborative discussions, the workshop
defined transformative research directions aimed at addressing the mathematical, statistical, and
computational challenges posed by inverse problems under uncertainty.

As a result of these efforts, four priority research directions (PRDs) were identified to guide
future research and development in this area. These PRDs, summarized below, represent a roadmap
for advancing the foundational science and mathematics of inverse problems, enabling robust,
scalable, and uncertainty-aware solutions that are critical for DOE applications.

PRD 1: Discovering, exploiting, and preserving structure

Unlocking the next generation of DOE scientific discoveries will require innovative ap-
proaches for solving inverse problems that address escalating computational demands,
overcome greater degrees of ill-posedness, and efficiently utilize high-performance comput-
ing and data resources. To meet this need, there are substantial opportunities to exploit new
forms of mathematical, physical, and data structures inherent in emerging complex systems
to reduce problem size and complexity, introduce informative priors and constraints, im-
prove robustness and tractability, and accelerate computational performance. Achieving this
will require fundamentally new methods for solving inverse problems that better leverage
known structures, discover new exploitable structures, preserve essential mathematical and
physical properties, and map computational and communication patterns to these structures
to optimize performance on available computing and data infrastructure.

Inverse Methods for Complex Systems under Uncertainty iii



PRD 2: Identifying and overcoming model limitations

Forward models used in inverse problems are often constrained by simplified assumptions,
structural discrepancies, incomplete representations of physical processes, imperfect like-
lihoods, limited simulator fidelity, or inadequate priors. These limitations, also known as
misspecifications, compromise the reliability, efficiency, and interpretability of solutions
while introducing significant uncertainty into the inference process. Addressing these chal-
lenges requires the development of mathematical frameworks to diagnose, quantify, and
mitigate model inadequacy during inference. An important component of this effort will be
the design of methods that provide robust uncertainty estimates consistent with the data,
account for both known and unknown limitations—such as those represented by a range
of possible distributions—and enhance the accuracy of inverse solutions across varying
problem scales.

PRD 3: Integrating disparate multimodal and/or dynamic data

Recent advances in data acquisition technologies have enabled measurements of complex
phenomena and structures across vastly different sources, physics, domains, and scales.
However, current inversion algorithms often struggle to integrate such disparate multimodal
or dynamic data, which can be heterogeneous, inconsistent, and vary in fidelity, volume,
and sparsity, while also contending with the use of multiple models that have conflicting
representations of physics and data, or the storage and processing of data across different
facilities. Effectively utilizing disparate data, models, and facilities to solve inverse problems
at DOE-relevant scales will require algorithms that capture common features in the data,
filter noise, fuse multiple fidelities and scales, bridge distinct representations, and quantify
correlated uncertainties. Methods are also needed to dynamically assimilate data, update
rapidly evolving posterior distributions, and address abrupt changes in nonlinear, multiscale,
multiphysics, or chaotic systems.

PRD 4: Solving goal-oriented inverse problems for downstream tasks

Inverse problems have traditionally focused on inferring model parameters from data,
but they are increasingly being integrated into downstream tasks such as control, design,
certification, and decision support. This shift creates a pressing need for goal-oriented
inverse problems (GIPs), which reformulate inverse problems to directly align with the
objectives of downstream tasks, enabling improved predictions, reduced uncertainty, and
enhanced decision-making for complex systems on actionable timescales. Realizing the
potential of GIPs will require the codesign of scalable algorithms for inverse problems and
downstream tasks, including methods to quantify uncertainty in task outcomes, exploit
parameter-to-task relationships, autonomously steer experimental data collection, efficiently
allocate computational resources, adapt model structure or fidelities, support ”what-if”
decision-making, and implement risk-aware approaches tailored to stakeholder needs.

These four priority research directions represent a cohesive vision for advancing the science of
inverse problems under uncertainty. Together, they address the critical challenges of discovering,
exploiting, and preserving physical and mathematical structure, overcoming model limitations,
integrating disparate multimodal and/or dynamic data, and tailoring the solution of inverse
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problems to downstream tasks. While each PRD focuses on a distinct aspect of inverse-problem
research, their interconnected nature highlights the importance of a holistic approach that leverages
progress across all areas to achieve transformative solutions.

By identifying the challenges inherent in solving inverse problems under uncertainty and the
opportunities to overcome them, this report establishes a foundation for transformative advances
that will enable robust, scalable, and uncertainty-aware solutions to complex systems. The pro-
posed research agenda spans mathematics, statistics, and computer science disciplines, guided and
enriched by rapid advances in artificial intelligence, high-performance computing, and experimen-
tal facilities. Together, these efforts aim to unlock new capabilities, maximize scientific impact, and
address the growing demands of inverse problems, which are central to DOE’s mission. These
advances are expected to drive progress across the breadth of DOE mission-critical science drivers,
including energy sciences, materials discovery, autonomous systems, and beyond, ensuring that
the DOE remains at the forefront of scientific innovation and technological breakthroughs.
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1. Introduction

I nverse problems, which aim to infer unknown properties of a system using experimental and
observational data through the use of a forward model, are central to many of the U.S. Depart-
ment of Energy’s (DOE’s) most critical scientific and engineering challenges. The cross-cutting

nature of inverse problems, coupled with their increasing complexity and rapidly evolving data
and algorithmic requirements, underscores the urgent need for transformative advances in the
mathematical, statistical, and computational foundations for solving inverse problems under uncer-
tainty. These approaches must rigorously account for uncertainties and limitations in data, models,
and assumptions, and systematically propagate this information to fully characterize its impact on
solutions. Recent breakthroughs in artificial intelligence (AI), high-performance computing (HPC),
and advanced experimental facilities offer unprecedented opportunities, but realizing their full
potential in inverse problems will require innovative mathematical strategies. Such advances are
crucial for unlocking new capabilities, maximizing scientific impact, and meeting the expanding
needs of DOE science initiatives.

1.1 Scope
Recognizing the urgency and importance of developing innovative methods for solving inverse
problems, DOE’s Advanced Scientific Computing Research (ASCR) program in the Office of Science
convened the Workshop on Basic Research Needs for Inverse Problems for Complex Systems
under Uncertainty in June 2025. This workshop brought together leading experts from diverse
disciplines to identify grand challenges and major opportunities in the field. Through collaborative
discussions, the workshop focused on defining transformative research directions that address
the mathematical, statistical, and computational challenges posed by inverse problems under
uncertainty. These discussions were informed by position papers submitted by researchers, which
articulated key challenges and opportunities and helped shape the workshop agenda.

This report synthesizes the insights and discussions from the workshop, presenting a detailed
exploration of the priority research directions (PRDs) that were identified. These PRDs provide a
strategy for advancing the field and are designed to enable robust, scalable, and uncertainty-aware
solutions to inverse problems, which are essential to address the evolving needs of mission-driven
science priorities within the DOE. The report offers a comprehensive discussion of the existing and
anticipated challenges posed by solving inverse problems for complex systems under uncertainty,
complemented by short science vignettes that illustrate these challenges and the transformative
impact of addressing them. It highlights opportunities for overcoming these challenges and recent
innovations that demonstrate the readiness of the research community to successfully execute
these PRDs. By summarizing recent progress and establishing the foundations for transformative
advances, the report aims to drive progress in solving complex inverse problems to support
DOE’s mission and ensure its continued leadership in scientific innovation and technological
breakthroughs.

1.2 Definitions
This section defines several key terms used in the report that are essential for describing the
challenges and opportunities in solving inverse problems for complex systems under uncertainty.

A forward model is a mathematical or computational representation of a (partially) observable
system that predicts the system’s output based on its inputs and parameters. An inverse problem

Inverse Methods for Complex Systems under Uncertainty 1



Figure 1: Conceptual illustration of a prototypical inverse problem. Starting from an initial solution
estimate, the inverse solver infers unobserved quantities of a system—the solution—from observed
data by ensuring that the forward model predictions align with the data, prior knowledge, and
constraints. The problem’s ill-posedness, along with uncertainties in prior knowledge, models,
and data, can result in multiple plausible solutions. In this example, the inverse problem aims to
reconstruct a 3D protein structure from a large number of 2D single-particle diffraction images
obtained in an X-ray free-electron laser experiment. Image courtesy of Jeffrey Donatelli, Lawrence
Berkeley National Laboratory.

seeks to infer the inputs or parameters of a system from observed outputs, aiming to identify
input values that make the forward model outputs consistent with the observations. A problem
is considered ill-posed if there is insufficient data or modeling information to yield a unique
solution that is stable with respect to small perturbations in the data or model. Priors, constraints,
and regularization, which mathematically encode prior knowledge about the solution or other
characteristics of the system, are often used to constrain and stabilize the solution, thus mitigating
ill-posedness.

Complex systems are sets of interconnected components whose relationships and collective
behavior are not easily predictable from the properties of individual parts. Such systems can be
physical, computational, biological, social, or engineered, and are often characterized by strongly
coupled components, multiple interacting processes or physical laws operating across widely
varying spatial and temporal scales, nonlinear interactions, and sensitivity to changing conditions.
These characteristics frequently lead to algorithmic challenges such as nonconvexity, ill-posedness,
and high dimensionality, making the solution of inverse problems for complex systems particularly
difficult.

Uncertainty refers to the lack of complete knowledge about or predictability of an outcome,
measurement, or state of a system, model, or process. Uncertainty stems from a variety of sources,
including errors in system inputs, noise or gaps in experimental and observational data, and
problem misspecification, such as incorrect or inaccurate priors, noise models, or forward models
that fail to fully capture real-world phenomena. Such uncertainties can be aleatoric, arising from
inherent randomness or variability in the system and considered irreducible, or epistemic, stemming
from incomplete knowledge or information about the system and considered reducible. In the
context of inverse problems, these uncertainties can lead to multiple plausible solutions, significant

Inverse Methods for Complex Systems under Uncertainty 2



errors, and reduced reliability and interpretability, all of which are significantly magnified when
such problems are ill-posed.

The process of solving an inverse problem is conceptually illustrated in Figure 1. It involves
estimating the inputs of a forward model so that its outputs are consistent with observed data while
being consistent with prior knowledge. The particular formulation of an inverse problem depends
on the application: for example, model-parameter inference, which uses observed data to estimate
unknown parameters in complex mathematical models, such as coefficients and initial/boundary
conditions in differential equations; computational imaging, which reconstructs high-resolution 2D
or 3D images of objects from indirect measurements, such as scattering or microscopy; and data
assimilation, which estimates the evolving state of a physical system by combining partial or noisy
observational data with incomplete mathematical models, as in weather forecasting and digital
twin updates.

