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Project overview

Objective: Understand changes in electricity system economics, reliability, resource
adequacy, and operations in the U.S. Southeast with higher levels of solar and storage
and with different levels of regional coordination

Project consists of three studies:

» Solar-storage integration study (Phase 1): How do higher levels of solar and storage
impact economics, reliability, and operations, with different levels of regional
coordination?

 Solar forecasting and storage study (Phase 2): How will better solar forecasting
change operations? How should storage be optimally operated and modeled
incorporating solar forecast uncertainty?

* Resource adequacy in energy-limited systems study (Phase 3): How do higher levels
of solar and storage impact resource adequacy and the value of demand-side
resources in providing resource adequacy?

Focus of this presentation

. . . . . . e . . NREL 2
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Motivation: the need for new approaches to

resource adequacy

Resource adequacy (RA) = having enough power system resources to meet
demand at all times

Traditional RA methods often rely on assessing the contribution of resources
during stress hours, often peak net load or specific periods

* Resource contribution quantified as its capacity credit

Systems with higher shares of weather-dependent resources likely to require
more advanced RA approaches, with features such as:

* hourly, chronological grid operations
e correlated outages
* multiple years of weather data

Stenclik, D., Bloom, A., Cole, W., Acevedo, A., Stephen, G., & Tuohy, A. (2021). Redefining Resource Adequacy for Modern Power Systems: A
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Detailed research questions

How does integrating a capacity portfolio planning tool with a probabilistic
resource adequacy model help address challenges for planning systems with
higher amounts of solar?

What are some of the drivers of unserved energy when using existing
resource adequacy methods for higher levels of solar?

How are results with the integrated planning approach affected by key
sensitivities related to load, weather years, and regional coordination?

NREL | 5



Integrating planning and adequacy tools

Analysis relies on two open-source tools:

Capacity expansion: Regional Energy
Deployment System (ReEDS)
(https://github.com/NREL/ReEDS-2.0)

Resource adequacy assessment:
Probabilistic Resource Adequacy Suite

(PRAS) (https://github.com/NREL/PRAS)

R
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Key assumptions:
* Planning/energy reserve margin = 12%

e |teration limit=5

*  Number of Monte Carlo samples = 10 (50 for final system)
* Expected Unserved Energy (EUE) target = 10 ppm of demand

Mai, T., Brown, P. R., Lavin, L., Dhulipala, S. C., & Kuna, J. (2024). Incorporating Stressful Grid Conditions
for Reliable and Cost-Effective Electricity System Planning https://doi.org/10.2139/ssrn.4841668
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Modeling assumptions (I)

ReEDS run for Eastern Interconnection
through 2050 with 3-year steps

Southeast balancing areas run as “porous
islands”

— Energy trade allowed, but with hurdle
rate of 10 S/MWh [2024S5]

— No firm capacity trade

Southeast study region

Cost assumptions derived from NREL’s
Annual Technology Baseline (ATB)
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Modeling assumptions (I1)

Dispatch in ReEDS performed using representative days
* 36 days selected using 2012 weather profile
* Each day modeled using 4-hour chunks

Capacity credit / stress periods rely on 7 years of hourly data
e Default relies on 2007-2013

NREL | 8



Scenarios comparing integrated stress periods to
capacity credit approach

Solar deployment

Business-as-usual High solar deployment
(BAU) (High PV)
Capacity credit _

Resource S (c‘(’:) BAU CC High PV CC

adequacy -

IILEI  Stress periods BAU SP High PV SP

(SP)
Solar share in 2050: 32% 45%

(% of ann. generation)

High PV scenario generated using Annual Technology Baseline
“advanced” solar and storage costs trajectories (BAU uses “moderate”) NREL | 9



Sensitivities evaluating the stress period method

Regional coordination
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Results: ReEDS/PRAS integration




Both methods meet RA criteria in BAU scenario,

but capacity credit exceeds criteria in High PV scenario
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High PV system sees more challenges throughout

the day during winter with capacity credit approach
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Stress period approach addresses shortfall in

High PV scenario by increasing storage duration
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Stress period approach increases costs, but

improves reliability

Average wholesale electricity
costs in 2050
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Results: What drives unserved energy in
the capacity credit approach?




At higher PV levels, unserved energy hours are less

concentrated on peak net load hours

LGEE load and hours of unserved energy
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Unseen weather realizations outside top net load

hours can lead to shortfall

Duke Energy net load on Jan 25 across different weather realizations
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Average derates can miss potential for low

probability, high impact outage events

Available firm capacity in LGEE with weather from 7:00 AM Dec 12, 2012
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Fine temporal resolution more critical for capturing

solar and net load ramping in High PV scenario
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Results: stress test sensitivities




Stress period approach yields systems that meet

reliability target across a range of conditions
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Total capacity and mix of resources for Southeast

varies across sensitivities
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Total capacity and mix of resources for Southeast

varies across sensitivities
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Regional coordination and load reduction strategies

offer options to reduce costs

BAU High PV

Base -

Regional |
coordination

+ Net cost
Load reduction |
(untargeted)
I Gen & Stor Capex
= (FE-enI & Stor O&M
) uel
Load(ft:f;:tt;%’; 4 B Interconnection Capex
B Interconnection O&M
B Transmission O&M
B Transmission Capex
) B Net Energy Trade
s ngg_ I Net Capacity Trade
eman o ITC
B PTC
Alternate |
years

Alternate years + |
High demand

T T T T T
0 25 50 25 50

0
Average system cost [$/MWh]
NREL | 25



Regional coordination can reduce costs and improve

Southeast transfer capacity [GW]
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Conclusions

Although it performs well in today’s system, capacity credit approximation may
face challenges modeling systems with higher levels of solar and storage.

Integrating planning and resource adequacy models can address some of these
gaps, helping planners deliver more reliable systems.

* In this study, the integrated approach addresses shortfall risk by adding longer-
duration storage and a diverse mix of new capacity.

* Higher reliability achieved but with 3-4% increase in 2050 average system
costs; also imposes additional computational burden.

* The integrated approach handles a range of sensitivities, including capturing
the benefits of regional coordination from resource diversity that are not well
characterized by the capacity credit approach.
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Questions?

www.nrel.gov

Contact: bsergi@nrel.gov
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