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Vat photopolymerization (VPP) additive manufacturing (AM)

• Selective photopolymerization of a liquid photocurable resin using 
ultraviolet (UV) or visible light in discrete layers

• Photocurable resins are typically a mixture of monomer(s), oligomer(s), 
photoinitator(s), and additive(s), when applicable

• Recent advances in high-performance resins have made VPP 
increasingly viable for functional tooling applications

projector

build plate

resin vat

Appuhamillage, G. A. et al. Industrial & Engineering Chemistry Research 58, 15109-15118 (2019). 
Becerra-Borges, Y. E. et al. Rapid Prototyping Journal 31, 200-217 (2025). 
Zhang, F. et al. Additive Manufacturing 48, 102423 (2021). 

digital light processing (DLP)

ASIGA

CAD
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Injection molding

• Traditionally uses metal tooling for the manufacturing of parts 
with high repeatability and excellent surface finish 

• Metal molds are costly and time-intensive to produce, limiting 
their practicality for low-volume or iterative product 
development

• Traditional production of thermoplastic polymer components at scale relies heavily on 
formative manufacturing (FM) techniques, such as injection molding

• A high-volume FM process in which a molten polymer is injected into a mold cavity, 
where it cools and solidifies into the desired geometry

Dizon, J. R. C. et al. MRS Communications 9, 1267-1283 (2019). 
Chen, Z. & Turng, L. S. Advances in Polymer Technology: Journal of the Polymer Processing Institute 24, 165-182 (2005). 
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VPP AM is well-known to fabricate high-resolution parts with 
smooth surface finishes and excellent dimensional accuracy, 

making VPP an compelling candidate for injection molding tools
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Asiga Max UV385 printer

• COTS VPP printer equipped with a 385 nm high-
power UV-LED light source and heated resin tank 
held at 30°C

VPP mold fabrication

ASIGA

1% (w/v) High 
Temp resin in 

isopropanol

Asiga Max 
UV385 light 

source

acrylate, diacrylate, and 
triacrylate monomers
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FormLabs High Temp resin (v2) 

FormLabs High Temp resin (v2)

• Commercial off-the-shelf (COTS) acrylate-based photocurable resin
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VPP mold fabrication

ASIGA

Post-Print Processing

• Washing – Form Wash; 6 min in isopropanol
• Post-cure 1 (C1) – Form Cure; 120 min at 80°C 
• Post-cure 2 (C2) – Carbolite GERO LHT Oven; 180 min at 160 °C
• Resurfacing via CNC milling machine

06:00
80°C 

120:00

Power

I
O

CARBOLITE
  GERO 30 – 3000°C

CARBOLITE
  GERO 30 – 3000°C

160°C 
180:00

washing C1

C2



9

VPP mold fabrication

X

Z

Y

MB
MC

MC

MB

ASTM D638 Type IV tensile bar specimen mold

STLs 
designed in 

Creo

Asiga Composer software X-ray mode

ASTM D638 type IV tensile bar specimen mold conceptualized and designed by James “Jimmy” Asbell and Mark Hudson (Advanced Manufacturing and Design Group, Advanced Engineering Division, SRNL) 



10

• Injection molded poly(lactic acid) (PLA) pellets
• 210°C nozzle temperature
• 80°C mold temperature
• 3300 psi injection pressure

Injection molding using VPP molds

CH3

HO
O

O
H

n

PLA pellets

Proto-Ject
Injection Molding Machine

Material Hopper

Barrel

Temperature Temperature

Nozzle

Power

Air Pressure

210°C 210°C

I
O

PLA Type IV 
tensile bar 
specimens

ASIGA

with VPP-
fabricated mold insert
mold frame

Manning Innovations Proto-Ject Benchtop Injection Molding Machine
Injection molding performed by 

Andrew Rhodes (Advanced 
Manufacturing and Design Group, 

Advanced Engineering Division, SRNL) 
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Resin characterization

Photorheology
UV on • Time to reach 90% of maximum storage 

modulus (G’):
 25°C => 16.5 s
 30°C => 18.5 s 

• Time to reach 100% of maximum G’:
 25°C => 290 s (1.95 MPa)
 30°C => 258 s  (2.22 MPa)

• Complex viscosity (η*):
 25°C => 2275 cP
 30°C => 1628 cP

 

5 mW/cm2 

28% decrease in η* at 30°C

14% increase in G’ at 30°C

100 μm gap
1% strain
10 Hz osc frequency
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Resin characterization

UV on

UV on • Time to gelation:
        25°C => 1.53 s
        30°C => 1.52 s
 
 

Photorheology

5 mW/cm2 

100 μm gap
1% strain

10 Hz osc frequency



2 cm-1 resolution
32 scans

uncured resin

cured resin
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Resin characterization

Attenuated total reflectance (ATR) – Fourier 
transform infrared spectroscopy (FTIR)• ATR-FTIR performed on 100 um film cured 

on the rheometer at 30°C

• Decreased peak intensity of cured resin at:
 1635 cm-1 attributed to C=C
 1407 cm-1 attributed to =CH2
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VPP-printed resin characterization

2% weight loss in air
Green => 334°C

C1 => 334°C
C2 => 335°C

2% weight loss in N2

Green => 343°C
C1 => 345°C
C2 => 345°C

RT to 1000°C under Air
99.9% weight loss all 

specimens

RT to 1000°C under N2

95% weight loss all 
specimens

173°C

Additional curing only observed in the first heat of the green specimen

A discernable glass transition temperature (Tg) was not observed in the second 
heat of the green or post-cured specimens, indicating a high degree of crosslinking

Thermogravimetric analysis (TGA) Differential scanning calorimetry (DSC)
10°C/min

N2

20°C/min
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VPP-printed resin characterization