Inverse problems for complex systems under uncertainty can be solved with both probabilistic
approaches, which characterize all possible solutions through probability distributions (such as
Bayesian inference), and deterministic methods (such as maximum likelihood estimation), which aim
to identify a single best solution. Examples of probabilistic approaches for solving inverse problems
include simulation-based inference (SBI), generative AI (genAI) methods, variational inference, transport
maps, and Markov Chain Monte Carlo (MCMC) methods. These methods can also be integrated into
goal-oriented inverse problems (GIPs), which tailor the solution process to downstream tasks, such as
optimal design or control, by adjusting inputs to achieve specific desired outcomes.

Additionally, many inverse problems relevant to the DOE are inherently large-scale, involving
multiple challenging aspects. Forward models often have high-dimensional state spaces and
can be computationally expensive to evaluate. These problems may include a large number of
observations, each of which could be high-dimensional, such as high-resolution spatio-temporal
data, and solutions that themselves may span high-dimensional spaces. The exact notion of “large-
scale” is problem-dependent, but high-dimensionality can easily involve O(106) variables, and
a single simulation of a computationally expensive forward model can take up to O(106) CPU
hours. Consequently, it is essential to develop scalable methods—approaches designed to efficiently
handle increasing problem size and complexity while maintaining computational feasibility and
accuracy—that can address these multifaceted challenges effectively.

The following section describes several examples of inverse problems that are important to
applications spanning the entirety of the DOE mission space.

1.3 Science Drivers
Accurately solving inverse problems under uncertainty is vital for achieving DOE goals across
a wide range of complex systems within its mission space. In this section, a series of vignettes
are presented that illustrate the broad importance of inverse problems and the enduring impact
of solving them accurately. These vignettes highlight how advances in solving inverse problems
can drive progress in areas ranging from energy security to materials discovery. Together, they
underscore the critical role of developing foundational, broadly applicable mathematical methods
for solving inverse problems in shaping the future of DOE research and development.

Inverse Methods for Complex Systems under Uncertainty 3



Reconstructing 3D Structure from Light-, Electron-, and Neutron-Source Experiments

Figure 2: 3D reconstruction of a protein
from a large number of single-particle
diffraction images measured in an X-ray
free-electron laser experiment. Image
courtesy of Jeffrey Donatelli, Lawrence
Berkeley National Laboratory.

DOE’s investments in advanced scientific user
facilities are enabling exploration across materials
science, chemistry, physics, and biology. Extracting
insights from experiments often requires solv-
ing inverse problems, such as reconstructing 3D
macromolecular structures from single-particle
diffraction data [1] (see Figure 2). Challenges
include sparsely sampled data, low signal-to-noise
ratios, and high computational demands. New
initiatives under the American Science Cloud
initiative, including Integrated Research Infras-
tructure (IRI) [2] and High-Performance Data
Facility (HPDF) [3], offer opportunities to integrate
multimodal data and enable autonomous experi-
mentation, but current methods need advancement
to fully leverage these capabilities. Progress in
inverse problem-solving is key to unlocking the
full potential of DOE facilities to drive scientific
breakthroughs.

Inferring Plasma States of Fusion Energy Systems

Figure 3: An illustration of a toka-
mak containing plasma. Achieving
stable fusion requires accurately in-
ferring plasma states from observa-
tional data and leveraging this infor-
mation to enable reliable, real-time au-
tonomous control of the reactor. Im-
age credit: Oak Ridge National Labo-
ratory, shared under the Creative Com-
mons license: https://en.wikipedia.

org/wiki/en:Creative_Commons.

Fusion energy, exemplified by systems like tokamaks
(see Figure 3) and the National Ignition facility, has
the potential to address the increasing energy de-
mands of the U.S. in the coming decades. Achiev-
ing this requires solving inverse problems to infer
plasma properties, such as current distributions, from
observational data like magnetic measurements, en-
abling precise control of fusion systems and minimiz-
ing instabilities [4]. However, achieving large-scale
magnetic fusion energy and inertial fusion energy
presents significant challenges, including the need
to efficiently and repeatedly solve inverse problems
to estimate system states and enable real-time au-
tonomous control, while simultaneously modeling
high-dimensional plasma phenomena across extreme
scales, addressing strong nonlinear interactions, and
overcoming uncertainties in data and material prop-
erties. Addressing these challenges is essential for
designing reliable fusion systems, preventing costly
reactor damage, and advancing U.S. energy indepen-
dence.

Inverse Methods for Complex Systems under Uncertainty 4
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Seismically-Informed Digital Twins for Underground Energy Production

Figure 4: Multi-flow simulations for
CO2 and oil concentrations. The Earth
properties model (gray) is overlain with
the simulated concentrations. Multi-
physics digital twins are used to in-
fer these concentrations from time-lapse
seismic data to enhance CO2-based oil
recovery [5]. Image courtesy of Geor-
gia Institute of Technology’s Seismic
Laboratory for Imaging and Model-
ing, shared under the Creative Com-
mons license: https://en.wikipedia.

org/wiki/en:Creative_Commons.

Underground energy exploration and production—
exemplified by oil and gas exploration, enhanced
oil recovery (EOR, see Figure 4), and geothermal
production—play a critical role in meeting the U.S.’s
growing energy demands. Realizing low-risk en-
ergy production in these settings, such as CO2-based
EOR [5] in conventional oil fields and fracking, re-
quires the inference of high-resolution subsurface
characterizations from limited surface seismic data
governed by complex wave physics. The challenges
include developing multiphysics digital twins [6]
based on goal-oriented inverse problems that inte-
grate real-time data assimilation with monitoring,
multiphase flow, risk assessment, decision making,
and control, while rigorously quantifying uncertainty
and accounting for model misspecification. Overcom-
ing these challenges is essential to ensure efficient,
sustainable, and low-risk underground energy pro-
duction.

Inferring New Fundamental Particle Properties

Figure 5: Inference of Higgs boson
properties from observed high-energy
particle-collision events. Image credit:
Conseil Européen pour la Recherche
Nucléaire (CERN).

High Energy Physics (HEP) research has led to nu-
merous groundbreaking discoveries, from identifying
the Higgs boson to revealing the accelerating expan-
sion of the Universe, as well as significant technical
advancements, particularly in medicine. Enabling
future high-impact insights requires solving inverse
problems to infer the properties of particles produced
in collisions from signals captured by detectors sur-
rounding the collision events [7] (see Figure 5). A
key challenge is assimilating high-dimensional data
at extremely small time scales, often on the order of
sub-microseconds or less. Advancing the solutions
to HEP inverse problems will pave the way for new
foundational discoveries about the Universe and po-
tential applications spanning medicine, technology,
and national security.

Inverse Methods for Complex Systems under Uncertainty 5
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Inverse Design of Materials
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Figure 6: High throughput femtosecond
laser fabrication and optical property
characterization using Fourier Trans-
form Infrared spectrometer. The process
involves inferring laser fabrication pa-
rameters corresponding to desired target
optical properties [8]. Image courtesy of
Juliane Mueller, National Renewable En-
ergy Laboratory.

The discovery of new materials is essential for advanc-
ing technologies such as medical devices, power gen-
eration, microelectronics, quantum computing, and
imaging systems. Materials discovery relies on solv-
ing multiobjective and often constrained inverse prob-
lems across vast and complex search spaces to iden-
tify manufacturable compositions with target proper-
ties like minimal cost, maximal strength, or specific
optical performance [8–10] (see Figure 6). This pro-
cess is particularly challenging due to the reliance on
sparse data spanning multiple modalities, the com-
putational expense of numerical simulations, and the
huge cost and time required for experimental inves-
tigations [11], all of which is compounded by the
sequential multistep nature of the process, where the
solutions to one inverse problem often feed into an-
other. Overcoming these challenges will accelerate
the discovery of new materials capable of transform-
ing manufacturing, transportation, healthcare, energy,
and computing technologies.

Reconstructing Nuclear Structure

Figure 7: Depiction of a ground-state
electron density calculated with den-
sity functional theory. Image credit:
Isaac Tamblyn, University of Ottawa,
shared under the Creative Commons
license: https://en.wikipedia.org/

wiki/en:Creative_Commons.

Nuclear physics, particularly the study of atomic nu-
clei structures, has the potential to deepen our un-
derstanding of fundamental interactions and inform
applications in energy, medicine, and national secu-
rity. Central to this understanding is the solution of
inverse problems to infer nuclear properties, such as
neutron densities, from experimental data like proton
scattering measurements, enabling precise modeling
of nuclear systems and improving predictive capa-
bilities [12]. However, developing a global descrip-
tion of nuclei that is valid across the nuclear chart
poses significant challenges, including the integration
of computationally expensive simulations based on
density functional theory (see Figure 7) with noisy
experimental data, all while rigorously quantifying
uncertainty. Addressing these challenges is essential
for refining energy density functionals, advancing nu-
clear theory, and supporting critical applications in
science and technology [13].
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Data Assimilation for Wildfire Mapping

Figure 8: Inference of fire perimeters at
4-hour intervals over the first 48 hours of
the 2025 Eaton Fire in Los Angeles. Ear-
lier times are denoted by darker colors.
These perimeters, derived from sparse
satellite observations [14], provide a ba-
sis for evaluating fire progression and
may support the planning of firefight-
ing operations. Image courtesy of Assad
Oberai, University of Southern Califor-
nia.

Wildfires are catastrophic events that cause massive
human and economic loss and have devastating im-
pacts on communities in the wildland urban inter-
face, home to over 44 million residences. The eco-
nomic costs of the 2025 Los Angeles wildfires are es-
timated to be in the range of 100–250 billion USD [15].
Solving inverse problems to infer wildfire behavior
from sparse and noisy observational data collected by
satellites, drones, and ground-based sensors is criti-
cal for improving predictions of wildfire spread and
enabling better emergency response [14, 16] (see Fig-
ure 8). These problems are highly challenging due
to their nonlinear, chaotic dynamics, high dimension-
ality, and the need to integrate multimodal data in
real time. Advancing inverse modeling methods will
improve wildfire predictions, quantify fire risk, and
optimize emergency response strategies to save lives
and minimize destruction.

