DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof. Reference herein to any social initiative (including but not
limited to Diversity, Equity, and Inclusion (DEI); Community Benefits
Plans (CBP); Justice 40; etc.) is made by the Author independent of
any current requirement by the United States Government and does
not constitute or imply endorsement, recommendation, or support by
the United States Government or any agency thereof.
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THE IMPACT OF DEVELOPING THE MATHEMATICAL
FOUNDATIONS FOR SOLVING INVERSE PROBLEMS

Inverse problems, which aim to infer unknown properties of a
system using experimental and observational data, are central to
many of the U.S. Department of Energy’s (DOE) most critical
scientific and engineering challenges. Accurate and efficient
solutions to inverse problems are vital for tasks such as analyzing
data from large-scale experimental facilities, optimizing fusion
reactor performance, probing nuclear structure, accelerating
materials discovery, identifying high-energy particle signatures,
enhancing geophysical imaging, advancing tsunami early warning
systems, and enabling autonomous systems and digital twins. See
Figures 1-6 for examples of inverse problems in mission-critical
DOE science drivers

These problems are increasingly complex, often involving
nonlinear, high-dimensional, and interconnected systems and
models that span multiple physics and scales, while relying on
data with varying quantity, quality, and information content.
Adding to these difficulties is the uncertainty found in complex
systems of interest to DOE, where errors in inputs, noise in data,
and discrepancies between models and reality constrain the
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accuracy and precision of solutions. The convergence of recent
scientific computing trends—for example, scientific machine
learning, artificial intelligence, and exascale computing—creates
unprecedented opportunities to tackle these challenges.

The cross-cutting nature of inverse problems, combined with the
rapidly evolving data and algorithmic demands of these problems,
strongly motivates the formulation of a prioritized foundational
research agenda to maximize their capabilities and impact. In
response to this need, DOE's Advanced Scientific Computing
Research program in the Office of Science convened the
Workshop on Basic Research Needs for Inverse Problems for
Complex Systems under Uncertainty in June 2025. The workshop
brought together experts to identify grand challenges and major
opportunities in the field. As a result, four priority research
directions (PRDs) were identified to guide future efforts. These
PRDs are summarized in this brochure, and more details can be
found in the full workshop report, available at
https://doi.org/10.2172/2583339.
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Figure 1 | Conceptual illustration of a prototypical inverse problem. Starting from an initial solution estimate, the inverse solver infers
unobserved quantities of a system—the solution—from observed data by ensuring that the forward model predictions align with the
data, prior knowledge, and constraints. The problem's ill-posedness, along with uncertainties in prior knowledge, models, and data, can
result in multiple plausible solutions.

Figure 3: Inferring Plasma States of Fusion Energy Systems



PRIORITY RESEARCH DIRECTIONS

1 o Discovering, exploiting, and preserving structure

How can we exploit mathematical and physical structures in models and data to overcome ill-posedness,
leverage prior knowledge, and significantly enhance computational efficiency while preserving essential properties?

Unlocking the next generation of DOE scientific discoveries will informative priors and constraints, improve robustness and
require innovative approaches for solving inverse problems that tractability, and accelerate computational performance. Achieving
address escalating computational demands, overcome greater this will require fundamentally new methods for solving inverse
degrees of ill-posedness, and efficiently utilize high-performance problems that better leverage known structures, discover new
computing and data resources. To meet this need, there are exploitable structures, preserve essential mathematical and
substantial opportunities to exploit new forms of mathematical, physical properties, and map computational and communication
physical, and data structures inherent in emerging complex patterns to these structures to optimize performance on available
systems to reduce problem size and complexity, introduce computing and data infrastructure.

2. Identifying and overcoming model limitations

How can we detect, quantify, and reduce model inadequacy while ensuring robust inference in the
presence of imperfect likelihoods, limited simulator fidelity, and inadequate priors?

Forward models used in inverse problems are often constrained frameworks to diagnose, quantify, and mitigate model inadequacy
by simplified assumptions, structural discrepancies, incomplete during inference. An important component of this effort will be
representations of physical processes, imperfect likelihoods, the design of methods that provide robust uncertainty estimates
limited simulator fidelity, or inadequate priors. These limitations, consistent with the data, account for both known and unknown
also known as misspecifications, compromise the reliability, limitations—such as those represented by a range of possible
efficiency, and interpretability of solutions while introducing distributions—and enhance the accuracy of inverse solutions
significant uncertainty into the inference process. Addressing across varying problem scales.

these challenges requires the development of mathematical

3. Integrating disparate multimodal and/or dynamic data

How can we efficiently integrate multimodal and/or dynamic data across disparate scales, fidelities, and
domains to maximize information gain and enable accurate, uncertainty-aware inference and assimilation?