• ASTM D638 Type V tensile bar specimens 

 

– layers deposited 
along the thickness of the specimen

– layers deposited 
along the width of the specimen

– layers deposited 
along the length of the specimen

T

W

L

X-orientation

Z-orientation

Y-orientation

Tensile testing

7.62 mm gauge length
1 mm/s test speed

≥ n=5 all groups

Tensile testing performed by Anastasia Mullins (Gas Transfer Systems Technology Group, Tritium Technology Division, SRNL) 



X-orientation

Y-orientation

Z-orientation
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VPP-printed resin characterization

T

W

L

Increased tensile properties of specimens fabricated in the Z-
orientation – may be attributed to the reduced curing nonuniformities 

in the XY plane due to the smaller cross-sectional area of each layer

Tensile testing

7.62 mm gauge length
1 mm/s test speed

≥ n=5 all groups

Tensile testing performed by Anastasia Mullins



Tensile testing performed by Anastasia Mullins
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VPP-printed resin characterization

• ASTM D638 Type V tensile bar specimens

 

Tensile testing

7.62 mm gauge length
1 mm/s test speed

≥ n=5 all groups
printed in the Z-direction

C1 C2

(Gas Transfer Systems Technology Group, Tritium Technology Division, SRNL) 



19

VPP-printed resin characterization

A significant increase in mechanical properties was observed after post-curing

Tensile properties of specimens that underwent C1 and C2 post-cure treatments were comparable

Tensile testing

C1 C2

Tensile testing performed by Anastasia Mullins

7.62 mm gauge length
1 mm/s test speed

≥ n=5 all groups
printed in the Z-direction
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VPP-printed mold characterization

X

Z

Y

MB
MC

MC MB

MC MB

MC MB

Green

C1

C2

ASTM D638 Type IV tensile 
bar specimen mold



21

VPP-printed mold characterization

X

Z

Y

MB
MC

ASTM D638 Type IV tensile 
bar specimen mold

WWO

LO

L

W
[mm]

L
[mm]

WO
[mm]

LO
[mm]

T
[mm]

Sa
[μm]

As-designed 6.0 34.0 19.45 115.0 3.7 N/A

5.5 ± 0.2 34.2 ± 0.3 18.8 ± 0.6 114.9 ± 0.4 3.7 ± 0.1 1.9 ± 0.7

5.6 ± 0.1 34.2 ± 0.1 19.6 ± 0.5 115.1 ± 0.1 3.6 ± 0.1 2.0 ± 0.9

5.8 ± 0.1 34.2 ± 0.2 19.4 ± 0.3 115.6 ± 0.5 3.6 ± 0.1 1.9 ± 0.7

% Difference 
from As-
Designed

-5.7% 0.6% -0.9% 0.2% -1.5% N/A

Green

C1

C2

Tensile bar cavity dimensions in the X-direction 
(L, LO) showed high dimensional fidelity

Tensile bar cavity dimensions in the Y- (T) and Z- (W, 
WO) directions showed high dimensional fidelity

Smooth surface finish 
compared to other AM 

techniques
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Injection molded specimens

CH3

HO
O

O
H

n

PLA pellets

Proto-Ject
Injection Molding Machine

Material Hopper

Barrel

Temperature Temperature

Nozzle

Power

Air Pressure

210°C 210°C

I
O

PLA Type IV 
tensile bar 
specimens

with VPP-
fabricated mold insert
mold frame

PLA Type IV tensile bar specimen using a VPP-fabricated mold

PLA Type IV tensile bar specimen using a metal mold

Injection molding performed by Andrew Rhodes (Advanced Manufacturing and Design Group, Advanced Engineering Division, SRNL)  
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Injection molded specimens

W
[mm]

L
[mm]

WO
[mm]

LO
[mm]

T
[mm]

Sa
[μm]

As-
Designed

6.0 34.0 19.45 115.0 3.7 N/A

Mold 5.7 ± 0.2 34.2 ± 0.2 19.3 ± 0.5 115.2 ± 0.4 3.7 ± 0.1 1.9 ± 0.7

Injected 
Tensile Bar

5.7 ± 0.2 34.6 ± 0.1 19.3 ± 0.2 114.6 ± 0.2 3.7 ± 0.1 8.8 ± 2.0

% 
Difference 
from Mold

0.8% 1.0% 0.1% -0.6% 0.5% 355%

WWO

LO

L

Tensile bar mold cavity geometry was replicated 
by the injected PLA with high fidelity (± 1%)

Trapped air suggests a need for optimized 
injection parameters and mold design

Surface roughness of the injected 
specimen was higher than the mold itself

PLA Type IV tensile bar specimen using a VPP-fabricated mold
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Summary

Uncured and cured resin characterization ASTM D638 Type IV tensile bar specimen 
mold fabrication and use
 

VPP-printed mold characterization Injection molded PLA specimen characterization
PLA Type IV tensile bar specimen 

using a VPP-fabricated mold

COTS 
FormLabs 

High Temp 
resin

PLA Type IV tensile bar specimen 
using a metal mold



26

Future Work

• Evaluation of VPP-fabricated molds after one and multiple injection molding shots to assess dimensional changes

• Exploration of VPP-fabricated molds using poly(dicyclopentadiene) (pDCPD) resin (e.g., COTS PolySpectra COR Alpha 
resin) and ceramic-loaded resin (e.g., COTS FormLabs Rigid 10K resin) for enhanced                                              
mold performance

• VPP-fabricated molds of more complex designs and using Creo mold flow predictions

Mc

MB

3D depth map of a mold of 
Savannah River Site’s 

resident alligator, “Stumpy”

“Stumpy” mold design by Timothy Novajosky (SRNL Summer Intern; Department of Mechanical Engineering, University of Georgia, Athens, GA USA)  
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Questions?
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