Inferring Quantum System Properties

Figure 9: Optimizing quantum metrol-
ogy and estimation through optimal ex-
perimental design. Image from [17] and
shared under the Creative Commons At-
tribution 4.0 International (CC BY 4.0) li-
cense https://creativecommons.org/

licenses/by/4.0/.

Quantum information science (QIS) promises trans-
formative technologies in computing, sensing, and
networking, with applications such as secure commu-
nication, quantum-enhanced simulation for materials
discovery, and advanced manufacturing [18]. Solv-
ing inverse problems to infer quantum states, system
parameters, and operational characteristics from indi-
rect, noisy, and incomplete measurements is essential
for enabling these breakthroughs. These problems
are challenging due to their ill-posed nature, high-
dimensional complexity, nonlinear dynamics, and
sparse data. Addressing these challenges will unlock
the full potential of QIS, driving advances in cyberse-
curity, materials discovery, and manufacturing design
and certification across the DOE mission space [19].

These vignettes underscore the critical role inverse problems play across a spectrum of DOE
science areas. While inverse problems are central to understanding and optimizing complex
systems, their growing complexity—driven by multiphysics, multiscale models, multimodal data,
high-dimensional state spaces, and model limitations, such as missing physics in simulation
models—demands transformative innovations in their formulation and solution. The following
section outlines four priority research directions to overcome these challenges by improving the
accuracy, computational efficiency, and uncertainty quantification of inverse problem solutions,
ensuring that the DOE is equipped with the tools and knowledge needed to tackle the most pressing
scientific and engineering challenges of the coming decades.
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2. Priority Research Directions

T his section describes the PRDs identified at the Workshop on Basic Research Needs for
Inverse Problems for Complex Systems under Uncertainty. These PRDs lay the groundwork
for transformative advances that will shape the future of methodologies for solving inverse

problems, directly addressing emerging DOE mission-critical science needs. The convergence of
ASCR investments into extensive computational capabilities and infrastructure, rapid advances in
scientific machine learning and AI, and the increasing complexity of scientific data and analysis
across DOE Office of Science programs make this a uniquely opportune time to tackle longstanding,
emerging, and future challenges in inverse problems.

Tackling these PRDs is now feasible in large part due to the extensive capabilities established
by decades of ASCR research initiatives across mathematics, computer science, computational
science, supercomputing, and data management. For example, ASCR’s pioneering research in
large-scale modeling of complex systems [20] enables the use of sophisticated forward models for
inverse problems, while progress in randomized algorithms [21] and data reduction [22] provides
fundamental tools for efficiently tackling otherwise computationally intractable problems. ASCR
initiatives in scientific machine learning [23] and AI for science [24] have created new pathways
for incorporating novel data-driven insights into inverse problem frameworks. Moreover, ASCR’s
advancement of exascale computing [25, 26], scientific data management [27–29], codesign [30],
and integrated research infrastructure [2, 3] offer the potential to scale inverse solvers to unprece-
dentedly large problems and integrate novel combinations of data and computing across different
facilities. Finally, the expansive multidisciplinary and multi-institutional partnerships fostered by
the Scientific Discovery through Advanced Computing (SciDAC) program create unique oppor-
tunities to align the development of new inverse problem capabilities with mission-critical needs
across the DOE science programs and to rapidly deploy these advancements.

Fully leveraging these capabilities for inverse problems will require a coordinated effort to
advance fundamentally new mathematical, statistical, and computational research to close key
foundational gaps in the field. For instance, many inverse problems remain ill-posed or computa-
tionally intractable—even with abundant data and computing power—necessitating innovative
approaches that exploit underlying mathematical and physical structures of the problems. More-
over, the incompleteness and inaccuracy of models are seldom well understood and can severely
limit inference accuracy, highlighting the need for transformative methods that detect, quantify, and
mitigate uncertainty by leveraging all available information during the inversion process. Current
inversion methods struggle to integrate highly disparate and complex multimodal or dynamic
datasets, calling for new strategies that bridge vast differences in scale, fidelity, and physics, and
accommodate rapidly evolving data. Furthermore, most existing inversion approaches prioritize
solution accuracy over the needs of downstream tasks, which can significantly limit overall perfor-
mance. Overcoming this limitation will require foundational advances that reformulate inverse
problems to directly address task-specific objectives. Addressing these challenges will revolutionize
how inverse problems are solved, enabling robust, scalable, and uncertainty-aware solutions critical
to advancing DOE scientific discovery.
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PRD 1 Discovering, exploiting, and preserving structure
Motivation and Impact. As DOE science problems grow in scale and complexity, inverse problems
face significant barriers, including prohibitive computational and data costs, pervasive noise, mea-
surement limitations, lack of prior knowledge, heightened sensitivity to model parameters, and
the demand for accurate results on actionable timescales. These issues often render inverse prob-
lems computationally intractable or ill-posed, challenges that cannot be resolved solely through
advances in computing power or data collection. However, many complex inverse problems
possess rich structure in their underlying mathematics, physics, and data—such as relationships
encoded in governing equations, physical laws, numerical representations, and properties of solu-
tion spaces—that can be exploited to reduce solution error and simplify computation. Examples
include reduced-order models, low-dimensional latent representations, domain decompositions
for parallelization, rank structure and sparsity in large operators, multilevel and multifidelity
decompositions, and constraints or priors on solution and data spaces. However, open questions
remain on how to optimally exploit these structures in emerging complex systems to enhance scala-
bility, computational performance, and regularization of ill-posedness. There are also significant
opportunities to discover and utilize new forms of hidden structure; for example, through advances
in AI surrogates, AI data reduction, and genAI.

New methods for discovering, exploiting, and preserving structure within inverse problems
will significantly reduce computational complexity to achieve near-real-time results and allow the
solution of problems that are currently computationally intractable even on large HPC machines.
These structures can also be used as additional priors or constraints to enable the solution of inverse
problems that are currently too ill-posed to provide a unique and stable solution; for example, due
to data collection limitations or noise. Furthermore, to ensure physically meaningful and stable
solutions, reduced representations and approximations must preserve key physical structures (e.g.,
conservation laws, nonnegativity, or physical bounds) and mathematical structures (e.g., governing
equations, positive definiteness, or equivariance), while carefully estimating, propagating, and
controlling the errors and uncertainties introduced by these approximations.

Thrust A: How can we better exploit and preserve the structure inherent in emerging
complex systems?

Challenges and Gaps. While many types of structure are known, it is often unclear how to
best exploit them in complex systems, and existing approaches often have limited performance,
introduce excessive error, or fail to preserve important properties. For example, current methods for
reduced-order modeling, sketching, and compression struggle to handle highly nonlinear or high-
rank systems [31], are unable to overcome the intractability of many likelihood functions [32], often
fail to preserve key physical or mathematical properties [33–36], and can accumulate significant
errors within iterative inverse solvers [37]. Additionally, existing approaches to regularizing ill-
posed problems by enforcing structures as priors or constraints are often insufficient for highly
data-deficient systems, may be inconsistent with the true solution, and struggle to balance multiple
competing priors and information sources, leading to bias and inaccuracy [38, 39]. Furthermore,
scaling inverse solvers on advanced compute and data platforms remains challenging, especially
when forward operators are tightly coupled across space, time, or physical processes, or when
architectures are complex [40–43]. These factors make domain decomposition and optimization
of communication and computation difficult. Finally, uncertainty propagation through these
structures is often not well understood, and establishing rigorous error bounds and adapting
reduced models to evolving speed and accuracy requirements remain persistent challenges [44, 45].
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Why Now? Several emerging needs and recent advances make research into new methods for
exploiting structure in inverse problems especially timely. New imaging technologies can capture
high-resolution, multicomponent, and dynamic information, but are hampered by measurement
limitations, noise, and other inaccuracies, resulting in highly underconstrained and ill-posed inverse
problems that current methods do not adequately address [46–50]. Cutting-edge experiments en-
abled by upgrades to DOE scientific user facilities involve increasingly complex physics, which may
be computationally infeasible to simulate within inverse problems without more effective and tar-
geted model reduction strategies [51–59]. Progress in compute and data infrastructures—including
edge, autonomous, cloud, federated, exascale, and quantum platforms—further necessitates in-
version algorithms that can handle compressed and streaming data while optimally leveraging
complex hardware architectures [2]. Novel model reduction techniques, such as those inspired by
quantum algorithms [60–65] or advanced machine learning architectures [66–75], offer substantial
computational gains for forward modeling. However, these approaches often fail to preserve math-
ematical structures and physical conservation laws, leading to unsustainable error accumulation
in iterative inverse solvers. Recent developments in randomized numerical linear algebra [76–79]
and sketching [80] have demonstrated promise in efficiently exploiting high-dimensional structure,
yet generalizing these methods to nonlinear problems and ensuring the preservation of essential
physical and mathematical properties remains challenging. Advances in optimization over mani-
folds [81] and other nonsmooth forms [82–87] pave the way for efficiently imposing a broader class
of regularization priors, but have yet to be fully realized.

Research Opportunities. New research is needed to fully exploit structure in inverse problems
to address emerging challenges in computation, ill-posedness, and the effective use of computing
and data resources. Developing new structure-preserving model reduction techniques and AI
architectures, or methods to correct for structure violations, could dramatically reduce computa-
tional costs while maintaining accuracy. These approaches should be integrated with rigorous
error guarantees, methods to propagate uncertainty through the reduced models, and adaptive
reduction, compression, and multifidelity computing strategies that adaptively balance computa-
tional cost and accuracy. Improving utilization and scalability on advanced computing and data
platforms will require new strategies that align computation and communication patterns with
the inherent structures of inverse problems, admissible problem/domain decompositions, and
the underlying hardware architecture. To overcome pervasive ill-posedness, research is needed
on mathematically formulating new, expressive forms of priors and constraints on solution and
data spaces, estimating their agreement with the true solution and data, and balancing them using
quantified uncertainties from all available information sources. Central to these efforts will be the
development of new nonsmooth and potentially derivative-free optimization algorithms, inexact
gradient methods, higher-order methods, and solution strategies that decompose inverse problems
along their substructures and available hardware, all designed to provide provable convergence
rates and fully leverage priors, surrogate models, and reduction schemes while mitigating their
induced biases.

Thrust B: How can we discover and utilize new exploitable structures hidden in complex
systems?

