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Inverse problems, which aim to infer unknown properties of a 
system using experimental and observational data, are central to 
many of the U.S. Department of Energy’s (DOE) most critical 
scientific and engineering challenges. Accurate and efficient 
solutions to inverse problems are vital for tasks such as analyzing 
data from large-scale experimental facilities, optimizing fusion 
reactor performance, probing nuclear structure, accelerating 
materials discovery, identifying high-energy particle signatures, 
enhancing geophysical imaging, advancing tsunami early warning 
systems, and enabling autonomous systems and digital twins. See 
Figures 1-6 for examples of inverse problems in mission-critical 
DOE science drivers

These problems are increasingly complex, often involving 
nonlinear, high-dimensional, and interconnected systems and 
models that span multiple physics and scales, while relying on 
data with varying quantity, quality, and information content. 
Adding to these difficulties is the uncertainty found in complex 
systems of interest to DOE, where errors in inputs, noise in data, 
and discrepancies between models and reality constrain the 

accuracy and precision of solutions. The convergence of recent 
scientific computing trends—for example, scientific machine 
learning, artificial intelligence, and exascale computing—creates 
unprecedented opportunities to tackle these challenges.

The cross-cutting nature of inverse problems, combined with the 
rapidly evolving data and algorithmic demands of these problems, 
strongly motivates the formulation of a prioritized foundational 
research agenda to maximize their capabilities and impact. In 
response to this need, DOE’s Advanced Scientific Computing 
Research program in the Office of Science convened the 
Workshop on Basic Research Needs for Inverse Problems for 
Complex Systems under Uncertainty in June 2025. The workshop 
brought together experts to identify grand challenges and major 
opportunities in the field. As a result, four priority research 
directions (PRDs) were identified to guide future efforts. These 
PRDs are summarized in this brochure, and more details can be 
found in the full workshop report, available at 
https://doi.org/10.2172/2583339.

THE IMPACT OF DEVELOPING THE MATHEMATICAL 
FOUNDATIONS FOR SOLVING INVERSE PROBLEMS

Figure 2: Reconstructing Nuclear Structure

Figure 1 | Conceptual illustration of a prototypical inverse problem. Starting from an initial solution estimate, the inverse solver infers 
unobserved quantities of a system—the solution—from observed data by ensuring that the forward model predictions align with the 
data, prior knowledge, and constraints. The problem's ill-posedness, along with uncertainties in prior knowledge, models, and data, can 
result in multiple plausible solutions.

Figure 3: Inferring Plasma States of Fusion Energy Systems



Forward models used in inverse problems are often constrained 
by simplified assumptions, structural discrepancies, incomplete 
representations of physical processes, imperfect likelihoods, 
limited simulator fidelity, or inadequate priors. These limitations, 
also known as misspecifications, compromise the reliability, 
efficiency, and interpretability of solutions while introducing 
significant uncertainty into the inference process. Addressing 
these challenges requires the development of mathematical 

frameworks to diagnose, quantify, and mitigate model inadequacy 
during inference. An important component of this effort will be 
the design of methods that provide robust uncertainty estimates 
consistent with the data, account for both known and unknown 
limitations—such as those represented by a range of possible 
distributions—and enhance the accuracy of inverse solutions 
across varying problem scales.

Recent advances in data acquisition technologies have enabled 
measurements of complex phenomena and structures across 
vastly different sources, physics, domains, and scales. However, 
current inversion algorithms often struggle to integrate such 
disparate multimodal or dynamic data, which can be 
heterogeneous, inconsistent, and vary in fidelity, volume, and 
sparsity, while also contending with the use of multiple models 
that have conflicting representations of physics and data, or the 
storage and processing of data across different facilities.

Effectively utilizing disparate data, models, and facilities to solve 
inverse problems at DOE-relevant scales will require algorithms 
that capture common features in the data, filter noise, fuse 
multiple fidelities and scales, bridge distinct representations, and 
quantify correlated uncertainties. Methods are also needed to 
dynamically assimilate data, update rapidly evolving posterior 
distributions, and address abrupt changes in nonlinear, 
multiscale, multiphysics, or chaotic systems.

Inverse problems have traditionally focused on inferring model 
parameters from data, but they are increasingly being integrated 
into downstream tasks such as control, design, certification, and 
decision support. This shift creates a pressing need for goal-
oriented inverse problems (GIPs), which reformulate inverse 
problems to directly align with the objectives of downstream 
tasks, enabling improved predictions, reduced uncertainty, and 
enhanced decision-making for complex systems on actionable 

timescales. Realizing the potential of GIPs will require the codesign 
of scalable algorithms for inverse problems and downstream 
tasks, including methods to quantify uncertainty in task outcomes, 
exploit parameter-to-task relationships, autonomously steer 
experimental data collection, efficiently allocate computational 
resources, adapt model structure or fidelities, support "what-if" 
decision-making, and implement risk-aware approaches tailored 
to stakeholder needs.