Recent advances in data acquisition technologies have enabled Effectively utilizing disparate data, models, and facilities to solve
measurements of complex phenomena and structures across inverse problems at DOE-relevant scales will require algorithms
vastly different sources, physics, domains, and scales. However, that capture common features in the data, filter noise, fuse
current inversion algorithms often struggle to integrate such multiple fidelities and scales, bridge distinct representations, and
disparate multimodal or dynamic data, which can be quantify correlated uncertainties. Methods are also needed to
heterogeneous, inconsistent, and vary in fidelity, volume, and dynamically assimilate data, update rapidly evolving posterior
sparsity, while also contending with the use of multiple models distributions, and address abrupt changes in nonlinear,

that have conflicting representations of physics and data, or the multiscale, multiphysics, or chaotic systems.

storage and processing of data across different facilities.

4. Solving goal-oriented inverse problems for downstream tasks

How can goal-oriented inverse problems (GIPs) be formulated and solved to optimize the allocation of data
and computational resources and tune accuracy and uncertainty estimates to downstream tasks?

Inverse problems have traditionally focused on inferring model timescales. Realizing the potential of GIPs will require the codesign
parameters from data, but they are increasingly being integrated of scalable algorithms for inverse problems and downstream

into downstream tasks such as control, design, certification, and tasks, including methods to quantify uncertainty in task outcomes,
decision support. This shift creates a pressing need for goal- exploit parameter-to-task relationships, autonomously steer
oriented inverse problems (GIPs), which reformulate inverse experimental data collection, efficiently allocate computational
problems to directly align with the objectives of downstream resources, adapt model structure or fidelities, support "what-if"
tasks, enabling improved predictions, reduced uncertainty, and decision-making, and implement risk-aware approaches tailored

enhanced decision-making for complex systems on actionable to stakeholder needs.



SUMMARY

The four priority research directions outlined in this brochure
represent a cohesive vision for advancing the science of
inverse problems for complex systems under uncertainty.
Together, they address the critical challenges of: discovering,
exploiting, and preserving physical and problem structure;
overcoming model limitations; integrating disparate,
multimodal, and/or dynamic data; and tailoring the solution
of inverse problems to downstream tasks. While each PRD
focuses on a distinct aspect of inverse-problem research,
their interconnected nature highlights the importance of a
holistic approach that leverages progress across all areas to
achieve transformative solutions. This agenda calls for
research across mathematics, statistics, and computer
science disciplines, which are guided and complemented by
rapid advances in artificial intelligence, high-performance
computing, and experimental facilities, to unlock new
capabilities, maximize scientific impact, and meet the growing
demands of inverse problems that arise across applications
that are critical to DOE's mission.

FIGURE CREDITS

Figure 1 | Reconstruction of a 3D protein structure from a
large number of 2D single-particle diffraction images measured
in an X-ray free-electron laser experiment. Image courtesy of
Jeffrey Donatelli, Lawrence Berkeley National Laboratory.

Figure 2 | Calibration of nuclear energy density functionals is
an inverse problem where a controlled set of design
parameters is adjusted to match experimental data. Image
credit: Isaac Tamblyn, University of Ottawa, shared under the
Creative Commons license:
https://en.wikipedia.org/wiki/en:Creative_Commons.

Figure 3 | Precise control of fusion systems requires inferring
plasma states from observational data. Image credit: Oak Ridge
National Laboratory, shared under the Creative Commons
license: https://en.wikipedia.org/wiki/en:Creative_Commons.

Figure 4 | Inference of Higgs boson properties from observed
high-energy particle-collision events. Image credit: Conseil
Européen pour la Recherche Nucléaire.

Figure 5 | Model domain used to infer the properties of
tsunamis in the Cascadia subduction zone used for
implementing early warning systems. Image courtesy of Omar
Ghattas, University of Texas at Austin.

Figure 6 | High throughput femtosecond laser fabrication and
characterization used to produce desired target optical
properties. Image courtesy of Juliane Mueller, National
Renewable Energy Laboratory.
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Figure 5: Tsunami Source Characterization
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Figure 6: Inverse Design of Materials
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