Challenges and Gaps. Many structures in complex inverse problems are inherently unknown,
constantly evolving, or too complex to identify and exploit a priori. This demands new data-driven
approaches that can automatically discover and leverage such hidden or difficult-to-formulate
structures. For example, while many problems could be simplified by operating in low-dimensional
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latent spaces, current methods often struggle to robustly identify these spaces and reformulate
operations in them in the context of inverse problems, particularly for nonlinear cases [88]. Ad-
ditionally, traditional hand-crafted priors are frequently insufficient to address the ill-posedness
of emerging data-deficient inverse problems, and much of domain knowledge lacks a natural
mathematical formulation for exploitation. Although learning priors from simulations, previous
measurements, and databases holds promise [89], integrating these into inverse problems efficiently
remains challenging due to the computational cost of AI architectures, issues with generalizability,
potential bias, and the lack of specialized architectures for inverse problems [90, 91]. Structures in
data (e.g., sparsity, low-rank, tensor patterns, and relationships between multiple models and data
sources) are often not known in advance, and distinguishing true structure from noise is difficult,
leading to either overfitting or missed opportunities to improve performance [92]. Furthermore,
understanding how noise and uncertainty affect latent features, reliably separating true features
from artifacts, and ensuring the generalizability and unbiasedness of discovered structures remain
ongoing challenges [93, 94].

Why Now? Rapid increases in the complexity of observable systems and the volume of data they
generate are surpassing our ability to identify exploitable structures a priori, creating an urgent
need for methods that can automatically detect and leverage unknown or hidden structures. More-
over, as systems become increasingly nonlinear, high-dimensional, and interconnected, traditional
approaches relying on expert-crafted priors and predefined models are proving insufficient, under-
scoring the necessity of innovative, data-driven techniques to address these challenges effectively.
Recent advances in AI architectures and genAI techniques show great promise for uncovering
low-dimensional latent spaces in models and data [95–100], creating significant opportunities
to leverage these techniques within inverse problems. While operator-learning [101, 102] and
machine-learning surrogate models [103–106] have enabled efficient representations of forward
models, exciting avenues remain for inverse problems, such as scaling to high-dimensional param-
eter spaces, capturing intricate nonlinearities, and preserving information essential for accurate
inversion. Emerging research in learned priors has demonstrated their potential to enhance the
accuracy and stability of solutions to ill-posed problems by capturing solution manifolds beyond
traditional priors [107–110] but can fail to extract the most salient information, mitigate bias, lever-
age representations from large models efficiently, or generalize across multiple problem domains.
Additionally, for well-posed inverse problems, amortized SBI [111] variants offer the potential
to reduce inference costs and scale to large datasets by learning mappings from observations to
posteriors across many simulations, but can require an impractical amount of training data.

Research Opportunities. New research directions are needed to unlock the full potential of
structure discovery in inverse problems. Approaches that adaptively learn low-dimensional latent
spaces and reformulate more computationally efficient versions of forward operators, solutions,
and data in these reduced spaces could greatly accelerate a wide range of applications. Effectively
and reliably leveraging learned priors will require new statistical and AI frameworks capable
of capturing salient, generalizable prior information; strategies for efficiently employing large
foundation-like models as priors across domains; robust methods for assessing their trustworthiness
and bias; and seamless integration into broader inverse problem frameworks. There is also a
need for inversion methods capable of automatically detecting and adapting computation to
hidden structures in data, such as sparsity, rank structure, and relationships between multiple data
sources and models. Advances in operator learning, graph-learning, sparsity-promoting techniques,
and hybrid symbolic-statistical approaches could further expand the toolkit for identifying and
exploiting meaningful structures. Furthermore, algorithms that align discovered structures of the

Inverse Methods for Complex Systems under Uncertainty 11



inverse problem with the hardware layout of advanced compute and data architectures would
create an automated approach to performing computationally effective domain decomposition,
reducing required communication, and allocating resources, thus making scaling on emerging
complex hardware more accessible. Ultimately, addressing these challenges will benefit from hybrid
approaches to inverse problems that integrate AI with physics-based models and mathematical
operations, together with theoretical advances that rigorously quantify uncertainty, provide robust
error bounds, and ensure convergence guarantees when using these discovered structures.

PRD 2 Identifying and overcoming model limitations
Motivation and Impact. As DOE science confronts unprecedented complexity in phenomena and
measurements while demanding ever-greater accuracy, the limitations of priors, likelihoods, and
forward models are emerging as critical bottlenecks hindering scientific progress in many fields.
Common sources of limitations, also known as misspecification, include oversimplifications, omitted
variables, unmodeled noise, inaccurate priors, incomplete understanding of the underlying physics,
poorly calibrated models, incorrect assumptions, and statistical bias. Moreover, the nature or even
existence of misspecification is frequently unknown a priori and cannot always be overcome by
simply improving the models, necessitating its direct treatment when solving inverse problems.
Misspecifications can have dire consequences for inverse problem solutions—causing identifiability
problems, introducing bias to the solution, and making the magnitude of uncertainties unwieldy or
mathematically ill-defined—and are under-addressed in research to date. While progress has been
made in addressing model misspecification for forward simulation and uncertainty quantification,
these efforts primarily focus on improving predictive accuracy or quantifying uncertainty in
forward models alone. In contrast, inverse problems pose unique challenges associated with
propagating model errors through the inference pipeline, where they interact with misspecification
in complex ways.

Fundamental advances in identifying, quantifying, and mitigating model limitations within
inverse problems will transform the extraction of reliable insights from real-world systems that
are too complex or uncertain to model faithfully. New methods capable of rigorously attributing
uncertainty to sources, such as forward model errors, prior assumptions, out-of-distribution
observations, and computational approximations, are urgently needed. These methods must also
track the propagation of this uncertainty through the inference process and use this information
to adaptively correct the model and solution. Such advances would revolutionize the accuracy
and reliability of inverse-problem solving in domains where model limitations have long posed
significant barriers. These advances would also substantially improve estimates of uncertainty
and risk in solutions, thereby reducing reliance on overly conservative assumptions that may
impede decision-making while supporting the safe and reliable operation of autonomous systems.
The timeliness of this effort is underscored by the growing need of modern science drivers to
study complicated phenomena that are not fully captured by existing models, coupled with
increasing system complexity, both of which make the identification and mitigation of model
misspecifications and limitations in inverse problems more challenging than ever. This urgency
is further compounded by the growing availability of and need to leverage fast and expressive
approximations—such as genAI—which can themselves introduce model misspecifications that
adversely impact the accuracy and reliability of inverse problem solutions.

Inverse Methods for Complex Systems under Uncertainty 12



Thrust A: How can we adaptively correct, calibrate, and refine models during inversion
to minimize misspecification?

Challenges and Gaps. Model limitations can significantly degrade the accuracy and reliability
of solutions to the inverse problem. However, traditional methods for correcting model limita-
tions often rely on linear, Gaussian, or additive corrections [112], which are typically inadequate
for generating accurate solutions in complex systems. Additionally, these approaches primar-
ily focus on constructing corrections to observation models, which cannot be used to improve
predictions of unobserved quantities [113]. Embedded enrichments, or discrepancy models, add
state-dependent modeling degrees of freedom to capture behaviors missing in the original model,
improving consistency with data and uncertainty quantification of unobservable quantities [113–
115]. However, these approaches have primarily been applied to forward modeling rather than
solving inverse problems, and their formulation often requires significant subject-matter expertise,
limiting their general applicability. Furthermore, even simple corrections introduce additional
uncertain parameters which, when combined with poorly specified priors, can lead to identifiability
issues [116, 117]. Moreover, ensuring the stability of dynamical systems or adherence to physical
constraints when applying model corrections remains a significant challenge [118]. Measurement
artifacts and calibration errors can significantly degrade solutions, but these effects can rarely be
reliably identified and fully corrected. Although some issues can be readily identified and modeled,
others—such as nonstatic, nonstationary, and nonuniform detector gain responses, fluctuating
background, common modes, and correlated pixels—are notoriously difficult to detect, model,
and correct, yet can significantly degrade solution quality [119–122]. Attempts to precorrect these
measurement issues prior to inversion or postcorrect their effect on the solution after inversion are
often inadequate [123, 124].

Why Now? The growing demand for higher resolution and accuracy in DOE science drivers
is increasingly constrained by the limitations of imperfect models, highlighting the need for
innovative approaches to correct, calibrate, and refine models when solving inverse problems. The
rapid advancement of high-performance computing systems, coupled with their integration with
experimental and observational facilities [2], provides an unprecedented opportunity to refine
models and ensure robust uncertainty estimates in the presence of additional misspecifications.
These advances, along with those in high-dimensional approximation techniques, have enabled
the design of deterministic and stochastic embedded enrichments [118, 125], as well as learned
forward model corrections [126], which improve forward prediction. Similarly, model discovery
methods, such as symbolic approaches [127, 128] and neural operators [129, 130], have been used
to improve constitutive models and closures. Despite progress in forward modeling, many of
these tools remain underdeveloped for inverse problems [126], where uncertainties arising from
limitations can be unexpectedly amplified and transformed. Although calibrating/correcting
forward models prior to inversion is sometimes possible, recent work [131, 132] has shown that
building these steps into the inversion process can be far more effective, and often necessary,
particularly for complex systems or when the data is noisy/incomplete. However, such combined
calibration/inversion may be unstable, and has been largely unexplored beyond a limited range of
problems, leaving considerable room for further technique innovations. Although recent work has
shown that isolating and modeling unstable components of forward models as additional degrees
of freedom can significantly improve solution accuracy [133], this approach has so far been limited
to cases where the forward operator can be linearly decomposed into separate stable and unstable
terms. Additionally, deep imaging priors have been used to effectively correct localized, predictable
measurement artifacts [134, 135], but their effectiveness diminishes in complex, nonlinear problems
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with global, correlated effects. Deep learning techniques have also been explored for precorrecting
the data [135, 136] or postcorrecting the solution [137], but they lack integration with priors or
forward models to assess correction quality, often leading to suboptimal performance.