Key Question: How can we detect, quantify, and reduce model inadequacy while ensuring robust inference in the 
presence of imperfect likelihoods, limited simulator fidelity, and inadequate priors?

Identifying and overcoming model limitations 2.

Key Question: How can we efficiently integrate multimodal and/or dynamic data across disparate scales, fidelities, and 
domains to maximize information gain and enable accurate, uncertainty-aware inference and assimilation?

Integrating disparate multimodal and/or dynamic data3.

Key Question: How can goal-oriented inverse problems (GIPs) be formulated and solved to optimize the allocation of data 
and computational resources and tune accuracy and uncertainty estimates to downstream tasks?

Solving goal-oriented inverse problems for downstream tasks 4.

Unlocking the next generation of DOE scientific discoveries will 
require innovative approaches for solving inverse problems that 
address escalating computational demands, overcome greater 
degrees of ill-posedness, and efficiently utilize high-performance 
computing and data resources. To meet this need, there are 
substantial opportunities to exploit new forms of mathematical, 
physical, and data structures inherent in emerging complex 
systems to reduce problem size and complexity, introduce 

informative priors and constraints, improve robustness and 
tractability, and accelerate computational performance. Achieving 
this will require fundamentally new methods for solving inverse 
problems that better leverage known structures, discover new 
exploitable structures, preserve essential mathematical and 
physical properties, and map computational and communication 
patterns to these structures to optimize performance on available 
computing and data infrastructure.

Key Question: How can we exploit mathematical and physical structures in models and data to overcome ill-posedness, 
leverage prior knowledge, and significantly enhance computational efficiency while preserving essential properties?

Discovering, exploiting, and preserving structure1.
PRIORITY RESEARCH DIRECTIONS



SUMMARY
The four priority research directions outlined in this brochure 
represent a cohesive vision for advancing the science of 
inverse problems for complex systems under uncertainty. 
Together, they address the critical challenges of: discovering, 
exploiting, and preserving physical and problem structure; 
overcoming model limitations; integrating disparate, 
multimodal, and/or dynamic data; and tailoring the solution 
of inverse problems to downstream tasks. While each PRD 
focuses on a distinct aspect of inverse-problem research, 
their interconnected nature highlights the importance of a 
holistic approach that leverages progress across all areas to 
achieve transformative solutions. This agenda calls for 
research across mathematics, statistics, and computer 
science disciplines, which are guided and complemented by 
rapid advances in artificial intelligence, high-performance 
computing, and experimental facilities, to unlock new 
capabilities, maximize scientific impact, and meet the growing 
demands of inverse problems that arise across applications 
that are critical to DOE's mission.

FIGURE CREDITS

Figure 1 | Reconstruction of a 3D protein structure from a 
large number of 2D single-particle diffraction images measured 
in an X-ray free-electron laser experiment. Image courtesy of 
Jeffrey Donatelli, Lawrence Berkeley National Laboratory.

Figure 2 | Calibration of nuclear energy density functionals is 
an inverse problem where a controlled set of design 
parameters is adjusted to match experimental data. Image 
credit: Isaac Tamblyn, University of Ottawa, shared under the 
Creative Commons license: 
https://en.wikipedia.org/wiki/en:Creative_Commons.

Figure 3 | Precise control of fusion systems requires inferring 
plasma states from observational data. Image credit: Oak Ridge 
National Laboratory, shared under the Creative Commons 
license: https://en.wikipedia.org/wiki/en:Creative_Commons.

Figure 4 | Inference of Higgs boson properties from observed 
high-energy particle-collision events. Image credit: Conseil 
Européen pour la Recherche Nucléaire.

Figure 5 | Model domain used to infer the properties of 
tsunamis in the Cascadia subduction zone used for 
implementing early warning systems. Image courtesy of Omar 
Ghattas, University of Texas at Austin.

Figure 6 | High throughput femtosecond laser fabrication and  
characterization used to produce desired target optical 
properties. Image courtesy of Juliane Mueller, National 
Renewable Energy Laboratory.
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Figure 4: Inferring New Fundamental Particle Properties

Figure 5: Tsunami Source Characterization

Figure 6: Inverse Design of Materials
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