Research Opportunities. Overcoming pervasive and emerging model limitations in inverse
problems will require innovative research focused on correcting, calibrating, and refining models
within inverse solvers. Methods that can learn model discrepancies or embedded enrichments
that adhere to mathematical structures or physical principles, such as stability and conservation
of energy, will be critical for ensuring accuracy during both model calibration and deployment.
To produce reliable uncertainty estimates that do not underestimate errors in corrections, these
efforts could be coupled with effective procedures for prior elicitation that constrain embedded
parameters and align with a priori knowledge of the system, as well as generalized loss functions
that introduce robustness into downstream tasks or focus on matching essential features that are
insensitive to model misspecification. Additionally, methods are required to detect and adapt or
switch between corrections when changes in the underlying data occur, enabling real-time inference
and dynamic data assimilation, especially when using disparate multimodal data. Furthermore,
holistic algorithmic frameworks are required to identify, model, and correct complex measurement
artifacts—including nonstatic, nonstationary, and nonuniform detector gain responses, common
modes, and spatially correlated pixel fluctuations—within the inversion process, enabling artifact
correction to be guided by how it improves consistency between the data, forward model, and
priors of the inverse problem. New methods are also needed to discover and isolate unstable or
unneeded components of forward models, potentially by representing stable and unstable parts in
separate latent spaces to produce parsimonious models that can balance the tradeoff between added
expressivity and increased uncertainty. These advances must be supported by the development of
standardized benchmarks for complex systems and rigorous theoretical foundations, including
universal approximation guarantees and sample complexity guarantees for models with corrections,
to improve trustworthiness and facilitate the verification and validation of solutions.

Thrust B: How can we design inverse solvers that quantify and mitigate the effects of
pervasive model misspecification?

Challenges and Gaps. Correcting model limitations can improve accuracy in inverse problems;
however, it does not eliminate them entirely or address other forms of misspecification. For example,
likelihood distributions used in Bayesian inference for solving inverse problems may fail to fully
characterize sophisticated noise in observed data, such as nonadditive, non-Gaussian, or dependent
noise [138]. Similarly, prior distributions may inadequately represent the true characteristics of the
solution space, such as physical constraints [139, 140]. For instance, when using generative models,
model misspecification can lead to highly inaccurate posteriors [141]. Additionally, detecting
and mitigating out-of-distribution experimental and observational data, which can degrade the
reliability and accuracy of inverse solutions even when the problem is well-specified, remains
challenging, especially outside of simplified settings [142, 143]. Furthermore, priors constructed
from limited or biased datasets may distort the inverse solution or assign very low or even zero
probability to the “true” data-generating parameters, thereby preventing their recovery during
inversion [144].

Why Now? Rapid advances in experimental facilities and sensor technology are enabling the
observation of increasingly complex phenomena, often exceeding the capabilities of current mod-
els to fully capture the underlying phenomenology. Additionally, AI surrogates [145, 146] and
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genAI [147–149] are increasingly used to accelerate high-fidelity models and construct priors,
but can amplify misspecification and reduce robustness to misspecification, resulting in biased
estimates or underestimated uncertainty. The shift toward autonomy, exemplified by digital twins,
makes reliable solutions to inverse problems under misspecification increasingly critical. Algo-
rithmically, recent efforts have demonstrated promising pathways for detecting and mitigating
misspecification and validating uncertainty estimates [150–153], yet extending these techniques to
high-dimensional, large-scale problems with computationally expensive forward operators remains
elusive. These advances include methods that conservatively formulate, approximate, or sample
posteriors to account for misspecification [152, 154], such as approaches based on robust summary
statistics [149, 155], which focus on key features of the data that are less sensitive to misspeci-
fication, and marginal likelihood consistency-based regularization techniques [156]. However,
constructing information-preserving summary statistics for high-dimensional, multimodal datasets
remains challenging, as does balancing the relative contributions of the prior and likelihood, both
of which critically impact their effectiveness. Generalized Bayesian inference [157, 158] provides
robust alternatives to traditional posterior updates by modifying the likelihood function to ac-
count for model misspecification. However, these approaches face challenges such as the lack of
a standardized methodology, reliance on problem-specific tuning, and increased computational
complexity. Moreover, the promises of all the aforementioned directions have yet to be developed
when mathematical or physical constraints must be enforced.

Research Opportunities. Ensuring reliable inferences from the observation and modeling of
increasingly complex phenomena in the presence of model misspecification and out-of-distribution
data will require transformative advancements in identifying and mitigating these sources of
systematic and probabilistic error. For example, likelihood-free approaches that bypass the need
for explicit knowledge of the true likelihood distribution will be critical to enable robust inference
in scenarios where the data-generating process is complex or intractable, and allow inferences in
the presence of known unknowns and unknown unknowns. Additionally, novel scalable methods
that formulate and leverage robust summary statistics or alternative generalized loss functions
could enable solutions to high-dimensional problems from complex systems that are currently
out of reach. Techniques are needed to construct generative priors and apply them to inverse
problems while guaranteeing nontrivial probability for the true data-generating parameters and
ensuring robustness in the presence of prior misspecification. Methods that overcome all forms of
misspecification while enforcing physical constraints will be vital for maintaining consistency with
the underlying physics of the system while remaining adaptable to evolving model limitations,
such as improving posterior inference by incorporating gradient information from differentiable
simulators. Risk-aware approaches that tailor robustness measures to the risk preferences of inverse
problem stakeholders are also needed to ensure solutions align with application-specific priorities.
Importantly, all these methods must be accompanied by strong theoretical guarantees extending
beyond linear and Gaussian settings to instill confidence in their foundational rigor. Furthermore,
novel robust validation frameworks, generalizing existing posterior predictive diagnostics, and
benchmarks will enable the systematic evaluation of methods, guide algorithm innovation, and
foster greater trust in inverse solutions.

PRD 3 Integrating disparate multimodal and/or dynamic data
Motivation and Impact. Emerging DOE advances in experimental facilities and integrated research
infrastructure, as exemplified by the American Science Cloud initiative, are creating unprecedented
opportunities to collect and integrate increasingly complex data from multiple facilities across
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a broad range of spatial and temporal scales, physics regimes, and measurement modalities.
However, existing inversion techniques often struggle to integrate the resulting multimodal or
dynamic data when such data are exceedingly disparate. Multimodal data refers to information
collected from multiple distinct sources, sensors, or measurement techniques that capture different
aspects or properties of a system. Such data often encompass fundamentally different physics,
scales, fidelities, and computational representations, making their integration in inverse problems
exceptionally challenging. Additionally, assimilating dynamic data—updating inverse problem
solutions with new observations—faces significant barriers in systems with high-dimensional
nonlinear dynamics, abrupt state changes, and time-varying data quality, especially when rapid
analysis is required for time-sensitive applications, such as digital twins or autonomous systems.

Resolving these challenges in handling multimodal and/or dynamic data will unlock new
scientific capabilities by enabling the integration of novel combinations of data and models that
were previously too disparate to bridge. By extracting greater information from heterogeneous
data across domains and scales, these methods will achieve unprecedented solution accuracy and
reveal patterns that emerge only through integrated analysis. For example, combining experimental
measurements from scattering, microscopy, fluorescence, or spectroscopy with physical models
has shown considerable promise for revealing new insights into material properties [159–162],
while integrating diagnostic and simulation data is becoming increasingly important for predictive
control of fusion devices [163, 164]. Furthermore, these advances will enable predictive models
capable of capturing the extreme complexity and dynamics of natural and engineered systems—
critical for DOE inverse problems ranging from extreme event prediction [165–167] to additive
manufacturing [168]. Ultimately, these capabilities will help realize the full potential of the DOE’s
American Science Cloud initiative by enabling seamless analysis across multiple data sources and
facilities, and will support real-time control and optimization of complex systems, particularly for
digital twins that continuously learn and evolve in response to new data.

Thrust A: How can we effectively integrate multimodal data and models spanning
vastly different scales, fidelities, sources, or underlying physics?

Challenges and Gaps. Solving inverse problems with disparate multimodal data poses unique
challenges that cannot be resolved by combining standard unimodal techniques. Solution and
data spaces, as well as forward models, often involve fundamentally different underlying physics,
approximations, and computational representations across modalities, which makes unifying them
into a single coherent mathematical formulation of the inverse problem a major open problem [169].
Furthermore, data from multiple modalities often require registration—such as alignment, rescal-
ing, or geometric transformation—to match corresponding features, but this is challenging when
data are noisy, incomplete, or measure fundamentally different information [170]. In such cases,
performing registration independently of the inverse problem is often insufficient, as it overlooks
valuable information inherent in the problem [171], and it is often unclear how to define an appro-
priate registration metric between heterogeneous data [172–174]. Balancing the contributions of
modalities that differ in fidelity, volume, sparsity, and noise is another major hurdle, often causing
either higher-quality data to dominate the analysis or lower-quality data to corrupt results [175].
Traditional methods based on loss or likelihood functions that use fixed weights or treat all modal-
ities equally are unable to leverage the evolving and context-dependent relevance of each data
source as the solution and system are updated. Additionally, inconsistent information or incompat-
ible background and noise sources across modalities make it difficult to identify a solution that is
consistent across all data [176]. Relationships between modalities are often poorly understood or
difficult to model from first principles, further limiting the ability to exploit intermodal connections
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and accurately capture correlated uncertainties [177]. These challenges render many modalities too
disparate to be robustly integrated by current inversion methods, leading to missed opportunities
to extract new scientific insights that are only accessible when using multiple modalities [178].

Why Now? Advances in data collection and computing are opening the door to integrating
previously unexplored combinations of multimodal data and models, while new ideas in data
fusion are creating pathways to tackle multimodality in inverse problems. For instance, the DOE’s
American Science Cloud initiative, which includes the Integrated Research Infrastructure [2] and
High Performance Data Facility [3] programs, will facilitate seamless workflows that connect data
sources and computational resources across multiple facilities, creating unprecedented opportu-
nities to integrate novel combinations of data and models. Recent developments in multimodal
learning—including variational autoencoders [179, 180], self-supervised encoders [181], vision
transformers [182, 183], and representation learning [184–187]—have demonstrated the ability to
construct unifying latent spaces or embedding spaces that capture meaningful structure across
heterogeneous modalities. However, the potential of these AI approaches remains largely un-
tapped for general multimodal inverse problems, where more research is needed to scale these
methods within iterative solvers and leverage additional information from the forward model,
prior, and other constraints. Additionally, recent developments in feature-based [173] and deep-
learning-based [188] registration have been instrumental in registering multimodal data during a
preprocessing step. However, most of these techniques have yet to be directly integrated within
inverse solvers, where leveraging information from the forward model and evolving solution
estimates could enable more accurate registration. Notably, incorporating similar steps within the
inversion process—rather than as a preliminary data fusion or registration stage—has been shown
to be more efficient and accurate [171, 189, 190], though further research is needed to establish
effective approaches for integrating the advances described above.

Research Opportunities. Realizing the full potential of emerging opportunities to integrate mul-
timodal data and models will require several fundamental innovations. Modalities with funda-
mentally different physics or computational representations could finally be integrated through
new unified computational frameworks capable of learning efficient mappings between represen-
tations, identifying correlations across modalities, and leveraging these relationships throughout
the inversion process. Novel information obscured by noise and discrepancies between modalities
could be revealed by new methods that harness all available data, models, and priors to identify
shared structure, such as latent spaces, across modalities, and project data, priors, and operators
into these spaces. Current limitations in multimodal registration could be overcome through inno-
vative approaches that identify and match common features in heterogeneous data (e.g., via new
registration metrics or AI approaches), optimize the registration process to maximize accuracy and
stability of the inversion, and perform registration jointly with inversion to leverage information
from evolving solution and system state estimates. New strategies are also needed to automatically
balance data sources and priors according to fidelity, information content, and consistency, with
promising approaches including new information-theoretic methods that dynamically quantify
trust and consistency among information sources and update modality weights and constraints
accordingly. Rigorous error bounds and convergence guarantees could be achieved through new
information-theoretic and graph-based approaches to analyze and quantify the propagation of
uncertainty and information throughout the intricate network of interconnected and correlated
relationships present in complex multimodal inverse problems. Finally, new federated algorithms—
which enable analysis across multiple sites without requiring direct sharing of raw data—that
incorporate these advances would enable rapid large-scale integration of multimodal data from

Inverse Methods for Complex Systems under Uncertainty 17



geographically dispersed experimental facilities, which is essential for time-sensitive applications
such as autonomous experimentation and digital twins.

Thrust B: How can we dynamically assimilate disparate data from high-dimensional,
nonlinear, rapidly evolving, and computationally demanding systems on actionable
timescales?

Challenges and Gaps. Although the need for data assimilation is longstanding, rapidly evolving
scientific drivers with greater complexity, larger data volumes, and diverse modalities necessitate a
fundamental rethinking of current approaches. Kalman filters [191], including their ensemble vari-
ants, are computationally efficient, but rely on Gaussian assumptions to accelerate computations,
which are often unrealistic for complex systems in practice. While particle filters [192] relax some
of these assumptions, they often suffer from particle degeneracy, where most samples have low
probability, or overly confident posteriors [193], thus requiring an impractically large number of
particles, which may be computationally intractable. Particle filters often fail to effectively balance
observational data and model information near sharp features and struggle in high-dimensional
settings [194], particularly when attempting to represent posterior distributions with multiple
peaks [195]. Moreover, computational costs can quickly become prohibitive when assimilating
data in real time, as required for in-situ process monitoring [196, 197], particularly when working
with large datasets or computationally expensive forward models. These challenges are further
compounded when working with multimodal data, which often requires integrating observations
with dynamically varying quality—for example, visual data may degrade at night, necessitating
updates to the weighting of data importance [198]. Similarly, abrupt changes in the observed sys-
tem, such as the sudden formation of a crack in a material, can render the current posterior nearly
irrelevant, as it assigns negligible probability to events that now become highly probable [199].

Why Now? Emerging science drivers increasingly demand the assimilation of complex, rapidly
evolving, dynamic data on actionable timescales. For example, advanced digital shadows and
twins [6, 200] involve dynamically updating computational models of complex real-world systems
by assimilating streaming data at a sufficient rate to support real-time monitoring, prediction,
control, and decision-making. Additionally, the DOE’s Grid Modernization Initiative calls for
advanced computational techniques capable of assimilating dynamic grid data and interactions
across transmission, distribution, energy technologies, and critical infrastructure to enhance grid
resilience, improve situational awareness, and support reliable integration of multiple energy re-
sources. Fortunately, recent algorithmic developments suggest several promising research paths to
overcome current limitations in handling the complex dynamics, high-dimensional nonlinearities,
multimodal information streams, rapidly evolving states, and strict time constraints inherent in
these science drivers. For example, conditional generative algorithms, including diffusion models,
flow matching, and stochastic interpolants, have shown potential to reduce the computational
cost of solving static high-dimensional nonlinear probabilistic inference problems under complex
settings [201–205], but their potential for dynamic assimilation has yet to be realized. Similarly,
advances in transport maps [6, 191, 206, 207] offer a promising approach to reducing restrictive as-
sumptions in particle-based assimilation by formulating data assimilation as transporting particles
from the forecast density (generated by forward dynamics) to the filtered density (updated with
current observations) [208–211]. Yet, the computational costs of learning and applying transport
maps can grow recursively over time, posing significant scalability challenges. Efforts have been
made to generalize the Gaussian ansatz of ensemble Kalman filters by directly learning filters from
data with AI [212, 213] but have been limited to specific types of inverse problems, with scalable
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methods for high-dimensional, computationally expensive models still undeveloped.

Research Opportunities. Several promising research directions could help overcome current
limitations in assimilating disparate data for complex systems. For example, research is needed to
develop generative approaches for dynamic data assimilation that avoid the need for retraining at
every time step, ensure posterior stability over time, and guarantee convergence as data volume
and network complexity increase. Research is also required to design new hybrid approaches
that integrate advances in generative modeling with novel strategies for particle- and sample-
based data assimilation. These approaches could overcome the limiting assumptions of current
methods regarding prior knowledge, model complexity, observation operators, and noise and
error structures, enabling more complex and higher-dimensional real-world applications to be
addressed. Scalable approaches to transport maps, including new strategies for selecting distance
measures and novel learning techniques, could minimize the cost of recursive retraining, making
these methods computationally feasible for high-dimensional systems and enabling them to model
more complex dynamics and noise than current methods. Additionally, methods are needed to
effectively demonstrate these benefits on multimodal datasets, posteriors with multiple modes,
high-dimensional data, and complex state spaces, especially when forward operators are expensive
to evaluate. Extensions of these advances are essential to adapt loss function weightings when
multimodal data distributions undergo significant dynamic changes over time, ensuring that the
assimilation process remains robust and accurate under evolving conditions.

PRD 4 Solving goal-oriented inverse problems for downstream tasks
Motivation and Impact. A broad spectrum of DOE programs increasingly demand solving inverse
problems to improve predictions and quantify uncertainties in downstream tasks, such as model
calibration, optimal control, design optimization, risk assessment, optimal experimental design
(OED), and decision support. A prototypical example involves calibrating a digital twin—a
numerical model of a specific physical system that evolves alongside the system over its lifetime—
thus enhancing its ability to predict quantities of interest (QoIs) that differ from the observed
quantities but are essential for decision-making, such as identifying optimal sensor placements
to improve system performance. Traditionally, these goal-oriented inverse problems (GIPs), as
defined in Section 1.2, are solved sequentially, first addressing inverse problems independently of
downstream tasks by focusing solely on inferring model parameters from data, and then using the
solution in downstream tasks. Existing methods are limited by restrictive assumptions, impractical
computational demands, and an inability to fully extract information from available data, often
resulting in biased predictions and overconfident uncertainty estimates. Furthermore, the growing
reliance on digital twins, autonomous systems, and the rapid evolution of sensing technologies
and data acquisition systems have made the need for novel, scalable solutions more urgent than
ever. Without timely intervention, critical advancements in DOE mission areas—spanning energy
systems, disaster response, and materials discovery—risk being delayed or remaining unattainable.

Meeting the needs of emerging GIPs requires a fundamental rethinking of how these problems
are formulated and solved. Codesigning inverse problems with downstream tasks is essential to
efficiently prioritize computational resources and data collection, even for competing objectives,
and to deliver solutions within actionable timescales. Risk-aware approaches are needed to ensure
downstream tasks are both informed by data and aligned with stakeholder preferences, helping to
mitigate rare but high-consequence undesired events, such as system failures. Causal inference
methods are crucial for disentangling correlation from causation, enabling the exploration of
intervention outcomes, control actions, or experimental changes—key for evaluating “what-if”
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scenarios and ensuring robust decision-making. New approaches for solving GIPs that prioritize
targeted data use to reduce uncertainty, optimize decision-making, and balance technical, economic,
and safety objectives under stringent computational and resource constraints will significantly
enhance efficiency and predictive accuracy across diverse fields, driving breakthroughs in energy
systems, materials discovery, and autonomous systems.

Thrust A: How can we design goal-oriented inverse solvers that integrate downstream
tasks?

Challenges and Gaps. While GIPs offer a transformative opportunity to align inverse problem
solutions with downstream objectives, their formulation introduces significant challenges. Existing
approaches often rely on restrictive linear and Gaussian assumptions [214, 215], which limit their
ability to capture the complexity and nonlinear dependencies inherent in GIPs. Structures or data
that are effective for improving solutions to traditional inverse problems may lose their utility
when applied to GIPs, as the focus shifts from estimating model inputs to predicting QoIs [214,
216]. Even robust solutions to traditional inverse problems or model-error corrections frequently
fail to deliver accurate QoI predictions, resulting in biased outcomes and overconfident uncer-
tainty estimates [113]. In parallel, GIPs often result in highly nonlinear, nonconvex optimization
problems, which remain a significant challenge—particularly when models fail to produce exact
gradients, provide only approximate ones, or when objectives and constraints exhibit nonsmooth
behavior [215, 217, 218]. These difficulties are further compounded when bilevel and mixed-integer
optimization is required, such as in automated decision-making tasks like planning-operation or
design-operation tasks. Automating the GIP solutions often requires risk-aware approaches to
quantify and mitigate rare extreme events and uncertainties critical to decision-making. How-
ever, very little work has incorporated risk awareness [219], which amplifies computational costs
and must adapt to evolving risk preferences. Disentangling correlation from causation is crucial
to ensure predictions remain valid under interventions, such as control actions or experimental
changes [220], yet existing methods often rely on overly restrictive assumptions and are typically
tailored to simple downstream tasks, such as QoI prediction [214]. These challenges become
even more pronounced when GIPs involve multiple downstream tasks, requiring the balancing of
competing objectives that cannot be addressed by independently solving each task’s GIP.

Why Now? The rapid advancement of sensing and data acquisition technologies, combined with
the growing integration of scientific user facilities, data assets, and advanced computing—such
as through the DOE’s American Science Cloud initiative—could automate workflows centered
around inverse problems. However, automating workflows, such as those used by large-scale
materials simulations and experimentation, will require seamlessly and efficiently integrating
inverse problem solutions with complex downstream tasks [200]. Recent advances in genAI [147,
148] hint at the possibility of bypassing traditional bottlenecks in estimating posterior distributions
by directly conditioning uncertainty in downstream QoIs on observed data, but these methods
must be fundamentally reimagined to address the complexities of emerging downstream tasks.
Similarly, while risk-aware methods have been successfully applied outside of inverse problems,
such as for uncertainty quantification in QoIs [221], they must be redesigned to address risk when
solving GIPs. Multitask inference frameworks [222] and distributional inverse problems [223,
224] have shown that leveraging shared patterns across related systems can significantly enhance
predictions, but similar breakthroughs are needed for GIPs. While these advances from other fields
have been limited to simpler downstream tasks, such as prediction, they suggest that innovative
approaches to solving GIPs could soon overcome existing challenges and unlock their full potential
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for improving decision-making and design optimization.

Research Opportunities. Meeting the critical needs of DOE mission challenges, which involve
computationally expensive simulations and complex downstream tasks, requires a transformative
rethinking of how inverse problems and downstream tasks are codesigned. Innovative approaches
are needed to solve GIPs that regularize the inverse problem, uncover and exploit low-dimensional
structures informed by data, and inform downstream objectives, thereby significantly reducing
computational and data demands. Multitask methods capable of leveraging shared patterns across
related systems are essential to enhance solution accuracy and precision for related, yet sometimes
competing, downstream tasks. Additionally, new analogies of AI foundation models tailored to
inverse problems could allow pretraining one model that powers many downstream GIP tasks.
Furthermore, robust causal inference methods that can handle complex downstream tasks and
ensure validity under varying conditions and distributional shifts will be essential for quantifying
intervention outcomes, control actions, or experimental changes—critical for addressing “what-if
scenarios.” Risk-aware approaches are urgently needed to revolutionize decision-making and au-
tomation by accurately quantifying the data-informed impact of rare but high-consequence events
while dynamically adapting to evolving risk preferences. Techniques for mitigating or quantifying
model misspecification must be tailored to specific downstream tasks and risk-preferences to avoid
overly conservative uncertainty estimates and ensure actionable solutions. Central to these efforts
is the development of methods with strong theoretical error bounds and practical error estimation
techniques. High-order optimization methods capable of efficiently solving problems that are
multiobjective, risk-aware, and nonsmooth will also be vital to address these challenges and unlock
the full potential of GIPs for DOE mission priorities.

Thrust B: How can we dynamically adapt data collection, fidelity, and computational
resource allocation to improve the accuracy and efficiency of goal-oriented solutions?

Challenges and Gaps. Accurately solving GIPs within finite data and computational budgets
requires balancing the costs and accuracies of both the inverse problem and downstream tasks.
However, the complexity of optimally allocating resources poses significant challenges, especially
when managing the feedback loop between the downstream task and the inverse problem formu-
lation. These difficulties are further compounded by the absence of robust metrics for complex
downstream tasks and the inherent competition between achieving accurate inversion and optimiz-
ing downstream objectives. This inability to jointly optimize these objectives results in significant
inefficiencies, wasted resources, and suboptimal solutions, ultimately hindering the ability to solve
GIPs within the actionable timeframes required for effective decision-making and autonomous sys-
tems. For example, data collection methods such as OED may minimize uncertainty in parameter
posteriors but fail to reduce uncertainty in downstream tasks [225]. Similarly, surrogates for obser-
vational and QoI maps are typically constructed independently due to the lack of theoretical and
practical methods for estimating their contribution to downstream tasks [226]. Errors arising from
approximations, low-fidelity models, or model inadequacy are also rarely balanced, despite evi-
dence that multifidelity methods can significantly reduce computational costs in fields adjacent to
inverse problem-solving [227–229]. Moreover, real-world GIP applications must navigate dynamic
and uncertain conditions, such as intermittent sensor availability, variable observation quality, and
rapid system changes that render preplanned resource allocation ineffective and demand adaptive
strategies that surpass the sequential, nonadaptive GIP approaches currently available [221, 230].
These challenges become even more pronounced when computing risk-aware solutions or when
downstream tasks introduce conflicting priorities.
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Why Now? While data measurements, workflows, and compute architectures are becoming
more powerful, their rising costs highlight the need for methods that balance measurement and
computational fidelity to maximize the speed and accuracy of solving GIPs. Recent advances in
computational science, AI, and uncertainty quantification offer unprecedented opportunities to
jointly optimize data collection and modeling fidelity for GIPs. Developments in multifidelity
modeling, which integrates multiple simulation models, and active learning [231], which identifies
optimal strategies for enriching data-driven models, have demonstrated significant potential to
allocate resources more effectively for uncertainty quantification [232], surrogate modeling [233],
and design [234]. However, these approaches must be reimagined to reduce the cost of solving
GIPs. Similarly, recent advances in amortized genAI methods, such as diffusion models [147] and
normalizing flows [148], offer the ability to reduce the cost of repeatedly solving inverse problems
by learning direct mappings from observations to predictions. However, their accuracy and the data
sources used to train them have not yet been tailored to balance the competing needs of GIPs nor to
exploit experimental and observation data of varying quality and cost. Reinforcement learning [235]
and Bayesian optimization [236] have advanced sequential decision-making under uncertainty by
dynamically balancing exploration and exploitation for experimental resource allocation, such as in
OED [236], and computational resource allocation, such as in optimal design [237]. However, even
greater potential remains untapped due to the absence of approaches that are specifically tailored
to GIPs and encode risk preferences.

Research Opportunities. Solving GIPs on actionable timescales requires a fundamental rethinking
of how computational models, data, and downstream tasks are integrated. Novel methods are
needed to significantly improve computational and data efficiency, enabling real-time decision-
making and automation, particularly for GIPs involving bidirectional coupling between models and
data, as exemplified by digital twins and autonomous discovery labs. As computational models
grow increasingly complex and demanding, approaches must be developed to balance the costs of
physics modeling, data collection, surrogate modeling, and generative modeling used to solve the
inverse problem. These approaches must also account for the costs of similar processes required for
multiple downstream tasks, such as designing and executing control policies. Additionally, they
must ensure resource efficiency without compromising accuracy. These efforts could be advanced
through new methods that exploit strategies such as multifidelity modeling, active learning, and
reinforcement learning, which balance exploration and exploitation for GIPs. In this context,
exploration refers to the process of acquiring new information to improve models, such as refining
meshes, enriching embedded corrections, or collecting additional training data, while exploitation
focuses on leveraging existing knowledge to solve inverse problems and address downstream tasks
efficiently. For instance, these methods could guide the refinement of physics-based models for
downstream tasks, such as refining meshes and embedding corrections for model misspecification,
while simultaneously managing the cost of collecting training data and building generative models
to solve the inverse problem, ensuring that the cost of improving these models is carefully balanced
against the benefits they provide. Similarly, GIP strategies that determine the amount and type
of data to collect based on downstream task requirements—such as enabling confident decision-
making between two options under uncertainty—could significantly reduce the financial cost of
data collection. Efficiencies could be further enhanced by developing risk-aware frameworks that
prioritize computational and data resources to target the estimation of stakeholder-informed risk
measures, ensuring solutions align with both technical and decision-making priorities.
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3. Conclusion

T he Workshop on Basic Research Needs for Inverse Problems for Complex Systems under
Uncertainty, convened by the DOE’s ASCR program in June 2025, aimed to address the
growing complexity and rapidly evolving demands of inverse problems across the DOE’s

mission space. Inverse problems, which are central to understanding and optimizing complex sys-
tems, are increasingly characterized by multiphysics and multiscale models, multimodal data, and
hybrid AI-aided simulations. Their cross-cutting nature and escalating computational challenges
strongly motivated the formulation of a prioritized research agenda to maximize their capabilities
and impact.

Bringing together experts across disciplines, the workshop sought to identify grand challenges
and major opportunities in the field. Through collaborative discussions, participants defined
transformative research directions to address the mathematical, statistical, and computational chal-
lenges posed by inverse problems under uncertainty. The workshop emphasized the importance
of foundational mathematical and computational science research in optimization, probabilistic
inference, hybrid modeling, and multifidelity techniques, while exploring emerging opportunities
in AI and advanced computing architectures. These innovations will be essential for extracting
insights from noisy, incomplete, and multimodal data, overcoming model limitations and misspeci-
fications, integrating physics-based and data-driven models, and delivering actionable insights for
high-consequence decisions.

The four PRDs outlined in this report provide a cohesive vision for advancing the science of
inverse problems under uncertainty. Together, they address the critical challenges of discovering,
exploiting, and preserving physical and problem structure; overcoming model limitations; inte-
grating disparate multimodal and/or dynamic data; and tailoring solutions to downstream tasks.
While each PRD focuses on a distinct aspect of inverse-problem research, their interconnected
nature highlights the importance of a holistic approach that leverages progress across all areas to
achieve transformative solutions.

The significance of this research extends far beyond theoretical advancements. Inverse prob-
lems underpin a wide range of DOE applications, including, but not limited to, reconstructing
3D structure and dynamics from X-ray, electron, and neutron data; optimizing fusion reactors;
enhancing underground energy exploration and production; inferring new fundamental particle
properties from particle colliders; designing new materials with targeted properties; understanding
nuclear structure; improving wildfire predictions; accelerating quantum information sciences; and
enabling autonomous systems and digital twins. Solving these problems with enhanced accuracy,
scalability, and uncertainty-awareness while ensuring strong theoretical guarantees will accelerate
advancements in scientific discovery, energy innovation, and national security.
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Appendix A: Workshop Charge

Dear John, Michael, and Jeffrey, 

Thank you for agreeing to be the chairs for the ASCR Applied Mathematics workshop focused on the 

Basic Research Needs for Inverse Methods for Complex Systems under Uncertainty. This email confirms 

ASCR’s invitation for you to lead this important ASCR activity. 

The workshop will follow a model based on that used by SC’s Basic Energy Sciences program for their 

Basic Research Needs (BRN) workshops.  As you know, critical to ASCR’s success are the meeting of a 

broad group of participants from the community, in-person where possible, and the development of a 

report that outlines the priority research directions, as identified by the participants, capturing the 

opportunities to further advance applied mathematics research and impact in this space.  This BRN 

workshop is scheduled for 2.5 days. On the afternoon of the second day, the breakout leads present the 

priority research directions identified during their breakout to the entire group. The morning of the third 

day is reserved for writing by the chairs, breakout leads, and other writers who may have been selected 

by the group. 

The purpose of this workshop is to identify the ASCR priority research directions regarding inverse 

methods for complex systems under uncertainty.  Inverse problems underlie many DOE-relevant 

applications that are becoming increasingly complex, involving multiple interconnected models, physics, 

and scales with observational data characterized by multiple modalities and fidelities.  Both model and 

data uncertainties need to be accounted for in the estimations, especially for hybrid simulations that 

incorporate scientific machine learning and for digital twins.  

The workshop participants will first consider the status, recent trends, and challenges facing DOE’s 

science and technology missions to which advances might be relevant. The workshop participants will 

then examine the opportunities, barriers, and potential for high scientific impact through fundamental 

advances in the underlying mathematical, statistical, and computational research foundations. The 

resulting priority research directions should span several major algorithmic categories and 

state-of-the-art modeling and algorithm research from a variety of approaches; and cover different 

classes of techniques. Themes relevant for the workshop include inverse problems, parameter 

calibration, uncertainty quantification, numerical optimization under uncertainty, Bayesian approaches, 

multimodal data fusion, derivatives/sensitivities and adjoint methods, and probabilistic programming 

with applications to data analysis from experimental facilities, hybrid modeling and simulation, digital 

twins for control and decision support, and efficient AI/ML training. 

The workshop and subsequent report should define the basic research needs and opportunities in 

applied and computational mathematics that can bring advancements in the creation and application of 

complex physical systems to many areas of relevance to the DOE mission. 

The chairs are responsible for leading the entire workshop planning process. We will schedule regular 
conference calls among the chairs and DOE to start the planning process beginning next week. The 
overall tasks are listed below in approximate chronological order: 

●​ Develop the high-level workshop structure, including deciding on the number and focus of the 
panels. Based on the meeting venue, we can have up to 3 panels. 

●​ Identify possible plenary topics and speakers based on the panel topics. 

●​ Identify panel leads, and then work with the panel leads to identify the workshop participants, 
including a plan to engage a broad range of DOE Lab personnel, academics and industry 
representatives. Ideally, this plan will provide for including people who have not participated in ASCR 
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workshops before. This is a time-consuming process that we should begin as soon as possible to get 
the meeting on people’s calendars. 

●​ As soon as possible, coordinate preparation of a background document on the status of the field that 
would be distributed to participants ahead of the workshop.  ASCR program managers will 
participate in preparing this document.   

●​ During the workshop, synthesize the panels' ideas, guide the identification and definition of priority 
research directions, and coordinate an oral report to the full workshop at the closing session. 

●​ Coordinate and integrate the topical narratives provided by the panel leads and other identified 
writers into a final report. As much of the writing as possible is to be completed during the 
workshop, but follow-up writing is almost always required. 

 
The goal is to have a final report within three months after the workshop to maximize the report’s 

impact on programmatic planning. 

We greatly appreciate your willingness to lead this essential planning activity for ASCR.   

Steve Lee, Bill Spotz, and Todd Munson (cc’d) will provide you with additional guidance and coordinate 
with you going forward, including by communicating to you when the workshop can be discussed 
publicly. 

Sincerely, 
Hal 
-- 
Hal Finkel 
Director, Computational Science Research and Partnerships Division 
Advanced Scientific Computing Research 
Office of Science 
U.S. Department of Energy 
hal.finkel@science.doe.gov 
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Appendix B: Workshop Agenda
June 10, 2025

8:00 AM Breakfast
9:00 AM DOE ASCR and Co-Chairs Welcome
9:20 AM Plenary Talks

Drew Kouri, Sandia National Laboratories
Youssef Marzouk, Massachusetts Institute of Technology
Jeffrey Fessler, University of Michigan

10:35 AM Break
11:00 AM Parallel Breakout Discussion & Flash Talks

Topic 1: Optimization Algorithms
Topic 2: Probabilistic Approaches
Topic 3: Limited/Noisy/Multimodal Data

12:00 PM Lunch
1:00 PM Parallel Breakout Discussion

Topic 1: Optimization Algorithms
Topic 2: Probabilistic Approaches
Topic 3: Limited/Noisy/Multimodal Data

2:30 PM Group Photo
2:40 PM Break
3:00 PM Parallel Breakout Writing Sessions / Report Out Preparation

Topic 1: Optimization Algorithms
Topic 2: Probabilistic Approaches
Topic 3: Limited/Noisy/Multimodal Data

4:00 PM Report Out and Discussion
5:00 PM Adjourn

June 11, 2025

8:00 AM Breakfast
9:00 AM Welcome
9:05 AM Plenary Talks

Wei Cai, Southern Methodist University
Omar Ghattas, University of Texas at Austin
Noemi Petra, University of California, Merced

10:20 AM Industry Panel
Abhishek Chopra, BosonQ Psi Corp (BQP)
Kevin Daly, ExxonMobil
Genghis Khan, GE Aerospace
Mark Kostuk, General Atomics

10:50 AM Break
11:10 AM Parallel Breakout Discussion & Flash Talks

Topic 4: Uncertainty-Aware Modeling
Topic 5: Goal-Oriented Problems
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Topic 6: Scalable Algorithms
12:10 PM Lunch

1:10 PM Parallel Breakout Discussion
Topic 4: Uncertainty-Aware Modeling
Topic 5: Goal-Oriented Problems
Topic 6: Scalable Algorithms

2:40 PM Break
3:00 PM Parallel Breakout Writing Sessions / Report Out Preparation

Topic 4: Uncertainty-Aware Modeling
Topic 5: Goal-Oriented Problems
Topic 6: Scalable Algorithms

4:00 PM Report Out and Discussion
5:00 PM Adjourn

June 12, 2025

8:00 AM Breakfast
9:00 AM Writing Session

10:30 AM Break
11:00 AM Writing Session
12:00 PM Adjourn
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Appendix C: Workshop Participants
Name Institution
Nick Alger The University of Texas at Austin
Rick Archibald Oak Ridge National Laboratory
Tushar Athawale Oak Ridge National Laboratory
Masoud Barati University of Pittsburgh
Pouria Behnoudfar University of Wisconsin-Madison
Julie Bessac National Renewable Energy Laboratory
Debsindhu Bhowmik Oak Ridge National Laboratory
Tommie Catanach Sandia National Laboratories
Peng Chen Georgia Institute of Technology
Youngsoo Choi Lawrence Livermore National Laboratory
Abhishek Chopra BosonQ Psi Corp
Emil Constantinescu Argonne National Laboratory
Kevin Daly ExxonMobil
Agnimitra Dasgupta University of Southern California
Anabel del Val University of Minnesota
Somayajulu Dhulipala Idaho National Laboratory
Zichao Di Argonne National Laboratory
Jeffrey Donatelli Lawrence Berkeley National Laboratory
Kwassi Joseph Dzahini Argonne National Laboratory
Hillary Fairbanks Lawrence Livermore National Laboratory
Jeffrey Fessler University of Michigan
Nando Fioretto University of Virginia
Mark Fornace Lawrence Berkeley National Laboratory
Anne Gelb Dartmouth College
Omar Ghattas The University of Texas at Austin
Seyede Fatemeh Ghoreishi Northeastern University
Jinwoo Go Brookhaven National Laboratory
Jonathan Gorard Princeton Plasma Physics Laboratory
Salman Habib Argonne National Laboratory
Thomas Hagstrom Southern Methodist University
Malik Hassanaly National Renewable Energy Laboratory
Felix Herrmann Georgia Institute of Technology
Bamdad Hosseini University of Washington
Zixi Hu Lawrence Berkeley National Laboratory
Natalie Isenberg Pacific Northwest National Laboratory
John Jakeman Sandia National Laboratories
Sanket Jantre Brookhaven National Laboratory
Ruiwei Jiang University of Michigan
Ulugbek Kamilov Washington University in St. Louis
Conlain Kelly National Renewable Energy Laboratory
Genghis Khan GE Aerospace
Mark Kostuk General Atomics

Continued on next page
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Dinesh Kumar Lawrence Berkeley National Laboratory
Jeffrey Larson Argonne National Laboratory
Qi Lei New York University
Sven Leyffer Argonne National Laboratory
Jiaming Liang University of Rochester
Yen Ting Lin Los Alamos National Laboratory
Youzuo Lin University of North Carolina at Chapel Hill
Frank Liu Old Dominion University
Fernando Llorente Brookhaven National Laboratory
Andreas Mang University of Houston
Youssef Marzouk Massachusetts Institute of Technology
Roopesh Mathur BosonQ Psi Corp
Michael McCann Los Alamos National Laboratory
Matt Menickelly Argonne National Laboratory
Susan Minkoff Brookhaven National Laboratory
Sifat Afroj Moon Oak Ridge National Laboratory
Juliane Mueller National Renewable Energy Laboratory
Rie Nakata Lawrence Berkeley National Laboratory
Assad Oberai University of Southern California
Kanupriya Pande Lawrence Berkeley National Laboratory
Lekha Patel Sandia National Laboratories
Benjamin Peherstorfer New York University
Cosmin Petra Lawrence Livermore National Laboratory
Noemi Petra University of California, Merced
Teresa Portone Sandia National Laboratories
Hong Qin Princeton Plasma Physics Laboratory
Juan Restrepo Oak Ridge National Laboratory
Kristofer Reyes Brookhaven National Laboratory
Pieterjan Robbe Sandia National Laboratories
Johann Rudi Virginia Tech
Steffen Schotthoefer Oak Ridge National Laboratory
Siqian Shen University of Michigan - Ann Arbor
Michael Shields Johns Hopkins University
Guohui Song Old Dominion University
Miroslav Stoyanov Oak Ridge National Laboratory
Yu Sun Johns Hopkins University
Kowshik Thopalli Lawrence Livermore National Laboratory
Adam Thorpe University of Texas at Austin
Bart van Bloemen Waanders Sandia National Laboratories
Deepanshu Verma Clemson University
Rebekah White Sandia National Laboratories
Tim Wildey Sandia National Laboratories
Brendt Wohlberg Los Alamos National Laboratory
Pengcheng Xie Lawrence Berkeley National Laboratory
Dongbin Xiu The Ohio State University
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Yanwen Xu University of Texas at Dallas
Peng Xu Ames National Laboratory
Yunan Yang Cornell University
Zhi (Jackie) Yao Lawrence Berkeley National Laboratory
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